JP4848457B2 - 静電容量センサ、位置センサ - Google Patents

静電容量センサ、位置センサ Download PDF

Info

Publication number
JP4848457B2
JP4848457B2 JP2009524428A JP2009524428A JP4848457B2 JP 4848457 B2 JP4848457 B2 JP 4848457B2 JP 2009524428 A JP2009524428 A JP 2009524428A JP 2009524428 A JP2009524428 A JP 2009524428A JP 4848457 B2 JP4848457 B2 JP 4848457B2
Authority
JP
Japan
Prior art keywords
sensor
capacitance
electrodes
electrode
sensor electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009524428A
Other languages
English (en)
Other versions
JPWO2009013965A1 (ja
Inventor
誠 團野
修 平田
大介 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP2009524428A priority Critical patent/JP4848457B2/ja
Publication of JPWO2009013965A1 publication Critical patent/JPWO2009013965A1/ja
Application granted granted Critical
Publication of JP4848457B2 publication Critical patent/JP4848457B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/088Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices operating with electric fields
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/002Switching arrangements with several input- or output terminals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K17/962Capacitive touch switches
    • H03K17/9622Capacitive touch switches using a plurality of detectors, e.g. keyboard
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/96Touch switches
    • H03K2217/96066Thumbwheel, potentiometer, scrollbar or slider simulation by touch switch

