JP4837072B2 - Mounting structure - Google Patents

Mounting structure Download PDF

Info

Publication number
JP4837072B2
JP4837072B2 JP2009147489A JP2009147489A JP4837072B2 JP 4837072 B2 JP4837072 B2 JP 4837072B2 JP 2009147489 A JP2009147489 A JP 2009147489A JP 2009147489 A JP2009147489 A JP 2009147489A JP 4837072 B2 JP4837072 B2 JP 4837072B2
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
layer
hole conductor
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2009147489A
Other languages
Japanese (ja)
Other versions
JP2009212535A (en
Inventor
祐二 飯野
裕美 岩地
桂 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2009147489A priority Critical patent/JP4837072B2/en
Publication of JP2009212535A publication Critical patent/JP2009212535A/en
Application granted granted Critical
Publication of JP4837072B2 publication Critical patent/JP4837072B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、LSIチップなどの電子部品を表面に実装可能であり、絶縁基板の内部にコンデンサなどの電気素子を内蔵した電気素子内蔵基板を含む実装構造体に関するものである。   The present invention relates to a mounting structure that can mount an electronic component such as an LSI chip on the surface and includes an electric element built-in substrate in which an electric element such as a capacitor is built in an insulating substrate.

近年、通信機器の普及に伴い、高速動作が求められる電子機器が広く使用されるようになり、さらにこれに伴って高速動作が可能なパッケージが求められている。このような高速動作を行うために、コンデンサ等の受動性の電気素子を絶縁基板内部に内蔵させて、受動性電気素子および配線部のインダクタンスを低減することが必要とされている。   In recent years, with the widespread use of communication devices, electronic devices that are required to operate at high speed have come to be widely used, and further, packages that can operate at high speed have been demanded. In order to perform such a high-speed operation, it is necessary to incorporate a passive electric element such as a capacitor inside the insulating substrate to reduce the inductance of the passive electric element and the wiring portion.

このような問題に対処する方法として、例えば、特開平11−220262号には、回路部品内蔵モジュールおよびその製造方法において、絶縁基板を構成する絶縁層をすべて無機フィラーと熱硬化性樹脂とを含む混合物によって形成した配線基板が提案されている。   As a method for coping with such a problem, for example, in Japanese Patent Application Laid-Open No. 11-220262, in a circuit component built-in module and a method for manufacturing the same, an insulating layer constituting an insulating substrate includes all inorganic fillers and thermosetting resins. A wiring board formed of a mixture has been proposed.

特開平11−220262号公報Japanese Patent Laid-Open No. 11-220262

しかしながら、この特開平11−220262号の回路基板では、基板の絶対強度が弱く、また、剛性が低いために、例えば、配線基板表面に半導体素子をフリップチップ工法により実装する場合、配線基板が変形し、フリップチップ部が反ってしまう問題があった。   However, in the circuit board disclosed in Japanese Patent Laid-Open No. 11-220262, since the absolute strength of the board is weak and the rigidity is low, for example, when a semiconductor element is mounted on the surface of the wiring board by a flip chip method, the wiring board is deformed. However, there is a problem that the flip chip portion is warped.

また、強度を高める方法として、絶縁基板をガラスクロスに樹脂を含浸させたいわゆるプリプレグによって絶縁基板を構成することも提案されている。しかしながら、繊維体としてはガラスなど非常に限られた物質からなり、そのためにこのプリプレグ内に内蔵させたコンデンサ素子などの電気素子との熱膨張差が大きくなる場合があり、その結果、電気素子と配線基板内の配線回路層との接続性が変化したり、両者の熱膨張差によって発生する応力によって配線基板が変形し、そのために、配線基板表面の平坦性が失われ、半導体素子をフリップチップ実装することができないという問題があった。   Further, as a method for increasing the strength, it has been proposed that the insulating substrate is constituted by a so-called prepreg in which a glass cloth is impregnated with resin. However, the fibrous body is made of a very limited substance such as glass, and therefore, there is a case where a difference in thermal expansion from an electric element such as a capacitor element incorporated in the prepreg becomes large. The connectivity with the wiring circuit layer in the wiring board changes, or the wiring board is deformed by the stress generated by the difference in thermal expansion between the two, which causes the flatness of the wiring board surface to be lost, and the semiconductor element is flip-chiped. There was a problem that it could not be implemented.

従って、本発明は、絶縁基板の内部にコンデンサなどの電気素子を内蔵してなる配線基板において、基板表面に半導体素子などをフリップチップ実装する場合においても優れた実装性と実装信頼性を具備するとともに、内蔵された電気素子と配線基板に設けられた配線回路層との接続信頼性に優れた電気素子内蔵配線基板を含む実装構造体を得ることを目的とするものである。   Therefore, the present invention provides an excellent mounting property and mounting reliability even in the case where a semiconductor element or the like is flip-chip mounted on the surface of a wiring board in which an electric element such as a capacitor is built in an insulating substrate. In addition, an object of the present invention is to obtain a mounting structure including a wiring board with a built-in electric element having excellent connection reliability between the built-in electric element and a wiring circuit layer provided on the wiring board.

本発明の一形態にかかる実装構造体は、有機材料により形成された複数の絶縁層からなる積層体と、前記絶縁層の厚み方向に沿って形成された正電極用ビアホール導体および負電極用ビアホール導体と、前記絶縁層の内部に形成されたキャビティに収容され、上面正電極および負電極を有する電気素子と、前記積層体の上面に設けられる正電極用ランド
および負電極用ランドと、を備えた電気素子内蔵基板と、前記正電極用ランドおよび負電極用ランドを介して前記電気素子内蔵基板に電気的に接続されるように前記電気素子内蔵基板の表面に実装される電子部品と、を備えた実装構造体において、前記電気素子は、前記電子部品の直下領域に位置しており、前記電気素子の前記正電極が、前記正電極用ビアホール導体に対して前記電気素子上で電気的に接続され、且つ、前記正電極用ビアホール導体が前記正電極用ランドに電気的に接続されており、前記電気素子の前記負電極が、前記負電極用ビアホール導体に対して前記電気素子上で電気的に接続され、且つ、前記負電極用ビアホール導体が前記負電極用ランドに電気的に接続されていることを特徴とする。
A mounting structure according to an embodiment of the present invention includes a stacked body including a plurality of insulating layers formed of an organic material, a positive electrode via-hole conductor and a negative electrode via-hole formed along the thickness direction of the insulating layer. conductor and said stored inside the formed cavity of the insulating layer, and an electrical element having positive and negative electrodes on the top surface, the positive electrode land provided on the upper surface of the laminate
And a negative electrode land, and the surface of the electric element built-in substrate so as to be electrically connected to the electric element built-in substrate via the positive electrode land and the negative electrode land. In the mounting structure including the electronic component mounted on the electronic component, the electrical element is located in a region immediately below the electronic component, and the positive electrode of the electrical element is connected to the via-hole conductor for the positive electrode. The positive electrode via-hole conductor is electrically connected to the positive electrode land, and the negative electrode of the electric element is connected to the negative electrode via-hole conductor. The negative electrode via-hole conductor is electrically connected to the negative electrode land, and is electrically connected to the negative electrode land .

本発明によれば、コンデンサ素子などの電気素子を内蔵した配線基板を含む実装構造体において、配線基板の表層部に半導体素子をフリップチップ実装すると同時に、内層の絶縁層にコンデンサ素子を内蔵した、低インダクタンスの配線基板を含む実装構造体を作製することができる。   According to the present invention, in a mounting structure including a wiring board incorporating an electric element such as a capacitor element, the semiconductor element is flip-chip mounted on the surface layer portion of the wiring board, and at the same time, the capacitor element is built in the inner insulating layer. A mounting structure including a low-inductance wiring board can be manufactured.

本発明の電気素子内蔵配線基板の概略断面図である。It is a schematic sectional drawing of the wiring board with a built-in electric element of the present invention. 本発明で用いられるコンデンサ素子を説明するためのものであって、(a)は、概略斜視図、(b)は正極用内部電極のパターン図、(c)は負極用内部電極パターン図である。BRIEF DESCRIPTION OF THE DRAWINGS It is for demonstrating the capacitor | condenser element used by this invention, Comprising: (a) is a schematic perspective view, (b) is a pattern figure of the internal electrode for positive electrodes, (c) is an internal electrode pattern figure for negative electrodes. . 本発明の配線基板における(a)第1の導体層のパターン図と、(b)第2の導体層のパターン図である。FIG. 4A is a pattern diagram of a first conductor layer and FIG. 4B is a pattern diagram of a second conductor layer in the wiring board of the present invention. 本発明の電気素子内蔵配線基板を製造するために工程図である。It is process drawing in order to manufacture the wiring board with a built-in electric element of the present invention.

本発明の電気素子内蔵配線基板の一実施例における概略断面図を示す図1をもとに詳細に説明する。本発明における配線基板Aは、絶縁基板1の内部にキャビティ2が形成されており、そのキャビティ2内にコンデンサ素子3が内蔵されている。また、配線基板Aのコンデンサ素子3が内蔵される直上には、電子部品として半導体素子4が実装されている。   An electrical element built-in wiring board according to an embodiment of the present invention will be described in detail with reference to FIG. In the wiring board A according to the present invention, a cavity 2 is formed inside an insulating substrate 1, and a capacitor element 3 is built in the cavity 2. Further, a semiconductor element 4 is mounted as an electronic component immediately above the capacitor element 3 of the wiring board A.

本発明において、配線基板Aにおける絶縁基板1は、コンデンサ素子3を内蔵する部分が熱硬化性樹脂と無機フィラーとの混合物からなる第1の絶縁層(以下、単にCPC層という。)1aによって構成されており、絶縁基板1の半導体素子4が実装される表面側、および/またはハンダボールパッドや接続ピンなどの接続端子が配設される裏面側に、少なくとも1層以上の繊維体中に熱硬化性樹脂を含浸してなる第2の絶縁層(以下、単にプリプレグ層という。)1bが積層形成されている。   In the present invention, the insulating substrate 1 in the wiring board A is configured by a first insulating layer (hereinafter simply referred to as a CPC layer) 1a made of a mixture of a thermosetting resin and an inorganic filler in a portion in which the capacitor element 3 is embedded. In the fibrous body of at least one layer, heat is applied to the surface side of the insulating substrate 1 where the semiconductor element 4 is mounted and / or the back side where the connection terminals such as solder ball pads and connection pins are provided. A second insulating layer (hereinafter simply referred to as a prepreg layer) 1b formed by impregnating a curable resin is laminated.

(CPC層)
コンデンサ素子3を内蔵するCPC層1aは、熱硬化性樹脂と無機質フィラーとの複合体からなるものであるが、無機フィラーには、例えば、SiO、Al、AlNおよびSiの群から選ばれる少なくとも1種を好適に用いることができる。無機フィラーは熱硬化性樹脂に対して、35〜70体積%の割合で含有させることが望ましく、用いる無機フィラーの平均粒径は1.0〜20μmの範囲が最適である。このCPC層は、1層当たりの厚みが50〜150μm程度であって、内蔵するコンデンサ素子などの電気素子の大きさに応じて適宜積層されて所定の厚みに形成されている。
(CPC layer)
The CPC layer 1a containing the capacitor element 3 is composed of a composite of a thermosetting resin and an inorganic filler. Examples of the inorganic filler include SiO 2 , Al 2 O 3 , AlN, and Si 3 N 4. At least one selected from the group can be preferably used. The inorganic filler is desirably contained in a proportion of 35 to 70% by volume with respect to the thermosetting resin, and the average particle size of the inorganic filler to be used is optimally in the range of 1.0 to 20 μm. This CPC layer has a thickness of about 50 to 150 μm per layer, and is appropriately laminated according to the size of an electric element such as a built-in capacitor element to have a predetermined thickness.

