JP2005069930A - Manufacturing method for directional electromagnetic steel plate having excellent coating adhesiveness - Google Patents

Manufacturing method for directional electromagnetic steel plate having excellent coating adhesiveness Download PDF

Info

Publication number
JP2005069930A
JP2005069930A JP2003301272A JP2003301272A JP2005069930A JP 2005069930 A JP2005069930 A JP 2005069930A JP 2003301272 A JP2003301272 A JP 2003301272A JP 2003301272 A JP2003301272 A JP 2003301272A JP 2005069930 A JP2005069930 A JP 2005069930A
Authority
JP
Japan
Prior art keywords
steel sheet
absorbance
sio
grain
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003301272A
Other languages
Japanese (ja)
Inventor
Toru Fujimura
亨 藤村
Makoto Watanabe
渡辺  誠
Mineo Muraki
峰男 村木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003301272A priority Critical patent/JP2005069930A/en
Publication of JP2005069930A publication Critical patent/JP2005069930A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaluation method for measuring a sputtering time up to ferrite on the steel plate surface by rf-GDS, and the absorbance by FT-IR in the stage after decarbonization annealing in a manufacturing process for a directional electromagnetic steel plate, evaluating beforehand coating adhesiveness in the final product stage, and improving the quality of the final product or improving the yield, and a manufacturing method for the directional electromagnetic steel plate having excellent coating adhesiveness using the evaluation method. <P>SOLUTION: In the evaluation method for the directional electromagnetic steel plate, the sputtering time up to the ferrite is measured on the steel plate surface by a high-frequency glow discharge emission spectral analysis method (rf-GDS) in the stage after decarbonization annealing of the directional electromagnetic steel plate, and the peak of each infrared transmittance of Fe<SB>2</SB>SiO<SB>4</SB>, SiO<SB>2</SB>and FeSiO<SB>3</SB>on the steel plate surface is measured by a Fourier transform infrared absorption spectrum method (FT-IR), and the absorbance of each compound is calculated, and the ratio of the absorbance of Fe<SB>2</SB>SiO<SB>4</SB>to the total of the absorbance of each compound is calculated, and the coating adhesiveness of the final product of the directional electromagnetic steel plate is evaluated from the acquired sputtering time and the ratio of the absorbance of Fe<SB>2</SB>SiO<SB>4</SB>. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、方向性電磁鋼板の製造過程における脱炭焼鈍後の段階で、鋼板表面をrf−GDSにおいて地鉄までのスパッタ時間を測定し、かつ、鋼板表面をFT−IRで測定し、最終製品段階での被膜密着性を事前に評価し、最終製品の品質の向上または歩留まりの向上を図る評価方法およびこれを用いた被膜密着性に優れた方向性電磁鋼板の製造方法に関する。   The present invention measures the spattering time to the base iron in rf-GDS at the stage after decarburization annealing in the manufacturing process of the grain-oriented electrical steel sheet, and measures the steel sheet surface by FT-IR. The present invention relates to an evaluation method for evaluating film adhesion at a product stage in advance to improve the quality of a final product or to improve yield, and a method for producing a grain-oriented electrical steel sheet having excellent film adhesion using the evaluation method.

方向性電磁鋼板は脱炭焼純の過程において、SiOを主成分とする酸化被膜が生成される。この後、フォルステライト(MgSiO)被膜(グラス被膜)を作製し、さらに張力被膜をコーティングする。しかし、張力被膜の密着性には、SiOを主成分とする酸化被膜の生成状態が影響を与えることが知られている。 In the grain-oriented electrical steel sheet, an oxide film containing SiO 2 as a main component is generated in the process of decarburizing and pure. Thereafter, a forsterite (Mg 2 SiO 4 ) film (glass film) is produced, and further a tension film is coated. However, it is known that the state of formation of an oxide film containing SiO 2 as a main component affects the adhesion of the tension film.

従来、鋼板に塗布する前の焼純分離剤をKBr粉末と混ぜて錠剤とし、KBr錠剤の赤外線吸収スペクトルを測定し、3700cm−1の吸収ピークの面積あるいは高さから水和度(焼鈍分離剤の加熱前後の重さの変化)を求めることにより、その焼鈍分離剤で被膜形成して得られる方向性電磁鋼板の被膜密着性を評価していた(特許文献1参照)。しかし、試料の前処理に時間がかかり、分析結果を得るのに、時間がかかるという問題があった。また、赤外分光測定において、995cm−1の反射率ピーク強度比から、鋼板表面の酸化被膜の生成量を推定した例がある(特許文献2参照)が、被膜密着性は評価していない。さらに、グロー放電発光分光分析法において、鋼板表面の酸化層をSi強度/Mn強度比の積算強度により磁気特性を評価した例がある(特許文献3参照)が、被膜密着性は評価していないし、絶縁性被膜が帯電し、正常な測定ができていないという問題があった。
特開2002−90300号公報 特開平3−108639号公報 特開平11−269543号公報
Conventionally, a pure separation agent before being applied to a steel plate is mixed with KBr powder to form a tablet, and an infrared absorption spectrum of the KBr tablet is measured, and a hydration degree (annealing separation agent) is measured from the area or height of the absorption peak at 3700 cm −1. Change in weight before and after heating) was evaluated for the film adhesion of the grain-oriented electrical steel sheet obtained by forming a film with the annealing separator (see Patent Document 1). However, there is a problem that it takes time to pre-process the sample, and it takes time to obtain an analysis result. Further, in infrared spectroscopic measurement, there is an example in which the amount of oxide film formed on the steel sheet surface is estimated from the reflectance peak intensity ratio of 995 cm −1 (see Patent Document 2), but the film adhesion is not evaluated. Furthermore, in glow discharge optical emission spectrometry, there is an example in which the magnetic properties of the oxide layer on the steel sheet surface are evaluated by the integrated strength of the Si intensity / Mn intensity ratio (see Patent Document 3), but the coating adhesion is not evaluated. There was a problem that the insulating coating was charged and normal measurement was not possible.
JP 2002-90300 A Japanese Patent Laid-Open No. 3-108639 JP-A-11-269543

本発明は、前記の従来技術における問題点に鑑み、方向性電磁鋼板の製造過程における脱炭焼純後の酸化被膜をrf−GDSとFT−IRで測定し、スパッタ時間と吸光度比の値を基に、鋼板上に被膜を形成する以前に被膜密着性の評価を行なうと共に、該評価に応じて脱炭焼鈍板の製造条件を制御して被膜密着性に優れた方向性電磁鋼板を製造することを目的とする。   In view of the above-mentioned problems in the prior art, the present invention measures the oxide film after decarburizing and purifying in the production process of grain-oriented electrical steel sheets using rf-GDS and FT-IR, and determines the sputter time and absorbance ratio values. In addition, the coating adhesion is evaluated before the coating is formed on the steel sheet, and the grain-oriented electrical steel sheet having excellent coating adhesion is manufactured by controlling the manufacturing conditions of the decarburized annealing plate according to the evaluation. With the goal.

すなわち、本発明は以下の各発明を提供する。
(1)方向性電磁鋼板の製造過程における脱炭焼鈍後の段階で、鋼板表面を高周波グロー放電発光分光分析法(rf−GDS)で、地鉄までのスパッタ時間を測定し、かつ、フーリエ変換赤外線吸収スペクトル法(FT−IR)で、鋼板表面のFeSiO、SiOおよびFeSiOの赤外線透過率のピークを測定して、各化合物の吸光度を算出し、各化合物の吸光度の合計に対するFeSiOの吸光度の比を算出し、得られるスパッタ時間とFeSiOの吸光度の比から、方向性電磁鋼板の最終製品の被膜密着性を評価する方向性電磁鋼板の評価方法。
(2)上記(1)で得られるスパッタ時間およびFeSiOの吸光度の比と、脱炭焼鈍処理工程またはそれ以前の処理条件とを比較し、少なくとも1つの処理条件を制御して鋼板を処理して方向性電磁鋼板用の脱炭焼鈍板を製造し、その後表面被覆をして被膜密着性に優れた方向性電磁鋼板を製造する方向性電磁鋼板の製造方法。
That is, the present invention provides the following inventions.
(1) At the stage after decarburization annealing in the production process of grain-oriented electrical steel sheets, the surface of the steel sheet is measured by high-frequency glow discharge optical emission spectrometry (rf-GDS), and the sputter time to the ground iron is measured, and Fourier transform By measuring the infrared transmittance peak of Fe 2 SiO 4 , SiO 2 and FeSiO 3 on the steel sheet surface by infrared absorption spectroscopy (FT-IR), the absorbance of each compound is calculated, and the total absorbance of each compound is calculated. Fe 2 calculates a ratio of the absorbance of the SiO 4, from the ratio of the absorbance of the resulting sputtering time and Fe 2 SiO 4, the evaluation method of the grain-oriented electrical steel sheet to evaluate the coating adhesion of the final product of the grain-oriented electrical steel sheet.
(2) The ratio of the sputtering time and the absorbance of Fe 2 SiO 4 obtained in (1) above is compared with the decarburization annealing process step or the previous process conditions, and the steel sheet is controlled by controlling at least one process condition. A method for producing a grain-oriented electrical steel sheet that is processed to produce a decarburized and annealed sheet for grain-oriented electrical steel sheets, and thereafter to produce a grain-oriented electrical steel sheet having excellent coating adhesion by surface coating.

(3)上記(1)に記載の評価方法で測定したスパッタ時間とFeSiOの吸光度比とが、吸光度比が30%でスパッタ時間が66秒、吸光度比が65%でスパッタ時間が72秒である2点を結ぶ直線を含み該直線よりも下で、かつ、吸光度比が41%でスパッタ時間が55秒、吸光度比が65%でスパッタ時間が68秒である2点を結ぶ直線を含み該直線より上の領域に含まれることを特徴とする方向性電磁鋼板用脱炭焼鈍板。
(4)上記(3)に記載の方向性電磁鋼板用脱炭焼鈍板を用いて得られる被膜密着性に優れた方向性電磁鋼板。
(5)方向性電磁鋼板の製造過程における脱炭焼鈍後の段階で、鋼板表面を高周波グロー放電発光分光分析法(rf−GDS)で地鉄までのスパッタ時間を測定するスパッタ時間測定機と;鋼板表面に赤外線を照射する赤外線源と;鋼板からの反射赤外線を検出する分光器および検出器と;フーリエ変換赤外線吸収スペクトル法(FT−IR)で得られたFeSiO,SiO,FeSiOの赤外線透過率の各ピークから、各吸光度を算出し、各吸光度の合計に対するFeSiOの吸光度の比を算出し、該算出値と、スパッタ時間とから方向性電磁鋼板の最終製品の被膜密着性を評価するデータ処理装置とを有する方向性電磁鋼板の被膜密着性の評価装置。
(3) The sputtering time measured by the evaluation method described in (1) above and the absorbance ratio of Fe 2 SiO 4 are as follows: the absorbance ratio is 30%, the sputtering time is 66 seconds, the absorbance ratio is 65%, and the sputtering time is 72%. A straight line connecting two points including a straight line connecting two points that are seconds, lower than the straight line, and having an absorbance ratio of 41% and a sputtering time of 55 seconds, and an absorbance ratio of 65% and a sputtering time of 68 seconds. A decarburized and annealed plate for grain-oriented electrical steel sheets, which is included in a region above the straight line.
(4) A grain-oriented electrical steel sheet excellent in film adhesion obtained using the decarburized and annealed sheet for grain-oriented electrical steel sheet according to (3) above.
(5) a sputter time measuring machine that measures the sputter time to the base metal by high-frequency glow discharge optical emission spectrometry (rf-GDS) at the stage after decarburization annealing in the manufacturing process of the grain-oriented electrical steel sheet; An infrared source for irradiating the steel sheet surface with infrared rays; a spectroscope and a detector for detecting infrared rays reflected from the steel sheet; and Fe 2 SiO 4 , SiO 2 , FeSiO obtained by Fourier transform infrared absorption spectroscopy (FT-IR) 3 is calculated from each peak of the infrared transmittance of No. 3, and the ratio of the absorbance of Fe 2 SiO 4 to the total of the respective absorbances is calculated. From the calculated value and the sputtering time, the final product of the grain-oriented electrical steel sheet is calculated. An apparatus for evaluating film adhesion of a grain-oriented electrical steel sheet having a data processing apparatus for evaluating film adhesion.

本発明の評価方法は、方向性電磁鋼板の製造過程における脱炭焼鈍後の段階で、鋼板表面の絶縁性被膜を帯電なしに測定できるrf−GDSにおいて地鉄までのスパッタ時間を測定し、かつ、鋼板表面の酸化被膜中FeSiO,SiO,FeSiOをFT−IRにおいて測定し、各吸光度の合計に対するFeSiOの吸光度の比を求め、最終製品の被膜密着性との相関を求めることにより、最終製品の良否を鋼板上に被膜を形成する以前に判定することができるので、最終製品の歩留まり向上に好適である。また、この方法を用いて、脱炭焼純処理条件を制御し、被膜密着性に優れた方向性電磁鋼板を製造することが可能である。 The evaluation method of the present invention measures the sputter time to the ground iron in rf-GDS, which can measure the insulating coating on the steel sheet surface without charging at the stage after decarburization annealing in the production process of the grain-oriented electrical steel sheet, and The Fe 2 SiO 4 , SiO 2 , and FeSiO 3 in the oxide film on the steel sheet surface were measured by FT-IR, and the ratio of the absorbance of Fe 2 SiO 4 to the total of the respective absorbances was determined, and the correlation with the film adhesion of the final product Therefore, the quality of the final product can be determined before the coating is formed on the steel sheet, which is suitable for improving the yield of the final product. Moreover, it is possible to manufacture the grain-oriented electrical steel sheet excellent in film adhesiveness by controlling the decarburizing and pure treatment conditions using this method.

以下、本発明を更に詳細に説明するが、本発明はこれらの実施形態に限定されない。
[1]本発明の評価方法は、方向性電磁鋼板の製造過程における脱炭焼鈍後の段階で、鋼板表面の絶縁性被膜を帯電なしに測定できるrf−GDSにおいて地鉄までのスパッタ時間を測定し、かつ、鋼板表面に形成されるFeSiO,SiO,FeSiOの赤外光の透過率をFT−IRにより測定し、各吸光度を算出し、各吸光度の合計に対するFeSiOの吸光度の比を算出する。得られたスパッタ時間とFeSiOの吸光度の比から、方向性電磁鋼板の最終製品の被膜密着性を評価する方法である。ここで、測定のタイミングは脱炭焼鈍が終了し常温に冷却された後であっても良いし、脱炭焼鈍の所定の工程が実質的に終了しているとみなせる脱炭焼鈍中の任意の段階であっても良い。
Hereinafter, the present invention will be described in more detail, but the present invention is not limited to these embodiments.
[1] The evaluation method of the present invention measures the sputter time to the base iron in rf-GDS, which can measure the insulating coating on the steel sheet surface without charging at the stage after decarburization annealing in the manufacturing process of the grain-oriented electrical steel sheet. and, and, a transmittance of infrared light Fe 2 SiO 4, SiO 2, FeSiO 3 formed on the steel sheet surface was measured by FT-IR, and calculates each absorbance, Fe 2 SiO 4 to the sum of the absorbances The ratio of the absorbance is calculated. This is a method for evaluating the film adhesion of the final product of the grain-oriented electrical steel sheet from the ratio of the obtained sputtering time and the absorbance of Fe 2 SiO 4 . Here, the timing of the measurement may be after the decarburization annealing is finished and cooled to room temperature, or any time during the decarburization annealing that can be considered that the predetermined process of the decarburization annealing is substantially finished. It may be a stage.

一般に、方向性電磁鋼板の製造工程は、Si:2.5〜4.0質量%を含むスラブを熱延し、焼鈍と1回または中間焼鈍を含む2回以上の冷延により、最終板厚とされる。次いで、連続焼鈍炉において、水素ガス、または水素ガスと窒素ガスの混合雰囲気中で脱炭焼鈍を行ない、脱炭とともに、一次再結晶およびSiOを主成分とする酸化被膜が生成される。その後、MgOなどからなる焼鈍分離剤を水に懸濁させスラリー状として、それを鋼板上に塗布し、乾燥後、コイル状に巻き取り、最終仕上げ焼鈍を行ない、フォルステライト(MgSiO)被膜(グラス被膜)を作製し、さらにリン酸塩系を主体とする張力被膜をコーティングして、平坦化焼鈍されて最終製品とされる。 In general, the production process of grain-oriented electrical steel sheet is performed by hot-rolling a slab containing Si: 2.5 to 4.0% by mass, and then performing annealing and one or more times of cold rolling including intermediate annealing to obtain a final thickness. It is said. Next, in a continuous annealing furnace, decarburization annealing is performed in a mixed atmosphere of hydrogen gas or hydrogen gas and nitrogen gas, and along with decarburization, primary recrystallization and an oxide film mainly composed of SiO 2 are generated. Thereafter, an annealing separator made of MgO or the like is suspended in water to form a slurry, which is applied onto a steel plate, dried, wound into a coil, and subjected to final finish annealing, forsterite (Mg 2 SiO 4 ) A film (glass film) is prepared, and further a tension film mainly composed of a phosphate system is coated, and flattened and annealed to obtain a final product.

本発明者らは脱炭焼鈍後の鋼板表面の絶縁性被膜を帯電なしに測定できるrf−GDSにおいて地鉄までのスパッタ時間を測定し、かつ、鋼板表面からのFeSiO,SiO,FeSiOのFT−IRピーク(赤外透過率を示すピーク)から、各吸光度を算出し、各吸光度の合計に対するFeSiOの吸光度の比を算出し、該スパッタ時間と吸光度比で、方向性電磁鋼板の最終製品の被膜密着性を評価できることを発明した。
この相関関係を用いれば被膜形成以前の脱炭焼鈍板の段階で最終製品の被膜密着性の良・不良または製造条件の適否を評価できる。
The inventors of the present invention measured the sputtering time to the ground iron in rf-GDS that can measure the insulating coating on the steel sheet surface after decarburization annealing without charging, and Fe 2 SiO 4 , SiO 2 , Each absorbance is calculated from the FT-IR peak of FeSiO 3 (a peak indicating infrared transmittance), and the ratio of the absorbance of Fe 2 SiO 4 to the total of the absorbances is calculated. It was invented that the film adhesion of the final product of the heat-resistant electrical steel sheet can be evaluated.
If this correlation is used, it is possible to evaluate whether the final product has good or poor film adhesion or suitability for manufacturing conditions at the stage of decarburized annealing plate before film formation.

評価に用いるスパッタ時間および吸光度比は、以下に例示する方法で求めることができるがこの方法には限定されない。例えば、脱炭焼鈍後の鋼板表面の組成が既知の標準物質や、純物質を用いて他の測定法で測定された値を比較に用いて各種補正を行なったスパッタ時間および吸光度比を算出してもよい。FT−IRピーク(赤外線透過率)の測定波長は、吸光度比には直接影響しないので、特に限定されないが、450〜1400cmの範囲から選択できる。FT−IRピークの測定は、鋼板表面の数点で測定し平均値を算出しても良い。スパッタ時間と吸光度比は鋼板表面の同じ場所で測定されても良いが、各測定は別々に所定の範囲から数点測定して平均しても良い。   The sputtering time and the absorbance ratio used for evaluation can be determined by the method exemplified below, but are not limited to this method. For example, a standard material with a known composition on the surface of the steel sheet after decarburization annealing and a sputtering time and an absorbance ratio with various corrections using values measured by other measurement methods using pure substances for comparison are calculated. May be. The measurement wavelength of the FT-IR peak (infrared transmittance) is not particularly limited because it does not directly affect the absorbance ratio, but can be selected from the range of 450 to 1400 cm. The FT-IR peak may be measured at several points on the steel sheet surface and the average value may be calculated. The sputtering time and the absorbance ratio may be measured at the same place on the surface of the steel sheet, but each measurement may be performed separately from several predetermined points and averaged.

図1はrf−GDS測定におけるFeのプロファイルを示す図である。図1において、鋼板表面から地鉄側のプロファイルの最高値と最小値の半価値をとるところまでの時間を地鉄までのスパッタ時間とする。   FIG. 1 is a view showing an Fe profile in rf-GDS measurement. In FIG. 1, the time from the steel sheet surface to the half value of the maximum value and the minimum value of the profile on the side rail is defined as the sputter time to the side rail.

一方、図2は、FT−IR測定における透過率のピークを示す図である。図2において、特定の1つのピークの底辺同士を結ぶ基準線deをひいて、ピークbをとおる垂線と基準線deとの交点をaとし、横軸の交点をcとする。このとき、縦軸の透過率(%)の値をacおよびbcとすると、吸光度Aは、

A=log(ac/bc)−−−(1)

と表される。そこで、FeSiO,SiO,FeSiOそれぞれの吸光度をAl,A2,A3とすると、FeSiOの各吸光度の合計に対する吸光度比B(%)は、

B=Al×l00/(Al+A2+A3)−−−(2)

と表される。
On the other hand, FIG. 2 is a figure which shows the peak of the transmittance | permeability in FT-IR measurement. In FIG. 2, a reference line de connecting the bases of a specific peak is drawn, and an intersection of a perpendicular line passing through the peak b and the reference line de is defined as a, and an intersection of the horizontal axes is defined as c. At this time, assuming that the transmittance (%) on the vertical axis is ac and bc, the absorbance A is

A = log (ac / bc) --- (1)

It is expressed. Therefore, assuming that the absorbance of each of Fe 2 SiO 4 , SiO 2 and FeSiO 3 is Al, A2 and A3, the absorbance ratio B (%) to the total absorbance of Fe 2 SiO 4 is

B = Al × 100 / (Al + A2 + A3) −−− (2)

It is expressed.

方向性電磁鋼板の製造過程における脱炭焼鈍後の段階での鋼板の断面を図3に示す。酸化被膜は、SiOが主で、その他にFeSiO,FeSiOを含んだものである。この3つの化合物の赤外線透過率を求め、上記のようにして算出される各化合物の吸光度から、全吸光度に対するFeSiOの吸光度の比を求めること、および、rf−GDSにより地鉄までのスパッタ時間を測定することにより、最終製品の被膜密着性の良、不良の評価をする方法が好ましい。評価方法の1例を挙げれば、スパッタ時間と吸光度比の組をX−Y軸としてプロットし、その後被膜を形成して被膜密着性を評価して、評価が良・優の場合を○で、評価が不良・劣の場合を×で表せば、X−Y平面上にある範囲で評価が○の区域と×の区域とが分かれるので、次に脱炭焼鈍後で評価したい鋼板表面のスパッタ時間と吸光度比とを得て、同じX−Y平面にプロットすれば、その点が位置する区域で評価が○か×であるかを判定することができる。 FIG. 3 shows a cross section of the steel sheet at the stage after decarburization annealing in the manufacturing process of the grain-oriented electrical steel sheet. The oxide film is mainly composed of SiO 2 and additionally contains Fe 2 SiO 4 and FeSiO 3 . Obtain the infrared transmittance of these three compounds, obtain the ratio of the absorbance of Fe 2 SiO 4 to the total absorbance from the absorbance of each compound calculated as described above, A method of evaluating good and poor film adhesion of the final product by measuring the sputtering time is preferable. As an example of the evaluation method, a set of sputtering time and absorbance ratio is plotted as an XY axis, and then a film is formed to evaluate the film adhesion. If the evaluation is poor or inferior, it is indicated by x. Since the evaluation circle is divided from the evaluation circle in the range on the XY plane, the sputter time of the steel sheet surface to be evaluated next after decarburization annealing. And the absorbance ratio, and plotted on the same XY plane, it can be determined whether the evaluation is ◯ or X in the area where the point is located.

[2]本発明の方向性電磁鋼板の製造方法は、上述のようにして得られるスパッタ時間および吸光度比と、脱炭焼鈍処理工程またはそれ以前の処理条件とを比較し、少なくとも1つの処理条件を制御して鋼板を処理し被膜密着性に優れた方向性電磁鋼板を製造する方法である。
脱炭焼鈍処理条件としては、ガス流入以前の真空度、水素ガス、または水素ガスと窒素ガスの混合雰囲気の流量、比率、露点または脱炭処理の温度、時間等の処理条件を制御することができる。
[2] The method for producing a grain-oriented electrical steel sheet according to the present invention compares the sputtering time and the absorbance ratio obtained as described above with a decarburization annealing process or a process condition before the at least one process condition. Is a method for producing a grain-oriented electrical steel sheet with excellent film adhesion by controlling the steel sheet.
As the decarburization annealing treatment conditions, it is possible to control the treatment conditions such as the degree of vacuum before the gas inflow, the flow rate of hydrogen gas, or the mixed atmosphere of hydrogen gas and nitrogen gas, the ratio, the dew point or the temperature of the decarburization treatment, and the time. it can.

その他の処理条件は、スラブ中のSi量またはその他の添加元素や不純物元素の量、スラブの熱延、焼鈍の条件や回数、冷間圧延条件や回数、最終板厚等の条件が挙げられる。
また、予め各種の処理条件を変化させた場合について、各スパッタ時間と各吸光度比の評価幅の変化を調査しておくことにより、処理条件の変動因子を把握することができる。
本発明の製造方法を用いれば、脱炭焼鈍処理等種々の製造条件を、最終製品を得る以前に評価でき各種の製造条件を制御することにより、被膜密着性に優れた方向性電磁鋼板の製造が可能となる。
本発明の製造方法は、製品の種類、品番、ロット毎に、本発明の評価方法を用いて評価して、少なくとも1つの処理条件を制御する方法でも良いが、試作品等で評価し、それによって処理条件を決定した後は決定した処理条件で製造し、評価しない製造方法も含まれる。
Other processing conditions include conditions such as the amount of Si in the slab or the amount of other additive elements or impurity elements, slab hot rolling, annealing conditions and times, cold rolling conditions and times, and final plate thickness.
Further, in the case where various processing conditions are changed in advance, the variation factors of the processing conditions can be grasped by investigating the change in the evaluation width of each sputtering time and each absorbance ratio.
By using the production method of the present invention, various production conditions such as decarburization annealing treatment can be evaluated before obtaining the final product, and various production conditions are controlled to produce a grain-oriented electrical steel sheet with excellent film adhesion. Is possible.
The production method of the present invention may be a method of controlling at least one processing condition by evaluating using the evaluation method of the present invention for each product type, product number, and lot. After the processing conditions are determined by the above, a manufacturing method in which the manufacturing is performed under the determined processing conditions and is not evaluated is also included.

また、脱炭焼鈍後のFeSiOの吸光度比の値が30%のときスパッタ時間が66秒、65%のとき72秒である2点を結ぶ直線を含み該直線よりも下で、かつ、41%のときスパッタ時間が55秒、65%のとき68秒である2点を結ぶ直線を含み該直線よりも上の領域であれば、後述する実施例で示されるように、最終製品の張力被膜の被膜密着性に優れる方向性電磁鋼板が得られる。 In addition, the value of the ratio of absorbance of Fe 2 SiO 4 after decarburization annealing is 30%, including a straight line connecting two points where the sputtering time is 66 seconds, and when 65% is 72 seconds, below the straight line, and If the region includes a straight line connecting two points, the sputter time being 55 seconds at 41% and 68 seconds at 65%, as long as the region is above the straight line, as shown in the examples described later, A grain-oriented electrical steel sheet having excellent film adhesion of a tensile film is obtained.

したがって、このような領域のFeSiOの吸光度比とスパッタ時間を示す脱炭焼鈍板は、被膜密着性に優れる方向性電磁鋼板を製造するための中間体として有用である。本発明の評価方法を用いれば、脱炭焼鈍後の鋼板表面を本発明の評価方法で測定して、スパッタ時間と吸光度比が所定の領域内の数値を示すものだけを選択して、その後に鋼板上に被膜を形成すれば、最終製品の歩留まりを飛躍的に上げることができる。
上記の範囲の本発明のスパッタ時間と吸光度比を示す脱炭焼鈍板を用いて焼鈍分離剤の塗布以降の工程を行なって最終製品とすれば被膜密着性に優れた方向性電磁鋼板が得られる。
Therefore, the decarburized annealing plate showing the absorbance ratio of Fe 2 SiO 4 and the sputtering time in such a region is useful as an intermediate for producing a grain-oriented electrical steel sheet having excellent coating adhesion. If the evaluation method of the present invention is used, the steel plate surface after decarburization annealing is measured by the evaluation method of the present invention, and only those whose sputtering time and absorbance ratio indicate numerical values within a predetermined region are selected, and thereafter If a film is formed on a steel plate, the yield of the final product can be dramatically increased.
Using the decarburized and annealed plate showing the sputtering time and absorbance ratio of the present invention in the above-mentioned range, a grain-oriented electrical steel sheet having excellent coating adhesion can be obtained by performing the steps after the application of the annealing separator to obtain the final product. .

[3]次に、本発明の方向性電磁鋼板の評価装置を説明する。
図4,5は本発明の方向性電磁鋼板の被膜密着性の評価装置の1実施例を示すが、本発明の評価装置はこれに限定されない。
図4において、1は脱炭焼鈍後の鋼板試料、2はグロー放電源で、これらはレンズ4と共にグロー放電管10を形成し、鋼板試料1は陰極となる。グロー放電管10は、グロー放電制御系13により制御される。一方グロー放電は、冷却系、ガス圧制御RF電源、DC電源を備えたグロー放電部15によって行なわれる。3は試料に当たったイオンスパッタリングによって表面原子の一部がプラズマ中に放出され、他の原子との衝突を繰り返して励起され、それが脱励起された際に放出される光である。光3はレンズ4を通って真空紫外域測定用真空容器11内の分光器12中に入る。分光器12中に入った光は回折格子6により回折されて分光され、それぞれ出口スリット7から光電子増倍管8等の検出器で検出される。検出された光の信号は、電気導線9により光強度測定回路16に入り測定される。測定されたデータは、少なくとも1つの元素量の該鋼板中の深さ方向の変化量として、データ処理装置17により処理され、スパッタ時間が算出される。データ処理装置は、制御回路、ローカルコンビュータ、パーソナルコンピュータを備えていて、グロー放電系13、グロー放電部15、真空制御系18の制御を行なっても良い。
[3] Next, the evaluation apparatus for grain-oriented electrical steel sheets according to the present invention will be described.
4 and 5 show one embodiment of the apparatus for evaluating the film adhesion of the grain-oriented electrical steel sheet of the present invention, but the evaluation apparatus of the present invention is not limited to this.
In FIG. 4, 1 is a steel plate sample after decarburization annealing, 2 is a glow discharge source, these form a glow discharge tube 10 together with the lens 4, and the steel plate sample 1 is a cathode. The glow discharge tube 10 is controlled by a glow discharge control system 13. On the other hand, glow discharge is performed by a glow discharge unit 15 having a cooling system, a gas pressure control RF power source, and a DC power source. Reference numeral 3 denotes light emitted when a part of surface atoms is emitted into the plasma by ion sputtering hitting the sample, is repeatedly excited with collision with other atoms, and is deexcited. The light 3 passes through the lens 4 and enters the spectroscope 12 in the vacuum ultraviolet measurement vacuum vessel 11. The light that enters the spectroscope 12 is diffracted by the diffraction grating 6 and separated, and is detected by a detector such as the photomultiplier tube 8 from the exit slit 7. The detected light signal enters the light intensity measurement circuit 16 through the electric conductor 9 and is measured. The measured data is processed by the data processing device 17 as the amount of change in the depth direction in the steel sheet of at least one element amount, and the sputtering time is calculated. The data processing apparatus includes a control circuit, a local computer, and a personal computer, and may control the glow discharge system 13, the glow discharge unit 15, and the vacuum control system 18.

また、図5において、21は赤外線源、22は赤外線、23、24,27はミラー、25は試料、26は反射赤外線、28は分光器と検出器、29はデータ処理装置である。
赤外線源21から発生した赤外線22は、ミラー23,24で反射して脱炭焼純後の鋼板表面25に入射して、反射し、反射赤外線26がミラー27で反射して分光器と検出器28に入り、そのデータが汎用コンピュータや計算チップ等のデータ処理装置29で処理され吸光度が、算出され、特定物質の全体の吸光度に対する比が求められる。この2つのデータから被膜密着性の良否を評価する。
In FIG. 5, 21 is an infrared source, 22 is an infrared ray, 23, 24 and 27 are mirrors, 25 is a sample, 26 is a reflected infrared ray, 28 is a spectroscope and a detector, and 29 is a data processing device.
The infrared rays 22 generated from the infrared source 21 are reflected by the mirrors 23 and 24, are incident on the steel plate surface 25 after decarburization and are reflected, are reflected, and the reflected infrared rays 26 are reflected by the mirror 27, and the spectrometer and detector 28 are reflected. The data is processed by a data processing device 29 such as a general-purpose computer or a calculation chip, and the absorbance is calculated, and the ratio of the specific substance to the total absorbance is obtained. The quality of film adhesion is evaluated from these two data.

測定試料1〜21は次のように作製した。脱炭焼鈍前処理として、中間焼鈍で表面に生成したSi濃度の低い部分を酸洗により0.05μm以上除去し、中間焼純時に生成した酸化物を0.01〜0.5g/m残留させ、表面粗度を0.1〜0.7μmの範囲内に制御し、Si化合物を付着させることを適宜変化させた。その後、脱炭焼鈍処理条件として、水素雰囲気中で、露点を30〜70℃、均熱保持温度を820〜880℃、均熱保持時間を80〜130秒、加熱時、均熱保持および還元処理の雰囲気酸化性(pH0/pH)を0.09〜0.70、650℃から均熱保持温度の10℃低いところまでの昇温速度を1〜30℃/秒、還元処理時間を5〜150秒と適宜変化させた。 Measurement samples 1 to 21 were prepared as follows. As decarburization annealing pretreatment, 0.05 μm or more of the low Si concentration portion formed on the surface by intermediate annealing is removed by pickling, and 0.01 to 0.5 g / m 2 of oxide generated during intermediate annealing is left. The surface roughness was controlled within the range of 0.1 to 0.7 μm, and the deposition of the Si compound was appropriately changed. Then, as decarburization annealing conditions, in a hydrogen atmosphere, the dew point is 30 to 70 ° C., the soaking temperature is 820 to 880 ° C., the soaking time is 80 to 130 seconds, and during heating, the soaking is held and reduced. atmosphere oxidizing (pH 2 0 / pH 2) a 0.09~0.70,650 ℃ 1~30 ℃ heating rate up to the point where lower 10 ° C. for soaking temperature from / sec, a reduction treatment time It was changed appropriately from 5 to 150 seconds.

この試料を用い、図4、5に示した評価装置を用いて、脱炭焼鈍後の鋼板表面を測定した。rf−GDS測定は、理学電機工業社製System3860型rf−GDSにおいて、高周波電力40W、Arガス流量250cc/min、スパッタ速度38nm/s(Fe換算)の条件で測定した。また、FT−IR測定は、Perkin Elmer社製1600型FT−IRにおいて、赤外線入射角70°の条件で、大気中で16回積算測定し、測定後COのピーク除去処理を行なった。 Using this sample, the steel plate surface after decarburization annealing was measured using the evaluation apparatus shown in FIGS. The rf-GDS measurement was performed on a System 3860 type rf-GDS manufactured by Rigaku Denki Kogyo Co., Ltd. under the conditions of a high frequency power of 40 W, an Ar gas flow rate of 250 cc / min, and a sputtering rate of 38 nm / s (Fe conversion). In addition, FT-IR measurement was performed by integrating and measuring 16 times in the air under the condition of an infrared incident angle of 70 ° in a 1600-type FT-IR manufactured by Perkin Elmer Co., and performing a CO 2 peak removal treatment after the measurement.

赤外線透過率を測定した結果の、450〜1400cm−1までの透過率の測定結果の1例を図6に示す。図中xyを基準線としてFeSiOとSiOの吸光度を求めた。また、uvを基準線としてFeSiOの吸光度を求めた。なお、xとyはそれぞれ1300cm−1,850cm−1近傍の透過率の一番高い位置とする。これは、測定において変動の小さい位置であることが明らかとなったので、基準位置とした。測定試料1〜21の結果を表1に示す。 One example of the measurement result of the transmittance up to 450 to 1400 cm −1 as a result of measuring the infrared transmittance is shown in FIG. 6. In the figure, the absorbance of Fe 2 SiO 4 and SiO 2 was determined using xy as a reference line. Further, the absorbance of FeSiO 3 was determined using uv as a reference line. Incidentally, x and y are respectively 1300 cm -1, and the highest position of the transmittance of 850 cm -1 vicinity. Since it became clear that this was a position with little fluctuation in measurement, it was set as a reference position. The results of measurement samples 1 to 21 are shown in Table 1.

その後、
1)MgO:100質量部に対してTiOを2質量部添加した焼鈍分離剤を水に懸濁させスラリー状として、それを鋼板上に10g/m(両面)塗布し、乾燥後、コイル状に巻き取り、
2)880℃で50時間の保定焼鈍を行なったのちに、引き続き1200℃で10時間の純化焼鈍を行ない、フォルステライト(MgSiO)被膜(グラス被膜)を作製した。
3)リン酸マグネシウム50質量部、コロイド状シリカ45質量部、無水クロム酸4.5質量部、アルミナ粉末0.5質量部の組成の張力被膜を10g/m(両面)コーティングした。
4)800℃で3分間、窒素雰囲気の条件で平坦化焼鈍して最終製品とした。
5)得られた方向性電磁鋼板の表面の被膜不良発生率を目視により測定し、先に得られていたスパッタ時間と吸光度比Bの値と比較した。結果を表1に示す。なお、判定では、被膜不良発生率が0.02%未満の場合を良として○とし、0.02%以上の場合を不良として×で示した。図7にBを横軸、スパッタ時間を縦軸とした図を示す。
なお、目視により測定した被膜不良発生率とは、方向性電磁鋼板のコイルの幅方向に10分割、長手方向に1m毎に分割し、それぞれのメッシュでの被膜の点状被膜欠陥、色ムラ、はがれ等の欠陥を面積率で評価した値である。
after that,
1) MgO: An annealing separator in which 2 parts by mass of TiO 2 is added to 100 parts by mass is suspended in water to form a slurry, which is applied to a steel sheet at 10 g / m 2 (both sides), dried, and then coiled Rolled up into a shape,
2) After holding at 880 ° C. for 50 hours, followed by purification annealing at 1200 ° C. for 10 hours to produce a forsterite (Mg 2 SiO 4 ) coating (glass coating).
3) A tension film having a composition of 50 parts by mass of magnesium phosphate, 45 parts by mass of colloidal silica, 4.5 parts by mass of chromic anhydride, and 0.5 parts by mass of alumina powder was coated at 10 g / m 2 (both sides).
4) A final product was obtained by planarizing and annealing at 800 ° C. for 3 minutes under a nitrogen atmosphere.
5) The film defect occurrence rate on the surface of the obtained grain-oriented electrical steel sheet was measured by visual observation, and compared with the sputtering time and the absorbance ratio B obtained previously. The results are shown in Table 1. In the determination, the case where the film defect occurrence rate was less than 0.02% was evaluated as “good”, and the case where it was 0.02% or more was indicated as “bad”. FIG. 7 shows a diagram with B as the horizontal axis and sputtering time as the vertical axis.
In addition, the film defect occurrence rate measured visually is divided into 10 in the width direction of the coil of the grain-oriented electrical steel sheet and 1 m in the longitudinal direction, and dot film defects, color unevenness, It is a value obtained by evaluating defects such as peeling by area ratio.

Figure 2005069930
Figure 2005069930

図7より、FeSiOの吸光度比B(%)の値が30%のときスパッタ時間が66秒、65%のとき72秒である2点を結ぶ直線を含み該直線よりも下で、かつ、41%のときスパッタ時間が55秒、65%のとき68秒である2点を結ぶ直線を含み該直線より上の領域において、判定が良である。したがって、脱炭焼鈍後の鋼板表面のrf−GDSにおける地鉄までのスパッタ時間を測定し、かつ、鋼板表面のFeSiOの吸光度比を所定の範囲とすれば、最終製品の被膜不良発生率を良とできることが予測され、最終製品が不良となるものと識別することが可能であった。 From FIG. 7, including the straight line connecting the two points of the sputtering time of 66 seconds when the value of the absorbance ratio B (%) of Fe 2 SiO 4 is 30% and 72 seconds when the value is 65%, below the straight line, In addition, the determination is good in a region including a straight line connecting two points, in which the sputtering time is 55 seconds at 41% and 68 seconds at 65%. Therefore, if the sputtering time to the ground iron in rf-GDS on the steel sheet surface after decarburization annealing is measured, and the absorbance ratio of Fe 2 SiO 4 on the steel sheet surface is set within a predetermined range, coating failure of the final product will occur. It was predicted that the rate could be good, and it was possible to identify that the final product was defective.

得られた最適な方向性電磁鋼板の処理条件は、以下に示すものであった。
脱炭焼純前処理条件としては、中間焼鈍で表面に生成したSi濃度の低い部分を酸洗により0.1μm以上除去し、中間焼鈍時に生成した酸化物を0.01〜0.3g/m残留させ、表面粗度を0.1〜0.5μmの範囲内で制御し、Si化合物を付着させる。その後の脱炭焼鈍処理条件としては、水素雰囲気中で、露点59〜61℃、均熱保持温度820〜840℃、均熱保持時間92〜120秒、加熱時の雰囲気酸化性(分圧比pH0/pH)を0.27〜0.50、均熱保持での雰囲気酸化性を加熱時よりも0.04〜0.20高くし、650℃から均熱温度の10℃低いところまでの昇温速度を1.4〜26℃/秒、還元処理を雰囲気酸化性0.2以下で、5〜100秒実施する製造方法であった。これにより、被膜密着性に優れた方向性電磁鋼板が製造できた。
The optimum processing conditions for the obtained grain-oriented electrical steel sheet were as follows.
As the decarburization pure pretreatment conditions, a portion having a low Si concentration generated on the surface by intermediate annealing is removed by 0.1 μm or more by pickling, and the oxide generated at the intermediate annealing is 0.01 to 0.3 g / m 2. Remaining, the surface roughness is controlled within the range of 0.1 to 0.5 μm, and the Si compound is adhered. Subsequent decarburization annealing conditions include a hydrogen atmosphere, a dew point of 59 to 61 ° C., a soaking temperature of 820 to 840 ° C., a soaking temperature of 92 to 120 seconds, and an oxidizing atmosphere (partial pressure ratio pH 2). 0 / pH 2 ) of 0.27 to 0.50, and the atmospheric oxidization property in soaking is 0.04 to 0.20 higher than that during heating, from 650 ° C. to 10 ° C. lower than the soaking temperature. This was a production method in which the temperature rising rate was 1.4 to 26 ° C./second, and the reduction treatment was carried out for 5 to 100 seconds at an atmospheric oxidizing property of 0.2 or less. Thereby, the grain-oriented electrical steel sheet excellent in film adhesion could be manufactured.

rf−GDS測定法による地鉄までの電解時間を測定プロファイルから求める1例を説明する概略図である。It is the schematic explaining 1 example which calculates | requires the electrolysis time to the ground iron by a rf-GDS measuring method from a measurement profile. FT−IR測定法による赤外線透過率の測定ピークから吸光度の求め方の1例を説明する概略図である。It is the schematic explaining one example of how to obtain | require an absorbance from the measurement peak of the infrared transmittance by FT-IR measuring method. 方向性電磁鋼板の製造過程における脱炭焼純後の段階での断面を示す模式的断面図である。It is typical sectional drawing which shows the cross section in the stage after the decarburization refractory in the manufacturing process of a grain-oriented electrical steel sheet. 本発明の評価方法のrf−GDS測定法に用いる測定装置を説明する図である。It is a figure explaining the measuring apparatus used for the rf-GDS measuring method of the evaluation method of this invention. 本発明の評価方法のFT−IR測定法に用いる測定装置を説明する図である。It is a figure explaining the measuring apparatus used for the FT-IR measuring method of the evaluation method of this invention. 実施例の赤外線の波数450〜1400cm−1でのFT−IR測定法による赤外線の透過率を示すチャートである。It is a chart which shows the transmittance | permeability of the infrared rays by the FT-IR measuring method in the wave numbers 450-1400cm < -1 > of the infrared rays of an Example. 表1のBとスパッタ時間との関係を示す図である。It is a figure which shows the relationship between B of Table 1 and sputtering time.

符号の説明Explanation of symbols

1:鋼板試料
2:グロー放電源
3:光
4:レンズ
5:スリット
6:回折格子
7:出口スリット
8:光電子増倍管
9:電気導線
10:グロー放電管
11:真空紫外域測定用真空容器
12:分光器
13:グロー放電制御系
15:グロー放電部
16:光強度測定回路
17:データ処理装置、
18:真空制御系
21:赤外線源
22:赤外線
23,24:ミラー
25:試料
26:反射赤外線
27:ミラー
28:分光器・検出器
29:データ処理装置
B:Fe2SiOの吸光度比
1: Steel plate sample 2: Glow discharge power source 3: Light 4: Lens 5: Slit 6: Diffraction grating 7: Exit slit 8: Photomultiplier tube 9: Electrical conductor 10: Glow discharge tube 11: Vacuum container for vacuum ultraviolet region measurement 12: Spectrometer 13: Glow discharge control system 15: Glow discharge unit 16: Light intensity measuring circuit 17: Data processing device
18: Vacuum control system 21: Infrared ray source 22: Infrared ray 23, 24: Mirror 25: Sample 26: Reflected infrared ray 27: Mirror 28: Spectrometer / detector 29: Data processing device B: Absorbance ratio of Fe 2 SiO 4

Claims (5)

方向性電磁鋼板の製造過程における脱炭焼鈍後の段階で、鋼板表面を高周波グロー放電発光分光分析法(rf−GDS)で、地鉄までのスパッタ時間を測定し、かつ、フーリエ変換赤外線吸収スペクトル法(FT−IR)で、鋼板表面のFeSiO、SiOおよびFeSiOの赤外線透過率のピークを測定して、各化合物の吸光度を算出し、各化合物の吸光度の合計に対するFeSiOの吸光度の比を算出し、得られるスパッタ時間とFeSiOの吸光度の比から、方向性電磁鋼板の最終製品の被膜密着性を評価する方向性電磁鋼板の評価方法。 At the stage after decarburization annealing in the production process of grain-oriented electrical steel sheet, the surface of the steel sheet is measured by high-frequency glow discharge emission spectroscopy (rf-GDS), and the sputter time to the ground iron is measured, and the Fourier transform infrared absorption spectrum The peak of infrared transmittance of Fe 2 SiO 4 , SiO 2 and FeSiO 3 on the steel sheet surface is measured by the method (FT-IR), the absorbance of each compound is calculated, and Fe 2 SiO relative to the total absorbance of each compound calculating the 4 ratio of absorbance, from the ratio of the absorbance of the resulting sputtering time and Fe 2 SiO 4, the evaluation method of the grain-oriented electrical steel sheet to evaluate the coating adhesion of the final product of the grain-oriented electrical steel sheet. 請求項1で得られるスパッタ時間およびFeSiOの吸光度の比と、脱炭焼鈍処理工程またはそれ以前の処理条件とを比較し、少なくとも1つの処理条件を制御して鋼板を処理して方向性電磁鋼板用の脱炭焼鈍板を製造し、その後表面被覆をして被膜密着性に優れた方向性電磁鋼板を製造する方向性電磁鋼板の製造方法。 The ratio of the sputtering time and the absorbance of Fe 2 SiO 4 obtained in claim 1 is compared with the decarburization annealing process step or previous process conditions, and the steel sheet is processed by controlling at least one process condition. A method for producing a grain-oriented electrical steel sheet, in which a decarburized annealed sheet for a grain-oriented electrical steel sheet is produced, and then a surface-coated steel sheet is produced by producing a grain-oriented electrical steel sheet having excellent coating adhesion. 請求項1に記載の評価方法で測定したスパッタ時間とFeSiOの吸光度比とが、吸光度比が30%でスパッタ時間が66秒、吸光度比が65%でスパッタ時間が72秒である2点を結ぶ直線を含み該直線よりも下で、かつ、吸光度比が41%でスパッタ時間が55秒、吸光度比が65%でスパッタ時間が68秒である2点を結ぶ直線を含み該直線より上の領域に含まれることを特徴とする方向性電磁鋼板用脱炭焼鈍板。 The sputtering time measured by the evaluation method according to claim 1 and the absorbance ratio of Fe 2 SiO 4 are as follows: the absorbance ratio is 30%, the sputtering time is 66 seconds, the absorbance ratio is 65%, and the sputtering time is 72 seconds 2 Including a straight line connecting points, including a straight line connecting two points below the straight line and having an absorbance ratio of 41% and a sputtering time of 55 seconds, and an absorbance ratio of 65% and a sputtering time of 68 seconds. A decarburized and annealed plate for grain-oriented electrical steel sheets, which is included in the upper region. 請求項3に記載の方向性電磁鋼板用脱炭焼鈍板を用いて得られる被膜密着性に優れた方向性電磁鋼板。   A grain-oriented electrical steel sheet excellent in film adhesion obtained by using the decarburized annealing plate for grain-oriented electrical steel sheet according to claim 3. 方向性電磁鋼板の製造過程における脱炭焼鈍後の段階で、鋼板表面を高周波グロー放電発光分光分析法(rf−GDS)で地鉄までのスパッタ時間を測定するスパッタ時間測定機と;鋼板表面に赤外線を照射する赤外線源と;鋼板からの反射赤外線を検出する分光器および検出器と;フーリエ変換赤外線吸収スペクトル法(FT−IR)で得られたFeSiO,SiO,FeSiOの赤外線透過率の各ピークから、各吸光度を算出し、各吸光度の合計に対するFeSiOの吸光度の比を算出し、該算出値と、スパッタ時間とから方向性電磁鋼板の最終製品の被膜密着性を評価するデータ処理装置とを有する方向性電磁鋼板の被膜密着性の評価装置。 A sputter time measuring machine for measuring the spatter time to the iron core by high-frequency glow discharge optical emission spectrometry (rf-GDS) at the stage after decarburization annealing in the production process of grain-oriented electrical steel sheet; An infrared source for irradiating infrared rays; a spectroscope and detector for detecting infrared rays reflected from a steel plate; and infrared rays of Fe 2 SiO 4 , SiO 2 , and FeSiO 3 obtained by Fourier transform infrared absorption spectroscopy (FT-IR) Each absorbance is calculated from each peak of transmittance, the ratio of the absorbance of Fe 2 SiO 3 to the total of each absorbance is calculated, and the film adhesion of the final product of the grain-oriented electrical steel sheet from the calculated value and the sputtering time An apparatus for evaluating the film adhesion of a grain-oriented electrical steel sheet having a data processing apparatus for evaluating the above.
JP2003301272A 2003-08-26 2003-08-26 Manufacturing method for directional electromagnetic steel plate having excellent coating adhesiveness Withdrawn JP2005069930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003301272A JP2005069930A (en) 2003-08-26 2003-08-26 Manufacturing method for directional electromagnetic steel plate having excellent coating adhesiveness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003301272A JP2005069930A (en) 2003-08-26 2003-08-26 Manufacturing method for directional electromagnetic steel plate having excellent coating adhesiveness

Publications (1)

Publication Number Publication Date
JP2005069930A true JP2005069930A (en) 2005-03-17

Family

ID=34405946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003301272A Withdrawn JP2005069930A (en) 2003-08-26 2003-08-26 Manufacturing method for directional electromagnetic steel plate having excellent coating adhesiveness

Country Status (1)

Country Link
JP (1) JP2005069930A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100165A (en) * 2005-10-04 2007-04-19 Jfe Steel Kk Method for producing grain oriented electrical steel sheet having excellent film property and separation agent for annealing for grain oriented silicon steel sheet
CN105675534A (en) * 2016-03-25 2016-06-15 北京市农林科学院 Method for quickly and nondestructively identifying polished grains
WO2017037019A1 (en) * 2015-08-28 2017-03-09 Thyssenkrupp Electrical Steel Gmbh Method for producing a grain-oriented electrical steel strip and grain-oriented electrical steel strip
JP2019019358A (en) * 2017-07-13 2019-02-07 新日鐵住金株式会社 Grain-oriented electromagnetic steel sheet excellent in coating adhesion and method for manufacturing the same
JP2019019359A (en) * 2017-07-13 2019-02-07 新日鐵住金株式会社 Grain-oriented electromagnetic steel sheet excellent in coating adhesion and method for manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100165A (en) * 2005-10-04 2007-04-19 Jfe Steel Kk Method for producing grain oriented electrical steel sheet having excellent film property and separation agent for annealing for grain oriented silicon steel sheet
WO2017037019A1 (en) * 2015-08-28 2017-03-09 Thyssenkrupp Electrical Steel Gmbh Method for producing a grain-oriented electrical steel strip and grain-oriented electrical steel strip
CN107922987A (en) * 2015-08-28 2018-04-17 蒂森克虏伯电工钢有限公司 For producing the method and grain oriented electrical steel strip starting of grain oriented electrical steel strip starting
CN105675534A (en) * 2016-03-25 2016-06-15 北京市农林科学院 Method for quickly and nondestructively identifying polished grains
JP2019019358A (en) * 2017-07-13 2019-02-07 新日鐵住金株式会社 Grain-oriented electromagnetic steel sheet excellent in coating adhesion and method for manufacturing the same
JP2019019359A (en) * 2017-07-13 2019-02-07 新日鐵住金株式会社 Grain-oriented electromagnetic steel sheet excellent in coating adhesion and method for manufacturing the same

Similar Documents

Publication Publication Date Title
KR101677883B1 (en) Grain-oriented electrical steel sheet, and method for manufacturing same
JP7248917B2 (en) Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
CN107922987B (en) Method for producing a grain-oriented electrical steel strip and grain-oriented electrical steel strip
JP3952606B2 (en) Oriented electrical steel sheet with excellent magnetic properties and coating properties and method for producing the same
CN113396242A (en) Grain-oriented electromagnetic steel sheet, method for forming insulating coating on grain-oriented electromagnetic steel sheet, and method for producing grain-oriented electromagnetic steel sheet
KR100586440B1 (en) Ultra-high magnetic flux density unidirectional electrical sheet excellent in high magnetic field iron loss and coating characteristics and production method therefor
EP3913109B1 (en) Grain-oriented electrical steel sheet and method for manufacturing same
US12123068B2 (en) Grain oriented electrical steel sheet and producing method thereof
JP2003027194A (en) Grain-oriented electrical steel sheet with excellent film characteristics and magnetic property, and its manufacturing method
JP2005069930A (en) Manufacturing method for directional electromagnetic steel plate having excellent coating adhesiveness
JP4010240B2 (en) Evaluation method and coating method of film adhesion of grain-oriented electrical steel sheet
CN113286904B (en) Grain-oriented electrical steel sheet, method for forming insulating coating film on grain-oriented electrical steel sheet, and method for producing grain-oriented electrical steel sheet
JP2005069917A (en) Manufacturing method for directional electromagnetic steel plate having excellent magnetic characteristic
WO2020149329A1 (en) Grain-oriented electromagnetic steel sheet and method for manufacturing same
US11948711B2 (en) Grain oriented electrical steel sheet
JP3388239B2 (en) Manufacturing method of ultra-high magnetic flux density unidirectional electrical steel sheet with high magnetic field iron loss and excellent film properties
JP2579717B2 (en) Decarburization annealing method for grain-oriented electrical steel sheets with excellent magnetic flux density and film adhesion
US20210272728A1 (en) Grain oriented electrical steel sheet and producing method thereof
JP2004191237A (en) Method of evaluating manufacturing condition of grain-oriented magnetic steel sheet and method of manufacturing the steel sheet
JP7510078B2 (en) Manufacturing method of grain-oriented electrical steel sheet
RU2821534C2 (en) Anisotropic electrical steel sheet
WO2022250163A1 (en) Oriented electromagnetic steel sheet
RU2771766C1 (en) Grain-oriented electrical steel sheet having excellent insulating coating adhesion without forsterite coating
EP3913098A1 (en) Grain-oriented electrical steel plate and method for producing same
JP2002129235A (en) Method for producing grain oriented silicon steel sheet having excellent film characteristic

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061107