JP4510541B2 - Aluminum alloy casting molding method - Google Patents
Aluminum alloy casting molding method Download PDFInfo
- Publication number
- JP4510541B2 JP4510541B2 JP2004221225A JP2004221225A JP4510541B2 JP 4510541 B2 JP4510541 B2 JP 4510541B2 JP 2004221225 A JP2004221225 A JP 2004221225A JP 2004221225 A JP2004221225 A JP 2004221225A JP 4510541 B2 JP4510541 B2 JP 4510541B2
- Authority
- JP
- Japan
- Prior art keywords
- molten
- molten metal
- semi
- alloy
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Continuous Casting (AREA)
Description
本発明は、アルミニウム合金鋳物の成形方法に関する。 The present invention relates to a molding how the A aluminum alloy casting.
自動車の軽量化のため、サスペンション部材、サブフレーム部材、各種継手部材、アルミホイール等の車両用シャーシ構造部材にアルミニウム合金(以下Al合金と記す)鋳物が使用されている。
Al合金鋳物の成形には複雑な形状でも容易に成形できる半溶融鋳造法が用いられている。半溶融鋳造法に用いるビレットには、半溶融状態アルミニウム組成物の流動性を確保するために、特許文献1に示されているように、Si6.0〜8.0質量%の高Si材料が一般的に用いられている。しかし、特許文献1にも指摘されているようにSiの含有量が多いと靭性が低下し、含有量が不足すると溶湯の流動性が低下する。
低Si含有量のアルミニウムで半溶融鋳造法が可能になれば、高靭性の鋳造品が得られるが、靭性と流動性は前記のように二律背反の関係にあるため、実現していない。
これまでも、低Si含量のAl合金で高靭性を得る検討がなされており、例えば特許文献2にAl合金鋳物を高温溶体化処理後、時効処理する技術が開示されている。
特許文献2に開示された技術は、Siが1.65〜4.0%のAl合金鋳物を550〜575℃に加熱した後急冷して溶体化処理し、次いで140〜200℃で時効処理するものである。
For the molding of Al alloy castings, a semi-molten casting method is used which can be easily molded even with complicated shapes. In order to ensure the fluidity of the semi-molten aluminum composition, the billet used in the semi-molten casting method has a high Si material of Si 6.0 to 8.0% by mass as shown in
If a semi-molten casting method can be performed with aluminum having a low Si content, a cast product with high toughness can be obtained. However, since toughness and fluidity are in a trade-off relationship as described above, it has not been realized.
So far, studies have been made to obtain high toughness with an Al alloy having a low Si content. For example,
In the technique disclosed in
しかし、特許文献2に開示されたような鋳物を通常の鋳造方法で鋳造すると溶湯温度が高くなり、鋳型寿命が短くなるような問題があることから、半溶融鋳造法で低Si含有量のAl合金鋳物を生産することを可能にすることが望まれている。
However, since casting such as disclosed in
そこで、本発明では、前記した問題を解決し、半溶融鋳造法で高靭性が得られるAl合金鋳物の成形方法を提供することを目的とする。 Therefore, in the present invention to solve the aforementioned problems, and an object thereof is to provide a molded how the A l alloy castings that high toughness semi-molten casting is obtained.
請求項1に記載の発明は、Si2.0〜4.0質量%、残部Al及び不可避不純物からなる溶湯を容器に流し込み、共晶点近傍の温度で前記溶湯を固相率25〜45質量%の半溶融溶湯に調整し、前記半溶融溶湯を前記容器と共に鋳造金型の割り面より射出スリーブに装填し、前記鋳造金型を閉止した後、前記容器及び前記半溶融溶湯をプランジャにより押圧して前記半溶融溶湯を前記鋳造金型のキャビティに充填し、次いで前記鋳造金型のキャビティに充填した前記半溶融溶湯を冷却速度5℃/秒以上で急冷することを特徴とするアルミニウム合金鋳物の成形方法とした。
請求項1に記載の発明によれば、Si含有量が2.0〜4.0質量%と、従来の半溶融鋳造法に用いられるAl合金のSi含有量(5.5〜8.0質量%)より低いため、従来の半溶融鋳造法よりも高靭性のAl合金が得られる。
The invention according to
According to invention of
さらに、Si含有量が2.0〜4.0質量%のAl合金の固相率を25〜45質量%に調製すると、半溶融溶湯の液相はAlリッチの亜共晶組成となる。
このため、前記した半溶融溶湯を急冷すると、Al合金鋳物の金属組織中には、半溶融状態で生成したAl結晶相(これを第一のα相と記す)とは別の微細なAl結晶相(これを第二のα相と記す)が、Al−Si共晶相の中に析出する。この微細な第二のα相の存在により、Al結晶相とAl−Si共晶相の界面(以下、粒界と記す)を通じた亀裂の進展が阻止される結果、Al合金の靭性等の機械的性質が向上する。
Further, when the Si content to prepare solid fraction of 2.0 to 4.0 mass% of Al alloy 25-45 wt%, the liquid phase of the semi-molten melt becomes hypoeutectic composition of Al-rich.
For this reason, when the above-mentioned semi-molten molten metal is rapidly cooled, in the metal structure of the Al alloy casting, a fine Al crystal different from the Al crystal phase generated in the semi-molten state (this is referred to as the first α phase). A phase (referred to as the second α phase) precipitates in the Al—Si eutectic phase. The presence of this fine second α-phase prevents crack growth through the interface between the Al crystal phase and the Al-Si eutectic phase (hereinafter referred to as grain boundaries), resulting in a machine such as toughness of the Al alloy. The physical properties are improved.
