JP4839766B2 - Method for producing grain-oriented electrical steel sheet having excellent coating properties and annealing separator for grain-oriented electrical steel sheet - Google Patents

Method for producing grain-oriented electrical steel sheet having excellent coating properties and annealing separator for grain-oriented electrical steel sheet Download PDF

Info

Publication number
JP4839766B2
JP4839766B2 JP2005291260A JP2005291260A JP4839766B2 JP 4839766 B2 JP4839766 B2 JP 4839766B2 JP 2005291260 A JP2005291260 A JP 2005291260A JP 2005291260 A JP2005291260 A JP 2005291260A JP 4839766 B2 JP4839766 B2 JP 4839766B2
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
annealing separator
mass
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005291260A
Other languages
Japanese (ja)
Other versions
JP2007100165A (en
Inventor
敬 寺島
誠 渡辺
峰男 村木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005291260A priority Critical patent/JP4839766B2/en
Publication of JP2007100165A publication Critical patent/JP2007100165A/en
Application granted granted Critical
Publication of JP4839766B2 publication Critical patent/JP4839766B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、被膜特性とくに被膜外観均一性および耐剥離特性が良好な方向性電磁鋼板の製造方法およびかかる方向性電磁鋼板の製造に用いて好適な方向性電磁鋼板用焼鈍分離剤に関するものである。   The present invention relates to a method for producing a grain-oriented electrical steel sheet having good coating properties, particularly uniform coating appearance and peeling resistance, and an annealing separator for a grain-oriented electrical steel sheet suitable for use in producing such grain-oriented electrical steel plates. .

方向性電磁鋼板の製造は、所定の成分組成に調整した鋼スラブに、熱間圧延、焼鈍、冷間圧延を施し、再結晶焼鈍後、最終仕上焼鈍を施すことにより行うのが一般的である。かような製造工程のうち、最終仕上焼鈍では、1200℃という高温の焼鈍時にコイルの焼き付きを防止するために、マグネシアを主体とする焼鈍分離剤を塗布するのが通例である。
また、このマグネシアは、上記した焼鈍分離剤としての役割の他に、最終仕上焼鈍前に行われる脱炭焼鈍時に鋼板表面に生成するシリカを主体とする酸化層と反応させてフォルステライト被膜を形成させるという働きもある。
Production of grain-oriented electrical steel sheets is generally carried out by subjecting a steel slab adjusted to a predetermined composition to hot rolling, annealing, cold rolling, recrystallization annealing, and final finishing annealing. . Of these manufacturing processes, in final finish annealing, it is usual to apply an annealing separator mainly composed of magnesia in order to prevent coil seizure during annealing at a high temperature of 1200 ° C.
In addition to the role of the annealing separator described above, this magnesia forms a forsterite film by reacting with an oxide layer mainly composed of silica that forms on the surface of the steel sheet during decarburization annealing performed before final finish annealing. There is also a function to make it.

上記のようにして形成されたフォルステライト被膜は、上塗りされるリン酸塩系絶縁コーティングと地鉄部分とを密着させる一種のバインダーとして働くだけでなく、鋼板に張力を付与することにより磁気特性を向上させる働きおよび鋼板被膜外観の均一化などの働きがあり、この焼鈍分離剤の果たす役割は大きい。
そして、被膜外観については焼鈍分離剤の反応性が大きく影響しており、反応性が高すぎると被膜に点状欠陥が生じ、逆に反応性が低すぎると被膜形成不良となり地鉄部が表面に露出するようになる。
The forsterite film formed as described above not only works as a kind of binder to adhere the phosphate-based insulating coating to be coated with the base metal part, but also provides magnetic properties by applying tension to the steel sheet. There is a function of improving and uniforming the appearance of the steel sheet coating film, and the role of this annealing separator is great.
In addition, the reactivity of the annealing separator has a great influence on the appearance of the coating. If the reactivity is too high, point-like defects occur in the coating. Will be exposed.

このため、従来から被膜特性を改善するため、様々な方怯が提案されている。
たとえば、特許文献1には、マグネシアとクエン酸の反応を経時的に観測した値の期待値と標準偏差を適正化することによって被膜特性を改善する方法が提案されている。
また、特許文献2には、酸化マグネシウムのガス吸着等温曲線を適正範囲に収めることによって被膜特性を改善する方法が提案されている。
しかしながら、クエン酸活性度やガス吸着等温曲線を適正範囲に調整した焼鈍分離剤を鋼板に適用した場合であっても、被膜安定性に欠ける場合があることが判明した。
特開2004−353054号公報 特開平10−88240号公報
For this reason, various methods have been proposed in order to improve film properties.
For example, Patent Document 1 proposes a method for improving film properties by optimizing the expected value and standard deviation of values obtained by observing the reaction of magnesia and citric acid over time.
Patent Document 2 proposes a method for improving the film characteristics by keeping the gas adsorption isotherm curve of magnesium oxide within an appropriate range.
However, it has been found that even when an annealing separator whose citric acid activity and gas adsorption isotherm curves are adjusted to appropriate ranges is applied to the steel sheet, the film stability may be lacking.
JP 2004-353054 A JP-A-10-88240

これまで提唱されてきた技術はいずれも、フォルステライト形成反応はシリカとマグネシアの固相反応であるとの暗黙の仮定の下に提案されたものである。
本発明の本質は、この固定観念を捨て、フォルステライト形成反応における気相反応の寄与を検討することにより、被膜安定性を改善するところにある。
All the technologies that have been proposed so far have been proposed under the implicit assumption that the forsterite formation reaction is a solid-phase reaction between silica and magnesia.
The essence of the present invention is to improve the film stability by abandoning this fixed idea and examining the contribution of the gas phase reaction in the forsterite formation reaction.

さて、発明者らは、フォルステライト形成反応における気相反応の寄与について鋭意検討を行った結果、被膜特性の安定性と焼鈍分離剤の気相反応性との間に相関があることを見出し、本発明を完成させるに至った。   Now, as a result of intensive studies on the contribution of the gas phase reaction in the forsterite formation reaction, the inventors have found that there is a correlation between the stability of the film properties and the gas phase reactivity of the annealing separator, The present invention has been completed.

すなわち、本発明の要旨構成は次のとおりである。
(1)Si:2〜4mass%を含有する鋼スラブを、熱間圧延し、熱延板焼鈍後、最終冷間圧延を施し、ついで一次再結晶焼鈍後、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから、最終仕上焼鈍を行う一連の工程よりなる方向性電磁鋼板の製造方法において、
焼鈍分離剤の物性を、焼鈍分離剤を塗布した鋼板と無塗布の鋼板を5mm隔てて最終仕上焼鈍を施したときの表面蛍光X線Mg強度比A(A=I(無塗布)/I(塗布))で評価し、その値が0.5≦A≦1.5の範囲を満足する焼鈍分離剤を用いることを特徴とする被膜特性に優れた方向性電磁鋼板の製造方法。
That is, the gist configuration of the present invention is as follows.
(1) A steel slab containing Si: 2 to 4 mass% is hot-rolled, subjected to final cold rolling after hot-rolled sheet annealing, and then primarily recrystallized and annealed with MgO as the main component on the steel sheet surface. In the method of manufacturing a grain-oriented electrical steel sheet comprising a series of steps of performing final finish annealing after applying an annealing separator,
Regarding the physical properties of the annealing separator, the surface fluorescent X-ray Mg intensity ratio A (A = I (no application) / I () when the final finish annealing is performed by separating the steel sheet coated with the annealing separator and the uncoated steel sheet by 5 mm. A method for producing a grain-oriented electrical steel sheet having excellent coating properties, characterized by using an annealing separator whose value is evaluated in the application step)) and whose value satisfies the range of 0.5 ≦ A ≦ 1.5.

(2)前記焼鈍分離剤が、マグネシア:100 質量部に対して、Ca化合物、Sr化合物およびBa化合物のうちから選んだいずれか1種または2種以上を当該金属換算で3質量部以下で含有することを特徴とする上記(1)記載の方向性電磁鋼板の製造方法。 (2) The annealing separator contains magnesia: 100 parts by mass, one or more selected from Ca compound, Sr compound and Ba compound at 3 parts by mass or less in terms of the metal A method for producing a grain-oriented electrical steel sheet according to the above (1), characterized in that:

(3)MgOを主成分とする焼鈍分離剤であって、該焼鈍分離剤を塗布した鋼板と無塗布の鋼板を5mm隔てて最終仕上焼鈍を施したときの表面蛍光X線Mg強度比A(A=I(無塗布)/I(塗布))が、0.5≦A≦1.5の範囲を満足することを特徴とする方向性電磁鋼板用焼鈍分離剤。
(3) A annealing separator mainly comprised of MgO, the annealing separator of the separating 5mm steel plates of coated steel sheet and a non-coated surface fluorescent X-rays when subjected to final finish annealing Mg intensity ratio A ( A = I (no application) / I (application)) satisfies the range of 0.5 ≦ A ≦ 1.5.

(4)前記焼鈍分離剤が、マグネシア:100 質量部に対して、Ca化合物、Sr化合物およびBa化合物のうちから選んだいずれか1種または2種以上を当該金属換算で3質量部以下で含有することを特徴とする上記(3)記載の方向性電磁鋼板用焼鈍分離剤。 (4) The annealing separator contains magnesia: 100 parts by mass, one or more selected from Ca compound, Sr compound and Ba compound is contained in 3 parts by mass or less in terms of the metal. The annealing separator for grain-oriented electrical steel sheets according to (3) above, characterized in that:

本発明によれば、被膜密着性が良好で、色調の変化や点欠陥の発生がない、被膜特性に優れた方向性電磁鋼板を安定して得ることができる。   According to the present invention, it is possible to stably obtain a grain-oriented electrical steel sheet having good coating film adhesion, excellent in coating characteristics, and having no change in color tone or occurrence of point defects.

以下、本発明を具体的に説明する。
まず、本発明を由来するに至った実験結果について述べる。
発明者らは、前掲特許文献1や特許文献2に記載の技術を用いて方向性電磁鋼板のコイルを製造したところ、被膜特性安定性にかけるコイルが存在することを見出した。具体的には、被膜形成性が劣ることに起因したコイル内での被膜色調の不均一および曲げ剥離径劣化、逆に被膜形成性が良すぎることに起因した点欠陥が見られた。
Hereinafter, the present invention will be specifically described.
First, the experimental results that led to the present invention will be described.
The inventors have found that a coil for grain-oriented electrical steel sheet is produced using the techniques described in the above-mentioned Patent Document 1 and Patent Document 2, and that there is a coil to be subjected to the coating characteristic stability. Specifically, uneven coating color tone in the coil due to inferior film formability and bending peel diameter degradation, and conversely point defects due to too good film formability were observed.

発明者らは、上記の欠陥の発生原因について種々考察を進めるうち、従来は、シリカとマグネシアの反応は固相反応が主体であると考えられていたため、気相反応の寄与については全く考慮されていなかったことに想い至り、この観点からの研究に着手した。
すなわち、発明者らは、焼鈍分離剤における気相反応性に着目して、以下の実験を行った。
As the inventors proceeded with various studies on the cause of the above-mentioned defects, conventionally, the reaction between silica and magnesia was thought to be mainly a solid-phase reaction, so the contribution of the gas-phase reaction was completely considered. I thought that it was not, and started research from this viewpoint.
That is, the inventors conducted the following experiment paying attention to the gas phase reactivity in the annealing separator.

焼鈍分離剤として、被膜安定性が良好であったマグネシアと不良であったマグネシアを種々用意し、脱炭焼鈍によりシリカの内部酸化層を持つ鋼板2枚(100mm×100mm)のうちの一方に、上記の焼鈍分離剤を塗布し、他方は無塗布とした。なお、塗布量は両面で12.5g/m2とした。これら2枚の鋼板を、同一素材の鋼板を加工して作製した5mm幅(内径:80mm、外径:81mm)のリング(スペーサー)を介して、図1のように積み重ね、室温から1200℃まで25℃/hで速度で昇温し、その後1200℃,20hの最終仕上焼鈍を行った。この焼鈍途中、1000℃以上の温度域では焼鈍雰囲気をH2とし、それ以外をN2とした。
なお、図2は、2枚の鋼板の積み重ね状態を分かり易く説明するために、1枚の鋼板をずらして上から見た図である。図1,2において、番号1が焼鈍分離剤無塗布鋼板、2が焼鈍分離剤塗布鋼板、3がリング(スペーサー)であり、番号4で焼鈍分離剤無塗布面を、また番号5で焼鈍分離剤塗布面を示す。
As an annealing separator, magnesia with good coating stability and magnesia with poor coating were prepared, and one of two steel plates (100mm x 100mm) with an internal oxide layer of silica by decarburization annealing. The above annealing separator was applied, and the other was not applied. The coating amount was 12.5 g / m 2 on both sides. These two steel sheets are stacked as shown in Fig. 1 through a 5mm wide ring (inner diameter: 80mm, outer diameter: 81mm) ring (spacer) made by processing steel sheets of the same material, and from room temperature to 1200 ° C. The temperature was increased at a rate of 25 ° C./h, and then final finish annealing was performed at 1200 ° C. for 20 h. During this annealing, the annealing atmosphere was H 2 in the temperature range of 1000 ° C. or higher, and N 2 was the others.
In addition, FIG. 2 is the figure which shifted from one steel plate and was seen from the top, in order to demonstrate the lamination | stacking state of two steel plates intelligibly. In FIGS. 1 and 2, reference numeral 1 is an annealing separator-uncoated steel sheet, 2 is an annealing separator-coated steel sheet, 3 is a ring (spacer), number 4 is an annealing separator-uncoated surface, and number 5 is annealing separation. The agent application surface is shown.

焼鈍後のサンプルを解体し、得られた2枚の鋼板について、水洗後、表面の蛍光X線カウント分析およびFT−IR分析を行った。
図3に、各種のマグネシアを用いた場合における、マグネシア塗布面と無塗布面のMgカウント数を示す。図中、○印は被膜安定性が良好であったマグネシア、×印は被膜安定性不良であったマグネシアである。
同図に示したように、被膜安定性が良好であったマグネシアは、表面蛍光X線Mg強度比A(A=I(無塗布)/I(塗布))が0.50≦A≦1.50の範囲であった。
これに対し、A<0.50のマグネシアでは、点状欠陥の発生が見られた。一方、A>1.50のマグネシアでは、被膜色調均一性に劣っていた。
The sample after annealing was disassembled, and the obtained two steel sheets were washed with water, and then subjected to surface X-ray fluorescence analysis and FT-IR analysis.
FIG. 3 shows the Mg count numbers of the magnesia-coated surface and the non-coated surface when various magnesias are used. In the figure, ◯ indicates magnesia with good film stability, and x indicates magnesia with poor film stability.
As shown in the figure, magnesia with good film stability has a surface fluorescent X-ray Mg intensity ratio A (A = I (no application) / I (application)) in the range of 0.50 ≦ A ≦ 1.50. there were.
In contrast, in magnesia where A <0.50, point defects were observed. On the other hand, magnesia with A> 1.50 was inferior in film color uniformity.

次に、図4に、表面FT−IRの測定結果を示す。
同図中の矢印の位置がフォルステライトのピークであり、マグネシア塗布面のみならず、無塗布面にも、共にフォルステライトが形成されていることが分かる。
なお、スペーサーでマスクされていた部分には被膜形成が認められなかったことから、マグネシア塗布面からマグネシア無塗布面へMgが気相拡散してきたことが明らかである。
Next, the measurement result of surface FT-IR is shown in FIG.
The position of the arrow in the figure is the peak of forsterite, and it can be seen that forsterite is formed not only on the magnesia-coated surface but also on the non-coated surface.
In addition, since no film formation was observed in the portion masked by the spacer, it is clear that Mg was diffused in the gas phase from the magnesia-coated surface to the magnesia-uncoated surface.

上記の実験結果から、蛍光X線Mg強度比が低い場合には、気相反応<<固相反応となって、フォルステライト形成反応は主に固相反応によって起こっていると考えられる。すなわち、鋼板とマグネシアは点接触の状態にあると考えられることから、固相反応は接点から反応が進行すると考えられる。すると、接点ごとに反応が進行した部分が存在することになり、点欠陥が生じ易くなったものと推定される。
一方、蛍光X線Mg強度比が高いことは、気相反応が盛んである反面、Mgの蒸発が多いことを意味する。従って、この値があまりに高いと、コイルエッジ部とその他の部分でコイル層間におけるMg蒸気の滞留状態が異なり、被膜均一性が失われると考えられる。
From the above experimental results, when the fluorescent X-ray Mg intensity ratio is low, it is considered that the forsterite formation reaction is mainly caused by the solid-phase reaction because of the gas-phase reaction << solid-phase reaction. That is, since it is considered that the steel plate and magnesia are in a point contact state, the solid phase reaction is considered to proceed from the contact point. Then, there is a portion where the reaction has progressed for each contact point, and it is presumed that point defects are likely to occur.
On the other hand, a high fluorescence X-ray Mg intensity ratio means that vapor phase reaction is active, but Mg is evaporated much. Therefore, if this value is too high, it is considered that the residence state of the Mg vapor between the coil layers differs between the coil edge portion and other portions, and the coating uniformity is lost.

次に、焼鈍分離剤中にアルカリ土類金属化合物を添加した場合の効果として、ストロンチウムの水酸化物を添加した場合を例にとって説明する。なお、水酸化ストロンチウムは、金属Sr換算でマグネシア:100質量部に対して1質量部添加した。
その結果を図5に示すとおり、添加前と比較して添加後は表面蛍光X線Mg強度比Aが高くなることが判明した。
また、この時、無塗布面の蛍光X線Sr強度が塗布面よりも高くなっていたことから、SrとMgが一緒に無塗布面に気相拡散したものと推定される。
Next, as an effect when an alkaline earth metal compound is added to the annealing separator, a case where strontium hydroxide is added will be described as an example. In addition, 1 mass part of strontium hydroxide was added with respect to 100 mass parts of magnesia in conversion of metal Sr.
As shown in FIG. 5, it was found that the surface fluorescence X-ray Mg intensity ratio A was higher after the addition than before the addition.
At this time, since the fluorescent X-ray Sr intensity of the non-coated surface was higher than that of the coated surface, it is estimated that Sr and Mg were vapor-phase diffused together on the non-coated surface.

以下、本発明の構成要件の限定理由を説明する。
まず、本発明で対象とする方向性電磁鋼板の好適成分組成範囲について述べる。
Siは、電気抵抗を高めて鉄損の向上に有効に寄与する有用元素である。しかしながら、含有最が2mass%に満たないと十分な鉄損低減効果が得られず、一方4mass%を超えると加工性が劣化するため、Si量は2〜4mass%とする。
Hereinafter, the reasons for limiting the constituent requirements of the present invention will be described.
First, the suitable component composition range of the grain-oriented electrical steel sheet targeted in the present invention will be described.
Si is a useful element that contributes effectively to improving iron loss by increasing electrical resistance. However, if the content is less than 2 mass%, a sufficient iron loss reduction effect cannot be obtained. On the other hand, if it exceeds 4 mass%, the workability deteriorates, so the Si amount is 2 to 4 mass%.

その他の成分については、特に制限はなく、従来から方向性電磁鋼板に使用されてきた成分いずれもが有利に適合する。例えば、以下の成分組成が推奨される。
すなわち、C:0.02〜0.1mass%およびMn:0.02〜0.2mass%を含有し、必要に応じて、Se:0.001〜0.03mass%、Sb:0.01〜0.08mass%、Al:0.001〜0.04mass%、N:0.001〜0.012mass%、S:0.001〜0.03mass%、Cu:0.05〜0.2mass、Sn:0.005〜0.4mass%、Cr:0.02〜0.08mass%、Mo:0.01〜0.1mass%、P:0.01〜0.03mass%およびBi:0.001〜0.04mass%のうちから選んだ少なくとも一種を含有する組成である。
There is no restriction | limiting in particular about another component, All the components conventionally used for the grain-oriented electrical steel sheet adapt advantageously. For example, the following component composition is recommended.
That is, it contains C: 0.02 to 0.1 mass% and Mn: 0.02 to 0.2 mass%, and if necessary, Se: 0.001 to 0.03 mass%, Sb: 0.01 to 0.08 mass%, Al: 0.001 to 0.04 mass%, N: 0.001 to 0.012 mass%, S: 0.001 to 0.03 mass%, Cu: 0.05 to 0.2 mass, Sn: 0.005 to 0.4 mass%, Cr: 0.02 to 0.08 mass%, Mo: 0.01 to 0.1 mass%, P: 0.01 It is a composition containing at least one selected from -0.03 mass% and Bi: 0.001-0.04 mass%.

上記の成分組成を有する鋼スラブを、熱間圧延後、熱延板焼鈍を施した後、最終冷間圧延を施して最終板厚に仕上げる。これらについては公知の方法でよい。ついで、一次再結晶焼鈍、二次再結晶焼鈍および純化焼鈍を行う。一次再結晶焼鈍または二次再結晶焼鈍では、脱炭焼鈍を兼ねる。
脱炭焼鈍後、鋼板表面にマグネシアを主成分とする焼鈍分離剤を塗布する。かかる焼鈍分離剤としては、分離剤を塗布した鋼板と無塗布の鋼板を5mm隔てて最終仕上焼鈍を施したときの表面蛍光X線Mg強度比A(A=I(無塗布)/I(塗布))で評価したときの値が、0.5≦A≦1.5の範囲を満足するものを用いることが肝要である。
ここで、分離剤を塗布した鋼板と無塗布の鋼板を5mm隔てて最終仕上焼鈍を施したときの表面蛍光X線Mg強度比AがA<0.5では被膜に点状欠陥を生じ、一方A>1.5では被膜色調均一性および曲げ剥離径が不良となる。
The steel slab having the above component composition is hot-rolled, subjected to hot-rolled sheet annealing, and then subjected to final cold rolling to finish the final plate thickness. These may be known methods. Next, primary recrystallization annealing, secondary recrystallization annealing, and purification annealing are performed. In primary recrystallization annealing or secondary recrystallization annealing, it also serves as decarburization annealing.
After the decarburization annealing, an annealing separator mainly composed of magnesia is applied to the steel sheet surface. As such an annealing separator, the surface fluorescent X-ray Mg intensity ratio A (A = I (no application) / I (application) when the final finish annealing is performed by separating the coated steel sheet and the uncoated steel sheet by 5 mm. It is important to use a value that satisfies the range of 0.5 ≦ A ≦ 1.5 when evaluated in ()).
Here, when the surface fluorescent X-ray Mg intensity ratio A is A <0.5 when the final finish annealing is performed with a separation agent-coated steel plate and an uncoated steel plate separated by 5 mm, point defects are formed in the coating, whereas A> At 1.5, the coating color uniformity and bending peel diameter are poor.

さらに、焼鈍分離剤中に、Ca化合物、Sr化合物およびBa化合物のうちから選んだいずれか1種または2種以上を、マグネシア:100質量部に対して、当該金属換算で3質量部以下で含有させることは、上記強度比Aを高くする上で有効である。
ここで、Ca化合物、Sr化合物およびBa化合物のマグネシア:100質量部に対する添加量が、3質量部を超えると被膜断面構造を変化させ耐剥離特性が劣化するので好ましくない。なお、上記した各化合物の添加量があまりに少ないとその添加効果に乏しいので、これらの化合物は当該金属換算で0.2質量部以上含有させることが好ましい。
Furthermore, in the annealing separator, one or more selected from Ca compound, Sr compound and Ba compound is contained in 3 parts by mass or less in terms of metal relative to 100 parts by mass of magnesia. It is effective to increase the intensity ratio A.
Here, when the addition amount of Ca compound, Sr compound and Ba compound with respect to 100 parts by mass of magnesia exceeds 3 parts by mass, the cross-sectional structure of the film is changed and the peel resistance is deteriorated. In addition, since the addition effect will be scarce when there is too little addition amount of each above-mentioned compound, it is preferable to contain these compounds 0.2 mass part or more in conversion of the said metal.

Ca化合物、Sr化合物およびBa化合物としては、当該金属の炭酸塩、水酸化物、硫酸塩、硫化物などを用いることができる。
また、表面蛍光X線Mg強度比を調整する方法としては、原料の水酸化マグネシウムを焼成してマグネシアにする過程で焼成温度を高くすることで該強度比が低下する傾向にあることから焼成温度で調整する方法、また焼成前の原料のアスペクト比を高くすることで該強度比が高くなる傾向にあることから原料の形態で調整する方法などが挙げられる。
さらに、上述したとおり、焼鈍分離剤中にCa化合物、Sr化合物およびBa化合物を添加することによっても、表面蛍光X線Mg強度比を高くすることができる。
As the Ca compound, Sr compound, and Ba compound, carbonates, hydroxides, sulfates, sulfides, and the like of the metals can be used.
The method of adjusting the surface fluorescent X-ray Mg intensity ratio is that the intensity ratio tends to decrease by increasing the firing temperature in the process of firing the raw magnesium hydroxide to magnesia. And a method of adjusting in the form of the raw material because the strength ratio tends to be increased by increasing the aspect ratio of the raw material before firing.
Furthermore, as described above, the surface fluorescent X-ray Mg intensity ratio can also be increased by adding a Ca compound, an Sr compound and a Ba compound to the annealing separator.

仕上焼鈍後は、平坦化焼鈍にて形状矯正する。さらに、鉄損を改善するためには、鋼板表面に張力を付与する絶縁コーティングを施すことが有効である。   After finish annealing, shape correction is performed by flattening annealing. Furthermore, in order to improve the iron loss, it is effective to provide an insulating coating that imparts tension to the steel sheet surface.

実施例1
C:0.06mass%、Si:2.95mass%、Mn:0.07mass%、Se:0.015mass%、Sb:0.015mass%およびCr:0.03mass%を含有し、残部はFeおよび不可避的不純物の組成になる鋼スラブを 、1350℃で40分加熱後、熱間圧延により2.6mmの板厚にした後、900℃,60sの熱延板焼鈍を施してから、1050℃,60sの中間焼鈍を挟む冷間圧延により、0.30mmの最終板厚に仕上げた。ついで、一次再結晶焼鈍後、図1の場合と同様の方法により測定した表面蛍光X線Mg強度比A(A=I(無塗布)/I(塗布))が種々に異なるマグネシアを塗布してから、1200℃まで25℃/hの速度で昇熱を行う仕上焼鈍を施したのち、平坦化焼鈍を施した。
Example 1
C: 0.06 mass%, Si: 2.95 mass%, Mn: 0.07 mass%, Se: 0.015 mass%, Sb: 0.015 mass% and Cr: 0.03 mass%, the balance being Fe and inevitable impurities A steel slab is heated at 1350 ° C for 40 minutes, hot rolled to a thickness of 2.6 mm, and then subjected to hot rolling of 900 ° C for 60 s, followed by cold sandwiching an intermediate annealing of 1050 ° C for 60 s A final thickness of 0.30 mm was obtained by rolling. Next, after the primary recrystallization annealing, magnesia with different surface fluorescent X-ray Mg intensity ratio A (A = I (no application) / I (application)) measured by the same method as in FIG. 1 was applied. Then, after finishing annealing to raise the temperature to 1200 ° C. at a rate of 25 ° C./h, flattening annealing was performed.

その後、コイル全長にわたって、曲げ剥離径を測定すると共に、被膜欠陥の有無について調査した。
ここで、被膜特性が良好と判断されるのは、曲げ剥離径が40mm以下で、かつコイル横幅方向および長手方向にわたり目立った色調の変化が認められず、さらに被膜点欠陥の発生面積がコイルの1%未満の場合をいう。
調査結果を表1に示す。
Thereafter, the bending peel diameter was measured over the entire length of the coil, and the presence or absence of coating defects was investigated.
Here, it is judged that the coating properties are good because the bending peel diameter is 40 mm or less, no noticeable color tone change is observed in the transverse width direction and the longitudinal direction, and the area where the coating point defects are generated is The case of less than 1%.
The survey results are shown in Table 1.

Figure 0004839766
Figure 0004839766

同表に示したとおり、表面蛍光X線Mg強度比A(A=I(無塗布)/I(塗布))が0.5≦A≦1.5の範囲を満足する焼鈍分離剤を用いた場合には、曲げ剥離径が40mm以下で、コイル横幅方向および長手方向にわたり目立った色調の変化が認められず、しかも被膜点欠陥の発生面積がコイルの1%未満という、良好な被膜特性が得られることが分かる。   As shown in the table, when an annealing separator that satisfies the range of 0.5 ≦ A ≦ 1.5 in the surface fluorescent X-ray Mg intensity ratio A (A = I (no coating) / I (coating)) is used, It can be seen that a favorable coating property is obtained in which the bending peel diameter is 40 mm or less, no noticeable color tone change is observed in the coil width direction and the longitudinal direction, and the area of occurrence of coating point defects is less than 1% of the coil. .

実施例2
C:0.045mass%、Si:3.25mass%、Mn:0.070mass%、Al:80ppm、N:40ppmおよびS:20ppmを含有し、残部はFeおよび不可避的不純物の組成になる鋼スラブを、1200℃に加熱後、熱間圧延により2.2mm厚の熱延板コイルとした。この熱延板に1000℃で30秒間の熱延板焼鈍を施したのち、鋼板表面のスケールを除去した。ついで、タンデム圧延機を用いた冷間圧延により最終板厚:0.30mmの冷延板とした。その後、均熱温度:860℃で90秒間保持する一次再結晶焼鈍を施した後、MgOを主体とする焼鈍分離剤を塗布してから、1200℃まで25℃/hの速度で昇熱を行う仕上焼鈍を施したのち、平坦化焼鈍を施した。
このとき、焼鈍分離剤として、図1の場合と同様の方法により測定した表面蛍光X線Mg強度比A(A=I(無塗布)/I(塗布))が種々に異なるマグネシアを塗布した。
Example 2
Steel slab containing C: 0.045 mass%, Si: 3.25 mass%, Mn: 0.070 mass%, Al: 80 ppm, N: 40 ppm and S: 20 ppm, with the balance being Fe and inevitable impurities, 1200 ° C After heating, a hot rolled sheet coil having a thickness of 2.2 mm was obtained by hot rolling. The hot rolled sheet was subjected to hot rolled sheet annealing at 1000 ° C. for 30 seconds, and then the scale on the surface of the steel sheet was removed. Next, a cold rolled sheet having a final sheet thickness of 0.30 mm was obtained by cold rolling using a tandem rolling mill. Then, after applying primary recrystallization annealing that is held at a soaking temperature of 860 ° C. for 90 seconds, an annealing separator mainly composed of MgO is applied, and then heated up to 1200 ° C. at a rate of 25 ° C./h. After finishing annealing, flattening annealing was performed.
At this time, magnesia having different surface fluorescent X-ray Mg intensity ratios A (A = I (no application) / I (application)) measured by the same method as in FIG. 1 was applied as an annealing separator.

その後、コイル全長にわたって、曲げ剥離径を測定すると共に、被膜欠陥の有無について調査した。
調査結果を表2に示す。
Thereafter, the bending peel diameter was measured over the entire length of the coil, and the presence or absence of coating defects was investigated.
The survey results are shown in Table 2.

Figure 0004839766
Figure 0004839766

同表から明らかなように、表面蛍光X線Mg強度比A(A=I(無塗布)/I(塗布))が0.5≦A≦1.5の範囲を満足する焼鈍分離剤を用いることにより、曲げ剥離径が40mm以下で、コイル横幅方向および長手方向にわたり目立った色調の変化が認められず、しかも被膜点欠陥の発生面積がコイルの1%未満という、良好な被膜特性を得ることができた。   As is apparent from the table, the surface fluorescent X-ray Mg intensity ratio A (A = I (no coating) / I (coating)) is bent by using an annealing separator that satisfies the range of 0.5 ≦ A ≦ 1.5. With a peel diameter of 40 mm or less, no remarkable change in color tone was observed in the width direction and longitudinal direction of the coil, and good film characteristics were obtained in which the area where defects on the film were formed was less than 1% of the coil.

実施例3
C:0.06mass%、Si:2.95mass%、Mn:0.070mass%、Se:0.015mass%、Sb:0.015mass%およびCr:0.03mass%を含有し、残部はFeおよび不可避的不純物の組成になる鋼スラブを 、1350℃で40分加熱後、熱間圧延により2.6mmの板厚にした後、900℃,60sの熱延板焼鈍を施してから、1050℃,60sの中間焼鈍を挟む冷間圧延により、0.30mmの最終板厚に仕上げた。ついで、一次再結晶焼鈍後、図1の場合と同様の方法により測定した表面蛍光X線Mg強度比A(A=I(無塗布)/I(塗布))が0.30のマグネシアに対し、表3に示す種々のCa化合物、Sr化合物およびBa化合物を添加した焼鈍分離剤を塗布し、1200℃まで25℃/hの速度で昇熱を行う仕上焼鈍を施したのち、平坦化焼鈍を施した。
Example 3
Contains C: 0.06 mass%, Si: 2.95 mass%, Mn: 0.070 mass%, Se: 0.015 mass%, Sb: 0.015 mass% and Cr: 0.03 mass%, the balance being Fe and inevitable impurities A steel slab is heated at 1350 ° C for 40 minutes, hot rolled to a thickness of 2.6 mm, and then subjected to hot rolling of 900 ° C for 60 s, followed by cold sandwiching an intermediate annealing of 1050 ° C for 60 s A final thickness of 0.30 mm was obtained by rolling. Next, after the primary recrystallization annealing, the surface fluorescent X-ray Mg intensity ratio A (A = I (no application) / I (application)) measured by the same method as in FIG. After applying an annealing separator added with various Ca compounds, Sr compounds and Ba compounds shown in (1) above, and performing a finish annealing that raises the temperature to 1200 ° C. at a rate of 25 ° C./h, flattening annealing was performed.

その後、コイル全長にわたって、曲げ剥離径を測定すると共に、被膜欠陥の有無について調査した。
調査結果を表3に示す。
Thereafter, the bending peel diameter was measured over the entire length of the coil, and the presence or absence of coating defects was investigated.
The survey results are shown in Table 3.

Figure 0004839766
Figure 0004839766

同表に示したとおり、焼鈍分離剤の主成分であるマグネシアの表面蛍光X線Mg強度比Aが0.30の場合でも、適量のCa化合物、Sr化合物およびBa化合物を添加して、焼鈍分離剤の表面蛍光X線Mg強度比Aを0.5≦A≦1.5の範囲に制御することにより、良好な被膜特性が得られることが分かる。   As shown in the table, even when the surface fluorescence X-ray Mg intensity ratio A of magnesia, which is the main component of the annealing separator, is 0.30, an appropriate amount of Ca compound, Sr compound, and Ba compound is added to the annealing separator. It can be seen that good film properties can be obtained by controlling the surface fluorescent X-ray Mg intensity ratio A in the range of 0.5 ≦ A ≦ 1.5.

試験板焼鈍時の鋼板の積み方法を説明する図(横から見た図)である。It is a figure (figure seen from the side) explaining the stacking method of the steel plate at the time of test plate annealing. 試験板焼鈍時の鋼板の積み方法を説明する図(ずらして上から見た図)である。It is a figure explaining the stacking method of the steel plate at the time of test-plate annealing (the figure seen from the top shifted). 焼鈍後の分離剤塗布面と無塗布面の蛍光X線Mgの関係を示す図である。It is a figure which shows the relationship between the fluorescent material X-ray Mg of the separating agent application surface after annealing, and a non-application surface. 焼鈍後の分離剤塗布面と無塗布面の表面赤外反射スペクトルを示す図である。It is a figure which shows the surface infrared reflection spectrum of the separating agent application surface after annealing, and a non-application surface. 水酸化ストロンチウムの添加が蛍光X線Mg強度比(A)に及ぼす影響を示す図である。It is a figure which shows the influence which addition of strontium hydroxide has on the fluorescent X-ray Mg intensity ratio (A).

符号の説明Explanation of symbols

1 焼鈍分離剤無塗布鋼板
2 焼鈍分離剤塗布鋼板
3 リング(スペーサー)
4 焼鈍分離剤無塗布面
5 焼鈍分離剤塗布面
1 Steel plate without annealing separator 2 Steel plate with annealing separator 3 Ring (spacer)
4 Annealing separation agent non-application surface 5 Annealing separation agent application surface

Claims (4)

Si:2〜4mass%を含有する鋼スラブを、熱間圧延し、熱延板焼鈍後、最終冷間圧延を施し、ついで一次再結晶焼鈍後、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから、最終仕上焼鈍を行う一連の工程よりなる方向性電磁鋼板の製造方法において、
焼鈍分離剤の物性を、焼鈍分離剤を塗布した鋼板と無塗布の鋼板を5mm隔てて最終仕上焼鈍を施したときの表面蛍光X線Mg強度比A(A=I(無塗布)/I(塗布))で評価し、その値が0.5≦A≦1.5の範囲を満足する焼鈍分離剤を用いることを特徴とする被膜特性に優れた方向性電磁鋼板の製造方法。
A steel slab containing Si: 2 to 4 mass% is hot-rolled, subjected to final cold rolling after hot-rolled sheet annealing, and then subjected to primary recrystallization annealing, followed by an annealing separator mainly composed of MgO on the steel sheet surface. In the manufacturing method of grain-oriented electrical steel sheet consisting of a series of steps of performing final finish annealing after applying
Regarding the physical properties of the annealing separator, the surface fluorescent X-ray Mg intensity ratio A (A = I (no application) / I () when the final finish annealing is performed by separating the steel sheet coated with the annealing separator and the uncoated steel sheet by 5 mm. A method for producing a grain-oriented electrical steel sheet having excellent coating properties, characterized by using an annealing separator whose value is evaluated in the application step)) and whose value satisfies the range of 0.5 ≦ A ≦ 1.5.
前記焼鈍分離剤が、マグネシア:100質量部に対して、Ca化合物、Sr化合物およびBa化合物のうちから選んだいずれか1種または2種以上を当該金属換算で3質量部以下で含有することを特徴とする請求項1記載の方向性電磁鋼板の製造方法。   The annealing separator contains one or more selected from Ca compound, Sr compound and Ba compound with respect to 100 parts by mass of magnesia at 3 parts by mass or less in terms of the metal. The method for producing a grain-oriented electrical steel sheet according to claim 1, characterized in that: MgOを主成分とする焼鈍分離剤であって、該焼鈍分離剤を塗布した鋼板と無塗布の鋼板を5mm隔てて最終仕上焼鈍を施したときの表面蛍光X線Mg強度比A(A=I(無塗布)/I(塗布))が、0.5≦A≦1.5の範囲を満足することを特徴とする方向性電磁鋼板用焼鈍分離剤。 A annealing separator mainly comprised of MgO, the annealing separator of the separating 5mm steel plates of coated steel sheet and a non-coated surface fluorescent X-rays when subjected to final finish annealing Mg intensity ratio A (A = I (No coating) / I (coating)) satisfies the range of 0.5 ≦ A ≦ 1.5. 前記焼鈍分離剤が、マグネシア:100質量部に対して、Ca化合物、Sr化合物およびBa化合物のうちから選んだいずれか1種または2種以上を当該金属換算で3質量部以下で含有することを特徴とする請求項3記載の方向性電磁鋼板用焼鈍分離剤。   The annealing separator contains one or more selected from Ca compound, Sr compound and Ba compound with respect to 100 parts by mass of magnesia at 3 parts by mass or less in terms of the metal. The annealing separator for grain-oriented electrical steel sheets according to claim 3 characterized by the above-mentioned.
JP2005291260A 2005-10-04 2005-10-04 Method for producing grain-oriented electrical steel sheet having excellent coating properties and annealing separator for grain-oriented electrical steel sheet Active JP4839766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005291260A JP4839766B2 (en) 2005-10-04 2005-10-04 Method for producing grain-oriented electrical steel sheet having excellent coating properties and annealing separator for grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005291260A JP4839766B2 (en) 2005-10-04 2005-10-04 Method for producing grain-oriented electrical steel sheet having excellent coating properties and annealing separator for grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2007100165A JP2007100165A (en) 2007-04-19
JP4839766B2 true JP4839766B2 (en) 2011-12-21

Family

ID=38027388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005291260A Active JP4839766B2 (en) 2005-10-04 2005-10-04 Method for producing grain-oriented electrical steel sheet having excellent coating properties and annealing separator for grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4839766B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5392119B2 (en) * 2010-01-29 2014-01-22 新日鐵住金株式会社 Method for evaluating oxide coating adhesion strength of grain-oriented electrical steel sheet and its evaluation apparatus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2710000B2 (en) * 1991-07-10 1998-02-04 新日本製鐵株式会社 Unidirectional silicon steel sheet with excellent coating and magnetic properties
JPH10219359A (en) * 1997-02-13 1998-08-18 Nippon Steel Corp Method for managing decarburization annealing of grain oriented silicon steel sheet
JPH1136018A (en) * 1997-07-17 1999-02-09 Nippon Steel Corp Manufacture of grain oriented silicon steel sheet having extremely excellent glass film and magnetic property
JP3921806B2 (en) * 1998-04-24 2007-05-30 Jfeスチール株式会社 Method for producing grain-oriented silicon steel sheet
JP3536776B2 (en) * 2000-04-25 2004-06-14 Jfeスチール株式会社 Magnesia for annealing separator of grain-oriented electrical steel and method for producing grain-oriented electrical steel sheet with excellent magnetic and coating properties
JP4010240B2 (en) * 2002-12-12 2007-11-21 Jfeスチール株式会社 Evaluation method and coating method of film adhesion of grain-oriented electrical steel sheet
JP4258278B2 (en) * 2003-05-30 2009-04-30 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JP2005069930A (en) * 2003-08-26 2005-03-17 Jfe Steel Kk Manufacturing method for directional electromagnetic steel plate having excellent coating adhesiveness
JP4259338B2 (en) * 2004-02-10 2009-04-30 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet and method for preparing annealing separator

Also Published As

Publication number Publication date
JP2007100165A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
EP3064607B1 (en) Grain oriented electrical steel sheet having excellent magnetic characteristics and coating adhesion
RU2621497C2 (en) Manufacturing method of plate from grain-oriented electrical steel
RU2532539C2 (en) Method for plate manufacture from textured electrical steel
JP6168173B2 (en) Oriented electrical steel sheet and manufacturing method thereof
CN107849656B (en) Method for producing grain-oriented electromagnetic steel sheet
JP5954347B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5799996B2 (en) Hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet excellent in appearance and plating adhesion, and methods for producing them
KR20140064936A (en) Oriented electromagnetic steel sheet and method for manufacturing same
JP2015054990A (en) Galvanized steel plate and alloyed galvanized steel plate with superior appearance and plating adhesion, and methods of manufacturing the same
JP3386751B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating and magnetic properties
WO2016199423A1 (en) Oriented electromagnetic steel sheet and method for producing same
JP4962516B2 (en) Method for producing grain-oriented electrical steel sheet
KR20160138253A (en) Method for producing oriented electromagnetic steel sheet
JP6508437B2 (en) Directional electromagnetic steel sheet and method of manufacturing the same
JP5338254B2 (en) Method for producing grain-oriented electrical steel sheet
RU2514743C2 (en) High-strength steel sheet of higher thermal hardening and forming capacity and method of its production
JP4839766B2 (en) Method for producing grain-oriented electrical steel sheet having excellent coating properties and annealing separator for grain-oriented electrical steel sheet
JP6859935B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP3885428B2 (en) Method for producing grain-oriented electrical steel sheet
JP2014173098A (en) Method of producing grain-oriented magnetic steel sheet
JP5310510B2 (en) Method for producing grain-oriented electrical steel sheet
WO2023176855A1 (en) Grain-oriented electromagnetic steel sheet and method for manufacturing same
WO2021085421A1 (en) Grain-oriented electromagnetic steel sheet and method for manufacturing same
JP2008056997A (en) High strength cold rolled steel sheet and its production method
JP2002194444A (en) Method for producing grain oriented electrical steel sheet having excellent magnetic characteristic and film characteristic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110817

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110919

R150 Certificate of patent or registration of utility model

Ref document number: 4839766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250