Description

本発明は、配列された複数のセンサ電極を有する静電容量センサと、センサ電極をスキャンしながら静電容量を測定し接近した導体の位置を検出する位置センサに関する。
センサ電極を装置の筐体内に配置し、センサ電極とアースとの静電容量を検出することで、導体(例えば、人の指)がセンサ電極に接近したことを検出する静電容量センサ(タッチセンサ)がある。静電容量センサには、次のようなアプリケーションがある。1つ目は、1つまたは複数のセンサ電極を配置し、タッチしたか否かを判定する“ボタン”アプリケーションである。2つ目は、センサ電極を1次元アレイ状に隣接して配置し、指がアレイ上を移動したときの移動方向や速度の情報に基づき、ボリュームコントロールやリストスクロールを行う“スライダ”アプリケーションである。3つ目は、センサ電極を2次元アレイ状に配置し、アレイ上の指の動きに連動してディスプレイ上のカーソル(ポインタ)を制御する“タッチパッド”アプリケーションである。
具体的な例としては、特許文献1がある。特許文献1では、特許文献1の図5に示された回路構成によって、複数のセンサ電極のどの程度の面積にタッチしているのかを検出できること(特許文献1、段落0045)、静電容量の変動を検出でき、時計回りに操作されたか反時計回りに操作されたかが検出できること(特許文献1、段落0048)などが示されている。
特開2004−146099号公報
人体などの導体がセンサ電極に接近すると、センサ電極とアースとの静電容量が変化する。この原理を利用したのが静電容量センサである。つまり、静電容量センサは、指が無い状態でのセンサ電極とアースとの静電容量と、指が有る状態でのセンサ電極とアースとの静電容量の違いを検出している。また、センサ電極と指との関係は、平行平板コンデンサに近似できる。したがって、指が接近した時の静電容量は、センサ電極と指が対向する面積に比例し、距離に反比例する。
近年、電子機器のディスプレイの大型化にともなって、電子機器の入力デバイスは小型化が求められている。また、小型携帯機器などのように強度面の要求から厚い筐体を用いた電子機器への適用も求められている。入力デバイスの小型化はセンサ電極の面積を小さくすることであり、結果として静電容量が小さくなる。また、小型携帯機器の強度を強くすることは、筐体を厚くし、センサ電極と指の距離が長くなることであり、同様に静電容量が小さくなる。つまり、近年の入力デバイスおよび小型携帯機器への要求は、いずれもセンサ電極と指との静電容量を小さくする方向であり、これは静電容量センサの感度(SN比)を悪化させている。
このような問題に鑑み、本発明の目的は、単体のセンサ電極の面積が小さい場合、またはセンサ電極と指との距離が長い場合でも、検出する静電容量を大きくできる静電容量センサを提供することと、その静電容量センサを用いて、指などの導体が接触している位置を検出する位置センサを提供することである。
本発明の静電容量センサは、配列された3個以上のセンサ電極と、その中から複数のセンサ電極の選択が可能なように構成されたスイッチ部と、選択されたセンサ電極とアースとの静電容量を検出する静電容量検出部とを備えている。つまり、スイッチ部は、複数のセンサ電極を同時に選択する機能を有し、1つのセンサ電極のみを独立に選択する機能を有しないものであってもよいし、複数のセンサ電極を同時に選択する機能と1つのセンサ電極のみを独立に選択する機能とを共に有するものであってもよい。また、感度を一定に保つ必要のある用途において、個々のセンサ電極の面積が異なる場合には、選択したセンサ電極の面積の合計がほぼ等しくなるように、選択するセンサ電極の数を適宜変更してもよい。さらに、スイッチ部は、あらかじめ定めた時間ごとに、選択する前記センサ電極を変えてもよい。
本発明の位置センサは、スイッチ部があらかじめ定めた時間ごとに選択するセンサ電極を変える静電容量センサと、データ処理部を備える。データ処理部は、あらかじめ定めた時間ごとの、静電容量検出部が検出した静電容量を示す情報と、選択されたセンサ電極全体の位置を示す情報とを取得する。そして、複数の静電容量を示す情報と位置を示す情報の組から、接近した導体の位置を計算する。なお、選択されたセンサ電極全体の位置とは、選択されたセンサ電極の組合せごとに定まる位置であり、その一例は、選択されたセンサ電極全体の中心となる位置や、選択されたセンサ電極全体の重心となる位置や、選択されたセンサ電極全体のうちの最小又は最大の座標位置などである。例えば、データ処理部は、静電容量を示す情報を、位置を示す情報で重み付けして平均(加重平均)することで、接近した前記導体の位置を計算すればよい。
本発明の静電容量センサと位置センサによれば、小型化したセンサ電極で必要とされる感度が得られるように、複数個のセンサ電極を同時にスキャンすることで、静電容量を検出するセンサ電極の面積を確保できる。また、静電容量を大きくすることができるため、筐体を厚くしても十分な感度を得ることができる。また、ノイズの大きい環境下であっても操作時の誤認識がなくなる。また、本発明の位置センサによれば、要求される分解能(検出箇所)に応じてセンサ電極の大きさと、同時にスキャンする数を選択できるので、計算された指の位置と実際の指の位置との誤差を小さくすることができる。また、加重平均を用いた計算によれば、アナログ的に指の位置が計算できるので、計算された位置の直線性を向上できる。さらに、あらかじめ定めた値よりも大きい静電容量の時だけ、静電容量を示す情報を位置の計算に用いれば、ノイズ成分を除去できるので、タッチ座標の安定性を向上させることができる。