また、このCPC層は、熱膨張係数を任意に制御できる利点を生かし、内蔵する電気素子との−65〜250℃の熱膨張差を7×10−6/℃以下、特に5.5以下とすることが必要である。これは、CPC層に電気素子を内蔵してもこの熱膨張差が大きいとこの熱膨張差によって発生する応力が大きくなり、これによって配線基板の変形などによってフリップチッフ゜実装が難しく、また電気素子と配線基板内の配線回路層との接続性が損なわれてしまい、電気素子による特性が得られないためである。 Further, this CPC layer takes advantage of the ability to arbitrarily control the thermal expansion coefficient, and the difference in thermal expansion of −65 to 250 ° C. with respect to the built-in electric element is 7 × 10 −6 / ° C. or less, particularly 5.5 or less. It is necessary to. This is because even if an electrical element is built in the CPC layer, if this thermal expansion difference is large, the stress generated by this thermal expansion difference becomes large, which makes flip chip mounting difficult due to deformation of the wiring board, etc. This is because the connectivity with the wiring circuit layer in the wiring board is impaired, and the characteristics of the electric element cannot be obtained.

(プリプレグ層)
一方、プリプレグ層1bは、繊維体とこの繊維体に熱硬化性樹脂が含浸されたものであり、1層あたりの厚さは約150μm以下であり、繊維体が40〜60体積%、熱硬化性樹脂が60〜40体積%の割合からなる。
(Prepreg layer)
On the other hand, the prepreg layer 1b is obtained by impregnating a fibrous body and a thermosetting resin into the fibrous body, the thickness per layer is about 150 μm or less, the fibrous body is 40 to 60% by volume, and the thermosetting is performed. The conductive resin is composed of 60 to 40% by volume.

繊維体としては、ガラス、アラミド樹脂の群から選ばれる少なくとも1種が用いられる。なお繊維体の線径は10μm以下であることが強度を高める上で望ましい。   As the fibrous body, at least one selected from the group of glass and aramid resin is used. The fiber body has a wire diameter of preferably 10 μm or less in order to increase the strength.

また、この繊維体は均一に分散してなるものでもよいが、基板の剛性を高める上では、織布または不織布からなることが望ましい。   The fibrous body may be uniformly dispersed, but is preferably made of woven fabric or non-woven fabric in order to increase the rigidity of the substrate.

上記のCPC層およびプリプレグ層に含まれる熱硬化性樹脂としては、APPE(アリ
ル化ポリフェニレンエーテル)樹脂、エポキシ系樹脂およびシアネート系樹脂の群から選ばれる少なくとも1種が好ましい。APPE樹脂は比誘電率が低く、誘電損失が低く、吸水率が低く、さらに、ガラス転移点が高いために、特に高耐熱性であることから、特に好ましい。さらに、混合物はフィラーとのぬれ性を改善するために分散剤やカップリング剤を含んでもよい。
The thermosetting resin contained in the CPC layer and prepreg layer is preferably at least one selected from the group consisting of an APPE (allylated polyphenylene ether) resin, an epoxy resin, and a cyanate resin. The APPE resin is particularly preferable because it has a low relative dielectric constant, a low dielectric loss, a low water absorption rate, and a high glass transition point, and thus has a particularly high heat resistance. Further, the mixture may contain a dispersant or a coupling agent in order to improve the wettability with the filler.

CPC層中に内蔵されるコンデンサ素子3は、2つ以上の正電極と2つ以上の負電極を具備するものが好適である。このようなコンデンサ素子3の一例を図2の概略斜視図に示した。   The capacitor element 3 incorporated in the CPC layer preferably includes two or more positive electrodes and two or more negative electrodes. An example of such a capacitor element 3 is shown in the schematic perspective view of FIG.

この図2のコンデンサ素子3は、BaTiOを主成分とするセラミック誘電体層5を積層して形成された直方状の積層体からなる積層型セラミックコンデンサからなるものであって、その積層体の外表面には、4つの正電極6aと4つの負電極6bとが独立して均等に配置形成されている。図2(a)のコンデンサ素子においては、負電極6bは各辺の中央部に、正電極6aは、各角部に形成されている。 The capacitor element 3 of FIG. 2 is composed of a multilayer ceramic capacitor composed of a rectangular laminate formed by laminating ceramic dielectric layers 5 mainly composed of BaTiO 3 , Four positive electrodes 6a and four negative electrodes 6b are independently and equally arranged on the outer surface. In the capacitor element of FIG. 2A, the negative electrode 6b is formed at the center of each side, and the positive electrode 6a is formed at each corner.

また、積層体の各セラミック誘電体層5間には、図2(b)に示されるようなパターンの正極用内部電極7aと図2(c)に示されるようなパターンの負極用内部電極7bとが交互に形成されており、正極用内部電極7aは、正電極6aと、負極用内部電極7bは負電極6bと積層体の端面でそれぞれ電気的に接続されている。   Further, between the ceramic dielectric layers 5 of the laminated body, a positive electrode internal electrode 7a having a pattern as shown in FIG. 2B and a negative electrode internal electrode 7b having a pattern as shown in FIG. Are alternately formed, the positive internal electrode 7a is electrically connected to the positive electrode 6a, and the negative internal electrode 7b is electrically connected to the negative electrode 6b at the end face of the laminate.

一方、CPC層1a中に内蔵された上記の構造のコンデンサ素子3の電子部品搭載面表面との間のプリプレグ層1bには、第1の導体層8、および第2の導体層9が形成されている。そして、この第1の導体層8は、図3(a)のパターン図に示すように、コンデンサ素子3の4つの正電極6aと、この正電極6aから直上に絶縁層を垂直に貫通して形成されたビアホール導体10を介して電気的に接続されている。   On the other hand, a first conductor layer 8 and a second conductor layer 9 are formed in the prepreg layer 1b between the capacitor element 3 having the above structure built in the CPC layer 1a and the surface of the electronic component mounting surface. ing. Then, as shown in the pattern diagram of FIG. 3A, the first conductor layer 8 vertically penetrates the four positive electrodes 6a of the capacitor element 3 and the insulating layer directly above the positive electrode 6a. They are electrically connected via the formed via-hole conductor 10.

また、同様に、第2の導体層9は、図3(b)に示すパターン図に示すように、コンデンサ素子3の4つの負電極6bと、この負電極6bから直上に絶縁層を垂直に貫通して形成されたビアホール導体11を介して電気的に接続されている。なお、第1の導体層8には、負電極6bと第2の導体層9とを接続するビアホール導体11と接触しないように導体が形成された開口12が形成されている。   Similarly, as shown in the pattern diagram shown in FIG. 3B, the second conductor layer 9 has four negative electrodes 6b of the capacitor element 3 and an insulating layer vertically above the negative electrode 6b. It is electrically connected through a via-hole conductor 11 formed so as to penetrate therethrough. The first conductor layer 8 has an opening 12 in which a conductor is formed so as not to come into contact with the via-hole conductor 11 that connects the negative electrode 6b and the second conductor layer 9.

そして、コンデンサ素子3の正電極6aと接続された第1の導体層8には、さらに、電子部品搭載面にかけてビアホール導体13が形成されており、基板表面に設けられた正電極用ランド14と接続されており、また同様に、コンデンサ素子3の負電極6bと接続された第2の導体層9には、さらに、電子部品搭載面にかけてビアホール導体15が形成されており、基板表面に設けられた負電極用ランド16と接続されている。   The first conductor layer 8 connected to the positive electrode 6a of the capacitor element 3 is further provided with a via-hole conductor 13 over the electronic component mounting surface, and a positive electrode land 14 provided on the substrate surface. Similarly, in the second conductor layer 9 connected to the negative electrode 6b of the capacitor element 3, a via-hole conductor 15 is further formed over the electronic component mounting surface, and is provided on the substrate surface. The negative electrode land 16 is connected.

そして、絶縁基板1の表面に搭載された半導体素子4のバンプと、前記正電極用ランド14および負電極用ランド16と電気的に接続されている。   The bumps of the semiconductor element 4 mounted on the surface of the insulating substrate 1 are electrically connected to the positive electrode land 14 and the negative electrode land 16.

そして、本発明の電気素子内蔵配線基板では、その基板を構成する第1の絶縁層と第2の絶縁層との熱膨張係数差が8.6×10−6/℃以下、特に、2.3×10−6/℃以下が望ましい。 In the wiring board with a built-in electric element of the present invention, the difference in thermal expansion coefficient between the first insulating layer and the second insulating layer constituting the substrate is 8.6 × 10 −6 / ° C. or less. 3 × 10 −6 / ° C. or less is desirable.

(製造方法)
次に本発明の電気素子内蔵配線基板の製造方法について説明する。まず、CPc層形成用として、エポキシ系樹脂、ポリフェニレンエーテル樹脂などの熱硬化性樹脂とシリカ、アルミナなどの無機質フィラーとの混合材料からなる未硬化状態の絶縁シートを作製する
。また、プリプレグ層用として、ガラス繊維やアラミド繊維などの織布または不織布からなる繊維体にエポキシ樹脂などの熱硬化性樹脂を含浸した、未硬化状態の絶縁シートを作製する。
(Production method)
Next, the manufacturing method of the electric element built-in wiring board of the present invention will be described. First, for forming the CPc layer, an uncured insulating sheet made of a mixed material of a thermosetting resin such as epoxy resin or polyphenylene ether resin and an inorganic filler such as silica or alumina is prepared. For the prepreg layer, an uncured insulating sheet is produced by impregnating a fiber body made of woven or non-woven fabric such as glass fiber or aramid fiber with a thermosetting resin such as epoxy resin.

そして、まず図4の工程図に示すように、上記CPC層絶縁シート20に対して、コンデンサ素子を内蔵するキャビティ21をパンチングなどによって形成する(a)。一方、プリプレグ層絶縁シート22に対してレーザー加工法により、ビアホール23を形成し、そのビアホール23にCu粉末などの導電性粉末を含有する導電性ペーストを充填してビアホール導体24を形成する(b)。その後、このプリプレグ層絶縁シート22の表面に、導体層25を形成する(c)。この導体層25は例えば、Cu箔、Al箔などの金属箔を絶縁シートの表面に貼着した後、レジスト塗布、露光、現像、エッチング、レジスト除去の工程によって所定のパターンの導体層を形成する方法、またはあらかじめ、樹脂フィルムの表面に前記金属箔を貼着して上記と同様にして所定のパターンの導体層を形成したものを前記絶縁シートの表面に転写する方法がある。このうち、後者の方法は、絶縁シートがエッチング液などにさらされることがなく、絶縁シートが劣化することがない点で後者の方が好適である。   First, as shown in the process diagram of FIG. 4, a cavity 21 containing a capacitor element is formed in the CPC layer insulating sheet 20 by punching or the like (a). On the other hand, via holes 23 are formed in the prepreg layer insulating sheet 22 by a laser processing method, and the via holes 23 are filled with a conductive paste containing conductive powder such as Cu powder to form via hole conductors 24 (b). ). Thereafter, the conductor layer 25 is formed on the surface of the prepreg layer insulating sheet 22 (c). For example, the conductor layer 25 is formed by attaching a metal foil such as a Cu foil or an Al foil to the surface of the insulating sheet, and then forming a conductor layer having a predetermined pattern by the steps of resist application, exposure, development, etching, and resist removal. There is a method, or a method in which the metal foil is attached to the surface of a resin film in advance and a conductor layer having a predetermined pattern is formed in the same manner as described above and transferred to the surface of the insulating sheet. Among these, the latter method is more preferable in that the insulating sheet is not exposed to an etching solution and the insulating sheet is not deteriorated.

そして、CPC層用絶縁シート20のキャビティ21内にコンデンサ素子26を設置するとともに、この絶縁シート20の上下に、前記(b)(c)の製造方法を応用して前記ビアホール導体27や導体層28、半導体素子との接続用パッド29を形成したプリプレグ層用絶縁シート30a、30b、30c、30d、30eを積層し、この積層物を前記CPC用絶縁シートおよびプリプレグ層絶縁シート中の熱硬化性樹脂が硬化するに充分な温度で加熱することにより、図1に示したようなコンデンサ素子を内蔵した配線基板を作製することができる。   And while installing the capacitor | condenser element 26 in the cavity 21 of the insulating sheet 20 for CPC layers, and applying the manufacturing method of said (b) (c) above and below this insulating sheet 20, the said via-hole conductor 27 and conductor layer 28, prepreg layer insulating sheets 30a, 30b, 30c, 30d and 30e on which pads 29 for connection with semiconductor elements are formed are laminated, and this laminate is thermosetting in the CPC insulating sheet and prepreg layer insulating sheet. By heating at a temperature sufficient to cure the resin, a wiring board having a built-in capacitor element as shown in FIG. 1 can be produced.

なお、CPC層用絶縁シート20内に配設されたコンデンサ素子26の正電極および負電極とプリプレグ層用絶縁シート30のビアホール導体27との電気的な接続を行なうために、ビアホール導体27のコンデンサ素子26との接続部および/またはコンデンサ素子26の正電極および負電極表面に熱硬化温度で溶融可能な半田を塗布しておくことによって、コンデンサ素子とビアホール導体との接続を確実に行なうことができる。   In order to electrically connect the positive electrode and the negative electrode of the capacitor element 26 disposed in the CPC layer insulating sheet 20 to the via hole conductor 27 of the prepreg layer insulating sheet 30, the capacitor of the via hole conductor 27 is used. By applying solder that can be melted at the thermosetting temperature to the connection portion with the element 26 and / or the surface of the positive electrode and the negative electrode of the capacitor element 26, the connection between the capacitor element and the via-hole conductor can be reliably performed. it can.

実施例
(1)BaTiO系の複数のセラミック誘電体シートの表面に、Ag−Pdの金属ペーストを用いて図2に示したような正極用内部電極や負極用内部電極のパターンをスクリーン印刷した。その後、それらのシートを温度55℃、圧力150kg/cm下で積層密着させ、グリーンの状態でカッターを用いて切断した後、大気雰囲気1220℃の温度において焼成してコンデンサ素体を作製した。
Example (1) The pattern of the positive electrode internal electrode and the negative electrode internal electrode as shown in FIG. 2 was screen-printed on the surface of a plurality of BaTiO 3 -based ceramic dielectric sheets using an Ag—Pd metal paste. . Thereafter, these sheets were laminated and adhered under a temperature of 55 ° C. and a pressure of 150 kg / cm 2 , cut with a cutter in a green state, and then fired at a temperature of 1220 ° C. in an air atmosphere to produce a capacitor body.

そして、このコンデンサ素体の外表面に、Ag−Pdのペーストを正電極形成部および負電極形成部に塗布して温度850℃で焼き付け、複数の正電極および負電極を具備する図2で示したような8端子の積層セラミックコンデンサを作製した。   Then, an Ag—Pd paste is applied to the positive electrode forming portion and the negative electrode forming portion on the outer surface of the capacitor body and baked at a temperature of 850 ° C., and shown in FIG. 2 having a plurality of positive electrodes and negative electrodes. An 8-terminal multilayer ceramic capacitor was prepared.

なお、このコンデンサ素子は、−65〜250℃における熱膨張係数が10.2×10−6/℃、寸法が1.6×1.6×0.59(mm)、静電容量が0.22μF、自己インダクタンスが80(pH)であり、4箇所の正電極と4箇所の負電極とが形成されたものである。 This capacitor element has a thermal expansion coefficient of 10.2 × 10 −6 / ° C. at −65 to 250 ° C., a size of 1.6 × 1.6 × 0.59 (mm 3 ), and a capacitance of 0. .22 μF, self-inductance is 80 (pH), and four positive electrodes and four negative electrodes are formed.

(2)PPE(ポリフェニレンエーテル)樹脂に対しシリカ粉末50体積%の割合となるように、ワニス状態の樹脂と粉末を混合しドクターブレード法により、厚さ150μmの複数の絶縁シートAを作製し、それらの絶縁シートAに、炭酸ガスレーザーによるトレパン加工により、収納するコンデンサの大きさよりもわずかに大きい縦1.6mm×横1.6mmのキャビティを形成した。   (2) A plurality of insulating sheets A having a thickness of 150 μm are prepared by a doctor blade method by mixing a resin and a powder in a varnish state so that the proportion of silica powder is 50% by volume with respect to a PPE (polyphenylene ether) resin. In these insulating sheets A, a cavity of 1.6 mm length × 1.6 mm width slightly larger than the size of the capacitor to be accommodated was formed by trepan processing using a carbon dioxide gas laser.

また、同じく、炭酸ガスレーザーにより、ビアホールを形成し、そのビアホールにCu粉末などの導電性粉末を含有する導電性ペーストを充填してビアホール導体を形成する。導体層と半導体素子のバンプと接続するためのビアホール導体、およびコンデンサ素子と導体層とを接続するためのビアホール導体として、表面に銀をメッキした平均粒径が5μmの銅粉末を含む導体ペーストを充填してビアホール導体を形成した。なお、ビアホール導体としては、半導体素子のバンプの数に適合して、252個のビアホール導体を形成した。   Similarly, a via hole is formed by a carbon dioxide laser, and the via hole is filled with a conductive paste containing conductive powder such as Cu powder to form a via hole conductor. As a via hole conductor for connecting a conductor layer and a bump of a semiconductor element, and a via hole conductor for connecting a capacitor element and a conductor layer, a conductor paste containing copper powder having an average particle diameter of 5 μm plated with silver on the surface Filled to form a via-hole conductor. In addition, as a via-hole conductor, 252 via-hole conductors were formed according to the number of bumps of the semiconductor element.

(3)A−PPE(熱硬化型ポリフェニレンエーテル)樹脂(硬化温度=220)52〜68体積%、ガラスクロス32〜48体積%のプリプレグからなる絶縁シートBを準備した。また、同じくプリプレグの一部に炭酸ガスレーザーによるトレパン加工によりビアホール23を形成し、そのビアホール23にCu粉末などの導電性粉末を含有する導電性ペーストを充填してビアホール導体24を形成する。   (3) An insulating sheet B made of a prepreg of 52 to 68% by volume of A-PPE (thermosetting polyphenylene ether) resin (curing temperature = 220) and 32 to 48% by volume of glass cloth was prepared. Similarly, a via hole 23 is formed in a part of the prepreg by trepan processing using a carbon dioxide laser, and the via hole 23 is filled with a conductive paste containing conductive powder such as Cu powder to form a via hole conductor 24.

(4)一方、ポリエチレンテレフタレート(PET)樹脂からなる転写シートの表面に接着剤を塗布し、厚さ12μm、表面粗さ0.8μmの銅箔を一面に接着した。そして、フォトレジスト(ドライフィルム)を塗布し露光現像を行った後、これを塩化第二鉄溶液中に浸漬して非パターン部をエッチング除去して正極用導体層および負極用導体層を形成した。また、合わせて線幅が20μm、配線と配線との間隔が20μmの微細なパターンからなる配線回路層も形成した。   (4) On the other hand, an adhesive was applied to the surface of a transfer sheet made of polyethylene terephthalate (PET) resin, and a copper foil having a thickness of 12 μm and a surface roughness of 0.8 μm was adhered to one surface. And after apply | coating a photoresist (dry film) and performing exposure development, this was immersed in the ferric chloride solution, the non-pattern part was etched away, and the conductor layer for positive electrodes and the conductor layer for negative electrodes were formed. . In addition, a wiring circuit layer having a fine pattern with a line width of 20 μm and a distance between the wirings of 20 μm was also formed.

(5)そして、(3)で作製した絶縁シートBの表面に、転写シートの導体層側を絶縁シートBに30kg/cmの圧力で圧着した後、転写シートを剥がして、導体層を絶縁シートBに転写させた。 (5) Then, after the conductor layer side of the transfer sheet is pressure-bonded to the insulating sheet B with a pressure of 30 kg / cm 2 on the surface of the insulating sheet B produced in (3), the transfer sheet is peeled off to insulate the conductor layer. Transferred to sheet B.

(6)次に、(2)で作製したキャビティが形成された絶縁シートAをコンデンサ素子の厚み分積層し、そのキャビティ内に(1)で作製した積層セラミックコンデンサチップを仮設置し、チップの周りの隙間にエポキシ樹脂40体積%、シリカ60体積%を充填して仮固定した。   (6) Next, the insulating sheet A formed with the cavity produced in (2) is laminated by the thickness of the capacitor element, and the laminated ceramic capacitor chip produced in (1) is temporarily installed in the cavity. The surrounding gap was temporarily fixed by filling 40% by volume of epoxy resin and 60% by volume of silica.

(7)そして、このコンデンサ素子を収納した絶縁シートAの表面および裏面に、(3)(4)を経て作製された導体層およびビアホール導体を有する絶縁シートBを仮積層した。   (7) And the insulating sheet B which has the conductor layer and via-hole conductor which were produced through (3) and (4) was temporarily laminated | stacked on the surface and back surface of the insulating sheet A which accommodated this capacitor | condenser element.

(8)そして、この積層物を220℃で1時間加熱して完全硬化させて多層配線基板を作製した。なお、加熱による樹脂の流動で絶縁シートの空隙が収縮して絶縁層とコンデンサチップとが密着しチップと絶縁層との隙間はほとんどなくなっていた。こうして全体厚みが1.2mmのコンデンサ内蔵配線基板を作製した。   (8) Then, the laminate was heated at 220 ° C. for 1 hour to be completely cured to produce a multilayer wiring board. In addition, the gap of the insulating sheet contracted by the flow of the resin due to heating, the insulating layer and the capacitor chip were in close contact, and the gap between the chip and the insulating layer was almost eliminated. Thus, a capacitor built-in wiring board having a total thickness of 1.2 mm was produced.

そして、作製したコンデンサ内蔵配線基板に対して以下の検討を行なった。   And the following examination was performed with respect to the produced wiring board with a built-in capacitor.

そして、作製した基板全体の−65〜250℃の線熱膨張係数を測定した。また、Auスタッドバンプを形成したSiチップを約60℃の加熱した基板にフリップチップ実装し、基板のパッドとSiチップ側の回路との周回した導通抵抗を測定し、導通の有無を確認した。また、配線基板全体の機械的強度をインストロン評価装置を用いて測定した。   And the linear thermal expansion coefficient of -65-250 degreeC of the whole produced board | substrate was measured. In addition, the Si chip on which the Au stud bump was formed was flip-chip mounted on a substrate heated at about 60 ° C., and the conduction resistance around the circuit board pad and the circuit on the Si chip side was measured to confirm the presence or absence of conduction. Further, the mechanical strength of the entire wiring board was measured using an Instron evaluation apparatus.

さらに、インピーダンスアナライザを用いて、周波数1.0MHz〜1.8MHzにおいて、インピーダンスの周波数特性を測定し、同時に、1MHzでのコンデンサの容量値を測定し、そして、f=1/(2π(L・C)1/2)(式中、f:共振周波数(Hz)、C:静電容量(F)、L:インダクタンス(H))に基づいて、共振周波数からインダクタンスを計算で求めた。 Further, using an impedance analyzer, the frequency characteristic of the impedance is measured at a frequency of 1.0 MHz to 1.8 MHz, the capacitance value of the capacitor at 1 MHz is measured at the same time, and f 0 = 1 / (2π (L (C) 1/2 ) (where, f 0 : resonance frequency (Hz), C: capacitance (F), L: inductance (H)), the inductance was calculated from the resonance frequency.

なお、この測定は、室温および熱衝撃試験300サイクル後におけるインピーダンスも測定した。また、コンデンサ素子の上面の絶縁層の厚みを表1のように変えて特性の変化を測定した。熱衝撃試験は、炭酸ガスを冷媒とし、電気ヒータを加熱源として圧力1atmのチャンバー内で−55〜125℃の温度サイクルを5分毎のサイクルを100回付与した。   In addition, this measurement also measured the impedance after 300 cycles of room temperature and thermal shock tests. Further, the change in characteristics was measured by changing the thickness of the insulating layer on the upper surface of the capacitor element as shown in Table 1. In the thermal shock test, carbon dioxide was used as a refrigerant, an electric heater was used as a heating source, and a temperature cycle of −55 to 125 ° C. was applied 100 times every 5 minutes in a chamber at a pressure of 1 atm.

(比較例1)
実施例における(3)の熱硬化性樹脂と無機フィラーとの混合物からなる絶縁シートのみを用いて配線基板を作製し、上記と同様の評価を行った。
(Comparative Example 1)
A wiring board was produced using only the insulating sheet made of the mixture of the thermosetting resin (3) and the inorganic filler in the example, and the same evaluation as above was performed.

(比較例2)
実施例において、絶縁シートA、と絶縁シートBとの配置を全く逆にし、絶縁シートBにコンデンサ素子を内蔵させる以外は、全く同様にして配線基板を作製し、上記と同様の評価を行った。
(Comparative Example 2)
In the examples, the arrangement of the insulating sheet A and the insulating sheet B was completely reversed, and a wiring board was produced in the same manner except that the capacitor element was built in the insulating sheet B, and the same evaluation as described above was performed. .

Figure 0004837072
Figure 0004837072

表1の結果から明らかなように、本発明に基づき、配線基板の表層部にプリプレグからなる絶縁層と、コンデンサ素子を内蔵する内層部を無機フィラーと熱硬化性樹脂との混合物からなる絶縁層(CPC)によって形成した本発明の配線基板は、基板の機械的強度が300MPa以上と高く、しかもフリップチップ実装が可能であった。また、コンデンサ素子によるインダクタンスの変化についても、室温での初期特性と熱衝撃試験後においても変化がなく、信頼性の高いものであった。   As is apparent from the results of Table 1, based on the present invention, an insulating layer made of prepreg on the surface layer portion of the wiring board, and an inner layer portion containing the capacitor element are made of an insulating layer made of a mixture of an inorganic filler and a thermosetting resin. The wiring board of the present invention formed by (CPC) has a high mechanical strength of 300 MPa or more and can be flip-chip mounted. In addition, the change in inductance due to the capacitor element was also highly reliable with no change after initial characteristics at room temperature and after the thermal shock test.

A 配線基板
1 絶縁基板
1a 第1の絶縁層
1b 第2の絶縁層
2 キャビティ
3 コンデンサ素子
4 半導体素子
5 セラミック誘電体層
6a 正電極
6b 負電極
7a 正極用内部電極
7b 負極用内部電極
8 第1の導体層
9 第2の導体層
10、11、17 ビアホール導体
A wiring board 1 insulating board 1a first insulating layer 1b second insulating layer 2 cavity 3 capacitor element 4 semiconductor element 5 ceramic dielectric layer 6a positive electrode 6b negative electrode 7a positive electrode internal electrode 7b negative electrode internal electrode 8 first Conductor layer
9 Second conductor layer 10, 11, 17 Via hole conductor

Claims (3)

有機材料により形成された複数の絶縁層からなる積層体と、前記絶縁層の厚み方向に沿って形成された正電極用ビアホール導体および負電極用ビアホール導体と、前記絶縁層の内部に形成されたキャビティに収容され、上面正電極および負電極を有する電気素子と、前記積層体の上面に設けられる正電極用ランドおよび負電極用ランドと、を備えた電気素子内蔵基板と、
前記正電極用ランドおよび負電極用ランドを介して前記電気素子内蔵基板に電気的に接続されるように前記電気素子内蔵基板の表面に実装される電子部品と、を備えた実装構造体において、
前記電気素子は、前記電子部品の直下領域に位置しており、
前記電気素子の前記正電極が、前記正電極用ビアホール導体に対して前記電気素子上で電気的に接続され、且つ、前記正電極用ビアホール導体が前記正電極用ランドに電気的に接続されており、
前記電気素子の前記負電極が、前記負電極用ビアホール導体に対して前記電気素子上で電気的に接続され、且つ、前記負電極用ビアホール導体が前記負電極用ランドに電気的に接続されていることを特徴とする実装構造体。
A laminate composed of a plurality of insulating layers formed of an organic material, a positive electrode via-hole conductor and a negative electrode via-hole conductor formed along the thickness direction of the insulating layer, and formed inside the insulating layer is housed in the cavity, an electrical device having a positive electrode and a negative electrode on the upper surface, the positive electrode land and a negative electrode land provided on the upper surface of the laminate, and electrical element embedded substrate equipped with,
An electronic component mounted on the surface of the electric element built-in substrate so as to be electrically connected to the electric element built-in substrate through the positive electrode land and the negative electrode land ,
The electrical element is located in a region directly below the electronic component;
The positive electrode of the electric element is electrically connected to the positive electrode via-hole conductor on the electric element, and the positive electrode via-hole conductor is electrically connected to the positive electrode land. And
The negative electrode of the electrical element is electrically connected to the negative electrode via-hole conductor on the electrical element, and the negative electrode via-hole conductor is electrically connected to the negative electrode land. mounting structure, characterized in that there.
前記電気素子は、上面に前記正電極および前記負電極をそれぞれ複数有しており、
前記正電極および前記負電極は、前記電気素子の外周に沿って交互に配列されている請求項1に記載の実装構造体。
The electric element has a plurality of the positive electrode and the negative electrode on the upper surface,
The mounting structure according to claim 1, wherein the positive electrode and the negative electrode are alternately arranged along an outer periphery of the electric element .
前記正電極用ビアホール導体は、前記正電極と前記正電極用ランドとの間の領域で直線状に形成されている請求項1に記載の実装構造体。 The mounting structure according to claim 1 , wherein the positive electrode via-hole conductor is linearly formed in a region between the positive electrode and the positive electrode land .
JP2009147489A 2009-06-22 2009-06-22 Mounting structure Expired - Lifetime JP4837072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009147489A JP4837072B2 (en) 2009-06-22 2009-06-22 Mounting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009147489A JP4837072B2 (en) 2009-06-22 2009-06-22 Mounting structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008018811A Division JP4511604B2 (en) 2008-01-30 2008-01-30 Wiring board with built-in electrical elements

Publications (2)

Publication Number Publication Date
JP2009212535A JP2009212535A (en) 2009-09-17
JP4837072B2 true JP4837072B2 (en) 2011-12-14

Family

ID=41185317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009147489A Expired - Lifetime JP4837072B2 (en) 2009-06-22 2009-06-22 Mounting structure

Country Status (1)

Country Link
JP (1) JP4837072B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3051700B2 (en) * 1997-07-28 2000-06-12 京セラ株式会社 Method of manufacturing multilayer wiring board with built-in element
JPH11354924A (en) * 1998-06-05 1999-12-24 Murata Mfg Co Ltd Manufacture of multilayer ceramic substrate

Also Published As

Publication number Publication date
JP2009212535A (en) 2009-09-17

Similar Documents

Publication Publication Date Title
US8183465B2 (en) Component built-in wiring substrate and manufacturing method thereof
US8130507B2 (en) Component built-in wiring board
US9153553B2 (en) IC embedded substrate and method of manufacturing the same
JP3547423B2 (en) Component built-in module and manufacturing method thereof
US20070117338A1 (en) Via array capacitor, wiring board incorporating a via array capacitor, and method of manufacturing the same
GB2437465A (en) Multilayer wiring board, method for manufacturing such multilayer wiring board, and semiconductor device, and electronic device using multilayer wiring board
JP3540976B2 (en) Wiring board with built-in electric element
JP4954824B2 (en) Wiring board with built-in components, capacitor for wiring board
JP2005072328A (en) Multilayer wiring board
JP2003188340A (en) Part incorporating module and its manufacturing method
JP4683770B2 (en) Wiring board with built-in electric element and manufacturing method thereof
JP4511604B2 (en) Wiring board with built-in electrical elements
JP5512558B2 (en) Manufacturing method of wiring board with built-in components
JP3398351B2 (en) Wiring board with built-in capacitor
JP2011233915A (en) Composite wiring board, manufacturing method thereof, mounting body of electronic component, and manufacturing method of electronic component
JP2007194516A (en) Compound wiring board and its manufacturing method, mounted shape of electronic component, and manufacturing method
JP4509147B2 (en) Wiring board with built-in electrical elements
JP2004072124A (en) Wiring board with built-in electric element
JP4837072B2 (en) Mounting structure
JP4837071B2 (en) Wiring board with built-in electrical elements
JP3673448B2 (en) Wiring board with built-in capacitor element
JP5192864B2 (en) Manufacturing method of wiring board with built-in components
JP4841650B2 (en) Manufacturing method of wiring board with built-in electric element
JP2006237446A (en) Multilayer wiring board and its manufacturing method
JP4841234B2 (en) Manufacturing method of wiring substrate with built-in via array capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4837072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term