よって、請求項1の発明によれば、半溶融溶湯を容器ごと鋳造金型の割り面より射出スリーブに装填するため、装填から射出するまでの時間が短くなり温度低下を最小限にできる結果、凝固し易い半溶融溶湯、または流動性が悪い半溶融溶湯であっても一工程で成形することが可能になる。さらに、冷却速度5℃/秒以上で急冷するため、前記した微細な第二のα相を確実に形成することができる。また、固相率を25〜45質量%に調整することにより、凝固し易く流動性の悪いSi2.0〜4.0質量%のアルミニウム半溶融溶湯でも、一工程で成形することが可能になる。
Therefore, according to the invention of
本発明のAl合金鋳物の成形方法によれば、凝固し易く流動性の悪いSi2.0〜4.0質量%のアルミニウム半溶融溶湯であっても成形することができる。 According to the method for molding an Al alloy casting of the present invention, it is possible to mold even an aluminum semi-molten molten metal of Si 2.0 to 4.0% by mass which is easy to solidify and has poor fluidity.
次に、本発明の実施形態について、適宜図面を参照しながら説明する。
本実施形態のAl合金はSi2.0〜4.0質量%、残部Al及び不可避不純物を含有する組成からなり、固相率25〜45質量%の半溶融溶湯の状態から急冷して得られる。
得られるAl合金は、円相当径が20μm以上で、かつ平均円相当径が50μm以上の第一のα相と、円相当径が20μm未満の第二のα相とを含む。
急冷条件としては、冷却速度を5℃/秒以上とすることが好ましい。
Next, embodiments of the present invention will be described with reference to the drawings as appropriate.
Al alloy of the present embodiment Si2.0~4.0 wt%, consists composition containing the remaining portion A l and unavoidable impurities, obtained by rapid cooling from semi-molten melt state of the solid fraction from 25 to 45 wt% It is done.
The obtained Al alloy includes a first α phase having an equivalent circle diameter of 20 μm or more and an average equivalent circle diameter of 50 μm or more, and a second α phase having an equivalent circle diameter of less than 20 μm.
As the rapid cooling condition, the cooling rate is preferably 5 ° C./second or more.
Al合金を構成するSiの含有理由、及び含有量の限定理由は下記のとおりである。 The reason for containing Si constituting the Al alloy and the reason for limiting the content are as follows.
Si:2.0〜4.0質量%
Siは、溶湯の流動性を良好にし、Al合金鋳物の靭性に影響する。Si<2.0質量%では溶湯の流動性が不足するため、Al合金鋳物に巣やヒケと呼ばれる鋳造欠陥が著しく増大する。一方、Si>4.0質量%では、α相の粒界に分布するSi共晶の量が過多となるため、Al合金鋳物の靭性が低下する。
Si: 2.0-4.0 mass %
Si improves the fluidity of the molten metal and affects the toughness of Al alloy castings. When Si <2.0% by mass , the fluidity of the molten metal is insufficient, so that casting defects called nests and sink marks are remarkably increased in the Al alloy casting. On the other hand, when Si> 4.0 mass %, the amount of Si eutectic distributed at the α-phase grain boundaries becomes excessive, and the toughness of the Al alloy casting is lowered.
このAl合金は、さらに以下の成分を含有していてもよい。各成分の含有理由、及び含有可能量を以下に説明する。 This Al alloy may further contain the following components. The reason for the inclusion of each component and the amount that can be contained will be described below.
Mg:0.2〜0.5質量%
MgはMg2SiとなってAl合金鋳物の強度に影響する。Mg<0.2質量%では強度の向上が不十分である。一方、Mg>0.5質量%では、Mg2Siの析出が過多となり靭性が低下する。
Mg: 0.2 to 0.5% by mass
Mg becomes Mg 2 Si and affects the strength of the Al alloy casting. If Mg <0.2% by mass , the strength is not sufficiently improved. On the other hand, if Mg> 0.5% by mass , Mg 2 Si precipitates excessively and the toughness decreases.
Cu:0.4〜0.8質量%
CuはAl合金鋳物の金属組織を固溶強化して強度向上に寄与するが、耐食性を低下させる。Cu<0.4質量%では強度向上が不十分である。一方、Cu>0.8質量%では耐食性が低下し、耐応力腐食割れ性が低下する。
Cu: 0.4-0.8 mass %
Cu contributes to improving the strength by solid-solution strengthening the metal structure of the Al alloy casting, but reduces the corrosion resistance. If Cu <0.4% by mass , the strength is not sufficiently improved. On the other hand, when Cu> 0.8% by mass , the corrosion resistance decreases and the stress corrosion cracking resistance decreases.
Ti:0.1〜0.3質量%
TiはAl合金鋳物の結晶を微細化し強度を向上させる。Ti<0.1質量%では前記した結晶を微細化し強度を向上させる効果が不十分である。一方、Ti>0.3質量%では、Al3Tiが生成して溶湯の流動性を悪化させるため、鋳造欠陥が生じやすくなる。
Ti: 0.1 to 0.3% by mass
Ti refines the crystal of the Al alloy casting to improve the strength. When Ti <0.1% by mass , the effect of reducing the size of the crystal and improving the strength is insufficient. On the other hand, when Ti> 0.3% by mass , Al 3 Ti is generated and the fluidity of the molten metal is deteriorated, so that casting defects are likely to occur.
結晶を微細化するという効果はZr及びBによっても得られる。この場合Zrは0.1〜0.3質量%、Bは0.2〜0.4質量%の範囲で添加することが好ましい。なお、BはTi,Zrと協働して結晶を微粒子化する効果を発揮する。 The effect of refining the crystal can also be obtained with Zr and B. In this case, it is preferable to add Zr in the range of 0.1 to 0.3% by mass and B in the range of 0.2 to 0.4% by mass . B exhibits the effect of making crystals finer in cooperation with Ti and Zr.
Al合金鋳物は、前記した組成のAl合金を固相率25〜45質量%の半溶融溶湯とし、これを急冷して得られる。
固相率25質量%未満では液状の金属の量が過多のためハンドリングが難しく、実質的に成形することは極めて困難である。また、固相率が45質量%を超えると、固形分が多く成形が難しくなる。
The Al alloy casting is obtained by making the Al alloy having the above composition into a semi-molten molten metal having a solid phase ratio of 25 to 45 mass % and rapidly cooling it.
If the solid phase ratio is less than 25% by mass, the amount of the liquid metal is excessive, so that handling is difficult, and it is extremely difficult to form. On the other hand, if the solid phase ratio exceeds 45% by mass , the solid content is large and molding becomes difficult.
固相率は、共晶点近傍の温度、好ましくは液相線温度に対して50℃未満の過熱温度に保持されている溶湯を容器中に注ぎ、この容器の中で所定時間保持することによって除冷しながらAl結晶を晶出させて調整する。容器へ溶湯を注ぐ際は、容器を傾け、溶湯が暴れないように静かに注ぐ必要がある。溶湯が暴れてしまうと酸化膜等を巻き込み、製品の品質が低下してしまうためである。注湯後は、例えば、容器に部分的な断熱を施す等して容器内の均熱を図ることが好ましい。
冷却速度は5〜30℃/秒の範囲が好ましい。冷却速度が30℃/秒を超えると容器の搬送、セット時に温度が下がりすぎて、目標の固相率で成形できなくなる。5℃/秒未満であると、第一のα相が異常成長してAl合金の靭性が低下する。
The solid phase ratio is determined by pouring a molten metal maintained at a temperature near the eutectic point, preferably at a superheating temperature of less than 50 ° C. with respect to the liquidus temperature, into the container, and holding the molten metal in the container for a predetermined time. Adjust by crystallizing Al crystal while cooling. When pouring molten metal into the container, it is necessary to tilt the container and pour it gently so that the molten metal does not get out of control. This is because if the molten metal becomes violent, an oxide film or the like is involved and the quality of the product is deteriorated. After pouring, for example, it is preferable to achieve uniform temperature in the container by, for example, partially insulating the container.
The cooling rate is preferably in the range of 5 to 30 ° C./second. When the cooling rate exceeds 30 ° C./second, the temperature is lowered too much during the transportation and setting of the container, and it becomes impossible to mold at the target solid phase rate. If it is less than 5 ° C./second, the first α phase grows abnormally and the toughness of the Al alloy decreases.
図1は、AlとSiとの共晶平衡図に基づき作成したもので、Si含有量と共晶時の固相率の関係を示す図である。すなわち、図1の右下がりの線は、半溶融溶湯から晶出し得るAl結晶(α相)の最大の割合を示し、この線より上ではAl結晶(α相)は晶出しないことを表している。
図1に示したように、本実施形態は、Si含有量2.0〜4.0質量%、固相率25〜45質量%の領域にある。これに対して、従来の半溶融鋳造法で使用される合金はSi含有量6.0〜8.0質量%、固相率40〜60質量%の領域にある。
FIG. 1 is created based on the eutectic equilibrium diagram of Al and Si, and shows the relationship between the Si content and the solid fraction during eutectic. That is, the lower right line in FIG. 1 indicates the maximum proportion of Al crystal (α phase) that can be crystallized from the molten metal, and above this line, the Al crystal (α phase) does not crystallize. Yes.
As shown in FIG. 1, the present embodiment is in a region where the Si content is 2.0 to 4.0 mass % and the solid phase ratio is 25 to 45 mass %. On the other hand, the alloy used in the conventional semi-molten casting method is in a region where the Si content is 6.0 to 8.0 mass % and the solid phase ratio is 40 to 60 mass %.
図1から明らかなように、本実施形態のSi含有量2.0〜4.0質量%、固相率25〜45質量%の範囲は、図1の線より下にあり、冷却によりさらにAlが晶出可能な亜共晶組成になっている。このため、急冷することによりにより半溶融状態で生成した第一のα相とは別の、図2に示した微細な粒径の第二のα相が析出する。
図2から明らかなように、本実施形態のAl合金には円相当径が20μm以上で、かつ平均円相当径が50μm以上の第一のα相と、円相当径が20μm未満の第二のα相とが含まれている。このように、円相当径が20μm以上で、かつ平均円相当径が50μm以上の第一のα相よりも微細な粒径の第二のα相の存在により、粒界を通じた亀裂の進展がより有効に阻止される結果、Al合金の靭性が向上する。ここで、円相当径とは、顕微鏡で観察されるα相の粒子面積から算出した擬似円の直径であり、平均円相当径とは円相当径の数平均値である。
なお、図2はSi3質量%のAl合金の半溶融溶湯を、固相率30質量%から冷却速度10℃/秒で急冷したときの金属組織の顕微鏡写真の写図である。
As is clear from FIG. 1, the Si content range of 2.0 to 4.0 mass % and the solid phase ratio of 25 to 45 mass % of the present embodiment are below the line in FIG. Has a hypoeutectic composition that can be crystallized. For this reason, the second α phase having a fine particle size shown in FIG. 2 separates from the first α phase generated in the semi-molten state by rapid cooling.
As apparent from FIG. 2, the Al alloy of the present embodiment has a first α phase having an equivalent circle diameter of 20 μm or more and an average equivalent circle diameter of 50 μm or more, and a second α phase having an equivalent circle diameter of less than 20 μm. α phase is included. As described above, the presence of the second α phase having a finer particle diameter than the first α phase having an equivalent circle diameter of 20 μm or more and an average equivalent circle diameter of 50 μm or more causes the growth of cracks through the grain boundaries. As a result of being more effectively blocked, the toughness of the Al alloy is improved. Here, the equivalent circle diameter is a diameter of a pseudo circle calculated from the particle area of the α phase observed with a microscope, and the average equivalent circle diameter is a number average value of equivalent circle diameters.
FIG. 2 is a photomicrograph of the metallographic structure of a semi-molten molten Al alloy of 3 mass % Si when rapidly cooled at a cooling rate of 10 ° C./second from a solid phase ratio of 30 mass %.
これに対して、従来のAl合金は、ほぼ図1の右下がりの線上にあるため、液相中に晶出可能なAlが殆ど存在せず、図3に示したように、急冷しても微細な粒径の第二のα相は晶出しない。さらに詳しくは、成形直前の液相はAl−Siの共晶組成になっているため、急冷過程においても余剰のAlが存在せず、微細な粒径の第二のα相は析出し得ない。そして、成形後には冷却過程で生じたAl−Siの共晶相と、半溶融溶湯中で生成していた粒径の大きい球状α相が混在した金属組織構造となる。
なお、図3は従来の成形領域にあるAl合金の半溶融溶湯を、冷却速度10℃/秒で急冷したときの金属組織の顕微鏡写真の写図である。
On the other hand, since the conventional Al alloy is almost on the right-downward line in FIG. 1, there is almost no Al that can be crystallized in the liquid phase, and even if it is rapidly cooled as shown in FIG. The second α phase having a fine particle size does not crystallize. More specifically, since the liquid phase immediately before forming has an eutectic composition of Al-Si, there is no surplus Al even in the rapid cooling process, and the second α phase having a fine particle size cannot be precipitated. . And after shaping | molding, it becomes the metal structure which the eutectic phase of Al-Si produced in the cooling process and the spherical alpha phase with the large particle size produced | generated in the semi-molten molten metal were mixed.
FIG. 3 is a photomicrograph of the metallographic structure when the Al alloy semi-molten molten metal in the conventional forming region is rapidly cooled at a cooling rate of 10 ° C./second.
第一のα相は、円相当径が20μm以上で、かつ平均円相当径が50μm以上となるよう、前記した方法で容器中の溶湯の冷却速度を調整することによって生成させる。円相当径が20μm未満または平均円相当径50μm未満では容器内のAl合金の形状保持が困難で搬送セットが不可能という問題が起きる。 The first α phase is generated by adjusting the cooling rate of the molten metal in the container by the above-described method so that the equivalent circle diameter is 20 μm or more and the average equivalent circle diameter is 50 μm or more. If the equivalent circle diameter is less than 20 μm or the average equivalent circle diameter is less than 50 μm, there is a problem that it is difficult to maintain the shape of the Al alloy in the container and the conveyance set is impossible.
円相当径が20μm未満の第二のα相は、半溶融溶湯を5℃/秒以上の冷却速度で冷却することによって生成させる。このように、半溶融溶湯を冷却速度5℃/秒以上で急冷すると、結晶化が促進される結果、前記した微細な第二のα相を確実に形成することができる。冷却速度が5℃/秒未満では、図2(冷却速度5℃/秒)と図4(冷却速度1℃/秒)との比較で明らかなように、第二のα相はごく僅かしか形成されない。冷却速度の調整は、鋳造金型を用いて成形する場合には、例えば鋳造金型の冷却水温度、あるいは鋳造金型の設計等、公知の方法によって調整することができる。
また、第二のα相の平均円相当径は、第一のα相の平均円相当径の1/5以下であることが良好な靭性を有するAl合金を得る上で好ましい。第二のα相の平均円相当径が第一のα相の平均円相当径の1/5以下とすれば、微細な第二のα相の存在によって亀裂の進展をより有効に阻止できる結果、更に靭性の優れたAl合金を得ることができる。更に、第二のα相の平均円相当径は、第一のα相の平均円相当径の1/7以下であることが、より優れた靭性を有するAl合金を得る上で好ましい。
なお、図4は図2と同一のSi含量、固相率のAl合金を用い、冷却速度を遅くした場合の金属組織の顕微鏡写真の写図である。
The second α phase having an equivalent circle diameter of less than 20 μm is generated by cooling the semi-molten molten metal at a cooling rate of 5 ° C./second or more. Thus, when the semi-molten molten metal is rapidly cooled at a cooling rate of 5 ° C./second or more, crystallization is promoted, and as a result, the above-described fine second α-phase can be reliably formed. When the cooling rate is less than 5 ° C./second, the second α-phase is only slightly formed as is apparent from the comparison between FIG. 2 (
The average equivalent circle diameter of the second α phase is preferably 1/5 or less of the average equivalent circle diameter of the first α phase in order to obtain an Al alloy having good toughness. If the average equivalent circle diameter of the second α phase is 1/5 or less of the average equivalent circle diameter of the first α phase, the result is that crack growth can be more effectively prevented by the presence of the fine second α phase. Further, an Al alloy having further excellent toughness can be obtained. Furthermore, the average equivalent circle diameter of the second α phase is preferably 1/7 or less of the average equivalent circle diameter of the first α phase in order to obtain an Al alloy having better toughness.
FIG. 4 is a photomicrograph of the metallographic structure when an Al alloy having the same Si content and solid phase ratio as in FIG. 2 is used and the cooling rate is slow.
顕微鏡下で観察される第二のα相の占める面積は、第一のα相の面積を含む総面積に対して5%以上、より好ましくは20%以上の面積であることがAl合金物の靭性を向上させる上で好ましい。更に、より良好な靭性を有するAl合金を得るためには、第二のα相の面積が総面積に対して20%〜50%の範囲内にあることが好ましい。 The area occupied by the second α phase observed under a microscope is 5% or more, more preferably 20% or more of the total area including the area of the first α phase. It is preferable when improving toughness. Furthermore, in order to obtain an Al alloy having better toughness, the area of the second α phase is preferably in the range of 20% to 50% with respect to the total area.
従来の半溶融鋳造法では、成形後のAl合金鋳物の金属組織は、前記したようにAl−Siの共晶相と、粒径の大きい球状α相(Al結晶相)が混在した構造となっている(図3参照)。Al−Siの共晶相と、アルミニウムの球状α相とでは結晶構造が異なるため、粒界を通って亀裂が進展し易いことが知られている。
しかし、金属組織中に微細な第二のα相を生成させることにより、粒界を通じた亀裂の進展が阻止される結果、Al合金の靭性等、機械的性質が向上する。
In the conventional semi-molten casting method, the metal structure of the Al alloy casting after forming has a structure in which an Al—Si eutectic phase and a spherical α phase having a large particle size (Al crystal phase) are mixed as described above. (See FIG. 3). It is known that the crystal structure is different between the Al—Si eutectic phase and the spherical α phase of aluminum, so that cracks easily propagate through the grain boundaries.
However, by generating a fine second α-phase in the metal structure, the progress of cracks through the grain boundary is prevented, and as a result, mechanical properties such as toughness of the Al alloy are improved.
次に、Al合金鋳物の製造方法について、適宜図を参照しながら説明する。
図5は、Al合金鋳物を製造する方法を模式的に表した図である。
Next, a method for producing an Al alloy casting will be described with reference to the drawings as appropriate.
FIG. 5 is a diagram schematically showing a method for producing an Al alloy casting.
図示しない溶融炉から、液相線温度に対して50℃未満の過熱度に保持されている溶湯を容器1に注入する。容器1には、本発明者らが特開2002−307153号公報に開示したような、底部(鋳造金型2のゲートに対向する面)に脆弱部7が設けられた容器1を好適に用いることができる。
また、溶湯を容器1へ注入するとき、特開平11−138248号公報に開示した方法を用いることができる(図6)。この方法を用いた場合、溶湯を一旦汲取り容器Cに受け、容器1を傾けておき、傾けた容器1を起こしながら、傾斜した容器1の内周面に沿って溶湯を注入する。これにより、容器1へ溶湯を静かに注ぐことができ、酸化膜等の巻き込みによる製品の品質の低下を防止することができる。
From a melting furnace (not shown), molten metal maintained at a degree of superheat of less than 50 ° C. with respect to the liquidus temperature is poured into the
Moreover, when pouring a molten metal into the
溶湯には、Si2.0〜4.0質量%、残部Al及び不可避不純物を含有する組成からなるものを用いることができる。この組成ではないアルミニウム溶湯であっても、本実施形態の製造方法を用いてAl合金鋳物を製造することは可能である。
この容器1を周囲が断熱された断熱容器に入れる等の方法によって、溶湯を所定の冷却速度に保ちつつ所定の時間冷却して目標の固相率を有する半溶融溶湯6を調整することができる。固相率は25〜45質量%の範囲内になるよう調整する。
The molten metal, Si2.0~4.0 wt%, can be used having the composition containing the remaining portion A l and unavoidable impurities. Even if it is a molten aluminum which does not have this composition, it is possible to manufacture an Al alloy casting using the manufacturing method of this embodiment.
A semi-molten
所定時間経過後、半溶融溶湯6の入った容器1を断熱容器から取り出し、図5に示すように半溶融溶湯6を容器1ごと鋳造金型2の割り面より射出スリーブ3に装填する。
この時、半溶融溶湯6の固相率が25質量%以上であれば、空気と触れる面の半溶融溶湯6は凝固しているため、半溶融溶湯6が容器1からこぼれることはなく、容器1ごと射出スリーブ3に装填することができる。
射出スリーブ3は半溶融溶湯6の固化を防ぐため、断熱材で保温されていることが好ましい。また、装填は手動で行っても良いし、搬送装置により自動的に行なうこともできる。
After a predetermined time has elapsed, the
At this time, if the solid phase ratio of the semi-molten
The
容器1を射出スリーブ3に装填したら、直ちに鋳造金型2を閉止し、容器1内の半溶融溶湯6を容器1と共にプランジャ4により押圧する。これにより、容器1の底部に設けられた脆弱部7が破断して、半溶融溶湯6が鋳造金型2のキャビティ5に充填される。
When the
なお、容器1の材質はアルミニウムであることが好ましく、特にJIS称呼1080、1070等の1000系純アルミニウムを好適に用いることができる。
次いで、キャビティ5内部の半溶融溶湯6を冷却速度5℃/秒以上で急冷してAl合金鋳物を得る。キャビティ5内部の半溶融溶湯6の冷却は、鋳造金型2に設けた冷却水路11に冷却水を循環させる等、公知の手段によって行なうことができる。
In addition, it is preferable that the material of the
Next, the semi-molten
本実施形態のAl合金を用いれば、高靭性のAl合金鋳物を得ることができる。さらに、本実施形態のAl合金鋳物の成形方法を適用すれば、例えば、サスペンション部材、サブフレーム部材、各種継手部材、アルミホイール等の車両用シャーシ構造部材のように複雑な形状の部材であっても、高靭性を損なうことなく成形することができる。 If the Al alloy of this embodiment is used, a high toughness Al alloy casting can be obtained. Furthermore, if the Al alloy casting molding method of the present embodiment is applied, for example , a suspension member, a subframe member, various joint members, a member having a complicated shape, such as a vehicle chassis structure member such as an aluminum wheel. However, it can be molded without impairing the high toughness.
以上、実施形態について説明したが、本発明は前記した実施形態には限定されない。
例えば、固相率の調整方法として、周囲が断熱された断熱容器を例に説明したが、一定温度に保たれた炉やトンネルに所定時間置く方法を用いてもよい。
また、本実施形態では、射出スリーブ3は半溶融溶湯6の固化を防ぐため、断熱材で保温されていることが好ましいとしたが、半溶融溶湯6を撹拌するために、射出スリーブ3に機械撹拌、あるいは電磁撹拌手段を設けても良い。また、射出スリーブ3に装填した空の容器1に、溶融炉から直接半溶融溶湯6を注入して、射出スリーブ3で所定時間保持して目標とする固相率に調整することもできる。
As mentioned above, although embodiment was described, this invention is not limited to above-described embodiment.
For example, as a method for adjusting the solid phase ratio, a heat-insulated container having a thermally insulated periphery has been described as an example, but a method of placing it in a furnace or tunnel maintained at a constant temperature for a predetermined time may be used.
In the present embodiment, the
本発明のAl合金に適した物として、車両用シャーシ構造部材を取り上げたが、これに限られるもので無く、例えばブロワのファン等の回転する部材や、機械装置筐体等、各種の鋳物製品に適用することができる。特に、鉄製の鋳物製品に対して本発明のAl合金を適用すると、軽量化の効果を顕著に奏することができる。 Although the vehicle chassis structural member is taken up as a suitable material for the Al alloy of the present invention, the present invention is not limited to this. For example, various cast products such as a rotating member such as a blower fan, a machine housing, etc. Can be applied to. In particular, when the Al alloy of the present invention is applied to a cast iron product, the effect of weight reduction can be remarkably exhibited.
次に、本発明の効果を確認した実施例について説明する。前記した実施形態のAl合金及びAl合金鋳物の成形方法を用いて、Si含有量及び固相率が本発明の範囲に入る場合を実施例とし、入らない場合を比較例として、靭性、引張強度、及び成形性を比較した。 Next, examples in which the effects of the present invention have been confirmed will be described. Using the Al alloy and Al alloy casting method of the above-described embodiment, the case where the Si content and the solid phase ratio fall within the scope of the present invention is taken as an example, and the case where it does not enter is a comparative example, toughness, tensile strength And the moldability were compared.
実施例及び比較例に用いたシャルピー試験片、及び引張試験片は、固相率を前記した方法により調整した半溶融溶湯を用いて、200tダイカスト機により作製した。その鋳造条件は、鋳造金型温度90〜250℃、初速0.15m/秒、射出スピード0.3m/秒、鋳造圧力90MPaに設定した。
引張試験片は平板状をなし、標点距離が25mm、厚さtが3mm、幅wが6mmであり、シャルピー試験片はJIS3号試験片に相当する。
The Charpy test piece and the tensile test piece used in Examples and Comparative Examples were produced by a 200 t die casting machine using a semi-molten molten metal whose solid phase ratio was adjusted by the method described above. The casting conditions were set to a casting mold temperature of 90 to 250 ° C., an initial speed of 0.15 m / second, an injection speed of 0.3 m / second, and a casting pressure of 90 MPa.
The tensile test piece has a flat plate shape, the gauge distance is 25 mm, the thickness t is 3 mm, and the width w is 6 mm. The Charpy test piece corresponds to a JIS No. 3 test piece.
表1に、各実施例及び比較例に用いた合金のSi濃度、成形条件及び評価結果を示す。
(なお、表1中の「固相率調整温度」とは、溶湯を容器に注ぐときの温度のことであり、前記した液相線温度に対して50℃未満の過熱度の温度のことである。平均円相当径は、サンプル数10以上について円相当径を求めその数平均を算出した。
また、「成形性」の評価は、鋳造金型のキャビティに合金が完全に充填され、かつ合金の内部に微小欠陥が無い場合を「○」とした。
Table 1 shows the Si concentration, molding conditions, and evaluation results of the alloys used in the examples and comparative examples.
(Note that “solid phase ratio adjustment temperature” in Table 1 refers to the temperature when pouring the molten metal into the container, and refers to the temperature of the degree of superheat below 50 ° C. with respect to the liquidus temperature described above. For the average equivalent circle diameter, the equivalent circle diameter was obtained for 10 or more samples, and the number average was calculated.
The evaluation of “formability” was “◯” when the cavity of the casting mold was completely filled with the alloy and there was no minute defect inside the alloy.
<Si含有量の影響>
実施例1〜3と比較例1、2に、Si含有量のみを変更し、他の条件は同一にした場合の成形性、靭性等の評価結果を示す。
Si含有量が本発明の範囲(2.0〜4.0質量%)より少ないと(比較例2)、合金の内部に微小欠陥が多く見られた。また、この微小欠陥ために衝撃値、耐力のバラツキが大きく、正当な評価を行なえない成形品しか得られなかった。一方、Si含有量が本発明の範囲より高い6.5%の場合は(比較例1)、合金の内部に第二のα相の生成が認められず、衝撃値、耐力等が低い成形品しか得られなかった。
これに対し、Si含有量が本発明の範囲内(2.0〜4.0質量%)にある実施例1〜3では、成形性は良好で、衝撃値、伸び共に従来合金(比較例1)より高い靭性に優れた合金となった。また、抗張力、耐力も従来合金より優れていた。
<Influence of Si content>
In Examples 1 to 3 and Comparative Examples 1 and 2, only the Si content is changed and the other conditions are the same.
When the Si content was less than the range of the present invention (2.0 to 4.0% by mass ) (Comparative Example 2), many minute defects were observed inside the alloy. Further, due to this minute defect, the impact value and the proof stress varied greatly, and only a molded product that could not be properly evaluated was obtained. On the other hand, when the Si content is 6.5% higher than the range of the present invention (Comparative Example 1), the formation of the second α phase is not recognized in the alloy, and the molded product has a low impact value, yield strength, and the like. Only obtained.
On the other hand, in Examples 1 to 3 in which the Si content is within the range of the present invention (2.0 to 4.0% by mass ), the formability is good and the impact value and elongation are both conventional alloys (Comparative Example 1). ) The alloy has higher toughness. Also, the tensile strength and proof stress were superior to those of conventional alloys.
<固相率の影響>
実施例2,4と比較例3〜5に、固相率のみを変更し、他の条件は同一にした場合の、伸び及び衝撃値で表される靭性、成形性等の評価結果を示す。
固相率が本発明の範囲より低い比較例3では、液状金属が過多となり半溶融溶湯のハンドリングが困難なため、成形を行なうことができなかった。一方、固相率が本発明よりも高い50%以上の比較例4,5の場合は、Si含有量が低いために半溶融溶湯の流動性が劣った。このため、固相率50質量%及び60質量%では鋳造金型のキャビティが完全に充填されない部分が残っていた。
これに対し、固相率が本発明の範囲内にある実施例2,4(固相率30質量%、40質量%)では、鋳造金型のキャビティの充填は良好であった。
<Influence of solid fraction>
In Examples 2 and 4 and Comparative Examples 3 to 5, evaluation results of toughness and formability represented by elongation and impact values when only the solid phase ratio is changed and the other conditions are the same are shown.
In Comparative Example 3 where the solid phase ratio was lower than the range of the present invention, the liquid metal was excessive, and it was difficult to handle the semi-molten molten metal, so that molding could not be performed. On the other hand, in Comparative Examples 4 and 5 having a solid phase ratio of 50% or higher higher than that of the present invention, the fluidity of the semi-molten molten metal was inferior because the Si content was low. For this reason, when the solid phase ratio is 50% by mass and 60% by mass , there remains a portion in which the cavity of the casting mold is not completely filled.
In contrast, Examples 2 and 4 (
<冷却速度の影響>
実施例2と比較例6に、冷却速度のみを変更し、他の条件は同一にした場合の成形性、靭性等の評価結果を示す(図2、図4参照)。
いずれの場合も、成形性は良好であった。しかし、冷却速度が本発明の範囲外である比較例6では、第二のα相の生成は認められなかった。このため、伸び、衝撃値だけでなく、抗張力、耐力も実施例2より劣っていた。
<Influence of cooling rate>
Example 2 and Comparative Example 6 show the evaluation results of formability, toughness, etc. when only the cooling rate is changed and the other conditions are the same (see FIGS. 2 and 4).
In any case, the moldability was good. However, in Comparative Example 6 in which the cooling rate was outside the range of the present invention, the generation of the second α phase was not observed. For this reason, not only the elongation and impact values, but also the tensile strength and proof stress were inferior to those of Example 2.
<第二のα相の影響>
Si含有量が本発明の範囲内にあり、冷却速度が5℃/秒の場合は第二のα相の生成が認められ良好な靭性等をしめしたが、冷却速度が本発明の範囲外である1℃/秒のとき(比較例6)、及びSi含有量が本発明の範囲外である従来合金(比較例1)のときは、第二のα相は生成せず、靭性も劣っていた。
また、実施例1〜4の本発明に係るAl合金は、第一のα相の平均円相当径が50μm以上で、更に、第二のα相の平均円相当径は第一のα相の平均円相当径の5分の1以下の値であり、本実施例では約1/7以下であった。
なお、比較例3では前記のように成形ができなかったため、平均円相当径の測定は不能であった。比較例2,4,5では良好な第一及び第二のα相が認められたものの、前記のように成形上の問題で靭性等の評価は行なえなかった。このことは、加工条件の適正化により、比較例2〜5の範囲のもでも高靭性を有するAl合金として使用可能であることを示唆している。
<Influence of second alpha phase>
When the Si content is within the range of the present invention and the cooling rate is 5 ° C./second, the formation of the second α-phase is recognized and good toughness is shown, but the cooling rate is outside the range of the present invention. At a certain 1 ° C./second (Comparative Example 6) and a conventional alloy (Comparative Example 1) whose Si content is outside the scope of the present invention, the second α phase is not formed and the toughness is also inferior. It was.
Further, in the Al alloys according to the present invention of Examples 1 to 4, the average equivalent circle diameter of the first α phase is 50 μm or more, and the average equivalent circle diameter of the second α phase is that of the first α phase. It is a value of 1/5 or less of the average equivalent circle diameter, and in this example, it was about 1/7 or less.
In Comparative Example 3, since the molding could not be performed as described above, the average equivalent circle diameter could not be measured. In Comparative Examples 2, 4, and 5, good first and second α phases were observed, but as described above, evaluation of toughness and the like could not be performed due to molding problems. This suggests that it can be used as an Al alloy having high toughness even in the range of Comparative Examples 2 to 5 by optimizing the processing conditions.
1 容器
2 鋳造金型
3 射出スリーブ
4 プランジャ
5 キャビティ
6 半溶融溶湯
DESCRIPTION OF
Claims (1)
共晶点近傍の温度で前記溶湯を固相率25〜45質量%の半溶融溶湯に調整し、
前記半溶融溶湯を前記容器と共に鋳造金型の割り面より射出スリーブに装填し、
前記鋳造金型を閉止した後、
前記容器及び前記半溶融溶湯をプランジャにより押圧して前記半溶融溶湯を前記鋳造金型のキャビティに充填し、
次いで前記鋳造金型のキャビティに充填した前記半溶融溶湯を冷却速度5℃/秒以上で急冷する
ことを特徴とするアルミニウム合金鋳物の成形方法。 S I2.0~4.0 wt%, pouring the residue portion A l and unavoidable impurities was either Ranaru melt into the vessel,
Adjusting the molten metal to a semi-molten molten metal having a solid phase ratio of 25 to 45 mass % at a temperature near the eutectic point;
The semi-molten molten metal is loaded into the injection sleeve from the split surface of the casting mold together with the container,
After closing the casting mold,
The container and the semi-molten molten metal are pressed by a plunger to fill the semi-molten molten metal into a cavity of the casting mold,
Next, the aluminum alloy casting molding method characterized by quenching the semi-molten molten metal filled in the cavity of the casting mold at a cooling rate of 5 ° C./second or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004221225A JP4510541B2 (en) | 2004-07-29 | 2004-07-29 | Aluminum alloy casting molding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004221225A JP4510541B2 (en) | 2004-07-29 | 2004-07-29 | Aluminum alloy casting molding method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006037190A JP2006037190A (en) | 2006-02-09 |
JP4510541B2 true JP4510541B2 (en) | 2010-07-28 |
Family
ID=35902497
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004221225A Expired - Fee Related JP4510541B2 (en) | 2004-07-29 | 2004-07-29 | Aluminum alloy casting molding method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4510541B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080041499A1 (en) * | 2006-08-16 | 2008-02-21 | Alotech Ltd. Llc | Solidification microstructure of aggregate molded shaped castings |
JP5555435B2 (en) * | 2009-03-09 | 2014-07-23 | 本田技研工業株式会社 | Al alloy casting and manufacturing method thereof |
JP5328569B2 (en) | 2009-08-27 | 2013-10-30 | トヨタ自動車株式会社 | Al-Si alloy having fine crystal structure, method for producing the same, device for producing the same, and method for producing the casting |
JP5862406B2 (en) * | 2012-03-27 | 2016-02-16 | 株式会社豊田中央研究所 | Aluminum alloy member and manufacturing method thereof |
JP2014034040A (en) * | 2012-08-07 | 2014-02-24 | Toyota Motor Corp | Casting method |
JP5747103B1 (en) * | 2014-05-02 | 2015-07-08 | 株式会社浅沼技研 | Radiation fin made of aluminum alloy and method of manufacturing the same |
KR101973940B1 (en) * | 2017-07-28 | 2019-04-30 | 대경제이엠 주식회사 | Manufacturing Method of Gear Pump Housing Using Aluminium Alloy |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06210424A (en) * | 1993-01-14 | 1994-08-02 | Leotec:Kk | Die casting method of partially solidified metal |
JP2000303134A (en) * | 1999-04-20 | 2000-10-31 | Furukawa Electric Co Ltd:The | Aluminum base alloy for semisolid working and production of worked member therefrom |
JP2003253368A (en) * | 2002-02-28 | 2003-09-10 | Ube Machinery Corporation Ltd | Aluminum alloy for semisolid casting |
-
2004
- 2004-07-29 JP JP2004221225A patent/JP4510541B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06210424A (en) * | 1993-01-14 | 1994-08-02 | Leotec:Kk | Die casting method of partially solidified metal |
JP2000303134A (en) * | 1999-04-20 | 2000-10-31 | Furukawa Electric Co Ltd:The | Aluminum base alloy for semisolid working and production of worked member therefrom |
JP2003253368A (en) * | 2002-02-28 | 2003-09-10 | Ube Machinery Corporation Ltd | Aluminum alloy for semisolid casting |
Also Published As
Publication number | Publication date |
---|---|
JP2006037190A (en) | 2006-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8486329B2 (en) | Process for production of semisolidified slurry of iron-base alloy and process for production of cast iron castings by using a semisolidified slurry | |
TWI263681B (en) | Method of manufacturing magnesium alloy products | |
JP6495246B2 (en) | Aluminum alloy and die casting method | |
JP6258336B2 (en) | Spheroidal graphite cast iron melt spheroidizing method and casting method | |
JP5638222B2 (en) | Heat-resistant magnesium alloy for casting and method for producing alloy casting | |
JP4390762B2 (en) | Differential gear case and manufacturing method thereof | |
JP2022093990A (en) | Aluminum alloy forging and method for producing the same | |
JP4510541B2 (en) | Aluminum alloy casting molding method | |
JP2021143374A (en) | Aluminum alloy forged article and method for producing aluminum alloy forged article | |
JP4145242B2 (en) | Aluminum alloy for casting, casting made of aluminum alloy and method for producing casting made of aluminum alloy | |
JP2021143370A (en) | Aluminum alloy forged article and method for producing aluminum alloy forged article | |
JP2005272966A (en) | Aluminum alloy for semisolid casting and method for manufacturing casting | |
JP3246363B2 (en) | Forming method of semi-molten metal | |
JP2021143372A (en) | Aluminum alloy forged article and method for producing aluminum alloy forged article | |
JP2021143371A (en) | Aluminum alloy forged article and method for producing aluminum alloy forged article | |
JP2003170263A (en) | Method for casting vehicle wheel under low pressure | |
JP2021143369A (en) | Aluminum alloy forged article and method for producing aluminum alloy forged article | |
JP2021095590A (en) | Production method of aluminum alloy forged material | |
JP3696844B2 (en) | Aluminum alloy with excellent semi-melt formability | |
JP2003183756A (en) | Aluminum alloy for semi-solid molding | |
JP2002060881A (en) | Aluminum alloy for casting and forging, and method for producing casting and forging material | |
CN107058774A (en) | A kind of efficient alterant and preparation method for A356.2 aluminium alloys | |
JP2021070871A (en) | Aluminum alloy forging and production method thereof | |
JP3416503B2 (en) | Hypereutectic Al-Si alloy die casting member and method of manufacturing the same | |
JP2021143373A (en) | Aluminum alloy forged article and method for producing aluminum alloy forged article |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061128 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090106 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090309 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100202 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100405 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100427 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100430 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130514 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130514 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140514 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |