JP4837492B2 - Al-SiC composite material joined body and manufacturing method thereof - Google Patents

Al-SiC composite material joined body and manufacturing method thereof Download PDF

Info

Publication number
JP4837492B2
JP4837492B2 JP2006227248A JP2006227248A JP4837492B2 JP 4837492 B2 JP4837492 B2 JP 4837492B2 JP 2006227248 A JP2006227248 A JP 2006227248A JP 2006227248 A JP2006227248 A JP 2006227248A JP 4837492 B2 JP4837492 B2 JP 4837492B2
Authority
JP
Japan
Prior art keywords
sic
preform
composite material
sic composite
preforms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006227248A
Other languages
Japanese (ja)
Other versions
JP2008050647A (en
Inventor
友幸 引田
平四朗 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2006227248A priority Critical patent/JP4837492B2/en
Publication of JP2008050647A publication Critical patent/JP2008050647A/en
Application granted granted Critical
Publication of JP4837492B2 publication Critical patent/JP4837492B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

本発明は、Al−SiC複合材料接合体及びその製造方法に関するもので、さらに詳しくは、SiCを含有する水ガラス系バインダーを用いてプリフォームを接着したものに溶融Alを含浸させて製造したAl−SiC複合材料接合体及びその製造方法に関するものである。   The present invention relates to an Al-SiC composite material joined body and a method for producing the same, and more particularly, Al produced by impregnating molten Al with a preform bonded with a water glass binder containing SiC. The present invention relates to a SiC composite material joined body and a manufacturing method thereof.

近年、半導体製造装置や液晶製造装置向け等の精密機械部品に要求される構成部品の寸法が年々大きくなり、現在では1辺が2mを超える平板状の大型部品で、かつ軽量で高剛性な構成部品を製造する技術が求められている。
例えば、液晶製造装置用の部品にはアルミニウム材料または鉄鋼材料が多く用いられてきたが、アルミニウム材料では剛性が小さすぎるし、鉄鋼材料では質量が重いという課題から、最近では軽量で高剛性な金属−セラミックス複合材料が注目されるようになってきている。
In recent years, the dimensions of component parts required for precision machine parts for semiconductor manufacturing equipment and liquid crystal manufacturing equipment have increased year by year, and now it is a flat plate-like large part with a side of more than 2 m, and is lightweight and highly rigid. There is a need for technology for manufacturing parts.
For example, aluminum or steel materials have been used in many parts for liquid crystal manufacturing equipment. However, aluminum materials are too low in rigidity, and steel materials are heavy in mass. -Ceramic composite materials are gaining attention.

大型の金属−セラミックス複合材料は米国ランキサイド社が開発した非加圧金属浸透法(所謂、Primex法)により作製可能であるが、非加圧金属浸透法にて金属−セラミックス複合材料の大型品を作製するためには大型のプリフォームが必要とされる。しかしながら、プリフォームはバインダーが硬化する程度の熱を加えながら荷重をかける熱プレス法で成形しているために、大型のプリフォームを作製するためには大掛かりな装置が必要であった。このため、部品寸法の大型化に生産性良く対応することができないという課題があった。   Large metal-ceramic composite materials can be produced by the non-pressurized metal infiltration method (so-called Primex method) developed by Lanxide, Inc. of the United States. A large preform is required to produce the film. However, since the preform is molded by a hot press method in which a load is applied while applying heat to such an extent that the binder is cured, a large-scale apparatus is required to produce a large preform. For this reason, there existed a subject that it cannot respond to the enlargement of a component dimension with sufficient productivity.

そこで、本発明者らは、複数個のプリフォームを作製し、それらを所望の形状に組み上
げて大型にした後に、溶融したアルミニウム合金を窒素中非加圧で浸透させる金属−セラ
ミックス複合材料の製造方法を提案している。
特開2001−123234号公報
Therefore, the present inventors produce a plurality of preforms, assemble them into a desired shape and enlarge them, and then manufacture a metal-ceramic composite material that allows the molten aluminum alloy to permeate in nitrogen without pressure. Proposed method.
JP 2001-123234 A

上記した方法では、複数個のプリフォームの表面を単に接触させて組み上げているため、溶融アルミニウムの浸透時にプリフームのズレが発生して精密な寸法精度が得られないという課題を有していた。さらには、接合層の溶融金属の浸透不良による欠陥や、金属−セラミックス複合材料と接合層とのセラミックス含有量の差異から加熱サイクルによりクラックが発生するという信頼性の面での問題点も有していた。 In the above-described method, since the surfaces of a plurality of preforms are simply brought into contact with each other and assembled, there is a problem in that a precise dimensional accuracy cannot be obtained due to the displacement of the preform during the penetration of molten aluminum. Furthermore, there is a problem in terms of reliability that cracks occur due to heating cycles due to defects due to poor penetration of molten metal in the bonding layer and differences in the ceramic content of the metal-ceramic composite material and the bonding layer. It was.

本発明者らは前記の課題を解決するために鋭意検討を行い、接合層の欠陥がなく信頼性の高いAl−SiC複合材料接合体およびその製造方法を提供することを目的としている。   The present inventors have intensively studied in order to solve the above-described problems, and have an object to provide a highly reliable Al—SiC composite material bonded body having no bonding layer defects and a method for manufacturing the same.

上記した本発明の目的は、下記した手段によって解決することができる。
(1)複数のAl−SiC複合材料用のプリフォームを作製する工程と、前記プリフォームのSiCの含有率の体積%を基準とした百分率で、前記プリフォームとのSiCの含有率の体積%との差異が5%以内であるSiCを含有する水ガラス系バインダーを調整する工程と、前記水ガラス系バインダーを前記プリフォームの接合面に塗布して複数のプリフォーム同士を接着する工程と、前記複数のプリフォーム同士を接着させたものを加熱処理する工程と、前記加熱処理した複数のプリフォームに溶融Alを窒素雰囲気中で非加圧で含浸させて複数のAl−SiC複合材料同士を接合層を介して一体化させて接合させる工程と、を含む製造方法によって製造されたことを特徴とするAl−SiC複合材料接合体。
The object of the present invention described above can be solved by the following means.
(1) A step of preparing a preform for a plurality of Al—SiC composite materials, and a percentage by volume based on the volume percentage of SiC content of the preform, and a volume percentage of SiC content with the preform. A step of adjusting a water glass-based binder containing SiC having a difference of 5% or less, a step of applying the water glass-based binder to a bonding surface of the preform and bonding a plurality of preforms, A step of heat-treating a plurality of preforms bonded together, and a plurality of the heat-treated preforms are impregnated with non-pressurized molten Al in a nitrogen atmosphere to form a plurality of Al-SiC composite materials. An Al—SiC composite material joined body produced by a production method comprising: integrating and joining via a joining layer .

(2)複数のAl−SiC複合材料用のプリフォームを作製する工程と、前記プリフォームのSiCの含有率の体積%を基準とした百分率で、前記プリフォームとのSiCの含有率の体積%との差異が5%以内であるSiCを含有する水ガラス系バインダーを調整する工程と、前記水ガラス系バインダーを前記プリフォームの接合面に塗布して複数のプリフォーム同士を接着する工程と、前記複数のプリフォーム同士を接着させたものを加熱処理する工程と、前記加熱処理した複数のプリフォームに溶融Alを窒素雰囲気中で非加圧で含浸させて複数のAl−SiC複合材料同士を接合層を介して一体化させて接合させる工程と、を含むことを特徴とするAl−SiC複合材料接合体の製造方法。 (2) A step of producing a preform for a plurality of Al-SiC composite materials , and a percentage by volume based on the volume percentage of SiC content of the preform, and a percentage by volume of SiC content with the preform. A step of adjusting a water glass-based binder containing SiC having a difference of 5% or less, a step of applying the water glass-based binder to a bonding surface of the preform and bonding a plurality of preforms, A step of heat-treating a plurality of preforms bonded together, and a plurality of the heat-treated preforms are impregnated with non-pressurized molten Al in a nitrogen atmosphere to form a plurality of Al-SiC composite materials. And a step of integrating and bonding via a bonding layer. A method for producing an Al-SiC composite material bonded body.

本発明によれば、接合層の欠陥がないために信頼性の高いAl−SiC複合材料接合体を提供できる効果がある。   According to the present invention, since there is no defect in the bonding layer, there is an effect that a highly reliable Al—SiC composite material bonded body can be provided.

図1に本発明のAl−SiC複合材料接合体を説明するための模式的断面図を示した。
図1に示すように、本発明に係るAl−SiC複合材料接合体は、複数(図1では2個)のAl−SiC複合材料1が接合層2を介して一体化された構造となっている。
なお、ここでは、接合層は拡大化されて図示されているが、実際の接合層の厚みとしては、厚くても10mm以下である。
FIG. 1 is a schematic cross-sectional view for explaining the Al—SiC composite material joined body of the present invention.
As shown in FIG. 1, the Al—SiC composite material assembly according to the present invention has a structure in which a plurality of (two in FIG. 1) Al—SiC composite materials 1 are integrated via a joining layer 2. Yes.
Here, although the bonding layer is illustrated in an enlarged manner, the actual thickness of the bonding layer is at most 10 mm.

本発明では、複数のAl−SiC複合材料が接合層を介して一体化されたAl−SiC複合材料接合体であって、前記接合層のSiCの含有率と、前記Al−SiC複合材料のSiCの含有率と、の差異が5%以内であることを特徴とするAl−SiC複合材料接合体を提案している。 In the present invention, an Al-SiC composite material assembly in which a plurality of Al-SiC composite materials are integrated via a bonding layer, the SiC content of the bonding layer and the SiC of the Al-SiC composite material The Al—SiC composite material joined body is characterized in that the difference between the content of the Al—SiC composite is within 5%.

ここで、接合層のSiCの含有率と、前記Al−SiC複合材料のSiCの含有率と、の差異が5%以内とした理由は、この差異が5%を超えて大きいと、接合層とAl−SiC複合材料との熱膨張の差が大きくなり、加熱サイクルにより接合層にクラックが発生して接合体の強度が低下するため好ましくないからである。 Here, the reason why the difference between the SiC content of the bonding layer and the SiC content of the Al-SiC composite material is within 5% is that if this difference exceeds 5%, This is because the difference in thermal expansion from the Al—SiC composite material is increased, cracks are generated in the bonding layer due to the heating cycle, and the strength of the bonded body is lowered, which is not preferable.

ここで、接合層のSiCの含有率と、Al−SiC複合材料のSiCの含有率と、の差異とは、Al−SiC複合材料のSiCの含有率を基準として、Al−SiC複合材料のSiCの含有率がA体積%、接合層のSiCの含有率がB体積%である場合は、BとAの差の絶対値をAで除した値に100を掛けて%表示したものと定義する。 Here, the difference between the SiC content rate of the bonding layer and the SiC content rate of the Al—SiC composite material is based on the SiC content rate of the Al—SiC composite material. When the content ratio of A is A volume% and the SiC content ratio of the bonding layer is B volume%, the absolute value of the difference between B and A is divided by A and multiplied by 100, and defined as%. .

以上説明したように、接合層とAl−SiC複合材料との熱膨張の差をなくすためには、接合層のSiCの含有率と、前記Al−SiC複合材料のSiCの含有率と、の差異が0%(即ち、差異がなく同じである。)ことが、特に好ましい。 As described above, in order to eliminate the difference in thermal expansion between the bonding layer and the Al—SiC composite material, the difference between the SiC content rate of the bonding layer and the SiC content rate of the Al—SiC composite material is different. Is preferably 0% (that is, the same with no difference).

次に、本発明において、Al−SiC複合材料を提案する理由は、前記したように軽量で、かつ、高剛性であるため半導体製造装置用の部材として好適に用いることができるからである。特に、Al−SiC複合材料は、熱膨張係数が小さく、熱伝導率も良いので、温度上昇の幾何精度への影響を大幅に低減できるものである。
ここで、セラミックス強化材としてのSiC含有率が30〜80体積%であるこが好ましい。その理由は、SiCの含有率が30体積%より少ないとプリフォームの強度が弱くなるため保形性に問題があり、逆に、SiCの含有率が80体積%より多いと複合材料自体の作製が困難となるからである。
Next, in the present invention, the reason for proposing an Al—SiC composite material is that it can be suitably used as a member for a semiconductor manufacturing apparatus because it is lightweight and has high rigidity as described above. In particular, since the Al—SiC composite material has a small thermal expansion coefficient and good thermal conductivity, the influence of the temperature rise on the geometric accuracy can be greatly reduced.
Here, it is preferable that SiC content rate as a ceramic reinforcement is 30-80 volume%. The reason is that if the content of SiC is less than 30% by volume, the strength of the preform is weakened, so there is a problem in shape retention. Conversely, if the content of SiC is more than 80% by volume, the composite material itself is produced. This is because it becomes difficult.

次に、本発明では、複数のAl−SiC複合材料用のプリフォームを作製する工程と、前記プリフォームのSiCの含有率との差異が5%以内であるSiCを含有する水ガラス系バインダーを調整する工程と、前記水ガラス系バインダーを前記プリフォームの接合面に塗布して複数のプリフォーム同士を接着する工程と、前記複数のプリフォーム同士を接着させたものを加熱処理する工程と、前記加熱処理した複数のプリフォームに溶融Alを窒素雰囲気中で非加圧で含浸させて複数のAl−SiC複合材料同士を接合層を介して一体化させて接合させる工程と、を含むことを特徴とするAl−SiC複合材料接合体の製造方法を提案している。 Next, in the present invention, a water glass-based binder containing SiC having a difference between the step of producing a plurality of Al-SiC composite preforms and the SiC content of the preform within 5% is provided. A step of adjusting, a step of applying the water glass binder to a bonding surface of the preform and bonding the plurality of preforms, a step of heat-treating the plurality of preforms bonded together, A step of impregnating a plurality of the heat-treated preforms with molten Al in a nitrogen atmosphere in a non-pressurized manner so that the plurality of Al-SiC composite materials are integrated with each other via a bonding layer. A method for producing a featured Al-SiC composite material joined body is proposed.

本発明のAl−SiC複合材料用のプリフォームを作製する工程としては、公知の方法が適用できる。即ち、先ず、所定の充填状態が得られるように粒度を調製したSiC粉末および/または繊維に分散剤やバインダー等を混合し、この混合物を鋳込み成形、加圧成形など種々の方法で所望のSiC含有率を有する成形体を得る。
次に、得られた成形体をバインダーが硬化して強度を発現する温度で焼成することにより、本発明のAl−SiC複合材料用プリフォームを得る。
A known method can be applied as the step of producing the preform for the Al—SiC composite material of the present invention. That is, first, a SiC powder and / or fiber whose particle size is adjusted so as to obtain a predetermined filling state is mixed with a dispersant, a binder, and the like, and this mixture is cast into desired SiC by various methods such as casting and pressure molding. A molded body having a content is obtained.
Next, the preform for the Al—SiC composite material of the present invention is obtained by firing the obtained molded body at a temperature at which the binder cures and develops strength.

次に、前記プリフォームのSiCの含有率との差異が5%以内であるSiCを含有する水ガラス系バインダーを調整する。ここで、SiCの含有率との差異を5%以内とする理由は、前記したように、SiCの含有率との差異が5%を超えて大きいと、接合層とAl−SiC複合材料との熱膨張の差が大きくなり、加熱サイクルにより接合層にクラックが発生して接合体の強度が低下するため好ましくないからである。(ここで、プリフォームのSiCの含有率と、プリフームにAlを浸透させた複合材料のSiCの含有率とは、略同等であることが知られている。) Next, a water glass binder containing SiC whose difference from the SiC content of the preform is within 5% is prepared. Here, the reason why the difference from the SiC content is within 5% is that, as described above, if the difference from the SiC content is larger than 5%, the difference between the bonding layer and the Al—SiC composite material. This is because the difference in thermal expansion becomes large, cracks are generated in the bonding layer due to the heating cycle, and the strength of the bonded body is lowered, which is not preferable. (Here, it is known that the SiC content of the preform is substantially equal to the SiC content of the composite material in which Al is infiltrated into the preform.)

ここで、バインダーとして水ガラス系バインダーを選定した理由は、水ガラスは200〜300℃の低温で硬化し、大型形状でもハンドリングに十分な強度を発現するからである。 Here, the reason for selecting the water glass binder as the binder is that the water glass is cured at a low temperature of 200 to 300 ° C. and exhibits a sufficient strength for handling even in a large shape.

また、水ガラス系バインダーのSiCの含有率を所定の値に調整するためには、異なる粒度分布を有する複数のSiC粉末を混ぜて用いることが好ましい。例えば、市販の信濃電気製錬社製のSiC粉末(品番:♯180、平均粒径70μm)やSiC粉末(品番:♯800、平均粒径14μm)などを用いることができる。 In order to adjust the content of SiC in the water glass binder to a predetermined value, it is preferable to mix and use a plurality of SiC powders having different particle size distributions. For example, commercially available SiC powder (product number: # 180, average particle size 70 μm) or SiC powder (product number: # 800, average particle size 14 μm) manufactured by Shinano Electric Smelting Co., Ltd. can be used.

次に、本発明では、前記水ガラス系バインダーを前記プリフォームの接合面に塗布して複数のプリフォーム同士を接着する工程と、前記複数のプリフォーム同士を接着させたものを加熱処理する工程を提案している。 Next, in the present invention, the step of applying the water glass binder to the bonding surface of the preform and bonding the plurality of preforms together, and the step of heat-treating the plurality of preforms bonded together Has proposed.

ここで、バインダーをプリフォームの接合面に塗布してプリフォーム同士を接着した後に、加熱処理する理由は、バインダーを加熱処理により硬化させてプリフォーム同士の接着強度を増加することにより、ハンドリング性を良好となすためだけでなく、溶融金属が含浸する時にズレが発生して精密な寸法精度が得られないという課題を解決するためである。 Here, after the binder is applied to the bonding surface of the preform and the preforms are bonded to each other, the heat treatment is performed because the binder is cured by the heat treatment to increase the adhesive strength between the preforms. This is to solve the problem of not being able to obtain a precise dimensional accuracy due to the occurrence of deviation when the molten metal is impregnated.

次に、本発明では、前記加熱処理した複数のプリフォームに溶融Alを窒素雰囲気中で非加圧で含浸させて複数のAl−SiC複合材料同士を接合層を介して一体化させて接合させる工程と、を含むことを特徴とするAl−SiC複合材料接合体の製造方法を提案している。ここで、Alを非加圧で浸透して複数のAl−SiC複合材料同士を、接合層を介して一体化する方法としては、ランキサイド社が開発した非加圧金属浸透法(所謂、Primex法)を適用できる。 Next, in the present invention, the plurality of heat-treated preforms are impregnated with molten Al in a nitrogen atmosphere in a non-pressurized manner, and the plurality of Al-SiC composite materials are integrated with each other via a bonding layer and bonded. The manufacturing method of the Al-SiC composite-material joined body characterized by including the process is proposed. Here, as a method of infiltrating Al with no pressure and integrating a plurality of Al—SiC composite materials through a bonding layer, a non-pressurized metal infiltration method (so-called Primex) developed by Rankide Co., Ltd. is used. Law).

以下に、実施例と比較例により本発明を詳細に説明する。
(1)プリフォームの作製
強化材としては、市販の信濃電気製錬社製のSiC粉末(配合質量比;品番#180:品番#700=70:30)を用い、強化材SiC100重量部に対して、市販の日産化学社製の粉末水ガラス(商品名:シルボン130)10重量部を添加して、500×100×10mmの形状に成形した成形体を複数個用意した。
得られた成形体を、大気中で700℃に加熱してSiCの含有率が65体積%となるプリフォームを作製した。
Hereinafter, the present invention will be described in detail by way of examples and comparative examples.
(1) Preform production As a reinforcing material, a commercially available SiC powder (mixing mass ratio; product number # 180: product number # 700 = 70: 30) manufactured by Shinano Denki Smelting Co., Ltd. is used. Then, 10 parts by weight of commercially available powdered water glass (trade name: Sylbon 130) manufactured by Nissan Chemical Co., Ltd. was added to prepare a plurality of molded bodies molded into a shape of 500 × 100 × 10 mm.
The obtained molded body was heated to 700 ° C. in the atmosphere to produce a preform having a SiC content of 65% by volume.

(2)水ガラス系バインダーの調整
水ガラスとしては、市販の東曹産業社製のJIS3号珪酸ソーダを用いた。これに、市販の信濃電気製錬社製のSiC粉末(品番:#180、平均粒径70μm)とSiC粉末(品番:♯800、平均粒径14μm)とを所定量混合して配合して、表1に示すようなSiC含有率となる水ガラス系バインダーを調整した。
(2) Adjustment of water glass binder As commercially available water glass, JIS No. 3 sodium silicate manufactured by Tosoh Sangyo Co., Ltd. was used. A predetermined amount of commercially available SiC powder (product number: # 180, average particle size 70 μm) and SiC powder (product number: # 800, average particle size 14 μm) manufactured by Shinano Denki Co., Ltd. were mixed and blended, A water glass binder having a SiC content as shown in Table 1 was prepared.

(3)プリフォームの接着とバインダーの加熱硬化
表1に示した水ガラス系バインダーを2個のプリフォームの接合面(500×10mmの端面)に塗布してプリフォーム同士を接着し、次に、250℃で加熱硬化させた。
(3) Adhesion of preform and heat curing of binder The water glass binder shown in Table 1 is applied to the joining surface (end surface of 500 × 10 mm) of two preforms, and the preforms are adhered to each other. And heat-cured at 250 ° C.

(4)Al−SiC複合材料接合体の作製
次に、Al合金(JIS H 5202, AC8A)を当該プリフォームとともに炉内に設置し、窒素雰囲気中で800℃に加熱してAl合金を溶融して、プリフォームにAl合金を含浸させた。その際、接合層にも、プリフォームと同様にAl合金が含浸し、本発明に係る複数のAl−SiC複合材料が接合層を介してズレることなく一体化されたAl−SiC複合材料接合体を得た。
(4) Production of Al-SiC composite material assembly Next, an Al alloy (JIS H 5202, AC8A) is placed in a furnace together with the preform, and heated to 800 ° C. in a nitrogen atmosphere to melt the Al alloy. Then, the preform was impregnated with an Al alloy. At that time, an Al-SiC composite material joined body in which the joining layer is impregnated with an Al alloy in the same manner as the preform, and a plurality of Al-SiC composite materials according to the present invention are integrated without shifting through the joining layer. Got.

(5)加熱サイクル試験
このようにして得られたAl−SiC複合材料接合体を電気炉内に設置し、室温から400℃の間で加熱サイクル試験を100回行った。加熱サイクル試験後の接合層の状況を目視観察した結果を表1にまとめて示した。
(5) Heating cycle test The Al-SiC composite material joined body thus obtained was placed in an electric furnace, and a heating cycle test was performed 100 times between room temperature and 400 ° C. The results of visual observation of the state of the bonding layer after the heat cycle test are summarized in Table 1.

Figure 0004837492
Figure 0004837492

表1に示したように本発明の実施例である実施例1〜3は、100回の加熱サイクル試験後も接合層には亀裂が認められなかった。
一方、比較例1では、加熱サイクル試験後の接合層には、多数の亀裂が発生していた。また、比較例2では、接合層の破断が生じてAl−SiC複合材料同士が分断された。
バインダーにSiC粉末を含有させなかった比較例3では、加熱試験前に既に接合層に亀裂が認められた。
As shown in Table 1, in Examples 1 to 3, which are examples of the present invention, no crack was observed in the bonding layer even after 100 heating cycle tests.
On the other hand, in Comparative Example 1, many cracks occurred in the bonding layer after the heating cycle test. Moreover, in the comparative example 2, the fracture | rupture of the joining layer arose and Al-SiC composite material was parted.
In Comparative Example 3 in which no SiC powder was contained in the binder, cracks were already observed in the bonding layer before the heating test.

以上説明したように、本発明によれば、加熱サイクル試験後においても接合層に亀裂が発生せず、信頼性の高いAl−SiC複合材料接合体が得られることが分かった。   As described above, according to the present invention, it was found that no crack occurred in the bonding layer even after the heating cycle test, and a highly reliable Al—SiC composite material bonded body was obtained.

本発明のAl−SiC複合材料接合体を説明するための模式的断面図である。It is typical sectional drawing for demonstrating the Al-SiC composite-material joined body of this invention.

符号の説明Explanation of symbols

1;Al−SiC複合材料
2; 接合層
1; Al-SiC composite material 2; Bonding layer

Claims (2)

複数のAl−SiC複合材料用のプリフォームを作製する工程と、前記プリフォームのSiCの含有率の体積%を基準とした百分率で、前記プリフォームとのSiCの含有率の体積%との差異が5%以内であるSiCを含有する水ガラス系バインダーを調整する工程と、前記水ガラス系バインダーを前記プリフォームの接合面に塗布して複数のプリフォーム同士を接着する工程と、前記複数のプリフォーム同士を接着させたものを加熱処理する工程と、前記加熱処理した複数のプリフォームに溶融Alを窒素雰囲気中で非加圧で含浸させて複数のAl−SiC複合材料同士を接合層を介して一体化させて接合させる工程と、を含む製造方法によって製造されたことを特徴とするAl−SiC複合材料接合体。 The difference between the step of producing a preform for a plurality of Al-SiC composite materials and the volume percentage of SiC content with the preform in percentage based on the volume percentage of SiC content of the preform A step of adjusting a water glass-based binder containing SiC that is 5% or less, a step of applying the water glass-based binder to a bonding surface of the preform, and bonding a plurality of preforms; A step of heat-treating the preforms bonded together, and a plurality of the heat-treated preforms are impregnated with molten Al in a nitrogen atmosphere in a non-pressurized state to bond a plurality of Al-SiC composite materials to each other. And an Al-SiC composite material joined body manufactured by a manufacturing method including the steps of integrating and joining. 複数のAl−SiC複合材料用のプリフォームを作製する工程と、前記プリフォームのSiCの含有率の体積%を基準とした百分率で、前記プリフォームとのSiCの含有率の体積%との差異が5%以内であるSiCを含有する水ガラス系バインダーを調整する工程と、前記水ガラス系バインダーを前記プリフォームの接合面に塗布して複数のプリフォーム同士を接着する工程と、前記複数のプリフォーム同士を接着させたものを加熱処理する工程と、前記加熱処理した複数のプリフォームに溶融Alを窒素雰囲気中で非加圧で含浸させて複数のAl−SiC複合材料同士を接合層を介して一体化させて接合させる工程と、を含むことを特徴とするAl−SiC複合材料接合体の製造方法。 The difference between the step of preparing a preform for a plurality of Al-SiC composite materials and the volume percentage of SiC content with the preform in percentage based on the volume percentage of SiC content of the preform A step of adjusting a water glass-based binder containing SiC that is 5% or less, a step of applying the water glass-based binder to a bonding surface of the preform, and bonding a plurality of preforms; A step of heat-treating the preforms bonded together, and a plurality of the heat-treated preforms are impregnated with molten Al in a nitrogen atmosphere in a non-pressurized state to bond a plurality of Al-SiC composite materials to each other. And a step of integrating and bonding them through a manufacturing method of an Al-SiC composite material joined body.
JP2006227248A 2006-08-24 2006-08-24 Al-SiC composite material joined body and manufacturing method thereof Expired - Fee Related JP4837492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006227248A JP4837492B2 (en) 2006-08-24 2006-08-24 Al-SiC composite material joined body and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006227248A JP4837492B2 (en) 2006-08-24 2006-08-24 Al-SiC composite material joined body and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008050647A JP2008050647A (en) 2008-03-06
JP4837492B2 true JP4837492B2 (en) 2011-12-14

Family

ID=39234971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006227248A Expired - Fee Related JP4837492B2 (en) 2006-08-24 2006-08-24 Al-SiC composite material joined body and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4837492B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4204014B2 (en) * 1996-06-26 2009-01-07 曙ブレーキ工業株式会社 Brake rotor manufacturing method
JPH109298A (en) * 1996-06-26 1998-01-13 Akebono Brake Ind Co Ltd Brake caliper
JPH11172347A (en) * 1997-12-03 1999-06-29 Taiheiyo Cement Corp Metal-ceramics composite and its production
JP4318814B2 (en) * 1999-10-21 2009-08-26 太平洋セメント株式会社 Method for producing metal-ceramic composite material
JP2001288516A (en) * 2000-03-31 2001-10-19 Taiheiyo Cement Corp Method for producing metal-ceramics composite material
JP2001335899A (en) * 2000-05-23 2001-12-04 Taiheiyo Cement Corp Ceramics/metal composite material having continuously changed thermal expansion coefficient, and its manufacturing method
JP2003064429A (en) * 2001-08-23 2003-03-05 Taiheiyo Cement Corp Al-Si ALLOY MATRIX COMPOSITE MATERIAL
JP4376166B2 (en) * 2004-10-14 2009-12-02 太平洋セメント株式会社 Method for producing metal-ceramic composite material
JP2007302931A (en) * 2006-05-10 2007-11-22 Taiheiyo Cement Corp Method for manufacturing metal-ceramics composite material

Also Published As

Publication number Publication date
JP2008050647A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
Blugan et al. Brazing of silicon nitride ceramic composite to steel using SiC-particle-reinforced active brazing alloy
KR101960264B1 (en) Residual stress free joined SiC ceramics and the processing method of the same
JP6284114B2 (en) Ceramic member and manufacturing method thereof
US11780781B2 (en) Bonding dissimilar ceramic components
WO2016021645A1 (en) Heat dissipation component and method for manufacturing same
Wang et al. Preparation of high-temperature organic adhesives and their performance for joining SiC ceramic
CN104496511B (en) A kind of online reaction forming method of ceramic form
JP4837492B2 (en) Al-SiC composite material joined body and manufacturing method thereof
JP5388464B2 (en) Aluminum-ceramic composite and method for producing the same
JP4764357B2 (en) Aluminum-ceramic composite and method for producing the same
CN106735189A (en) A kind of motlten metal cladding high temperature insostatic pressing (HIP) preparation method of particles reiforced metal-base composition
JP5236535B2 (en) Joining material for Al alloy-ceramic composite material and method for producing the same
JP2016180185A (en) Aluminum alloy-ceramic composite, production method of the composite and stress buffer composed of the composite
JP5117085B2 (en) Metal-ceramic composite material and manufacturing method thereof
KR20090070764A (en) Method for manufacturing metal matrix composite preform having a layered structure
EP2179841B1 (en) Functionally graded high temperature bonding of fiberglass fibers to steel
JP2008050181A (en) MANUFACTURING METHOD OF JOINED BODY OF Si-SiC COMPOSITE MATERIAL
JP5209356B2 (en) Al alloy-ceramic composite material joining method and joined body using the same
JP6263324B2 (en) Method for producing aluminum alloy-ceramic composite
JP2007270340A (en) Metal-ceramic composite material and its manufacturing method
JP2001335899A (en) Ceramics/metal composite material having continuously changed thermal expansion coefficient, and its manufacturing method
JP4376166B2 (en) Method for producing metal-ceramic composite material
JP5863447B2 (en) Method for producing SiC / Si composite material body and SiC / Si composite material body
KR101892954B1 (en) Rhenium-carbon composite and manufacturing method for the same
JP5184934B2 (en) Joining material for Al alloy-ceramic composite material and joined body using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081126

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees