JP4842930B2 - 寄生反射を低減する光呼掛け装置および寄生反射を除去する方法 - Google Patents

寄生反射を低減する光呼掛け装置および寄生反射を除去する方法 Download PDF

Info

Publication number
JP4842930B2
JP4842930B2 JP2007515144A JP2007515144A JP4842930B2 JP 4842930 B2 JP4842930 B2 JP 4842930B2 JP 2007515144 A JP2007515144 A JP 2007515144A JP 2007515144 A JP2007515144 A JP 2007515144A JP 4842930 B2 JP4842930 B2 JP 4842930B2
Authority
JP
Japan
Prior art keywords
optical
light
gcw
sensor
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007515144A
Other languages
English (en)
Other versions
JP2008500536A (ja
Inventor
ゴリアー,ジャックス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of JP2008500536A publication Critical patent/JP2008500536A/ja
Application granted granted Critical
Publication of JP4842930B2 publication Critical patent/JP4842930B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/7703Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
    • G01N21/774Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides the reagent being on a grating or periodic structure
    • G01N21/7743Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides the reagent being on a grating or periodic structure the reagent-coated grating coupling light in or out of the waveguide
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7776Index

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は一般に、生物剤および化学薬剤の無標識検出のための光センサを用いる光呼掛け装置に関する。さらに詳細には、本発明は、1)偏光光学ビームを反射するセンサにおいて生成される寄生反射を除去する方法および2)寄生反射を除去することができる光呼掛け装置に関する。
エバネッセント場に基づくセンサを用いる光呼掛け装置は急速に、生物学的物質、生化学物質または化学物質(たとえば、細胞、胞子、生物学的分子あるいは薬物分子、または化合物)の正確な無標識検出のための最適な技術となりつつある。この技術は一般に、導波路表面における濃度の変化、表面吸着、反応または生物学的物質または化学物質のわずかな存在を検知するために、回折格子結合導波路(GCW)の使用を伴う。エバネッセント場に基づくセンサは一般に、導波路の表面に固定化される化合物と直接接触する平面回折格子結合導波路を用いる。生物学的反応、生化学反応または化学反応が導波路の表面で起こる場合には、薄層(厚さ数ナノメートル)の上で屈折率を変化させ、その結果として、回折格子結合導波路の実効屈折率もまた、変化する。光ビームが回折格子結合導波路に送り出される場合には、(共鳴条件下で)光はGCWに結合し、次に、ある一定の角度およびある一定の波長で反射する。(これらの角度および波長は、共鳴角および共鳴波長と呼ばれる。)これらの角度および波長は、導波路の実効屈折率の関数である。
さらに具体的に言えば、共鳴条件は入射光ビームの一定の波長および角度の場合にのみ生じ、反射される(共鳴)光の角度または波長のいずれかにおける変化はGCWの実効屈折率における変化に対応する。このように、光呼掛け装置は、GCWの実効屈折率における変化を検知するために用いられ、それにより、所定の物質がGCWの検知領域内に位置しているかどうかを決定することができる。したがって、反射光の共鳴角および/または波長を測定することによって、導波路の実効屈折率の変動を検出することができ、それによって、生物学的物質、生化学物質または化学物質の存在を検出することができる。
この技術が実行可能であるためには、共鳴角および/または共鳴波長を正確に監視することができなければならない。エバネッセント場に基づくセンサを利用する光呼掛け装置は、2つの異なる呼掛け方法を用いる。第1の方法は、波長呼掛け手法と呼ばれる。この方法は、GCWにおいてある一定の角度で入射する平行光線化された広いスペクトル帯域の光ビームを利用し、分光計を用いて反射光ビームの(共鳴)波長を測定する。第2の方法は、角度呼掛け手法と呼ばれる。この方法は、GCWに呼掛けるために、複数の入射角で単独の波長光ビームを利用する。この手法を利用する場合には、検出器は、反射光ビームの(共鳴)角度を測定する。角度呼掛け手法を利用する光呼掛け装置は、たとえば、(特許文献1)に開示され、本願明細書に参照によって援用されるものとする。
しかし、共鳴波長または共鳴角における反射光に加えて、回折格子結合導波路(GCW)はまた、他の波長および角度でも光を反射し(寄生幾何的反射)、したがって、検出される共鳴信号の品質を低下させる。さらに具体的に言えば、これらの寄生反射のために、すべての角度または波長で生じる反射光の背景に重なる低コントラストの弱い共鳴信号を認める可能性がある。背景は、信号対雑音比を低下させ、共鳴角または共鳴波長の測定精度を低下させる。第2の問題は、基板またはマイクロプレートの第1の(前)表面からの反射によって引き起こされるものであり、その反射は本願明細書では「寄生フレネル反射」と呼ばれる。寄生フレネル反射は、共鳴測定に干渉し、角度空間またはスペクトル空間において干渉縞を発生し、共鳴検出をきわめて雑音の多いものにし、温度変動および他の要因のために時間が経つにつれて、不安定なものにする。
波長呼掛け装置の一実施例が、図1に示されている。レンズ108は、広いスペクトル領域の光源100に接続される入力ファイバ106によって提供される光ビームを平行光線化する。次に、平行光線化されたビームは、一定の角度でセンサに向けられる。センサは、マイクロプレート102およびGCW104を備える。反射される(共鳴)光ビームは、レンズ108によって集光され、分光計101に接続される出力ファイバ107によって結像される。
図2は、入力ファイバ106が単色光源110に接続され、光ビームがGCW104に集束される角度呼掛け装置の実施例を示す。光ビームがGCWに結合された後で、共鳴条件に対応する角度で反射され、位置感知検出器111上で結像される。
