JPH10219359A - Method for managing decarburization annealing of grain oriented silicon steel sheet - Google Patents

Method for managing decarburization annealing of grain oriented silicon steel sheet

Info

Publication number
JPH10219359A
JPH10219359A JP2935997A JP2935997A JPH10219359A JP H10219359 A JPH10219359 A JP H10219359A JP 2935997 A JP2935997 A JP 2935997A JP 2935997 A JP2935997 A JP 2935997A JP H10219359 A JPH10219359 A JP H10219359A
Authority
JP
Japan
Prior art keywords
atmosphere
fluorescent
oxidation
steel sheet
heating zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2935997A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Ushigami
義行 牛神
Takashi Mogi
尚 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2935997A priority Critical patent/JPH10219359A/en
Publication of JPH10219359A publication Critical patent/JPH10219359A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a grain oriented silicon steel sheet having stable film characteristics and magnetic characteristics by controlling the atmosphere of a heating zone for decarburization annealing by separating from a soaking zone atmosphere and evaluating the degree of oxidation of this atmosphere by measuring the oxidation layer of a decarburization plate with fluorescent X-rays. SOLUTION: At the time of producing the grain oriented silicon steel sheet, an atmosphere separating seal is inserted into the heating zone and the soaking zone in its decarburization annealing stage and two atmospheric gas control systems are arranged respectively in correspondence to the heating zone and the soaking zone. The degree of oxidation (PH2 O/PH2 ) of the heating zone in this constitution is estimated by the fluorescent X-ray intensity of Si and the degree of oxidation of the soaking zone is estimated by the fluorescent X-ray intensity of P. As a result, the oxidation layer of the decarburization plate is rapidly measured and evaluated by the fluorescent X-rays, by which the management of the degree of oxidation of the atmosphere is made possible. The grain oriented silicon steel sheet having the industrially stable film characteristic and magnetic characteristics is thus obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、結晶粒がミラー指
数で{110}<001>方位に集積した、いわゆる通
常の方向性電磁鋼板の製造過程における脱炭焼鈍を管理
することにより、被膜特性と磁気特性を安定して作り込
む製造方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a coating film by controlling decarburization annealing in the process of manufacturing a so-called ordinary grain-oriented electrical steel sheet in which crystal grains are accumulated in the {110} <001> direction with a Miller index. And a manufacturing method for stably producing magnetic characteristics.

【0002】[0002]

【従来の技術】方向性電磁鋼板は、{110}<001
>方位に集積した結晶粒により構成されたSiを0.8
〜4.8%含有した鋼板である。この鋼板は磁気特性と
して励磁特性と鉄損特性が要求される。励磁特性を表す
指標としては磁場の強さ800A/mにおける磁束密
度:B8 が通常使用される。また、鉄損特性を表す指標
としては周波数50Hzで1.7Tまで磁化した時の鋼板
1kgあたりの鉄損:W17/50 が用いられる。磁束密度:
B8 は鉄損特性の最大の支配因子であり、磁束密度:B
8 値が高いほど鉄損特性が良好になる。磁束密度:B8
を高めるためには結晶方位を高度に揃えることが重要で
ある。この結晶方位の制御は二次再結晶とよばれるカタ
ストロフィックな粒成長現象を利用して達成される。
2. Description of the Related Art Grain-oriented electrical steel sheets are {110} <001.
> 0.8% of Si composed of crystal grains accumulated in the orientation
It is a steel sheet containing 〜4.8%. This steel sheet is required to have excitation characteristics and iron loss characteristics as magnetic characteristics. As an index indicating the excitation characteristic, a magnetic flux density: B8 at a magnetic field strength of 800 A / m is usually used. As an index representing iron loss characteristics, iron loss per kg of steel sheet when magnetized at a frequency of 50 Hz to 1.7 T: W17 / 50 is used. Magnetic flux density:
B8 is the largest controlling factor of iron loss characteristics, and the magnetic flux density: B
8 The higher the value, the better the iron loss characteristics. Magnetic flux density: B8
In order to increase the crystallinity, it is important to make the crystal orientation highly uniform. The control of the crystal orientation is achieved by utilizing a catastrophic grain growth phenomenon called secondary recrystallization.

【0003】方向性電磁鋼板の表面には一般にフォルス
テライト(Mg2 SiO4 )質の絶縁被膜が形成されて
おり、この被膜は鋼板を積層した際の電気的絶縁だけで
なく、鋼板に張力を付与することにより磁気特性を向上
させている。このフォルステライト被膜は、脱炭焼鈍工
程で形成された表面酸化層(SiO2 )と、焼鈍分離剤
として表面に塗布されたMgOが仕上げ焼鈍中に固相反
応により形成される。仕上げ焼鈍中のフォルステライト
被膜の形成挙動は、二次再結晶の影響因子であるAl
N,MnS等の微細析出物(インヒビター)の変化挙動
に影響を及ぼす。従って、被膜形成を均一に行わせるこ
とは、二次再結晶を安定的に行わせるうえでも重要とな
る。
In general, a forsterite (Mg 2 SiO 4 ) -based insulating film is formed on the surface of a grain-oriented electrical steel sheet. The magnetic properties are improved by providing. This forsterite film is formed by a solid phase reaction between the surface oxide layer (SiO 2 ) formed in the decarburizing annealing step and MgO applied to the surface as an annealing separator during the finish annealing. The formation behavior of the forsterite film during finish annealing depends on Al, an influencing factor of secondary recrystallization.
It affects the change behavior of fine precipitates (inhibitors) such as N and MnS. Therefore, uniform formation of a film is important for stably performing secondary recrystallization.

【0004】フォルステライト形成反応を均一に行わせ
るためには、脱炭焼鈍条件を制御して表面層に形成され
る酸化物の種類、量、及び形態や分布等を制御すること
が重要である。これまでに、脱炭焼鈍における酸化層を
制御する技術としては、例えば特公昭57−1575号
公報に開示された技術がある。また、脱炭焼鈍板の酸化
層の管理に関しては例えば特開昭59−41480号公
報に酸化層の質(ファヤライト(Fe2 SiO4 )とシ
リカ(SiO2 )の比率)を管理する方法、また特開平
2−274817号公報には酸素量を管理する方法が提
案されている。
In order to make the forsterite forming reaction uniform, it is important to control the decarburizing annealing conditions to control the type, amount, form, distribution, etc. of the oxide formed on the surface layer. . As a technique for controlling an oxide layer in decarburization annealing, there is a technique disclosed in, for example, Japanese Patent Publication No. 57-1575. Further, a method for managing the quality of the oxide layer with respect to the management of the oxide layer in JP-59-41480 example of decarburization annealed sheet (fayalite (Fe 2 SiO 4) and silica (the ratio of SiO 2)) In addition, JP-A-2-274817 proposes a method for controlling the amount of oxygen.

【0005】本発明者等は、脱炭酸化層に関する研究を
行い、脱炭焼鈍の加熱帯における初期酸化が特に酸化物
の形態制御に重要であるとの知見を見出だし、加熱帯の
雰囲気ガを均熱帯の雰囲気と分離して制御する方法を特
開平2−305921号公報に提案している。
The present inventors have conducted research on the decarboxylation layer and found that the initial oxidation in the heating zone of decarburization annealing is particularly important for controlling the morphology of oxides. Is proposed in Japanese Patent Application Laid-Open No. Hei 2-305921 to control the temperature separately from the uniform tropical atmosphere.

【0006】[0006]

【発明が解決しようとする課題】脱炭焼鈍工程において
加熱帯と均熱帯の雰囲気ガスを分離して制御することは
酸化層に存在する複数種の酸化物の形態や分布を制御す
るうえで重要であり、製品の被膜特性や磁気特性の安定
化に影響を及ぼす。しかしながら脱炭焼鈍工程において
は、鋼板の酸化反応とともに脱炭反応がおこっているた
めに鋼中の炭素量や雰囲気ガス流れの乱れによる外乱に
より、吹き込みガスを一定の範囲に管理しても、被膜特
性の不良が発生する場合がある。
In the decarburization annealing step, it is important to separate and control the heating zone and the isotropy atmosphere gas in controlling the form and distribution of a plurality of oxides present in the oxide layer. It has an effect on the stabilization of the film properties and magnetic properties of the product. However, in the decarburization annealing process, the decarburization reaction occurs together with the oxidation reaction of the steel sheet. Poor characteristics may occur.

【0007】しかしながらこれまで、加熱帯、及び均熱
帯の鋼板直上の雰囲気ガス酸化度を脱炭焼鈍後に独立し
て推定する方法はなく、現場操業を管理する方法は見出
だされていなかった。
However, until now, there has been no method for independently estimating the degree of oxidation of the atmosphere gas immediately above the heating zone and the steel plate in the soaking zone after decarburization annealing, and no method for managing the on-site operation has been found.

【0008】本発明は、操業上の外乱等により生じた酸
化層のバラツキを脱炭焼鈍後に鋼板の酸化層を迅速に解
析して、脱炭焼鈍の雰囲気ガスの管理を行い、被膜特性
及び磁気特性の安定した方向性電磁鋼板を製造する方法
を提供するものである。
According to the present invention, an oxide layer of a steel sheet is quickly analyzed after decarburization annealing for variations in the oxide layer caused by operational disturbances and the like, the atmosphere gas for decarburization annealing is controlled, and the film characteristics and magnetic properties are improved. An object of the present invention is to provide a method for manufacturing a grain-oriented electrical steel sheet having stable characteristics.

【0009】[0009]

【課題を解決するための手段】本発明者らは、方向性電
磁鋼板の製造工程において、脱炭焼鈍工程の加熱帯と均
熱帯の雰囲気ガスを独立に制御して作成した脱炭焼鈍板
の酸化層を種々の解析方法で検討した結果、公知の蛍光
X線分析法により脱炭焼鈍工程の加熱帯の雰囲気酸化度
と均熱帯の雰囲気酸化度を分離して推定することができ
ることを見いだした。加熱帯と均熱帯の雰囲気を分離し
て制御することは、加熱帯と均熱帯に雰囲気分離シール
を挿入し、雰囲気ガス制御系を加熱帯・均熱帯それぞれ
に対応させ2系統配置することにより行った。蛍光X線
分析は、測定雰囲気が大気中で行うことができ、また非
接触・非破壊分析であることから脱炭焼鈍設備でのオン
ライン測定を行うこともできる。
Means for Solving the Problems In the production process of grain-oriented electrical steel sheets, the present inventors have developed a decarburized annealed sheet prepared by independently controlling the heating zone in the decarburization annealing step and the atmosphere gas in the soaking zone. As a result of examining the oxidized layer by various analysis methods, it was found that it is possible to separate and estimate the atmospheric oxidation degree of the heating zone and the isotropy atmospheric oxidation degree in the decarburization annealing process by a known X-ray fluorescence analysis method. . Separating and controlling the heating zone and the solitary atmosphere is achieved by inserting an atmosphere separation seal between the heating zone and the soaking zone, and arranging two systems for the atmosphere gas control system corresponding to each of the heating zone and the soaking zone. Was. The fluorescent X-ray analysis can be performed in the atmosphere as the measurement atmosphere, and since it is a non-contact and non-destructive analysis, it can also be performed on-line by a decarburization annealing facility.

【0010】[0010]

【発明の実施の形態】以下、実験結果を基に説明する。
重量でSi:3.2%、C:0.05%、酸可溶性A
l:0.027%、N:0.08%、Mn:0.1%、
P:0.03を含有する0.23mm厚の冷延板を、加熱
速度25℃/秒で830℃に加熱し、この温度で120
秒脱炭焼鈍した。雰囲気ガスはN2 :25%+H2 :7
5%で、加熱帯、及び均熱帯の酸化度(PH2 O /P H
2 ):0.14〜0.72の範囲でそれぞれ独立に変更
した。図1に脱炭焼鈍後の蛍光X線分析結果を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, description will be made based on experimental results.
Si: 3.2% by weight, C: 0.05%, acid soluble A by weight
l: 0.027%, N: 0.08%, Mn: 0.1%,
P: A 0.23 mm thick cold rolled sheet containing 0.03 was heated to 830 ° C. at a heating rate of 25 ° C./sec.
Seconds decarburized annealing. Atmospheric gas N 2: 25% + H 2 : 7
At 5%, the heating zone and the isotropy oxidation degree (PH 2 O / P H
2 ): Changed independently in the range of 0.14 to 0.72. FIG. 1 shows the results of X-ray fluorescence analysis after decarburizing annealing.

【0011】図1より、蛍光X線のSi強度は加熱帯雰
囲気ガス酸化度に依存し、均熱帯雰囲気酸化度に依存し
ないことから、加熱帯の酸化度はSiの蛍光X線強度で
推定できることが分かる。また、蛍光X線のP強度は均
熱帯雰囲気ガス酸化度に依存し、加熱帯雰囲気酸化度に
依存しないことから均熱帯の酸化度はPの蛍光X線強度
により推定できることが分かる。Feの蛍光X線強度は
加熱帯、均熱帯のいずれの雰囲気ガス酸化度に依存せ
ず、ほぼ一定の値を示していることより、Feの強度に
より各元素の強度を規格化することが、測定誤差を小さ
くすることに有効であることも分かる。
From FIG. 1, the Si intensity of the fluorescent X-rays depends on the oxidation degree of the gas in the heating zone atmosphere and does not depend on the oxidation degree of the soaking atmosphere, so that the oxidation degree of the heating zone can be estimated from the X-ray fluorescence intensity of Si. I understand. Further, since the P intensity of the fluorescent X-rays depends on the gas oxidation degree of the soaking zone atmosphere and does not depend on the oxidation degree of the heating zone atmosphere, it can be seen that the oxidation degree of the soaking zone can be estimated from the fluorescent X-ray intensity of P. Since the X-ray fluorescence intensity of Fe does not depend on the degree of oxidation of the atmosphere gas in the heating zone or the soaking zone, and shows a substantially constant value, it is possible to normalize the intensity of each element by the intensity of Fe. It can also be seen that it is effective to reduce the measurement error.

【0012】以上の結果から、蛍光X線分析法が脱炭焼
鈍の加熱帯及び均熱帯の雰囲気ガスの実質の酸化度を管
理する有効な方法であることが分かる。これらの蛍光X
線強度を規定する他の因子としては、まず当然のことな
がら鋼板の化学成分がある。蛍光X線の検量線を作成す
る場合には酸化物形成元素の成分系の異なる鋼種に関し
ては、それぞれ作成する必要がある。次に、脱炭焼鈍直
前の表面状態が影響する場合がある。冷延工程前の残存
スケール、冷延工程の残存圧延油、その他の汚れより特
に加熱帯の酸化挙動が変化し、Si,Pの蛍光X線強度
が変動する場合がある。
From the above results, it can be seen that X-ray fluorescence analysis is an effective method for managing the heating zone of decarburizing annealing and the substantial oxidation degree of the atmospheric gas in the tropical zone. These fluorescent X
Other factors that determine the linear strength include, of course, the chemical composition of the steel sheet. When preparing a calibration curve for fluorescent X-rays, it is necessary to prepare each of steel types having different component systems of oxide-forming elements. Next, the surface condition immediately before the decarburizing annealing may affect. The oxidation behavior of the heating zone in particular changes due to the remaining scale before the cold rolling step, the remaining rolling oil in the cold rolling step, and other stains, and the fluorescent X-ray intensity of Si and P may fluctuate.

【0013】[0013]

【実施例】【Example】

[実施例1]Si:3.2%、C:0.05%、酸可溶
性Al:0.03%、N:0.007%、Mn:0.1
%、S:0.007%、Cr:0.1%、Sn:0.0
5%、P:0.025%含有する珪素鋼スラブを115
0℃に加熱し、熱間圧延し2.3mm厚とした。この熱間
圧延板を1120℃で焼鈍、酸洗後、冷間圧延し最終板
厚0.23mmとした。これらの試料を25℃/秒の加熱
速度で加熱帯の雰囲気酸化度を変更し830℃まで加熱
し、830℃で120秒間0.44の酸化度で脱炭焼鈍
した。その後、アンモニア含有雰囲気中で750℃で3
0秒焼鈍し、窒素量を0.02%とした。次いで、Mg
Oを主成分とする焼鈍分離剤を塗布した後、1200℃
で20時間仕上げ焼鈍を施した。表1より、加熱帯の酸
化度とSiの蛍光X線強度が対応していること、また被
膜特性、磁気特性が加熱帯酸化度によって影響されるこ
とが分かる。
[Example 1] Si: 3.2%, C: 0.05%, acid-soluble Al: 0.03%, N: 0.007%, Mn: 0.1
%, S: 0.007%, Cr: 0.1%, Sn: 0.0
115% silicon steel slab containing 5%, P: 0.025%
It was heated to 0 ° C. and hot rolled to a thickness of 2.3 mm. This hot-rolled sheet was annealed at 1120 ° C., pickled, and then cold-rolled to a final sheet thickness of 0.23 mm. These samples were heated to 830 ° C. while changing the atmosphere oxidation degree in the heating zone at a heating rate of 25 ° C./sec, and were decarburized and annealed at 830 ° C. for 120 seconds with an oxidation degree of 0.44. Then, at 750 ° C. in an atmosphere containing ammonia,
Annealing was performed for 0 second to reduce the amount of nitrogen to 0.02%. Then, Mg
1200 ° C. after applying an annealing separator mainly containing O
For 20 hours. From Table 1, it can be seen that the oxidation degree of the heating zone corresponds to the fluorescent X-ray intensity of Si, and that the coating properties and magnetic properties are affected by the oxidation degree of the heating zone.

【0014】[0014]

【表1】 [Table 1]

【0015】[実施例2]Si:3.2%、C:0.0
7%、酸可溶性Al:0.027%、N:0.007
%、Mn:0.07%、S:0.025%、Cu:0.
15%、Sn:0.1%、P:0.01%含有する珪素
鋼スラブを1350℃に加熱し、熱間圧延し2.3mm厚
とした。この熱間圧延板を1120℃で焼鈍、酸洗後、
冷間圧延し最終板厚0.28mmとした。これらの試料を
25℃/秒の加熱速度で加熱帯の雰囲気酸化度:0.4
4で830℃まで加熱し、830℃で150秒間0.4
4の酸化度で脱炭焼鈍した。一部の試料は均熱の後半2
0秒を0.72の酸化度で焼鈍した。次いで、MgOを
主成分とする焼鈍分離剤を塗布した後、1200℃で2
0時間仕上げ焼鈍を施した。表2から均熱帯の一部が高
酸化度になった場合はPの蛍光X線強度が高くなり、そ
れに対応して被膜特性、磁気特性が劣化していることが
分かる。
[Example 2] Si: 3.2%, C: 0.0
7%, acid-soluble Al: 0.027%, N: 0.007
%, Mn: 0.07%, S: 0.025%, Cu: 0.
A silicon steel slab containing 15%, Sn: 0.1%, and P: 0.01% was heated to 1350 ° C. and hot-rolled to a thickness of 2.3 mm. After annealing this hot-rolled plate at 1120 ° C and pickling,
Cold rolling was performed to a final thickness of 0.28 mm. These samples were heated at a heating rate of 25 ° C./sec.
4 to 830 ° C. and 0.4 seconds at 830 ° C. for 150 seconds
Decarburization annealing was performed at an oxidation degree of 4. Some samples are in the latter half of soaking
0 seconds was annealed with a degree of oxidation of 0.72. Next, after applying an annealing separator mainly composed of MgO,
Finish annealing was performed for 0 hours. From Table 2, it can be seen that when a part of the solitary zone has a high oxidation degree, the fluorescent X-ray intensity of P increases, and the film properties and magnetic properties are correspondingly deteriorated.

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【発明の効果】本発明により、脱炭焼鈍の加熱帯雰囲気
を均熱帯雰囲気と分離して制御し、その雰囲気酸化度を
脱炭板の酸化層を蛍光X線により迅速に測定・評価する
ことにより管理することにより、操業上のバラツキを軽
減し、工業的に安定した被膜特性と磁気特性を持つ方向
性電磁鋼板を製造することができる。
According to the present invention, the heating zone atmosphere of the decarburizing annealing is controlled separately from the soaking zone atmosphere, and the oxidation degree of the atmosphere is quickly measured and evaluated by the fluorescent X-rays on the oxidized layer of the decarburized plate. In this way, variations in operation can be reduced, and a grain-oriented electrical steel sheet having industrially stable coating characteristics and magnetic characteristics can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】脱炭焼鈍の加熱帯、及び均熱帯の雰囲気ガス酸
化度と脱炭焼鈍板の表面酸化層を蛍光X線強度(Si−
a図,P−b図,Fe−c図)の関係を示した図であ
る。
FIG. 1 shows the X-ray fluorescence intensity (Si-
a, Pb, and Fec diagrams).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 方向性電磁鋼板の脱炭焼鈍工程におい
て、加熱帯の雰囲気ガスを均熱帯と分離して制御するこ
と、焼鈍後の酸化膜を蛍光X線装置により評価しこれら
の脱炭焼鈍雰囲気ガスを管理することを特徴とする方向
性電磁鋼板の製造における脱炭焼鈍の管理方法。
In the decarburizing annealing step of grain-oriented electrical steel sheets, the atmosphere gas in the heating zone is controlled separately from the soaking zone, and the oxide film after annealing is evaluated by a fluorescent X-ray apparatus, and the decarburizing annealing is performed. A method for controlling decarburization annealing in the production of grain-oriented electrical steel sheets, characterized by controlling atmosphere gases.
【請求項2】 加熱帯の雰囲気ガス露点を蛍光X線のS
i強度、均熱帯の雰囲気ガス露点を蛍光X線のP強度で
管理する請求項1記載の方向性電磁鋼板の製造における
脱炭焼鈍の管理方法。
2. The atmosphere gas dew point of the heating zone is determined by the fluorescent X-ray S
2. The method for controlling decarburization annealing in the production of grain-oriented electrical steel sheets according to claim 1, wherein the i-strength and the dew point of the atmosphere gas in the soaking zone are controlled by the P intensity of the fluorescent X-ray.
JP2935997A 1997-02-13 1997-02-13 Method for managing decarburization annealing of grain oriented silicon steel sheet Pending JPH10219359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2935997A JPH10219359A (en) 1997-02-13 1997-02-13 Method for managing decarburization annealing of grain oriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2935997A JPH10219359A (en) 1997-02-13 1997-02-13 Method for managing decarburization annealing of grain oriented silicon steel sheet

Publications (1)

Publication Number Publication Date
JPH10219359A true JPH10219359A (en) 1998-08-18

Family

ID=12274004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2935997A Pending JPH10219359A (en) 1997-02-13 1997-02-13 Method for managing decarburization annealing of grain oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JPH10219359A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001272360A (en) * 2000-01-20 2001-10-05 Kawasaki Steel Corp Method and device for measuring oxygen amount per unit area of steel band amount in internal oxidized layer formed in steel band
JP2007100165A (en) * 2005-10-04 2007-04-19 Jfe Steel Kk Method for producing grain oriented electrical steel sheet having excellent film property and separation agent for annealing for grain oriented silicon steel sheet
DE102009033091A1 (en) 2009-07-15 2011-04-07 Falk Steuerungssysteme Gmbh Gas analyzing sensor for detecting and analyzing gas phase-reactions with solid-state surface, has inner and outer pipes, where gas flow is performed in space between pipes, and gas flow in outer pipe is greater than gas flow in inner pipe
CN113286909A (en) * 2019-01-16 2021-08-20 日本制铁株式会社 Method for producing grain-oriented electromagnetic steel sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001272360A (en) * 2000-01-20 2001-10-05 Kawasaki Steel Corp Method and device for measuring oxygen amount per unit area of steel band amount in internal oxidized layer formed in steel band
JP2007100165A (en) * 2005-10-04 2007-04-19 Jfe Steel Kk Method for producing grain oriented electrical steel sheet having excellent film property and separation agent for annealing for grain oriented silicon steel sheet
DE102009033091A1 (en) 2009-07-15 2011-04-07 Falk Steuerungssysteme Gmbh Gas analyzing sensor for detecting and analyzing gas phase-reactions with solid-state surface, has inner and outer pipes, where gas flow is performed in space between pipes, and gas flow in outer pipe is greater than gas flow in inner pipe
CN113286909A (en) * 2019-01-16 2021-08-20 日本制铁株式会社 Method for producing grain-oriented electromagnetic steel sheet

Similar Documents

Publication Publication Date Title
KR100442101B1 (en) The method for producing an electromagnetic steel sheet having high magnetic flux density
JP2519615B2 (en) Method for producing grain-oriented electrical steel sheet with excellent magnetic properties
JP2008285758A (en) Grain-oriented electrical steel sheet
JP3337958B2 (en) Method for manufacturing mirror-oriented unidirectional electrical steel sheet with excellent magnetic properties
EP4174194A1 (en) Production method for grain-oriented electrical steel sheet
US20220098694A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JPH10219359A (en) Method for managing decarburization annealing of grain oriented silicon steel sheet
JP4276547B2 (en) Super high magnetic flux density unidirectional electrical steel sheet with excellent high magnetic field iron loss and coating properties
JP3388239B2 (en) Manufacturing method of ultra-high magnetic flux density unidirectional electrical steel sheet with high magnetic field iron loss and excellent film properties
JP2003003213A (en) Method for producing specular grain-oriented silicon steel having high magnetic flux density
JP2724094B2 (en) Manufacturing method of grain-oriented silicon steel sheet
JP2001192787A (en) Grain oriented silicon steel sheet excellent in magnetic property, and its manufacturing method
JP2003041320A (en) Method for manufacturing grain-oriented electromagnetic steel sheet with mirror surface superior in core loss
JP7510078B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2562257B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP2680532B2 (en) Method for producing grain-oriented electrical steel sheet with low iron loss
JPH0832928B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties and glass film properties
JP4184755B2 (en) Unidirectional electrical steel sheet
JPH0762443A (en) Manufacture of grain-oriented silicon steel sheet with excellent magnetic property having highly tensile glass coating film
JPH04346622A (en) Manufacture of grain-oriented magnetic steel sheet excellent in magnetic characteristic
JPH0819468B2 (en) Method for producing grain-oriented electrical steel sheet with excellent magnetic and coating properties
JPH08269556A (en) Production of mirror-finished grain-oriented silicon steel sheet reduced in iron loss
JP4021503B2 (en) Method for controlling primary recrystallized grain size of grain-oriented electrical steel sheet
JPH08269557A (en) Production of mirror-finished grain-oriented silicon steel sheet reduced in iron loss
JPH04337033A (en) Method for controlling additive quantity of oxygen in grain-oriented silicon steel sheet

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031118