図1は、本発明の実施形態の位置センサを含むシステムの模式図である。 図2は、本発明の実施形態の静電容量センサと位置センサの構成を示す図である。 図3A−図3Cは、センサ部のセンサ電極の配置例を示す図である。 図4は、静電容量センサの具体的な構成例を示す図である。 図5A−図5Cは、図4に示した静電容量センサのセンサ部の動作の例を示す図である。 図6は、図4に示した静電容量センサのスイッチ部の動作の例を示す図である。 図7A−図7Dは、6つのセンサ電極を直線状に配置したセンサ部の動作の例を示す図である。 図8A−図8Hは、リング状にセンサ電極を配置した場合のセンサ部の動作の例を示す図である。 図9は、1つのセンサ電極を静電容量検出部に接続した場合の静電容量検出部からの出力を説明するための図である。 図10は、2つのセンサ電極を静電容量検出部に接続した場合の静電容量検出部からの出力を説明するための図である。 図11A−図11Cは、同じ幅のセンサ部に異なる数のセンサ電極を配置した例を示す図である。 図12A−図12Gは、指の半分の幅のセンサ電極を1つずつ選択しながらスキャンした場合に求められるタッチ座標の特性を説明するための図である。 図13A−図13Fは、指の半分の幅のセンサ電極を2つずつ選択しながらスキャンした場合に求められるタッチ座標の特性を説明するための図である。 図14は、図12の場合の位置センサの処理フローを例示する図である。 図15は、図13の場合の位置センサの処理フローを例示する図である。 図16は、センサ電極の間に穴を開けた場合のセンサ部の構成例を示す図である。 図17は、センサ電極の面積が均一でない場合の例を示す図である。
符号の説明
1 センサ部 3 制御部
4 ホストコンピュータ 5〜8、8’、8” センサ部
31 スイッチ部 32 静電容量検出部
33 データ処理部 100、100’ 静電容量センサ
200 位置センサ 91〜94 スイッチ
11mn、51〜54、61〜66、71〜78、81〜84、81’〜86’、81”、82”、111〜114、121〜124、135、151〜159 センサ電極
[第1実施形態]
図1に本発明の実施形態の位置センサを含むシステムの模式図を示す。本形態の位置センサは、センサ部1、制御部3、ホストコンピュータ4から構成される。制御部3は、スイッチ部31、静電容量検出部32、データ処理部33を備え、指2などの導体がセンサ部1のどの位置に接近しているのかを検出する。ホストコンピュータ4は、この結果を用いて様々な処理(ボリューム調整、リストスクロール、ポインタの位置制御など)を行う。
図2に、本発明の実施形態の静電容量センサと位置センサの構成を示す。静電容量センサ100は、センサ部1、スイッチ部31、静電容量検出部32から構成される。位置センサ200は、静電容量センサ100とデータ処理部33から構成される。センサ部1は、M×N個のセンサ電極11mnがある。ただし、MとNは、1以上の整数である。センサ部1は、PWB(printed-wiring board)、FPC(flexible printed circuit)基板のようなプリント基板、メンブレン印刷配線板などによって構成すればよい。センサ電極11mnは、PWBやFPCの場合は銅箔で形成し、メンブレン印刷配線板の場合は銀インクやITOなどの透明抵抗体で形成すればよい。また、センサ電極11mnの形状は長方形に限らず、円形や六角形なども選択可能であり、用途に合わせて数を決めればよい。スイッチ部31はこれらのセンサ電極11mnの中から、1つ以上のセンサ電極11mnを選択し、静電容量検出部32に接続する。静電容量検出部32は、選択されたセンサ電極11mn全体とアースとの静電容量を検出し、静電容量を示す情報を出力する。これが、静電容量センサ100の出力である。なお、静電容量の検出方法に限定はなく、静電容量検出部32は、例えば、特開平9−280806号公報、特開2001−264194号公報、及び特開2004−184307号公報等に開示された公知の静電容量検出回路によって構成される。データ処理部33は、静電容量検出部32が出力する静電容量を示す情報を、各センサ電極11mnの位置の情報を用いて、センサ部1に接近した指などの位置を計算し、出力する。なお、データ処理部33は、例えば、CPU(central processing unit)やRAM(random-access memory)等から構成される公知のコンピュータに所定のプログラムが読み込まれ、CPUがこれを実行することによって構成される。また、集積回路と半導体メモリとによってデータ処理部33を構成してもよい。
静電容量センサの利用方法によって、スイッチ部31の制御方法や、センサ電極11mnの選択の方法は、様々である。例えば、“ボタン”アプリケーションとして利用するのであれば、1つまたは複数の特定のセンサ電極11mnを常時選択しておき、オン、オフのみが検出できるようにすればよい(1/0の信号を出力する)。指の位置センサとして用いるのであれば、1つまたは複数のセンサ電極11mnをスキャンさせ(あらかじめ定めた時間ごとに選択するセンサ電極または選択するセンサ電極の組合せを変え)、静電容量の位置的な違いから指の位置を求めればよい。スキャンの方法もさまざまであり、連続して配列された複数のセンサ電極11mnを、その組合せを変えながら順番に選択してもよいし、mが同じセンサ電極11mnを直線状に選択しながらスキャンした後、nが同じセンサ電極11mnを直線状に選択しながらスキャンしても良い。なお、「連続して配列された複数のセンサ電極」は、連続して隣り合う複数のセンサ電極であってもよいし、それらのセンサ電極の少なくとも一部が少なくとも1つの座標上で重なりあったものであってもよい。つまり、「連続して配列」は、一連に連続的に配列された状態だけではなく、一連に離散的に配列された状態をも意味する。また、複数のセンサ電極11mnが連続して隣り合う状態とは、これら複数のセンサ電極11mnを要素とする集合の各要素が、必ず当該集合の何れかの要素に隣接している状態である。例えば、隣接する2つのセンサ電極11mnや、1つのセンサ電極11mnに2つのセンサ電極11mnが隣接してなる3つのセンサ電極11mnは、連続して隣り合う複数のセンサ電極11mnである。また、複数のセンサ電極11mnを同時に選択してスキャンを行う場合、一部のセンサ電極11mnが重複して選択されるように制御されることが望ましい。言い換えると、ある時点で選択されるセンサ電極11mnの組合せと、他の時点で選択されるセンサ電極11mnの組合せとが、同一の前記センサ電極を含むように制御されることが望ましい。さらに言い換えると、スイッチ部31が選択するセンサ電極11mnの組合せは、スイッチ部31が選択する他のいずれかのセンサ電極11mnの組合せに含まれるセンサ電極11mnを含むことが望ましい。この場合、走査密度を高くできるため、静電容量センサ100の分解能を向上できる。さらにこの場合、各センサ電極11mnがそれぞれ複数の位置の静電容量検出に共用されるため、センサ電極11mnの数を削減でき、センサ部1を小型化できる。さらに、求めた位置の時間的な変化から移動方向や移動速度を求め、画面表示されたリストをスクロールさせるための制御に用いてもよい。本発明の静電容量センサを位置センサとして利用する場合のスイッチ部31の制御方法や、データ処理部33での計算方法については後述する。
さらに、センサ電極の配置も、1次元アレイ、2次元アレイ、リング状などいろいろあり、利用方法に合わせて決めればよい。図3は、センサ部のセンサ電極の配置例を示している。図3Aは1次元アレイの場合、図3Bは2次元アレイの場合、図3Cはリング状の場合を示している。図3Aのセンサ部5は、4つのセンサ電極51〜54を備えている。図3Bのセンサ部6では、電気的に接続された複数の正方形の電極でセンサ電極61が形成され、同じようにセンサ電極62、63も形成されている。さらに、センサ電極61〜63と垂直な方向に電気的に接続された複数の正方形の電極でセンサ電極64〜66も形成されている。図3Bでは、センサ電極61〜63が指の横方向の位置を検出するために用いられ、センサ電極64〜66が指の縦方向の位置を検出するために用いられる。図3Cのセンサ部7では、リング状に8個のセンサ電極71〜78が配置されている。なお、本形態の構成の静電容量センサで高い感度(SN比)を実現するためには、各センサ電極は互いに近接して配置されることが望ましい。少なくとも、スイッチ部31に選択されていない状態で互いに絶縁されるセンサ電極(例えば、図3Aのセンサ電極51〜54)の間隔は、センサ部1にタッチする導体の幅(例えば指の幅)より小さいことが望ましい。これらのセンサ電極の間隔がセンサ部1にタッチする導体の幅よりも大きいと、後述する静電容量センサの感度(SN比)を向上させる効果が十分に得られないからである。
図4は、静電容量センサの具体的な構成例を示す図である。静電容量センサ100’は、センサ部8、スイッチ部31、静電容量検出部32から構成される。センサ部8は、直線状に配置された4つのセンサ電極81〜84を有する。スイッチ部31は、スイッチ91〜94を有し、各スイッチ91〜94はそれぞれセンサ電極81〜84に接続されている。したがって、スイッチのオン、オフによって、センサ電極を選択して静電容量検出部32に接続できる。なお、複数のセンサ電極が選択された場合、選択された複数のセンサ電極の間は短絡され、それらが静電容量検出部32に接続される。この場合、選択された複数のセンサ電極は1つの導体として機能する。例えば、センサ電極81,82が選択され、スイッチ91,92がオンになり、スイッチ93,94がオフとなった場合、センサ電極81,82の間がスイッチ91,92やそれらに接続された配線を通じて短絡し、センサ電極81,82が1つの導体として機能する。これにより、センサ電極の面積が実質的に拡大し、静電容量センサの感度(SN比)が向上する。センサ電極の面積が拡大することによって静電容量センサの感度が向上する理由は後述する。
図5は、図4に示した静電容量センサ100’のセンサ部8の動作の例を示す図である。図5の網掛けされたセンサ電極が、スイッチ部31によって選択されたセンサ電極である。図6は、図4に示した静電容量センサ100’のスイッチ部31の動作の例を示す図である。横軸は時間、縦軸は各スイッチ91〜94の状態を示している。この例では、2つのセンサ電極を選択しながらスキャンしている。時間taでは、スイッチ91、92がオン状態であり、スイッチ93、94がオフ状態である。つまり、センサ電極81、82が静電容量検出部32に並列に接続されている。時間tbでは、スイッチ92、93がオン状態、スイッチ91、94がオフ状態である。時間tcでは、スイッチ93、94がオン状態、スイッチ91、92がオフ状態である。静電容量センサ100’は、このように2つのセンサ電極を選択したスキャンを繰り返し、静電容量を示す情報を出力する。ここで、図2に示したデータ処理部33を接続し、時間と静電容量を示す情報とを用いて解析を行うと、どのセンサ電極に指などが接近しているかが分かる。例えば、時間taでの静電容量が大きければ、センサ電極81、82の近くに指があることが分かる。さらに、センサ電極の位置(座標)が分かると、指などの位置(座標)も分かる。つまり、静電容量センサ100’にデータ処理部33を付加することで、位置センサを構成できる。
図7は、6つのセンサ電極を直線状に配置したセンサ部8’の動作の例を示す図である。この例では、3つのセンサ電極を選択しながらスキャンしている。このように3つのセンサ電極を選択してもよいし、4つ以上のセンサ電極を選択してもよい。選択するセンサ電極の数を多くすれば、選択されたセンサ電極全体での電極の面積を広くできる。指とセンサ電極との関係は並行平板コンデンサに近似できるので、指と電極の面積を大きくできれば、静電容量を大きくでき、センサとしての感度を向上できる。一方、選択するセンサ電極の数を多くしすぎると、位置の分解能が低下してしまう。したがって、指が筐体に接触する面積と同じくらいの面積となるように、センサ電極の数を決めればよい。
図8は、リング状にセンサ電極を配置した場合のセンサ部7の動作の例を示す図である。例えば、選択されたセンサ電極を、(a)センサ電極78、71、(b)センサ電極71、72、(c)センサ電極72、73、(d)センサ電極73、74、(e)センサ電極74、75、(f)センサ電極75、76、(g)センサ電極76、77、(h)センサ電極77、78のようにスキャンさせ、さらにこのスキャンを繰り返す。スキャンは逆向きでもよいし、選択するセンサ電極の数も2つに限られない。
次に、センサ電極の面積を広げることが、静電容量センサの感度(SN比)を向上させる理由を説明する。図9に、1つのセンサ電極を静電容量検出部に接続した場合の静電容量検出部からの出力を説明するための図を示す。図10に、2つのセンサ電極を静電容量検出部に接続した場合の静電容量検出部からの出力を説明するための図を示す。どちらも、横軸は時間であり、縦軸は静電容量検出部から出力される静電容量を示す情報(例えば、電圧値)である。この例では、時間T1とT3では指などの導体が接近しておらず、時間T2では指などの導体が接近している。Nはノイズの振幅、Sは信号の振幅を示している。しきい値は、指などの導体が接近しているか接近していないか(オン/オフ)を判断する基準であり、しきい値を超える場合がオン、しきい値より小さい場合がオフである。2つのセンサ電極の面積は、1つのセンサ電極に対して2倍広いので、信号の振幅Sが2倍程度となる。一方、2つのセンサ電極は1つの導体とみなされるため、ノイズの振幅は変わらない。したがって、SN比が改善される。例えば、AやBのように大きなノイズが生じた場合に、図9の例ではオン/オフを誤判断してしまう。一方、AやBのように大きなノイズが生じた場合でも、図10の例ではオン/オフの誤判断は生じない。このように複数のセンサ電極を選択することでオン/オフの振幅が広くなり、操作時の誤認識がなくなる。さらに、信号がタッチ面積に比例することを利用して、押圧を検出することが従来より行われているが、本発明の方法によれば、押圧の分解能を向上させることもできる。
図11に、同じ幅のセンサ部に異なる数のセンサ電極を配置した例を示す。この例ではセンサ電極を配置できる範囲は、指2本分程度としている。図11Aは2つのセンサ電極81”、82”を配置した場合であり、1つのセンサ電極の幅は指1本分程度である。この場合は、センサ電極81”だけを静電容量検出部に接続した状態と、センサ電極82”だけを静電容量検出部に接続した状態とを繰り返す。したがって、指が右にあるか左にあるかを検出できる。図11Bは4つのセンサ電極を配置した場合であり、1つのセンサ電極の幅は指の幅の1/2程度である。この場合は、センサ電極81〜84の中から隣接する2つのセンサ電極を選択しながらスキャンするので、3つの状態を検出できる。つまり、指が右、中央、左のどこになるかを検出できる。図11Cは6つのセンサ電極を配置した場合であり、1つのセンサ電極の幅は指の幅の1/3程度である。この場合は、センサ電極81’〜86’の中から隣接する3つのセンサ電極を選択しながらスキャンするので、4つの状態を検出できる。測定精度の関係などから限界はあるが、センサ電極を小型化することで、判定できる状態の数を増やすことができることが分かる。この効果は、1次元(直線状やリング状)にセンサ電極を配置した場合に限らず、2次元にセンサ電極を配置した場合にも得られる。
次に、4つのセンサ電極を用いて指の位置を求める方法を説明する。図12は、指の半分の幅のセンサ電極を1つずつ選択しながらスキャンした場合に求められるタッチ座標の特性を説明するための図である。図13は、指の半分の幅のセンサ電極を2つずつ選択しながらスキャンした場合に求められるタッチ座標の特性を説明するための図である。図12Aと図13Aは、センサ電極111〜114、121〜124の配置を説明するための図である。センサ電極111〜114の中心は、それぞれ 〜X の位置(座標)である。センサ電極121と122を合わせた電極の中心はX’ 、センサ電極122と123を合わせた電極の中心はX’ 、センサ電極123と124を合わせた電極の中心はX’ である。
図12B−図12Eは、各センサ電極の静電容量と指の位置(座標)の関係を示す図である。横軸は、指の座標(指の中心部分の位置)を示している。縦軸は、各センサ電極が静電容量検出部32に接続されたときの静電容量検出部32の出力(静電容量を示す情報)である。指の幅がセンサ電極の幅よりも広いので、出力が、最大値で一定となる領域がある。図13B−図13Dは、選択された2つのセンサ電極の静電容量と指の位置(座標)の関係を示す図である。横軸は、指の座標(指の中心部分の位置)を示している。縦軸は、選択された2つのセンサ電極が静電容量検出部32に接続されたときの静電容量検出部32の出力(静電容量を示す情報)である。図13Bはセンサ電極121と122が選択された場合、図13Cはセンサ電極122と123が選択された場合、図13Dはセンサ電極123と124が選択された場合である。指の幅と2つのセンサ電極を合わせた幅がほぼ一致するので、指と2つの電極とがちょうど重なったときだけ出力が最大となる。図12B−図12Eと図13B−図13Dに示されたしきい値は、後述する加重平均に静電容量検出部32からの出力を利用するか否かの基準である。しきい値よりも出力が小さい場合はノイズ成分が多いので、しきい値以下を除去した信号を、静電容量を示す情報として利用する。
図12Fと図13Eは、指の座標(横軸)に対するしきい値以下を除去した静電容量(縦軸)を示している。図12FのDはセンサ電極111の静電容量、Dはセンサ電極112の静電容量、Dはセンサ電極113の静電容量、Dはセンサ電極114の静電容量である。図13EのD’ はセンサ電極121と122の静電容量、D’ はセンサ電極122と123の静電容量、D’ はセンサ電極123と124の静電容量である。図12Fと図13EのWの範囲に指があるときは、静電容量検出部32からの出力が重複する範囲である。




データ処理部33では、スキャンによって得られた静電容量を示す情報の加重平均を計算する。図12の場合は次式で示される。
Figure 0004848457
また、図13の場合は次式で示される。
Figure 0004848457
図12Gと図13Fは、指の座標(横軸)に対する加重平均によって得られるタッチ座標(縦軸)を示している。なお、タッチ座標とは、データ処理部33での計算によって得られた指の座標である。タッチ座標を正確に計算できれば、グラフは単純増加の直線となるはずである。図12Gと図13Fから、2つのセンサ電極を選択した場合(図13)の方が、直線性が高いことが分かる。これは、図13EのWで示した範囲(静電容量検出部32からの出力が重複する範囲)が広いので、加重平均によりアナログ的にタッチ座標を計算できるからである。このように、センサ電極の面積を小さくし、複数のセンサ電極を同時に選択してスキャンすることと、加重平均による計算を組み合わせることで、タッチ座標をアナログ的に求めることができる。したがって、直線性を向上できる。
なお、図14は図12の場合の位置センサの処理フローを示す図である。図12の場合の位置センサは次のように動作させればよい。スイッチ部31は、センサ電極111に対応するスイッチをオンにする(S110)。静電容量検出部32は、センサ電極111の静電容量を検出する(S111)。次に、スイッチ部31は、センサ電極112に対応するスイッチをオンにする(S112)。静電容量検出部32は、センサ電極112の静電容量を検出する(S113)。スイッチ部31は、センサ電極113に対応するスイッチをオンにする(S114)。静電容量検出部32は、センサ電極113の静電容量を検出する(S115)。スイッチ部31は、センサ電極114に対応するスイッチをオンにする(S116)。静電容量検出部32は、センサ電極114の静電容量を検出する(S117)。ステップS111、S113、S115、S117の結果からのしきい値以下のノイズ成分を除去し、それぞれの静電容量を求める(S118)。ステップS118で求めた静電容量を加重平均し、タッチ座標を求める(S119)。
また、図15は図13の場合の位置センサの処理フローを示す図である。図13の場合の位置センサは次のように動作させればよい。スイッチ部31は、センサ電極121とセンサ電極122に対応するアナログスイッチをオンにする(S120)。静電容量検出部32は、センサ電極121とセンサ電極122の静電容量を検出する(S121)。次に、スイッチ部31は、センサ電極122とセンサ電極123に対応するアナログスイッチをオンにする(S122)。静電容量検出部32は、センサ電極122とセンサ電極123の静電容量を検出する(S123)。スイッチ部31は、センサ電極123とセンサ電極124に対応するアナログスイッチをオンにする(S124)。静電容量検出部32は、センサ電極123とセンサ電極124の静電容量を検出する(S125)。ステップS121、S123、S125の結果からのしきい値以下のノイズ成分を除去し、それぞれの静電容量を求める(S126)。ステップS126で求めた静電容量を加重平均し、タッチ座標を求める(S127)。このような処理フローによって、タッチ座標は計算できる。
上述のように、本発明の静電容量センサと位置センサによれば、静電容量を検出するセンサ電極の面積を、求められる感度を満足するように広くすることができる。したがって、個々のセンサ電極を小さくでき、かつ、筐体を厚くできる。また、ノイズが大きい環境下でも、センサの信頼性を高くできる。また、本発明の位置センサによれば、指の大きさに合わせてセンサ電極の数を調整できるので、計算された指の位置と実際の指の位置との誤差を小さくすることができる。また、加重平均を用いた計算によれば、アナログ的に指の位置が計算できるので、計算された位置の直線性を向上できる。さらに、あらかじめ定めた値よりも大きい静電容量の時だけ、静電容量を示す情報を位置の計算に用いれば、ノイズ成分を除去できるので、タッチ座標の安定性を向上させることができる。また、複数のセンサ電極を同時に選択してスキャンを行う場合に、一部のセンサ電極が重複して選択されるように制御させた場合、センサ部を小型化でき、さらに静電容量センサの分解能を向上させることができる。
[変形例1]
図16は、センサ電極の間に穴を開けた場合のセンサ部の構成例である。センサ部の筐体(操作面)131は不透明な素材であり、意匠134(例えば文字)は透明または半透明の素材で、光を透過できるようになっている。筐体の下にはセンサ部が配置されている。センサ部132には、センサ電極135が配置されるとともに、穴136がある。センサ部132の下にはELシート133が配置されている。ELシート133を光らせると、穴136を光が透過し、筐体の意匠を光らせることができデザイン性を向上できる。なお、ELシート133の代わりに、LEDなどの発光素子を用いてもよい。
本来、穴136を設けることで、その分センサ電極135の面積は狭くなり、センサ電極の感度が悪くなる。しかし、穴136の両サイドのセンサ電極を同時に選択することでセンサ電極の面積を2倍にし、タッチしている面積を1つのセンサ電極の面積より広くすれば、静電容量センサの感度を良くできる。この時、穴136がタッチする面積(例えば指の大きさ)より大きい場合は上記効果が得られないため、穴136はタッチする面積より小さくする必要がある。
変形例1は、“ボタン”アプリケーションや、“スライダ”アプリケーションなどに応用でき、意匠を付加することで操作位置などを指示することが可能になる。
[変形例2]
第1実施形態では、各センサ電極の面積は等しいことを前提に説明した。しかし、各センサ電極の面積が等しいことに限定する必要はない。デザインや筐体の構造上の制限などから、センサ電極の面積を均一にしない場合がある。図17に、センサ電極の面積が均一でない場合の例を示す。センサ部150は、センサ電極151〜159を備えている。センサ電極151、155、159は、センサ電極152〜154、156〜158の約2倍の面積である。上述したように静電容量センサの感度は電極の面積に比例する。したがって、感度を一定に保つためには、電極の面積をほぼ同一にする必要がある。そこで、センサ電極151、155、159を選択するときは1つのセンサ電極のみを選択し、センサ電極152〜154、156〜158を選択するときは2つのセンサ電極を選択する。このようにセンサ電極の面積が一定になるように、センサ電極の数を調整すれば、静電容量センサの感度を一定に保つことができる。
この例では、センサ電極151、155、159が、センサ電極152〜154、156〜158の約2倍の面積の場合を示したので、センサ電極を1つ選択するか2つ選択するかで面積を一致させることができた。しかし、センサ電極の面積の組み合わせでは、選択されたセンサ電極の面積を一致させることができない場合もあり得る。一致させることがでない場合には、できるだけ感度を一致させるように電極の数を選択すればよい。例えば、選択されるセンサ電極の面積の合計があらかじめ定められた範囲内となるように電極の数を選択すればよい。このようにセンサ電極の大きさが異なる場合であっても、静電容量センサの感度を一定に保つことで、“スライダ”アプリケーションとして使用できる。
また、別の使用例として、センサ電極151、155、159を“ボタン”アプリケーションとして使用し、センサ電極152〜154、156〜158をそれぞれ“スライダ”アプリケーションとして使用するなど、複合的な使い方もできる。同じ静電容量センサであっても、用途に応じてスキャン方法を変えることで、様々なアプリケーションに対応できる。

Claims (14)

  1. 配列された3個以上のセンサ電極と、
    複数の前記センサ電極の選択が可能なように構成されたスイッチ部と、
    前記スイッチ部によって選択された前記センサ電極とアースとの間の静電容量を検出する静電容量検出部と、
    を有し、
    前記スイッチ部は、選択した複数の前記センサ電極の間を短絡させ、それらを前記静電容量検出部に接続し、
    前記静電容量検出部は、前記静電容量検出部に接続された前記センサ電極とアースとの間の静電容量を検出する
    ことを特徴とする静電容量センサ。
  2. 請求項記載の静電容量センサであって、
    前記スイッチ部は、
    複数の前記センサ電極を選択する場合は、連続して配列されている複数の前記センサ電極を選択する
    ことを特徴とする静電容量センサ。
  3. 請求項に記載の静電容量センサであって、
    前記スイッチ部は、前記センサ電極ごとの面積に応じて、選択する前記センサ電極の数を変更する
    ことを特徴とする静電容量センサ。
  4. 請求項に記載の静電容量センサであって、
    前記スイッチ部は、あらかじめ定めた時間ごとに、選択する前記センサ電極又は選択する前記センサ電極の組合せを変える
    ことを特徴とする静電容量センサ。
  5. 請求項に記載の静電容量センサであって、
    前記スイッチ部が選択する前記センサ電極の組合せは、前記スイッチ部が選択する他のいずれかの前記センサ電極の組合せに含まれる前記センサ電極を含む
    ことを特徴とする静電容量センサ。
  6. 請求項に記載の静電容量センサであって、
    前記スイッチ部は、前記センサ電極ごとの面積に応じて、選択する前記センサ電極の数を変更する
    ことを特徴とする静電容量センサ。
  7. 請求項に記載の静電容量センサであって、
    前記スイッチ部は、あらかじめ定めた時間ごとに、選択する前記センサ電極又は選択する前記センサ電極の組合せを変える
    ことを特徴とする静電容量センサ。
  8. 請求項に記載の静電容量センサであって、
    前記スイッチ部が選択する前記センサ電極の組合せは、前記スイッチ部が選択する他のいずれかの前記センサ電極の組合せに含まれる前記センサ電極を含む
    ことを特徴とする静電容量センサ。
  9. 請求項に記載の静電容量センサであって、
    前記スイッチ部は、前記センサ電極ごとの面積に応じて、選択する前記センサ電極の数を変更する
    ことを特徴とする静電容量センサ。
  10. 請求項に記載の静電容量センサであって、
    前記スイッチ部は、前記センサ電極ごとの面積に応じて、選択する前記センサ電極の数を変更する
    ことを特徴とする静電容量センサ。
  11. 請求項1から0の何れか1つに記載の静電容量センサであって、
    前記スイッチ部は、複数の前記センサ電極を選択するように構成される
    ことを特徴とする静電容量センサ。
  12. 前記センサ電極への導体の接近によって、前記センサ電極とアースとの静電容量が変化する請求項の何れか1つに記載の静電容量センサと、
    前記あらかじめ定めた時間ごとの、前記静電容量検出部が検出した静電容量を示す情報と、選択された前記センサ電極全体の位置を示す情報とを取得し、
    複数の前記静電容量を示す情報と前記位置を示す情報の組から、接近した前記導体の位置を計算するデータ処理部と、
    を有する位置センサ。
  13. 請求項2記載の位置センサであって、
    前記データ処理部は、
    前記静電容量を示す情報を、前記位置を示す情報で重み付けして平均することで、接近した前記導体の位置を計算する
    ことを特徴とする位置センサ。
  14. 請求項2に記載の位置センサであって、
    前記スイッチ部は、複数の前記センサ電極を選択するように構成される
    ことを特徴とする位置センサ。
JP2009524428A 2007-07-20 2008-06-24 静電容量センサ、位置センサ Active JP4848457B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009524428A JP4848457B2 (ja) 2007-07-20 2008-06-24 静電容量センサ、位置センサ

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007189670 2007-07-20
JP2007189670 2007-07-20
PCT/JP2008/061464 WO2009013965A1 (ja) 2007-07-20 2008-06-24 静電容量センサ、位置センサ
JP2009524428A JP4848457B2 (ja) 2007-07-20 2008-06-24 静電容量センサ、位置センサ

Publications (2)

Publication Number Publication Date
JPWO2009013965A1 JPWO2009013965A1 (ja) 2010-09-30
JP4848457B2 true JP4848457B2 (ja) 2011-12-28

Family

ID=40281224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009524428A Active JP4848457B2 (ja) 2007-07-20 2008-06-24 静電容量センサ、位置センサ

Country Status (2)

Country Link
JP (1) JP4848457B2 (ja)
WO (1) WO2009013965A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9677313B2 (en) 2013-08-30 2017-06-13 Aisin Seiki Kabushiki Kaisha Vehicle-door control device and opening/closing system for vehicle

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5086113B2 (ja) * 2008-01-24 2012-11-28 株式会社フジクラ 静電容量型センサ
JP5549068B2 (ja) * 2008-10-30 2014-07-16 ぺんてる株式会社 入力装置
US8115499B2 (en) * 2009-05-22 2012-02-14 Freescale Semiconductor, Inc. Device with proximity detection capability
JP5561513B2 (ja) * 2009-06-23 2014-07-30 トヨタ紡織株式会社 静電容量センサ及びそれを用いた車両用近接センサ
JP5490471B2 (ja) * 2009-09-11 2014-05-14 アルプス電気株式会社 静電容量式タッチセンサ
JP2011163980A (ja) * 2010-02-10 2011-08-25 Toshiba Lighting & Technology Corp センサ装置
JP2012034058A (ja) * 2010-07-28 2012-02-16 Pentel Corp 静電容量結合方式タッチスイッチ装置
JP5432207B2 (ja) 2011-04-19 2014-03-05 東海ゴム工業株式会社 静電容量型センサ装置
JP5799646B2 (ja) * 2011-08-08 2015-10-28 オムロンヘルスケア株式会社 電動歯ブラシ
JP6558216B2 (ja) * 2015-10-30 2019-08-14 アイシン精機株式会社 静電容量検出装置
JP2017151713A (ja) * 2016-02-24 2017-08-31 三省電機株式会社 情報入力装置及び情報出力装置
JP7063713B2 (ja) * 2017-12-27 2022-05-09 株式会社アルファ モーション検知装置及びハンドル装置
CN111684398B (zh) * 2018-03-26 2023-08-22 阿尔卑斯阿尔派株式会社 检测装置以及控制装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04507316A (ja) * 1989-08-16 1992-12-17 ガーフィード ジョージ イー データ入力装置
JPH10233670A (ja) * 1997-02-20 1998-09-02 Alps Electric Co Ltd 座標入力装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04507316A (ja) * 1989-08-16 1992-12-17 ガーフィード ジョージ イー データ入力装置
JPH10233670A (ja) * 1997-02-20 1998-09-02 Alps Electric Co Ltd 座標入力装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9677313B2 (en) 2013-08-30 2017-06-13 Aisin Seiki Kabushiki Kaisha Vehicle-door control device and opening/closing system for vehicle

Also Published As

Publication number Publication date
JPWO2009013965A1 (ja) 2010-09-30
WO2009013965A1 (ja) 2009-01-29

Similar Documents

Publication Publication Date Title
JP4848457B2 (ja) 静電容量センサ、位置センサ
US9057653B2 (en) Input device with force sensing
US10042485B2 (en) Two-dimensional touch panel
US9128543B2 (en) Touch pad device and method for determining a position of an input object on the device using capacitive coupling
US8659575B2 (en) Touch panel device of digital capacitive coupling type with high sensitivity
US7714848B2 (en) Touch sensing apparatus
US7609178B2 (en) Reconfigurable tactile sensor input device
JP4297506B2 (ja) 近接感応センサー
US20120274599A1 (en) Input device with force sensing and haptic response
US7688313B2 (en) Touch-sense apparatus available for one-dimensional and two-dimensional modes and control method therefor
US9946397B2 (en) Sensor design for enhanced touch and gesture decoding
US20160005352A1 (en) Touch sensing device
WO2012012299A2 (en) Producing capacitive images comprising non-connection values
US20120105325A1 (en) Capacitive finger navigation input device
US20220253173A1 (en) Touch input device
US10061445B2 (en) Touch input device
US11599232B2 (en) Touch sensor panel and touch input device
US11537248B2 (en) Touch sensor panel and touch input device with reduced magnitude of low ground mass interference signal
KR20180019850A (ko) 포스-터치 패널, 이를 갖는 포스-터치 감지 장치 및 디스플레이 시스템
US9891757B2 (en) Elastive sensing
KR101655196B1 (ko) 자동 모드 전환 방법
US7170301B1 (en) Touch sensing apparatus
JP2022172340A5 (ja)
CN113056721B (zh) 输入装置
KR20090071374A (ko) 위치 감지 디스플레이

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4848457

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250