しかし、上述したように、これらの手法はいずれも寄生反射を受け、真の共鳴信号を損なう。この問題を例示するために、図3の曲線130は、センサによって反射される光のシミュレートされたスペクトル共鳴形状を示している。この曲線は、きわめて非対称であり、異なる波長にわたるGCWの幾何的反射にのみ起因する比較的不良なコントラストの鮮明度を有する。
マイクロプレートの第1の面で起こる寄生フレネル反射の問題は、図4の曲線132によって示される。この共鳴曲線132は、共鳴光とマイクロプレート102の第1の面の寄生フレネル反射との間の干渉の影響のために、高い周波数で変調される。この変調の位相および周波数は、マイクロプレート102の厚さの関数である。
入射ビームおよび反射ビームの空間間隔および/または角度間隔を増大するなどの寄生反射を避けるためのいくつかの解決策が、文献(たとえば(非特許文献1))で提案されている。この手法の原理は、光が回折格子結合導波路の1つの領域の中に注入され、回折格子結合導波路の別の領域から集光されるようにリーダ光学素子を定義することにある。そのような構成が、図5に示されている。したがって、検出器は、GCWの入力側で生じる寄生反射を集光するのではなく、回折格子結合導波路に伝搬された光のみを集光する。
しかし、コティア、K.(Cottier、K.)らによる解決策は、一方向の光の伝搬に制限される。場合によっては、両方の方向にGCWの中を伝搬中である光を集光することが重要であり、したがって、コティアの解決策は、たとえば、ゴリア(Gollier)によって2003年9月30日に出願された(特許文献2)(この特許は本願明細書に参照によって援用されるものとする。)に記載の手法などの二重共鳴手法と互換性がない。コティアの技術の別の制限は、導波路内の光伝搬距離が入力光ビーム径より大きい場合に利用されることができるに過ぎないことである。さらに、場合によっては、異なる伝搬モード(TEおよびTM)を測定することが望まれる。これらのモードは、著しく異なる伝搬距離を有する。コティアの手法を利用する場合には、すべてのモードを維持し、同時に寄生反射を除去することができるような(GCWにおける)入射入力ビームと(GCWからの)集光された出力ビームとの間の距離を求めることは不可能である。最後に、何か他の場合には、GCWに対して法線入射で光ビームを送り出すことが望ましいことがある。しかし、この場合には、定常波がGCWの中で励起される。したがって、光がGCW内を伝搬されないため、コティアによって提案された空間間隔を用いることは不可能である。
そのような問題を例示するために、図6Aは、図1のデバイスによって生成される4共鳴スペクトルを示している。スペクトル曲線の左側の2つのピーク140は、対向する方向に伝搬する2つのTMモードを表している。スペクトル曲線の右側の2つのピーク141は、2つの方向に伝搬する2つのTEモードを表している。図6Aは、ピーク140が寄生反射のために検出することが困難であり、すべてのピークが高い周波数変調を受けることを示している。TMモードの一方に対応する共鳴波長の一方の周囲の寄生反射を除去するために、入力光ビームおよび出力光ビームがコティアによって教示されたように離隔される場合には、第2のTMモードに対応する共鳴波長をもはや検出することはできない。さらに、(導波路内の小さい方の伝搬距離を有する)2つのTEモードは、(寄生反射のために)背景雑音の中で消失し始め、今度は検出しにくくなる。これは、図6Bに示されている。したがって、TMモードおよびTE(共鳴モード)の両方を検出する必要がある場合、および/または対向する方向に伝搬する共鳴モードを検出する必要がある場合には、コティアの方法を利用することはできない。
米国特許第6,218,194号明細書 米国特許出願第10/676,352号明細書 コティア、K.(Cottier、K.)ら著、「Label−free Highly Sensitive Detection of (Small) Molecules by Wavelength Interrogation of Integrated Optical Chips」、Sensors and Actuators B:Chemical,2003年6月
本発明の一態様によれば、光呼掛け装置は、光センサと、光センサによって持ち込まれる寄生反射を除去する光アイソレータと、を備える。
本発明の一実施形態によれば、GCWに基づく光呼掛け装置における寄生反射を除去する方法は、
a)光源を含む光学検出装置を提供するステップと、
b)光学検出装置によって提供される偏光ビームを反射することができる少なくとも1つの回折格子結合導波路を備えたセンサを提供するステップと、
c)偏光ビームを回折格子結合導波路に導入するステップと、
d)光アイソレータを光学検出装置内の光路に配置し、(i)センサの第1の表面から生成されるフレネル反射および/または(ii)回折格子結合導波路の幾何的反射を除去するステップと、を含む。
本発明の一実施形態によれば、生物学的物質、生化学物質または化学物質を検出するための無標識光呼掛け装置は、1)生物学的物質、生化学物質または化学物質を固定化することができる検知領域を有する表面を備えたGCWを備えるセンサと、2)検知領域を監視するための光学検出装置であって、光源、光供給装置および検出機器を備えた光学検出装置とを備え、
光呼掛け装置は、センサによって生成される寄生反射を除去するために光アイソレータをさらに備える。一部の実施形態によれば、光アイソレータは、偏光子および、(i)波長板または(ii)ファラデー回転子のいずれか、を備えてもよい。
本発明の光呼掛け装置の利点の1つは、生物学的物質、生化学物質および化学物質の検出のためのその増大した感度であり、寄生反射から生成された背景雑音の減少である。
本発明の実施形態の一部の別の利点は、光アイソレータが1つの回折格子の異なる領域を検知するか、または空間的に分離された回折格子結合導波路を検知することができるかのいずれかのために、入射光ビームを複数の光ビームに分割することができ、したがって、自己参照型センサ手法の利用を可能にすることである。
本発明のさらに別の利点は、光の伝搬の両方向および/またはTMモードおよびTEモードの両方を利用して、センサから共鳴信号を導出することができることである。
本発明のさらなる特徴および利点は、以下の詳細な説明において明らかになるであろう。前述の概要および以下の詳細な説明および実施例のいずれも、本発明の例示に過ぎず、特許請求された本発明を理解するための概要を提供することを目的としている。添付の図および以下の詳細な説明を参照すれば、本発明のよりよい理解を得られると考えられる。
無標識センサを備える光呼掛け装置は、回折格子構造を介して導波路に導入される光ビームの角度または波長のいずれかを測定することによって機能する。そのような導波路は、たとえば、光学回折格子を組み込んだプレーナ型導波路であってもよい。光呼掛けの1つの方法は、広いスペクトルの入力ビームの入射角を固定することと、共鳴を生じる波長を測定することと、を含む(波長呼掛け手法)。別の手法は、単色光源を用いることと、共鳴を生じる角度を測定することと、を含む(角度呼掛け手法)。
上述のように、従来技術の構成は、真の共鳴信号を損なう「寄生反射」を受ける。これらの寄生反射は、光センサによって持ち込まれ、マイクロプレート/基板の第1の表面における反射から生じるか、またはGCWの表面の幾何的反射によって生成される。寄生反射の存在の結果として、測定精度は、以下の2つの考えられる影響のために劣化される。考えられる影響とは(i)寄生反射が比較的不良な信号対雑音比を生じる、(ii)そのような反射がマイクロプレート/基板の第1の面から生じる場合には、寄生反射は(波長空間または角度空間のいずれかにおける)高い周波数の干渉縞を発生しうる、というものである。
ここで、本発明の好ましい本実施例を詳細に参照されたい。その実施例は、添付図面に示されている。可能である場合には常に、同一の部分または類似の部分を指すために、図面全体を通して同一の参照符号が用いられる。本発明の光呼掛け装置の一実施形態は、図7に示されており、全体を通じて参照符号10によって一般に表される。
本発明の実施形態によれば、回折格子結合導波路(GCW)に基づく光呼掛け装置における寄生反射を除去する方法は、a)偏光ビームを反射する少なくとも1つの回折格子結合導波路を有する光センサ20を提供するステップと、b)センサ20と相互に作用する光学検出装置30を提供するステップと、c)光ビームを回折格子結合導波路に導入するステップと、d)光アイソレータを光学検出装置内の光路に導入し、(i)光センサ20の第1の表面から生成されるフレネル反射および/または(ii)回折格子結合導波路の幾何的反射を除去するステップと、を含む。
一実施形態によれば、生物剤、生化学製剤または化学薬剤を検出するための光呼掛け装置は、1)生物学的反応層または化学物質反応層を有する表面を備えたGCWを備えるセンサ20と、2)生物学的反応層または化学物質反応層を監視するための光学検出装置30と、を備え、光学検出装置30は、光源、光供給装置および検出機器を備え、光学検出装置はまた、光センサによって生成される寄生反射を除去するために、偏光子および、(i)波長板または(ii)ファラデー回転子のいずれか、を備える光アイソレータを備える。
光アイソレータは、たとえば、偏光子と、四分の一波長板またはファラデー回転子のいずれかと、を備えてもよい。偏光子はまた、複数のウォラストンプリズムを備えていてもよい。光センサ20によって生成された寄生反射を除去するために、他の光アイソレータが利用されてもよい。
本発明は、以下の実施例によってさらに明白となるであろう。
実施例1
光学(波長)呼掛け装置の一実施例が、図7に示されている。図7の光呼掛け装置10は、光センサ20および光学検出装置30を備える。光センサ20は、生物検体または化学検体を検知領域に供給するように設計されたマクロまたはマイクロのいずれかの流体通路を備える空気流体供給装置を備えていてもよい。光センサ20は、光場検知領域を有してもよく、基板および生物学的反応層または化学物質反応層を備えてもよい。たとえば、基板は、所望の表面化学反応による材料の1つ以上のコーティングまたは層を用いて改変されることができ、それによって、上記の生物学的反応層または化学物質反応層の安定的な固定化を強化する。この実施例において、波長呼掛け装置10の光センサ20は、マイクロプレートまたは基板102と、マイクロプレートまたは基板102の上に位置する少なくとも1つのGCW104と、を備える。
光学検出装置30は、入力光ビームの供給に適した光源100と、出力光ビームを受光して解析するための分光計101と、光センサ20と分光計101との間に位置する光アイソレータ105のほか、入力ファイバ106、出力ファイバ107およびレンズ108を備える。
この実施形態において、光源100は、光ファイバ106の中に結合される広いスペクトル領域の(白色)光を提供する。光は、次に入力ファイバ106の出力端106aから出射し、レンズ108によって集光される。レンズ108は、入力ファイバ106から出る入力ビームを平行光線化する。平行光線化されたビームは次に、光センサ20のマイクロプレートまたは基板102の方に向けられる。平行光線化されたビームは、所定の角度でマイクロプレート102およびGCW104に当たる。光の一部は、GCW104の導波路/回折格子構造に結合される。この実施形態のGCW104の概略図が、図8に示されている。GCW104は、基板102と光学的に透明な流体103との間に挟まれた光導波路104aおよび回折格子構造を備え、TMモードおよび/またはTEモードのいずれかにおいて2つの異なる方向に入射光を伝搬することができる。GCW104は、任意の他のモードで伝搬する光を支持することはない。結合光(TMモードおよび/またはTEモード)は、(対向する矢印AおよびBで示されているように1つの方向または2つの対向する方向において)GCW104の中である距離を伝搬し、(導波路回折格子構造から)コリメートレンズ108に向かって反射する。この反射光は、等価な屈折率に関する情報を搬送し、言い換えれば、生物学的材料、生化学材料または化学材料がGCWの表面に存在するかどうかに関する情報を提供する。
反射ビームCは、レンズ108によって集光され、出力ファイバ107に提供される。出力ファイバ107は、分光計101に接続される。分光計101は、反射光ビームの波長を測定する。反射光ビームの波長は、導波路内の光の伝搬モードおよび回折格子結合導波路(GCW)104の実効屈折率の関数である。回折格子結合導波路の実効屈折率は、GCW104の厚さ、基板102の屈折率n、導波路の屈折率n、導波路の一番上に位置する流体103(たとえば、水)の屈折率nのほか、その存在を検出しようとする材料の屈折率nの関数である。さらに具体的に言えば、この材料が存在しない場合には、検出される反射波長(本願明細書では参照波長と呼ぶ)は値の1つの集合を有し、この集合は生物学的物質、生化学物質または化学物質のいずれかが、導波路の表面に存在する場合の反射光の波長とは異なる。したがって、参照波長の変化から検出されるビーム波長の変化は、生物学的物質、生化学物質または化学物質の存在を意味する。
この実施例において、n=1.5、n=2.1およびn=1.3である。これらの屈折率は、一定である。屈折率nは一定ではなく、GCW104の表面104’に付着される特定の材料に左右される。回折格子結合導波路は、厚さtが約190nmであり、深さdが約50nmであり、そのピッチPが約500nmである。当然のことながら、他の屈折率を有する材料および他の寸法を有する回折格子結合導波路を用いてもよい。この実施形態において、TMモードおよびTEモードはいずれも、2つの方向に導波路を通って伝搬する。したがって、分光計101は、TMモードに対応する2つの波長(各伝搬方向ごとに1つの波長)およびTEモードに対応する2つの波長を検出する。測定は、以下の方法で行われる。第一に、GCW104が、周知の屈折率nを有する任意の非反応性の光学的に透明な流体103(たとえば脱イオン水)に浸漬される。参照測定が行われ、GCW104から反射された光の参照波長を決定する。続いて、生物学的材料、生化学材料または化学材料が流体によってGCWに提供され、この材料の一部がGCWに付着する。ここで、流体はこの材料の一部を含んでもよく、この材料の一部は流体の屈折率に影響を及ぼしうるため、流体は次に同一の屈折率nを有する新たな汚染されていない流体(たとえば、新たな脱イオン水)と交換される。測定が再び行われ、波長における任意の差は、GCWの表面にある材料の存在に対応する。マイクロプレートは、複数のGCWを含んでもよく、複数のGCWは複数のビームによって同時に呼掛けが行われてもよく、利用者は複数の材料の存在に関する照合を同時に行うことができる。図9は、それぞれがGCW104を含む複数のウェル102Aを含むマイクロプレート102を概略的に示している。ウェル102Aは、GCW104を覆う光学的に透明な流体103、水などを含んでもよい。一般的なマイクロプレートは、たとえば、100〜500個のウェル102Aを有しうる。
残りの光の大部分は基板およびGCWを通って伝搬し、コリメートレンズ108に向かって反射されない。しかし、上述のように、マイクロプレート/基板の表面に面する入射ビームおよびGCWによって生成される寄生反射がある。
この実施形態において、図7の光呼掛け装置10は、コリメートレンズ108と、マイクロプレートまたは基板102との間に位置する光アイソレータ105も備える。光アイソレータ105は、GCW104から寄生反射を除去するが、信号(すなわち、情報搬送)光Cをレンズ108に向かって伝搬することができ、出力ファイバ107の入力端面107’で集束する。出力ファイバ107は、この光を分光計101に供給する。
光アイソレータ105は、センサ104によって変形されなかった偏光を有する(光センサ104からの)すべて反射光を除去する。 しかし、変形された偏光状態を有する反射光は、部分的にアイソレータ105を通ることになる。マイクロプレート102の第1の面で生じる寄生反射およびGCWの幾何的な寄生反射の偏光状態は、変形されない。したがって、寄生反射のいずれのタイプも光アイソレータ105によって除去される。他方、共鳴の偏光状態は、励起モードに応じて、TE配向またはTM配向によって直線状である。
実施例2
図10は、角度呼掛けを利用する本発明の光呼掛け装置の実施例を概略的に示している。この光呼掛け装置は、単色光源110を利用する。入力ファイバは、単色光源110に接続され、発散光ビームをコリメートレンズ108に提供する。コリメートレンズ108は、平行光線化された光ビームを光学素子112に向かって送り出し、光アイソレータ105を通過する。光ビームは次に、大きな角度の収束角θで集束レンズ108aによって、GCW104の回折格子に集束される。集束ビームの収束角は、レンズ108aの有効口径およびその焦点距離の関数である。光アイソレータ105は、基板/マイクロプレート102およびGCW104からの寄生反射を最小限に抑えるか、または除去する。
光ビームは、共鳴条件に対応する2つの対称な角度θで反射され、レンズ108によって平行光線化され、光アイソレータ105を通過し、光学素子112によって検出器111に供給される。検出器111は、CCDカメラまたは任意の種類の位置感知検出器のいずれであってもよい。
光アイソレータ
実施例1
本発明の上述の実施形態(図7および図10に示される)は、光アイソレータ105を利用する。光アイソレータ105は、入力ビーム(GCWにおける入射)と集光される出力ビーム(GCWによって反射)との間の任意の空間間隔または角度間隔を必要とすることなく、寄生反射を除去する。さらに具体的に言えば、図7および図10は、波長検知光呼掛け装置(図7)または角度呼掛けを利用する光呼掛け装置(図8)におけるアイソレータ105の1つの具体的な実装例を示している。光呼掛け装置のこのような2つの実施形態において、光アイソレータ105は、偏光感知アイソレータである。
偏光感知アイソレータ105の実施例が、図11に概略的に示されている。この実施形態によれば、このアイソレータは、直線偏光子120および四分の一波長板121を備える。直線偏光子120は、四分の一波長板121の偏光軸123aおよび123bに対して45°に向けられたその偏光軸122を有する。GCW104に向けられた入射光ビームは、直線偏光子120を通過し、直線偏光となる。直線偏光は次に、四分の一波長板121を通過し、円偏光となる。すべての寄生反射は元の偏光を保持し、したがって、この光ビームは、GCW104から反射した後には円偏光が維持される。反射された円偏光(寄生反射)は、波長板121を再び通過し、偏光の変化を受ける。その偏光軸は直線に変化し、偏光子120の軸122に対して約90°に向けられる。次に、偏光子120は寄生反射をブロックする。
共鳴(すなわち、導波路の内外に結合される情報搬送光ビーム)の場合には、GCW104からの反射後に、光ビームの偏光は、円偏光から直線偏光に変化し、偏光ベクトルの配向はGCWの配向および光伝搬モード(TEまたはTM)に左右される。たとえば、光の偏光ベクトルが四分の一波長板121の軸123aまたは123bの一方に沿っていると仮定すると、四分の一波長板121は、伝搬光の偏光状態に影響せず、偏光子はこのとき光学パワーの2分の1を透過する。透過された光(寄生反射なし)は、検出器に提供され、高精度の検出および解析を可能にする。
実施例2
アイソレータ105の別の実施例が、図12に概略的に示されている。この実施例のアイソレータ105は、偏光子120およびファラデー回転子125を備える。(GCWに向かって伝搬する)入射光ビームが偏光子120を通過するとき、直線偏光となる。光ビームがファラデー回転子125を通過した後、その偏光は依然として直線偏光であるが、伝搬光の偏光ベクトル126は45°回転される。反射後、すべての寄生反射に関連する光の偏光配向(偏光ベクトル)は、この光が再びファラデー回転子を通るように伝搬されるまで変化しない。ファラデー回転子は、光の偏光軸を45°再び回転する。ここでこの光の偏光軸が偏光子120の軸122に対して90°回転されるため、寄生反射が偏光子120によって除去される。
GCW104の回折格子が偏光子の偏光軸122の方向に沿う方向か、または偏光子の偏光軸122の方向に垂直な方向のいずれかに向けられる場合には、共鳴条件に対応する反射光(すなわち、導波路の内外に結合され、反射される情報搬送光ビーム)は、その偏光ベクトルが偏光子の軸122に対して45°であるように直線偏光される。したがって、この光ビームは次に、偏光子120によって部分的に透過され、検出器に提供され、高精度の検出および解析を可能にする。
図13は、2つの共鳴曲線145および146を示している。曲線145は、光アイソレータ105を利用しない波長呼掛け装置において測定した共鳴波長に対応する。曲線146は、光アイソレータ105を備える図7の波長呼掛け装置によって測定した共鳴波長に対応する。図から分かるように、除去されていない共鳴(曲線145)は、図3のシミュレーションに対応する著しい非対称性を呈し、コントラストは比較的不良である。曲線145に現れる別の問題は、マイクロプレートの第1の面に関する反射によって生成される高い周波数変調である。(図4のシミュレーションで示されたこの変調は大きなコントラストを示さないという事実は、この変調が分光計の制限されたスペクトル解像度によって部分的に除去されるという事実による。しかし、この変調は、共鳴の形状を著しく変化させ、測定の再現可能性に影響を及ぼすほどには十分に大きい。)曲線146は、高い周波数変調がなく、狭く、コントラストの高い対称な曲線である。したがって、上述したように、光アイソレータ105は、戻ってくるビームから寄生反射を除去し、光呼掛け装置の品質を向上させる。類似の結果はまた、角度呼掛け手法を利用する光呼掛け装置において光アイソレータを用いることによって得られることができる。
実施例3
この具体的な光アイソレータ(図14)は、実施例1の光アイソレータに類似している。しかし、アイソレータ105の偏光子120は、複屈折ビーム変位偏光材料、たとえばYVO4、石英または大きな複屈折率Δnを呈する任意の他の材料から構成され、入射ビームを2つの異なる(直線)偏光入力ビーム成分に分割する。1つのビームではなく、2つの入力光ビームを有することにより、少なくとも2つのGCW104を同時に呼掛けることが可能である。これは、図14に概略的に示されている。図14は、非偏光ビーム入力A’が偏光子120によって2つのビームBおよびBに分割されることを示している。入力光ビームBおよびBは、互いに垂直である直線偏光を有し、波長板121を交差した後で円偏光となる。2つのGCW104は、(たとえば、わずかに異なる厚さのために)わずかに異なる実効屈折率を有する。その結果、結合され、わずかに異なる共鳴波長によって特徴付けられる光CおよびCを反射する。したがって、(2つの光ビームがGCWによって反射され、偏光子120を再び通過することによって結合された後、)反射光は、2つの異なる材料の存在に関して、同時に呼掛けることができる。
2つのビームC、Cは、偏光子120によって結合され、結合されたビームは出力ファイバに提供され、次に分光計101に提供される。続いて、分光計は、2つの異なるGCW104に対応する異なる共鳴波長を検出する。したがって、2つのGCW104の回折格子のピッチまたは実効屈折率が異なる場合には、2つの反射ビームは、2組の異なる波長によって特徴付けられる。
上述したように、すべての寄生反射は、元の入射)偏光(たとえば、円偏光)を保持する。2つの反射された(寄生)ビームは、GCW104からの帰路で波長板121を通過する。波長板121は、偏光を90°回転することによって2つの戻るビームのそれぞれの偏光を変化させる。したがって、偏光子120によって生成される偏光シフトは、最初に進む方向ではなく、対向する方向に進む。そのとき、寄生反射が除去される。したがって、TMモードおよびTEモードがいずれも、2つのGCW104の内部で2つの対向する方向に伝搬中であった場合には、分光計101は8つの波長の合計を測定することになる。
図12は、GCW104が法線入射で呼掛けを行い、光アイソレータ105が波長板121を備える場合を示していることに留意されたい。この手法はまた、非法線入射を用い、四分の一波長板121ではなくファラデー回転子125を用いる場合とも互換性があることが分かる。
図14に示された手法は、少なくとも2つの異なるGCWに呼掛けることが可能である。類似の手法であるが、2つの同一のGCWを利用する手法もまた、生物学的物質、生化学物質または化学物質の存在を検出すると同時に、任意の環境の変化を検出するために用いられることができる。すなわち、入力光ビームを2つのビームに分割することにより、光ビームのそれぞれが異なるGCWに呼掛けることが可能となる。GCWの一方は(時間および/または環境の変化に関するセンサドリフト、たとえば温度変動または入射ビームにおける角度変化を監視することによって)参照測定を提供し、他方のGCWは生物学的物質、生化学物質または化学物質の存在を検出するために用いられる。この呼掛け装置は、自己参照型装置と呼ばれる。環境の変化は、参照GCWの回折格子のピッチおよび実効屈折率を変化させ、共鳴波長または共鳴角をわずかに異なる波長または角度にシフトさせる原因となる。他の同一のGCWは、すべての変化による変化、すなわち生物学的物質、生化学物質または化学物質による変化のほか、環境の変化、角度の変化などによる変化を記録する。したがって、2つのGCWは、2つの異なる測定および検出された物質の存在にのみ対応し、環境の変化によるものではないデータの2つの集合の間の差を提供する。しかし、両方の共鳴に対応する波長は同一の出力ファイバによって結像されるため、2つのGCWに対応する波長はそれらを識別することができるようにするためにスペクトルによって分離することが必要である。これは、たとえば、2つの戻る異なった偏光のビームの偏光感知角度分離を利用することによって行うことができる。
実施例4
本発明の別の実施形態によるこの光アイソレータが、図15に示されている。この実施形態は、2つのウォラストンプリズムW、WおよびウォラストンプリズムWとセンサ20との間に位置する四分の一波長板121を利用する。第1のウォラストンプリズムWを光ビームに導入することによって、異なる方向に伝搬する直交偏光を有する2つの発散光ビームを得る。図15に示されているように、2つの光ビームが同一の第2のウォラストンプリズムWを通過するときに、2つの伝搬光ビームは再び平行となり、空間的に分離される。ビーム間の距離は、プリズムの角度、それらの間の距離の関数である。2つのプリズムW、Wの一方がその光軸を中心にして回転される場合には、他方の光ビームに対して一方の光ビームの配向を変化させることが可能である。共鳴波長は入射角の関数であることから、一方のプリズムの回転の影響は他方の光路に対する一方の光路のスペクトルをシフトさせることである。したがって、参照回折格子および測定回折格子が同一であっても、プリズムの回転により、互いにスペクトルをシフトさせることが可能であり、その結果、参照チャネルおよび測定チャネルから共鳴波長を分離することができる。
図16Aおよび図16Bは、図15の構成によって得られた実験結果を示している。角度の位置ずれがない場合には、2つのTEモードおよびTMモードに対応する4つの共鳴を得る(図16A)。角度の位置ずれが導入される場合には、ピークが分割され、最終的には8つの分離された共鳴ピークとなる(図16B)。
本発明の精神および範囲を逸脱することなく、本発明に種々の修正および変形を施すことができることは、当業者には明白であろう。したがって、本発明は、本発明の修正および変形が添付の特許請求項およびその等価物の範囲内に収まるのであれば、それらの修正および変形を網羅するものとする。
波長呼掛けを利用する従来技術のGCW(回折格子結合導波路)に基づく光呼掛け装置を概略的に示している。 角度呼掛けを利用する従来技術のGCWに基づく光呼掛け装置を概略的に示している。 図1の光呼掛け装置の波長共鳴形状のシミュレーションを示している。 図1の光呼掛け装置において利用されるセンサのマイクロプレートの第1の面からの反射の影響を示している。 寄生反射が入力光ビームとGCWによって反射される光ビームとを空間的に分割することによってどのように低減されるかを概略的に示している。 図6Aは、図1の光呼掛け装置によって測定された実験データを提供する。データは、寄生反射の背景に重ねられる共鳴波長を示す。図6Bは、図5によって示される特殊な分割方法に基づいて寄生反射が除去された共鳴波長データの曲線である。 本発明の第1の実施形態によるGCWに基づく光呼掛け装置を概略的に示している。この光呼掛け装置は、波長呼掛けを利用する。 図7の光呼掛け装置において利用されるGCWを概略的に示している。 複数のウェルを有するマイクロプレートを示し、ウェルのそれぞれは少なくとも1つのGCWセンサを含む。 本発明のGCWに基づく光呼掛け装置の第2の実施形態を概略的に示している。この光呼掛け装置は、角度呼掛け手法を利用する。 偏光子および四分の一波長板を備える光アイソレータを概略的に示している。 偏光子およびファラデー回転子を備える光アイソレータを概略的に示している。 共鳴波長測定の2つの集合に対応する2つの実験曲線を示している。 本発明のGCWに基づく光呼掛け装置において利用される光アイソレータを概略的に示している。この光アイソレータは、複屈折ビーム変位偏光子を備え、GCWの光呼掛け用の2つの光ビームを生成する。 本発明の光呼掛け装置において利用される別の具体的な光アイソレータを概略的に示している。この光アイソレータは、2組のウォラストン複屈折プリズムによって入射光ビームを2つの光ビームに分割する。 図15の構成において得られる実験結果を示している。

Claims (9)

  1. 生物剤、生化学製剤または化学薬剤を検出するための無標識光呼掛け装置であって、当該無標識光呼掛け装置が、
    1)生物学的物質、生化学物質または化学物質を固定化することができ、かつ、信号光の偏光状態を変化させることができる検知領域を有する表面を有する回折格子結合導波路(GCWを備える光センサと、
    2)前記検知領域を監視するための光学検出装置であって、光源、検出機器、および、(i)前記光源から前記光センサに、及び、(ii)前記光センサから前記検出機器に、光を供給する光供給装置と、を備えたものと、
    有してなり、
    さらに、前記検出機器と前記光センサの間に光学的に位置する、偏光に基づく光アイソレータであって、前記光センサによって生成されて、前記検出機器に伝搬しようとする寄生反射を実質的に除去し、前記光センサにより変化させられた偏光状態を有する光ビームの少なくとも一部を通して前記検出機器に伝搬させるものをさらに備えることを特徴とする無標識光呼掛け装置。
  2. 前記光アイソレータは、偏光子および、(i)波長板または(ii)ファラデー回転子のいずれか、を備えることを特徴とする請求項に記載の無標識光呼掛け装置。
  3. 前記光アイソレータは、少なくとも1対のウォラストンプリズムを備えることを特徴とする請求項に記載の無標識光呼掛け装置。
  4. 前記光アイソレータは、前記光ビームを分離して2つの光ビームを生成することを特徴とする請求項に記載の無標識光呼掛け装置。
  5. 前記2つの光ビームは、平行光線化された光ビームであることを特徴とする請求項に記載の無標識光呼掛け装置。
  6. GCWに基づく光呼掛け装置において寄生反射を除去する方法であって、
    a)光源を含む光学検出装置を提供するステップと、
    b)前記光学検出装置によって提供される偏光ビームを反射することができる少なくとも1つの回折格子結合導波路(GCW)を備えたセンサを提供するステップと、
    c)偏光ビームを前記回折格子結合導波路(GCW)に導入し、前記回折格子結合導波路に提供された前記偏光ビームの偏光状態を変化させるステップと、
    d)偏光に基づく光アイソレータを前記光学検出装置内の検出機器と前記光センサの間の光路に配置し、(i)前記センサの第1の表面から生成されるフレネル反射および/または(ii)前記回折格子結合導波路の幾何的反射を実質的に除去するステップと
    を含み、
    前記フレネル反射及び幾何学的反射が、前記回折格子結合導波路で変化させられない偏光を有し、前記光アイソレータが、変化させられた偏光状態を有する光の内の少なくとも一部を前記光センサに伝搬することを特徴とする方法。
  7. 前記光呼掛け装置は、前記センサによって反射された光の共鳴波長または共鳴角を測定することを特徴とする請求項に記載の方法。
  8. 前記光ビームを2つのビームに分離するステップをさらに含むことを特徴とする請求項に記載の方法。
  9. 前記光アイソレータは、
    1)偏光子および、(i)波長板または(ii)ファラデー回転子のいずれか、を備え、かつ
    2)非直線偏光を前記センサに送り込む、
    ことを特徴とする請求項に記載の方法。
JP2007515144A 2004-05-27 2005-05-10 寄生反射を低減する光呼掛け装置および寄生反射を除去する方法 Expired - Fee Related JP4842930B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/856,572 2004-05-27
US10/856,572 US7239395B2 (en) 2004-05-27 2004-05-27 Optical interrogation systems with reduced parasitic reflections and a method for filtering parasitic reflections
PCT/US2005/016519 WO2005119222A1 (en) 2004-05-27 2005-05-10 Optical interrogation systems with reduced parasitic reflections and a method for filtering parasitic reflections

Publications (2)

Publication Number Publication Date
JP2008500536A JP2008500536A (ja) 2008-01-10
JP4842930B2 true JP4842930B2 (ja) 2011-12-21

Family

ID=34972533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007515144A Expired - Fee Related JP4842930B2 (ja) 2004-05-27 2005-05-10 寄生反射を低減する光呼掛け装置および寄生反射を除去する方法

Country Status (6)

Country Link
US (1) US7239395B2 (ja)
EP (1) EP1749202B1 (ja)
JP (1) JP4842930B2 (ja)
AT (1) ATE497161T1 (ja)
DE (1) DE602005026118D1 (ja)
WO (1) WO2005119222A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM245662U (en) * 2003-08-22 2004-10-01 Quarton Inc Automatic laser power control device
CN104076162A (zh) 2005-07-20 2014-10-01 康宁股份有限公司 无标记高通量生物分子筛选系统和方法
EP1913348A1 (en) * 2005-08-08 2008-04-23 Corning Incorporated Method for increasing a read-out speed of a ccd-detector
EP2327970A3 (en) 2006-03-10 2011-09-14 Corning Incorporated Optimized method for lid biosensor resonance detection
EP1999455A2 (en) * 2006-03-10 2008-12-10 Corning Incorporated Reference microplates and methods for making and using the reference microplates
US7976217B2 (en) * 2006-09-15 2011-07-12 Corning Incorporated Screening system and method for analyzing a plurality of biosensors
US7776609B2 (en) * 2007-03-09 2010-08-17 Corning Incorporated Reference microplates and methods for making and using the reference microplates
US7999944B2 (en) * 2008-10-23 2011-08-16 Corning Incorporated Multi-channel swept wavelength optical interrogation system and method for using same
EP2473886B1 (fr) 2009-09-04 2013-05-29 CSEM Centre Suisse D'electronique Et De Microtechnique SA Dispositif pour horloge atomique
WO2011026251A1 (fr) * 2009-09-04 2011-03-10 Csem Centre Suisse D'electronique Et De Microtechnique S.A. Dispositif pour horloge atomique
JP5810512B2 (ja) * 2010-11-12 2015-11-11 セイコーエプソン株式会社 光学装置
WO2012162286A1 (en) * 2011-05-26 2012-11-29 Corning Incorporated High resolution label-free sensor
US8670121B1 (en) 2012-09-13 2014-03-11 Corning Incorporated Wavelength-tunable detector for label-independent optical reader
US9766464B2 (en) * 2015-12-17 2017-09-19 Microsoft Technology Licensing, Llc Reducing ghost images
KR102285677B1 (ko) * 2016-02-22 2021-08-05 한국전자통신연구원 광센서
JP2020531916A (ja) * 2017-08-30 2020-11-05 ジェンテックス コーポレイション 偏光照射システム
US20220026425A1 (en) 2018-11-30 2022-01-27 Corning Incorporated System and method for analyzing extracellular vesicles with an optical biosensor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611439A (ja) * 1992-06-29 1994-01-21 Olympus Optical Co Ltd 生体組織の酸素代謝測定装置
JPH07333558A (ja) * 1994-06-03 1995-12-22 Oyo Koden Kenkiyuushitsu:Kk 光アイソレータ
JPH1164338A (ja) * 1997-08-20 1999-03-05 Suzuki Motor Corp 免疫反応測定装置
JP2000504829A (ja) * 1996-02-08 2000-04-18 サーモ ファスト ユーケイ リミテッド 分析方法および分析装置
JP2001281144A (ja) * 2000-03-29 2001-10-10 National Agriculture Research Center 光沢像検出方法
WO2003064995A2 (en) * 2002-01-28 2003-08-07 Sru Biosystems, Llc A guided mode resonant filter biosensor using a linear grating surface structure
JP2003329684A (ja) * 2002-05-14 2003-11-19 Toshiba Corp 光導波路型免疫センサ及び光導波路型免疫測定方法
JP2006528780A (ja) * 2003-07-25 2006-12-21 コーニング インコーポレイテッド 回折格子結合導波路型センサの偏極変調呼掛け
JP2007538292A (ja) * 2004-05-18 2007-12-27 サイファージェン バイオシステムズ インコーポレイテッド 信号変調を低減した集積光導波路センサ

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4013125A1 (de) * 1989-06-19 1990-12-20 Iveco Magirus Verfahren zur messung einer physikalischen groesse mit einem faseroptischen sensor
JP2775547B2 (ja) * 1992-02-17 1998-07-16 秩父小野田株式会社 光アイソレータ
US6014204A (en) * 1998-01-23 2000-01-11 Providence Health System Multiple diameter fiber optic device and process of using the same
US7202076B2 (en) * 2000-10-30 2007-04-10 Sru Biosystems, Inc. Label-free high-throughput optical technique for detecting biomolecular interactions
US20030113766A1 (en) * 2000-10-30 2003-06-19 Sru Biosystems, Llc Amine activated colorimetric resonant biosensor
US7306827B2 (en) * 2000-10-30 2007-12-11 Sru Biosystems, Inc. Method and machine for replicating holographic gratings on a substrate
US7217574B2 (en) * 2000-10-30 2007-05-15 Sru Biosystems, Inc. Method and apparatus for biosensor spectral shift detection
US7094595B2 (en) * 2000-10-30 2006-08-22 Sru Biosystems, Inc. Label-free high-throughput optical technique for detecting biomolecular interactions
US7023544B2 (en) * 2000-10-30 2006-04-04 Sru Biosystems, Inc. Method and instrument for detecting biomolecular interactions
US7142296B2 (en) * 2000-10-30 2006-11-28 Sru Biosystems, Inc. Method and apparatus for detecting biomolecular interactions
US7101660B2 (en) * 2000-10-30 2006-09-05 Sru Biosystems, Inc. Method for producing a colorimetric resonant reflection biosensor on rigid surfaces
US6951715B2 (en) * 2000-10-30 2005-10-04 Sru Biosystems, Inc. Optical detection of label-free biomolecular interactions using microreplicated plastic sensor elements
US20030092075A1 (en) * 2000-10-30 2003-05-15 Sru Biosystems, Llc Aldehyde chemical surface activation processes and test methods for colorimetric resonant sensors
US7153702B2 (en) * 2000-10-30 2006-12-26 Sru Biosystems, Inc. Label-free methods for performing assays using a colorimetric resonant reflectance optical biosensor
US7175980B2 (en) * 2000-10-30 2007-02-13 Sru Biosystems, Inc. Method of making a plastic colorimetric resonant biosensor device with liquid handling capabilities
US7264973B2 (en) * 2000-10-30 2007-09-04 Sru Biosystems, Inc. Label-free methods for performing assays using a colorimetric resonant optical biosensor
US7497992B2 (en) * 2003-05-08 2009-03-03 Sru Biosystems, Inc. Detection of biochemical interactions on a biosensor using tunable filters and tunable lasers

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611439A (ja) * 1992-06-29 1994-01-21 Olympus Optical Co Ltd 生体組織の酸素代謝測定装置
JPH07333558A (ja) * 1994-06-03 1995-12-22 Oyo Koden Kenkiyuushitsu:Kk 光アイソレータ
JP2000504829A (ja) * 1996-02-08 2000-04-18 サーモ ファスト ユーケイ リミテッド 分析方法および分析装置
JPH1164338A (ja) * 1997-08-20 1999-03-05 Suzuki Motor Corp 免疫反応測定装置
JP2001281144A (ja) * 2000-03-29 2001-10-10 National Agriculture Research Center 光沢像検出方法
WO2003064995A2 (en) * 2002-01-28 2003-08-07 Sru Biosystems, Llc A guided mode resonant filter biosensor using a linear grating surface structure
JP2003329684A (ja) * 2002-05-14 2003-11-19 Toshiba Corp 光導波路型免疫センサ及び光導波路型免疫測定方法
JP2006528780A (ja) * 2003-07-25 2006-12-21 コーニング インコーポレイテッド 回折格子結合導波路型センサの偏極変調呼掛け
JP2007538292A (ja) * 2004-05-18 2007-12-27 サイファージェン バイオシステムズ インコーポレイテッド 信号変調を低減した集積光導波路センサ

Also Published As

Publication number Publication date
EP1749202A1 (en) 2007-02-07
US20050264818A1 (en) 2005-12-01
US7239395B2 (en) 2007-07-03
DE602005026118D1 (de) 2011-03-10
ATE497161T1 (de) 2011-02-15
WO2005119222A1 (en) 2005-12-15
EP1749202B1 (en) 2011-01-26
JP2008500536A (ja) 2008-01-10

Similar Documents

Publication Publication Date Title
JP4842930B2 (ja) 寄生反射を低減する光呼掛け装置および寄生反射を除去する方法
US8564781B2 (en) SPR sensor
JP4556463B2 (ja) 複屈折率測定装置
EP1031828B1 (en) Integrated-optical sensor and method for integrated-optically sensing a substance
EP0478137A2 (en) An optical sensor
US7961318B2 (en) Circular birefringence refractometer: method and apparatus for measuring optical activity
US7349590B2 (en) Polarization modulation interrogation of grating-coupled waveguide sensors
US20060227331A1 (en) Method and apparatus for measuring and monitoring optical properties based on a ring-resonator
JPH01313736A (ja) 物質の屈折率を測定する装置及び方法
EP0632256A1 (en) Micropolarimeter, microsensor system and method of characterizing thin films
KR100293008B1 (ko) 액정프리틸트각의측정방법및액정프리틸트각의측정장치
US7728979B2 (en) Method and device for characterizing analyte using electro-optically modulated surface plasmon resonance based on phase detection
JP2004219401A (ja) 表面プラズモンセンサー及び、表面プラズモン共鳴測定装置、検知チップ
US11340162B2 (en) Method and apparatus for comparing optical properties of two liquids
JP5374762B2 (ja) 反射型複屈折率測定装置
CN111208060A (zh) 传感芯片及其制备方法、检测系统和检测方法
US7333211B2 (en) Method for determining a qualitative characteristic of an interferometric component
JP2006292562A (ja) 表面プラズモンセンサ
JP3702340B2 (ja) 屈折率測定法
US9696208B2 (en) Interferometric device and corresponding spectrometer
JPS6351260B2 (ja)
US20240061174A1 (en) Method for generating and interacting with polymeric photonic integrated circuits
JP3390355B2 (ja) 表面プラズモンセンサー
TWM429094U (en) Cascade-type surface plasmon resonance fiber sensor and the apparatus comprising thereof
Baburaj et al. Guided mode resonance based phase sensing with spectral interferometry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101124

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101201

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101224

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111006

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees