JP2011233915A - Composite wiring board, manufacturing method thereof, mounting body of electronic component, and manufacturing method of electronic component - Google Patents

Composite wiring board, manufacturing method thereof, mounting body of electronic component, and manufacturing method of electronic component Download PDF

Info

Publication number
JP2011233915A
JP2011233915A JP2011149808A JP2011149808A JP2011233915A JP 2011233915 A JP2011233915 A JP 2011233915A JP 2011149808 A JP2011149808 A JP 2011149808A JP 2011149808 A JP2011149808 A JP 2011149808A JP 2011233915 A JP2011233915 A JP 2011233915A
Authority
JP
Japan
Prior art keywords
wiring board
electrically insulating
insulating substrate
wiring
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011149808A
Other languages
Japanese (ja)
Inventor
Tomoe Sasaki
智江 佐々木
Yasuhiro Sugaya
康博 菅谷
Toshiyuki Asahi
俊行 朝日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011149808A priority Critical patent/JP2011233915A/en
Publication of JP2011233915A publication Critical patent/JP2011233915A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item

Abstract

PROBLEM TO BE SOLVED: To provide a composite wiring board which is capable of easily forming a multilayer on an arbitrary position of a substrate, flexibly corresponding to a design change or the like, and having a cavity structure capable of three-dimensionally arranging a circuit component.SOLUTION: The composite wiring board includes: a first wiring board having a first electrical insulation base material and a wiring pattern formed on the first electrical insulation base material; a second wiring board having a second electrical insulation base material and a wiring pattern formed on the second electrical insulation wiring board and forming a cavity on at least a part of the wiring pattern; and a third electrical insulation base material including a conductive part composed of a conductive composition, obtained by mixing metal particles for adhering the first wiring board to the second wiring board in a thickness direction and electrically connecting between the wiring pattern of the first wiring board and the wiring pattern of the second wiring board, and thermosetting resin, and forming a cavity on at least a part of the conductive part.

Description

本発明は、設計変更に柔軟に対応できる複合配線基板およびその製造方法、ならびにこの複合配線基板を用いた高密度実装可能な電子部品の実装体およびその製造方法にかかるものである。   The present invention relates to a composite wiring board that can flexibly cope with a design change, a manufacturing method thereof, a mounting body of an electronic component capable of high-density mounting using the composite wiring board, and a manufacturing method thereof.

近年のエレクトロニクス機器の小型化・薄型化、高機能化に伴って、プリント基板に実装される電子部品の高密度実装、および電子部品が実装された配線基板の高機能化への要求が益々強くなっている。   With the recent downsizing, thinning, and higher functionality of electronic equipment, there is an increasing demand for higher density mounting of electronic components mounted on printed circuit boards and higher functionality of wiring boards mounted with electronic components. It has become.

特に、半導体パッケージ及び、それを基板に搭載した電子回路モジュールは、小型化及び薄型化が必要とされている。半導体パッケージにおいては、ほぼチップサイズにまで小型化されたチップサイズパッケージ(CSP)が普及し始めている。また、携帯機器等にはメモリなどの付加価値や容量の増大を狙ってパッケージ内に複数個の半導体素子を搭載しているパッケージもある。複数個の半導体を横に並べて配列したマルチチップパッケージやスタックドパッケージと呼ばれる複数個の半導体素子を積層させ搭載することにより、実装密度を高めた構造のものも開示されている(特許文献1参照)。また、スタックドパッケージのCSP構造化を図るものもある(特許文献2参照)。   In particular, a semiconductor package and an electronic circuit module in which the semiconductor package is mounted on a substrate are required to be reduced in size and thickness. As for semiconductor packages, chip size packages (CSPs) downsized to almost the chip size have begun to spread. In addition, some portable devices or the like have a package in which a plurality of semiconductor elements are mounted in the package in order to increase the added value and capacity of a memory. A structure in which a mounting density is increased by stacking and mounting a plurality of semiconductor elements called a multi-chip package or a stacked package in which a plurality of semiconductors are arranged side by side is also disclosed (see Patent Document 1). ). In addition, there is a structure in which a stacked package has a CSP structure (see Patent Document 2).

このような小型で狭ピッチの半導体素子の各パッドに対応させるように、ランドおよび配線パターンをプリント配線板上に多数形成することは、高度な技術を要するだけでなく、コストアップにもつながっていた。既存の実装技術を用いて半導体素子を基板に実装する方法として、インターポーザと呼ばれる中間基板を介して、親プリント配線板であるマザー基板上に、半導体素子を実装する方法が広く用いられている。   Forming a large number of lands and wiring patterns on a printed wiring board so as to correspond to each pad of such a small and narrow pitch semiconductor element not only requires high technology but also leads to an increase in cost. It was. As a method of mounting a semiconductor element on a substrate using an existing mounting technique, a method of mounting a semiconductor element on a mother substrate which is a parent printed wiring board via an intermediate substrate called an interposer is widely used.

インターポーザとしては、主にセラミック基板と樹脂基板があり、セラミック基板は熱伝導性に優れ、樹脂基板はコストの面で利点がある。   As the interposer, there are mainly a ceramic substrate and a resin substrate. The ceramic substrate is excellent in thermal conductivity, and the resin substrate is advantageous in terms of cost.

また、近年では、更なる小型化の手法として、半導体素子や電子部品を基板に内蔵した三次元実装形態の部品内蔵基板も実現されている。部品内蔵基板はLCR等の部品を内蔵することで、CPUのクロック周波数の高速化や、通信周波数の高周波数化に伴うノイズ対策を実装面積を増加させずに行うことができるという利点がある。基板としては、セラミック基板を用いたもので半導体を収納する凹部を基板内に設け、三次元的に部品を配置した構造のものも出願されている(特許文献3参照)。   In recent years, as a technique for further miniaturization, a component-embedded substrate of a three-dimensional mounting form in which a semiconductor element and an electronic component are embedded in the substrate has been realized. Since the component-embedded substrate incorporates components such as LCR, there is an advantage that noise countermeasures associated with increasing the CPU clock frequency and the communication frequency can be performed without increasing the mounting area. As a substrate, a substrate using a ceramic substrate and having a structure in which a recess for housing a semiconductor is provided in the substrate and components are arranged three-dimensionally has been filed (see Patent Document 3).

なお、この出願の発明に関する先行技術文献情報としては、例えば、特許文献1〜3が知られている。   For example, Patent Documents 1 to 3 are known as prior art document information relating to the invention of this application.

特開平5−90486号公報Japanese Patent Laid-Open No. 5-90486 特開平11−204720号公報JP-A-11-204720 特開平5−82710号公報JP-A-5-82710

しかしながら、上述のチップサイズパッケージやスタックドパッケージによる構造においては、たとえば実用化に向けての開発・検証工程において設計変更が起きた際に、インターポーザやマザー基板を作り直さなければならず、設計変更に柔軟に対応することができない。商品によっては十数回の設計変更を繰り返し行って試作・評価を進めて商品化されるものもある。そのため、設計変更がある度に基板を作り直さなければならず、結果的に開発期間が長くなり、また開発コストも高くなってしまう。   However, in the structure using the above-mentioned chip size package or stacked package, for example, when a design change occurs in the development / verification process for practical use, the interposer and mother board must be recreated. It cannot respond flexibly. Some products may be commercialized by repeating design changes over a dozen times and proceeding with prototyping and evaluation. Therefore, the substrate must be recreated every time there is a design change, resulting in a longer development period and higher development costs.

また、従来の半導体パッケージの構造では、パッケージ完成後に特性や機能を変更するといった拡張性を持たせることはできない。たとえば携帯機器等のメモリ容量は、最初に実装された半導体素子の個数、もしくは実装した半導体素子そのもので決まってしまう。そのため、容量を増大し高機能化を図りたい場合でも、後から半導体素子の数を増やす、もしくは大容量の半導体素子と交換するなどの高機能化に対応することはできない。   Further, in the structure of the conventional semiconductor package, it is not possible to provide extensibility by changing characteristics and functions after the package is completed. For example, the memory capacity of a portable device or the like is determined by the number of semiconductor elements mounted first or the mounted semiconductor elements themselves. Therefore, even when it is desired to increase the capacity and increase the function, it is not possible to cope with the higher function such as increasing the number of semiconductor elements or replacing with a large capacity semiconductor element later.

さらに、部品内蔵技術による三次元実装では、内蔵した部品のリペアや、専用の設備導入によるコストアップが実用化の障害になっている。   Furthermore, in the three-dimensional mounting by the component built-in technology, repair of the built-in components and cost increase by introducing dedicated equipment are obstacles to practical use.

また、コストおよび信頼性の観点から、インターポーザはセラミック基板から樹脂基板への移行が進められつつある。   Further, from the viewpoint of cost and reliability, the interposer is being moved from a ceramic substrate to a resin substrate.

本発明は、このような課題のもとで考え出されたものであって、配線基板を部分的に多層化することで設計変更等に柔軟に対応できる複合配線基板を提供し、また、三次元実装可能で部品のリペアができる電子部品の実装体を提供することを目的とする。   The present invention has been conceived under such a problem, and provides a composite wiring board that can flexibly cope with a design change or the like by partially multilayering the wiring board. An object of the present invention is to provide an electronic component mounting body that can be mounted in the original and can be repaired.

上記目的を達成するために、本発明は、第一の電気絶縁性基材と前記第一の電気絶縁性基材に形成された配線パターンを有する第一の配線基板と、第二の電気絶縁性基材と前記第二の電気絶縁性基材に形成された配線パターンを有し、かつ少なくともその一部にキャビティを形成した第二の配線基板と、前記第一の配線基板と第二の配線基板を厚み方向に接着し、第一の配線基板の配線パターンと前記第二の配線基板の配線パターン間を電気的に接続する金属粒子と熱硬化性樹脂とを混合した導電性組成物からなる導電部を備え、かつ少なくともその一部にキャビティを形成した第三の電気絶縁性基材と、前記キャビティの底面に設けられた前記第一の配線基板の配線パターンと、を有する複合配線基板であり、これにより第一の配線基板を部分的に多層化することができ、設計変更等に対応できる配線基板を提供し、また回路部品を三次元的に配置できるキャビティ構造を有した配線基板を容易に作ることができる。   In order to achieve the above object, the present invention provides a first electrical insulating substrate, a first wiring substrate having a wiring pattern formed on the first electrically insulating substrate, and a second electrical insulation. A second wiring board having a wiring pattern formed on the conductive base material and the second electrically insulating base material and having a cavity formed in at least a part thereof, the first wiring board and the second wiring board From a conductive composition obtained by adhering a wiring board in the thickness direction and mixing a metal pattern and a thermosetting resin to electrically connect the wiring pattern of the first wiring board and the wiring pattern of the second wiring board And a wiring pattern of the first wiring board provided on the bottom surface of the cavity, and a composite wiring board having a conductive portion and a cavity formed in at least a part of the conductive part. With this, the first wiring board Min to be able to multi-layered, provide wiring board to accommodate design changes or the like, also can make the wiring board having a cavity structure which can be placed circuit component three-dimensionally easily.

以上のように、本発明の複合配線基板は、基板の任意の位置を容易に多層化して部品を三次元的に配置することができる複合配線基板を提供し、高密度・高機能で回路部品のリペアも可能な実装体が得られるという効果を奏するものである。   As described above, the composite wiring board of the present invention provides a composite wiring board in which components can be arranged in three dimensions by easily multilayering arbitrary positions of the board, and circuit components with high density and high functionality. Thus, it is possible to obtain a mounting body that can be repaired.

本発明の実施の形態1における複合配線基板を示す断面図Sectional drawing which shows the composite wiring board in Embodiment 1 of this invention 本発明の実施の形態1における複合配線基板を示す平面図The top view which shows the composite wiring board in Embodiment 1 of this invention 本発明の実施の形態1における転写シートを使った配線パターンの一例を示す工程断面図Process sectional drawing which shows an example of the wiring pattern using the transfer sheet in Embodiment 1 of this invention 本発明の第二の配線基板に形成されたキャビティの一例を示す斜視図The perspective view which shows an example of the cavity formed in the 2nd wiring board of this invention 本発明の第二の配線基板に形成されたキャビティの一例を示す平面図The top view which shows an example of the cavity formed in the 2nd wiring board of this invention 本発明の実施の形態2における複合配線基板を示す断面図Sectional drawing which shows the composite wiring board in Embodiment 2 of this invention 本発明の実施の形態3における複合配線基板を示す断面図Sectional drawing which shows the composite wiring board in Embodiment 3 of this invention 本発明の実施の形態4における電子部品の実装体を示す断面図Sectional drawing which shows the mounting body of the electronic component in Embodiment 4 of this invention 本発明のキャビティ構造を有し、部分的に多層化した複合配線基板を使った電子部品の実装体の一例を示す平面図The top view which shows an example of the mounting body of the electronic component using the composite wiring board which has the cavity structure of this invention, and was partially multilayered 本発明のキャビティ構造を有し、部分的に多層化した複合配線基板を使った電子部品の実装体の一例を示す断面図Sectional drawing which shows an example of the mounting body of the electronic component using the composite wiring board which has the cavity structure of this invention and was multilayered partially 本発明の実施の形態5における電子部品の実装体を示す断面図Sectional drawing which shows the mounting body of the electronic component in Embodiment 5 of this invention 本発明の実施の形態6における複合配線基板の製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of the composite wiring board in Embodiment 6 of this invention 本発明の実施の形態7における複合配線基板の製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of the composite wiring board in Embodiment 7 of this invention 本発明の実施の形態8における複合配線基板の製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of the composite wiring board in Embodiment 8 of this invention 本発明の実施の形態9における電子部品の実装体の製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of the mounting body of the electronic component in Embodiment 9 of this invention 本発明の実施の形態10における電子部品の実装体の製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of the mounting body of the electronic component in Embodiment 10 of this invention

(実施の形態1)
以下、実施の形態1を用いて、本発明の特に請求項1、4〜9に記載の発明について図面を参照しながら説明する。
(Embodiment 1)
Hereinafter, the first embodiment of the present invention will be described with reference to the drawings.

図1は、本実施の形態1における複合配線基板の断面図である。図1において、第一の配線基板4は、第一の電気絶縁性基材1と、この第一の電気絶縁性基材1の両面に形成された配線パターン2と、この両面の配線パターン間を電気的に接続する導電部3からなる。第二の配線基板10は第二の電気絶縁性基材7と、この第二の電気絶縁性基材に形成された配線パターン8と、この両面の配線パターン間を電気的に接続する導電部9からなり、かつ少なくともその一部にキャビティ20を形成している。また、第三の電気絶縁性基材5は、第一の配線基板4と第二の配線基板10とを接着し、第一の配線基板4の配線パターン2と前記第二の配線基板10の配線パターン8との間を電気的に接続する導電部6を備え、かつ少なくともその一部にキャビティ20を形成したものである。   FIG. 1 is a cross-sectional view of the composite wiring board according to the first embodiment. In FIG. 1, a first wiring board 4 includes a first electrically insulating substrate 1, a wiring pattern 2 formed on both surfaces of the first electrically insulating substrate 1, and the wiring patterns on both surfaces. It consists of the conductive part 3 which electrically connects. The second wiring board 10 includes a second electrically insulating substrate 7, a wiring pattern 8 formed on the second electrically insulating substrate, and a conductive portion that electrically connects the wiring patterns on both sides. 9 and a cavity 20 is formed at least at a part thereof. The third electrically insulating base material 5 bonds the first wiring board 4 and the second wiring board 10, and the wiring pattern 2 of the first wiring board 4 and the second wiring board 10. A conductive portion 6 that is electrically connected to the wiring pattern 8 is provided, and a cavity 20 is formed at least at a part thereof.

なお、第一の配線基板4は、配線パターン2を第三の電気絶縁性基材5を接着する面のみに形成してもよい。   Note that the first wiring board 4 may be formed with the wiring pattern 2 only on the surface to which the third electrically insulating substrate 5 is bonded.

また、本発明における複合配線基板の平面図を示すと、図2のようになる。   A plan view of the composite wiring board in the present invention is as shown in FIG.

第一と第二の配線基板4、10は、ガラス織物にエポキシ樹脂を含浸させた基板(ガラス−エポキシ基板)、アラミド繊維不織布にエポキシ樹脂を含浸させた基板(アラミド−エポキシ基板)、紙にフェノール樹脂を含浸させた基板(紙−フェノール基板)、多孔質のフィルム基材に未硬化のエポキシ樹脂を空孔が残るように含浸させたフィルム基材を使ったフレキシブル基板、セラミックス基板など任意の基板から目的に応じて選択し使用できる。可撓性を有するフィルム基材を使った基板を用いた場合、屈曲性に優れた配線基板が得られ、外部ストレス等による変形を吸収することができるため信頼性の高い複合配線基板が得られる。   The first and second wiring boards 4 and 10 are a substrate in which a glass fabric is impregnated with an epoxy resin (glass-epoxy substrate), a substrate in which an aramid fiber nonwoven fabric is impregnated with an epoxy resin (aramid-epoxy substrate), paper Any substrate such as a substrate impregnated with a phenolic resin (paper-phenolic substrate), a flexible substrate using a film base material in which a porous film base material is impregnated with an uncured epoxy resin so that pores remain, a ceramic substrate, etc. It can be selected and used from the substrate according to the purpose. When a substrate using a flexible film substrate is used, a wiring substrate with excellent flexibility can be obtained, and deformation due to external stress can be absorbed, so that a highly reliable composite wiring substrate can be obtained. .

配線パターン2および8は、電気伝導性を有する物質からなり、例えば金属箔や導電性樹脂組成物、金属板を加工したリードフレームを用いることができる。金属箔やリードフレームを用いることにより、エッチング等により微細な配線パターンの作成が容易となる。また、金属箔においては、離型フィルムを用いた転写等による配線パターンの形成も可能となる。特に銅箔はコストも安く、電気伝導性も高いため好ましい。また、離型フィルム上に配線パターンを形成することにより、配線パターンが取り扱いやすくなる。   The wiring patterns 2 and 8 are made of a material having electrical conductivity. For example, a metal foil, a conductive resin composition, or a lead frame processed from a metal plate can be used. By using a metal foil or a lead frame, a fine wiring pattern can be easily created by etching or the like. In addition, in the metal foil, a wiring pattern can be formed by transfer using a release film. In particular, copper foil is preferable because it is inexpensive and has high electrical conductivity. Moreover, a wiring pattern becomes easy to handle by forming a wiring pattern on a release film.

また、導電性樹脂組成物を用いることにより、スクリーン印刷等による、配線パターンの製作が可能となる。リードフレームを用いることにより、電気抵抗の低い、厚みのある金属を使用できる。また、エッチングによる微細パターン化や打ち抜き加工等の簡易な製造法が使える。また、これらの配線パターン2および8は表面にメッキ処理をする事により、耐食性や電気伝導性を向上させることができる。また、配線パターン2および8の第三の電気絶縁性基材5との接触面を粗化することで、第三の電気絶縁性基材5との接着性を向上させることができる。粗化の処理は、反応性ガスを用いたドライエッチング加工、サンドブラストによる機械加工、および電解エッチング加工が挙げられる。   Further, by using the conductive resin composition, it is possible to produce a wiring pattern by screen printing or the like. By using a lead frame, it is possible to use a metal having a low electric resistance and a large thickness. Further, a simple manufacturing method such as fine patterning by etching or punching can be used. Moreover, these wiring patterns 2 and 8 can improve corrosion resistance and electrical conductivity by plating the surface. Moreover, the adhesiveness with the 3rd electrical insulation base material 5 can be improved by roughening the contact surface with the 3rd electrical insulation base material 5 of the wiring patterns 2 and 8. FIG. Examples of the roughening treatment include dry etching using a reactive gas, machining by sandblasting, and electrolytic etching.

また、配線パターン2および8は、保持基材と配線層を含む配線転写シート22を用いて形成することができる。ここで、図3(a)〜(c)に配線転写シートを使った配線パターン形成の一例を、断面図により示す。まず、図3(a)に示すように、保持基材21上に配線パターン2が形成された配線転写シート22を準備する。次に、図3(b)に示すように被転写物である第一の電気絶縁性基材1に積層し、配線パターン2を第一の電気絶縁性基材1に埋設する。次に図3(c)に示すように、保持基材21を除去し、第一の電気絶縁性基材1に配線パターン2を形成する。   The wiring patterns 2 and 8 can be formed using a wiring transfer sheet 22 including a holding base material and a wiring layer. Here, FIGS. 3A to 3C are cross-sectional views showing an example of wiring pattern formation using a wiring transfer sheet. First, as shown in FIG. 3A, a wiring transfer sheet 22 having a wiring pattern 2 formed on a holding substrate 21 is prepared. Next, as shown in FIG. 3B, the substrate is laminated on the first electrically insulating substrate 1 that is a transfer object, and the wiring pattern 2 is embedded in the first electrically insulating substrate 1. Next, as shown in FIG. 3C, the holding substrate 21 is removed, and the wiring pattern 2 is formed on the first electrically insulating substrate 1.

保持基材21は、配線層を転写する際に配線転写シート22と被転写物との積層体を加熱加圧することによって、被転写物である電気絶縁性基材と互いに相溶しない材料から成ることが好ましい。保持基材21の材料は電気絶縁性基材の材料に応じて、有機樹脂および金属から選択される。電気絶縁性基材がエポキシ樹脂、ポリイミド樹脂、シアネート樹脂、ポリフェニレンエーテル(PPE)樹脂、またはポリテトラフルオロエチレン(PTFE)樹脂を含む場合、保持基材は、ポリイミド、フッ素系樹脂、および耐熱性エポキシ樹脂から選択される材料で構成することが好ましい。さらに、保持基材21は、配線転写後、保持基材21を除去する工程において、配線層から良好に剥離するような材料で形成されることが好ましい。その観点からも、保持基材21は前述のポリイミドまたはフッ素系樹脂等から成ることが好ましい。   The holding base material 21 is made of a material that is incompatible with the electrically insulating base material to be transferred by heating and pressing the laminate of the wiring transfer sheet 22 and the transfer target when transferring the wiring layer. It is preferable. The material of the holding substrate 21 is selected from an organic resin and a metal according to the material of the electrically insulating substrate. When the electrically insulating substrate includes an epoxy resin, a polyimide resin, a cyanate resin, a polyphenylene ether (PPE) resin, or a polytetrafluoroethylene (PTFE) resin, the holding substrate is a polyimide, a fluorine-based resin, and a heat-resistant epoxy. It is preferable to use a material selected from resins. Furthermore, it is preferable that the holding base material 21 is formed of a material that can be satisfactorily peeled from the wiring layer in the step of removing the holding base material 21 after wiring transfer. Also from this viewpoint, the holding substrate 21 is preferably made of the above-described polyimide or fluorine-based resin.

保持基材21を熱硬化性樹脂で構成する場合には、保持基材21を構成する樹脂と第一の電気絶縁性基材1を構成する樹脂との相溶性に注意する必要がある。例えば、保持基材21をエポキシ樹脂で構成し、第一の電気絶縁性基材1がエポキシ樹脂を含む場合、保持基材21のエポキシ樹脂が十分に硬化していないと、配線転写工程を実施している間にエポキシ樹脂の粘度が低下し、第一の電気絶縁性基材1のエポキシ樹脂と混ざり合って、保持基材21と第一の電気絶縁性基材1が剥がれにくくなり、良好な配線パターンを形成できなくなることがある。保持基材21が熱可塑性樹脂で構成されている場合も、熱可塑性樹脂が軟化する条件で配線転写工程を実施すると、同様の問題が生じ得る。したがって、保持基材21として熱可塑性樹脂シートを使用する場合には、当該シートは耐熱性であることを要する。   When the holding substrate 21 is composed of a thermosetting resin, it is necessary to pay attention to the compatibility between the resin constituting the holding substrate 21 and the resin constituting the first electrically insulating substrate 1. For example, when the holding substrate 21 is made of an epoxy resin and the first electrically insulating substrate 1 contains an epoxy resin, the wiring transfer process is performed if the epoxy resin of the holding substrate 21 is not sufficiently cured. During this process, the viscosity of the epoxy resin is reduced and mixed with the epoxy resin of the first electrically insulative base material 1 so that the holding base material 21 and the first electrically insulative base material 1 are hardly peeled off. A difficult wiring pattern may not be formed. Even when the holding base material 21 is made of a thermoplastic resin, the same problem may occur if the wiring transfer process is performed under the condition that the thermoplastic resin is softened. Therefore, when a thermoplastic resin sheet is used as the holding substrate 21, the sheet needs to be heat resistant.

保持基材21の厚さは、その材料に応じて適宜選択される。一般には、10〜100μmとすることが好ましい。保持基材21が薄い場合には、ハンドリング性が悪くなる、強度が低下する、ならびに基材にしわが発生しやすいといった問題が生じる傾向にある。保持基材21が厚すぎる場合には、保持基材21を機械的に剥離しにくい傾向にある。   The thickness of the holding substrate 21 is appropriately selected according to the material. Generally, it is preferable to set it as 10-100 micrometers. When the holding base material 21 is thin, there is a tendency that the handling properties are deteriorated, the strength is lowered, and the base material is likely to be wrinkled. If the holding substrate 21 is too thick, the holding substrate 21 tends to be difficult to mechanically peel off.

保持基材21は、可視光が透過できる材料から成ることが好ましい。そのような材料として、ポリイミド樹脂、フッ素系樹脂および耐熱性エポキシ樹脂が挙げられる。これらの樹脂で保持基材21を構成する場合、その厚さは100μm以下とすることが、可視光の透過性を確保するうえで好ましい。   The holding substrate 21 is preferably made of a material that can transmit visible light. Examples of such a material include a polyimide resin, a fluorine resin, and a heat resistant epoxy resin. In the case where the holding base material 21 is composed of these resins, the thickness is preferably 100 μm or less in order to ensure visible light transmission.

保持基材21の配線層を形成する表面には、離型処理を施してもよい。離型処理を施すことによって、配線層を転写した後で、保持基材21を被転写物から容易に剥離することができる。離型処理は、例えばシリコン樹脂を、0.01〜1μmの厚さとなるように保持基材21の配線層を形成する表面に塗布して実施する。   The surface of the holding substrate 21 on which the wiring layer is formed may be subjected to a release treatment. By performing the mold release treatment, the holding substrate 21 can be easily peeled off from the transfer object after the wiring layer is transferred. The mold release treatment is performed by, for example, applying a silicone resin to the surface of the holding substrate 21 on which the wiring layer is formed so as to have a thickness of 0.01 to 1 μm.

保持基材21を金属で形成する場合、保持基材21を構成する金属と配線層を構成する金属とは、それぞれ選択的に除去できるものであることが好ましい。それにより、配線層を転写した後、保持基材21だけをエッチングで除去することができる。保持基材/配線層の組合せとしては、例えば、アルミニウム/銅、およびステンレス/銅等が挙げられる。保持基材21を構成する金属と配線層を構成する金属が、それぞれ選択的に除去できないものである場合、保持基材21と配線層との間に、エッチングストップ層を設けることが好ましい。エッチングストップ層を構成する材料は、保持基材21と配線の組合せおよびエッチング液の種類に応じて、適宜選択される。例えば、保持基材/配線層の組合せが、銅/銅であって、保持基材を、硫酸過水を使用するエッチングにより除去する場合、エッチングストップ層はチタンから成る層であることが好ましい。   When the holding substrate 21 is formed of metal, it is preferable that the metal constituting the holding substrate 21 and the metal constituting the wiring layer can be selectively removed. Thereby, after the wiring layer is transferred, only the holding substrate 21 can be removed by etching. Examples of the combination of the holding substrate / wiring layer include aluminum / copper and stainless steel / copper. In the case where the metal constituting the holding substrate 21 and the metal constituting the wiring layer cannot be selectively removed, it is preferable to provide an etching stop layer between the holding substrate 21 and the wiring layer. The material constituting the etching stop layer is appropriately selected according to the combination of the holding substrate 21 and the wiring and the kind of the etching solution. For example, when the holding substrate / wiring layer combination is copper / copper and the holding substrate is removed by etching using sulfuric acid / hydrogen peroxide, the etching stop layer is preferably a layer made of titanium.

第一の配線基板4と第二の配線基板10の導電部3および9は、スルーホールまたはビアからなり、スルーホールは、主として、上側表面の配線パターンと下側表面の配線パターンとの間の電気的な接続を行うための貫通孔のことを意味し、孔加工後にめっきすることでスルーホールを形成することができる。めっきは金、銀、銅またはニッケルなどを用いることができる。ビアは、配線パターン間を電気的に接続する貫通孔を意味し、主として、多層配線基板の絶縁層の両側の配線パターン間を電気的に接続するために形成されるものを意味する。   The conductive portions 3 and 9 of the first wiring board 4 and the second wiring board 10 are formed of through holes or vias, and the through holes are mainly between the wiring pattern on the upper surface and the wiring pattern on the lower surface. It means a through-hole for electrical connection, and a through-hole can be formed by plating after drilling. For the plating, gold, silver, copper, nickel, or the like can be used. The via means a through hole that electrically connects the wiring patterns, and mainly means that is formed to electrically connect the wiring patterns on both sides of the insulating layer of the multilayer wiring board.

貫通孔の形成は、たとえばパンチ加工、ドリル加工、レーザ加工によって形成する。レーザ加工の光源には、炭酸ガスレーザやYAGレーザ、エキシマレーザが用いられる。レーザ加工では、小径の貫通孔を短時間で形成することができ、生産性に優れた加工を実現できる。また、ドリル加工やパンチング加工の場合、汎用性のある既存の設備でビアの形成が可能である。   The through hole is formed by, for example, punching, drilling, or laser processing. A carbon dioxide laser, YAG laser, or excimer laser is used as a light source for laser processing. In laser processing, a small-diameter through hole can be formed in a short time, and processing with excellent productivity can be realized. Further, in the case of drilling or punching, vias can be formed with existing versatile equipment.

第三の電気絶縁性基材の導電部6はビアであり、第一の配線基板4の導電部3と第二の配線基板10の導電部9がビアである場合、ビアはたとえば熱硬化性の導電性物質からなるビアでもよい。熱硬化性の導電性物質としては、たとえば、金属粒子と熱硬化性樹脂とを混合した導電性樹脂組成物を用いることができる。金属粒子としては、金、銀、銅又はニッケルなどを用いることができる。金、銀、銅又はニッケルは導電性が高いため好ましく、銅は導電性が高くマイグレーションも少ないため特に好ましい。銅を銀で被覆した金属粒子を用いても、マイグレーションの少なさと導電性の高さ、両方の特性を満たすことができる。熱硬化性樹脂としては、たとえば、エポキシ樹脂、フェノール樹脂又はイソシアネート樹脂を用いることができる。エポキシ樹脂は、耐熱性が高いため特に好ましい。   When the conductive portion 6 of the third electrically insulating substrate is a via, and the conductive portion 3 of the first wiring board 4 and the conductive portion 9 of the second wiring board 10 are vias, the via is, for example, thermosetting. Vias made of any conductive material may be used. As the thermosetting conductive substance, for example, a conductive resin composition in which metal particles and a thermosetting resin are mixed can be used. As the metal particles, gold, silver, copper, nickel, or the like can be used. Gold, silver, copper, or nickel is preferable because of its high conductivity, and copper is particularly preferable because of its high conductivity and low migration. Even when metal particles in which copper is coated with silver are used, the characteristics of both low migration and high conductivity can be satisfied. As the thermosetting resin, for example, an epoxy resin, a phenol resin, or an isocyanate resin can be used. Epoxy resins are particularly preferred because of their high heat resistance.

第三の電気絶縁性基材5は、例えば、絶縁性樹脂及びフィラと絶縁性樹脂の混合物等を用いることができる。電気絶縁基材は、樹脂とフィラを含み、フィラ含量が50質量%以上95質量%以下であることが好ましい。また、ガラスクロス等の補強材があってもよい。絶縁性樹脂としては、熱硬化性樹脂や、熱可塑樹脂、光硬化性樹脂等を用いることができ、耐熱性の高いエポキシ樹脂やフェノール樹脂、イソシアネート樹脂を用いることにより、第三の電気絶縁性基材5の耐熱性をあげることができる。また、誘電正接の低いフッ素樹脂例えばポリテトラフルオロエチレン(PTFE樹脂、)、PPO(ポリフェニレンオキサイド)樹脂(PPE(ポリフェニレンエーテル)樹脂ともいう)、液晶ポリマーを含むもしくはそれらの樹脂を変性させた樹脂を用いることにより、第三の電気絶縁性基材5の高周波特性が向上する。また、第三の電気絶縁性基材5は、室温における弾性率が0.6〜10GPaであるものを用いる。弾性率は、フィラ含有量により調整することができ、これにより、絶縁性樹脂のはみ出しを制御することができる。   As the third electrically insulating substrate 5, for example, an insulating resin and a mixture of a filler and an insulating resin can be used. The electrically insulating substrate contains a resin and a filler, and the filler content is preferably 50% by mass or more and 95% by mass or less. There may also be reinforcing materials such as glass cloth. As the insulating resin, a thermosetting resin, a thermoplastic resin, a photocurable resin, or the like can be used. By using an epoxy resin, a phenol resin, or an isocyanate resin having high heat resistance, the third electrical insulating property can be obtained. The heat resistance of the substrate 5 can be increased. In addition, a fluororesin having a low dielectric loss tangent, such as polytetrafluoroethylene (PTFE resin), PPO (polyphenylene oxide) resin (also referred to as PPE (polyphenylene ether) resin), a resin containing a liquid crystal polymer, or a resin obtained by modifying these resins is used. By using it, the high frequency characteristics of the third electrically insulating substrate 5 are improved. The third electrically insulating substrate 5 is one having an elastic modulus at room temperature of 0.6 to 10 GPa. The elastic modulus can be adjusted by the filler content, whereby the protrusion of the insulating resin can be controlled.

第三の電気絶縁性基材5として、フィラと絶縁性樹脂の混合物を用いた場合、フィラ及び絶縁性樹脂を選択することによって、第三の電気絶縁性基材5の熱膨張係数、熱伝導度、誘電率などを容易に制御することができる。たとえば、フィラとしてアルミナ、マグネシア、窒化ホウ素、窒化アルミ、窒化珪素、ポリテトラフルオロエチレン及び、シリカなどを用いることができる。アルミナ、窒化ホウ素、窒化アルミを用いることにより、従来のガラス−エポキシ基板より熱伝導度の高い基板が製作可能となり、複合配線基板の放熱特性を向上させることができる。また、アルミナはコストが安いという利点もある。シリカを用いた場合、誘電率が低い第三の電気絶縁性基材5が得られ、比重も軽いため、携帯電話などの高周波用途として好ましい。窒化珪素やポリテトラフルオロエチレン、例えば“テフロン(登録商標)”を用いても誘電率の低い電気絶縁層を形成できる。また、窒化ホウ素を用いることにより熱膨張係数を低減できる。   When a mixture of filler and insulating resin is used as the third electrically insulating substrate 5, by selecting the filler and the insulating resin, the coefficient of thermal expansion and heat conduction of the third electrically insulating substrate 5 are selected. The degree, dielectric constant, etc. can be easily controlled. For example, alumina, magnesia, boron nitride, aluminum nitride, silicon nitride, polytetrafluoroethylene, silica, or the like can be used as the filler. By using alumina, boron nitride, or aluminum nitride, a substrate having higher thermal conductivity than that of a conventional glass-epoxy substrate can be manufactured, and heat dissipation characteristics of the composite wiring substrate can be improved. Alumina also has the advantage of low cost. When silica is used, the third electrically insulating substrate 5 having a low dielectric constant is obtained, and the specific gravity is light. Therefore, it is preferable for high-frequency applications such as cellular phones. Even when silicon nitride or polytetrafluoroethylene, for example, “Teflon (registered trademark)” is used, an electrical insulating layer having a low dielectric constant can be formed. Moreover, the thermal expansion coefficient can be reduced by using boron nitride.

第三の電気絶縁性基材5はさらに、分散剤、着色剤、カップリング剤又は離型剤を含んでいてもよい。分散剤によって、絶縁性樹脂中のフィラを均一性よく分散させることができる。着色剤によって、電気絶縁層を着色することができるため、自動認識装置の利用が容易となる。カップリング剤によって、絶縁性樹脂とフィラとの接着強度を高くすることができるため、第三の電気絶縁性基材5の絶縁性を向上できる。離型剤によって、金型と混合物との離型性を向上させることができるため、製造工程における取り扱いが容易になり、生産性が向上する。   The third electrically insulating substrate 5 may further contain a dispersant, a colorant, a coupling agent, or a release agent. The filler in the insulating resin can be dispersed with good uniformity by the dispersant. Since the electrical insulating layer can be colored with the colorant, the automatic recognition device can be easily used. Since the bonding agent can increase the adhesive strength between the insulating resin and the filler, the insulating property of the third electrically insulating substrate 5 can be improved. The mold release agent can improve the mold releasability between the mold and the mixture, which facilitates handling in the manufacturing process and improves productivity.

また、第三の電気絶縁性基材5は、第一および第二の配線基板4および10と熱膨張係数が異なるものを用いることができる。これにより、熱が加えられた時に生じる寸法変化が第一の配線基板4と第二の配線基板10で相違があった場合、全体に反りが発生し、第一と第二の配線基板間を電気的に接続する導電部6に応力が集中する原因となるが、第三の電気絶縁性基材5により応力を緩和するので第一と第二の配線基板間の電気的な接続を良好に維持することができる。   In addition, as the third electrically insulating base material 5, a material having a thermal expansion coefficient different from that of the first and second wiring boards 4 and 10 can be used. Thereby, when there is a difference between the first wiring board 4 and the second wiring board 10 when the dimensional change caused when heat is applied, the entire board is warped, and the first and second wiring boards are separated from each other. This causes stress to concentrate on the electrically connected conductive part 6, but since the stress is relieved by the third electrically insulating substrate 5, the electrical connection between the first and second wiring boards is improved. Can be maintained.

キャビティ20の形成は、たとえば打ち抜き加工やパンチ加工、レーザ加工によって行う。打ち抜き加工やパンチング加工の場合、汎用性のある既存の設備でキャビティ20の形成が可能である。キャビティ20の一例を、斜視図にて図4に示す。また、上方から見た平面図にて、図5に示す。図5に示すようにキャビティ20は基板内に複数個形成してもよい。キャビティ20の形状は角型、丸型、菱型等が挙げられるが、特に限定されるものではない。   The cavity 20 is formed by, for example, punching, punching, or laser processing. In the case of punching or punching, the cavity 20 can be formed by existing versatile equipment. An example of the cavity 20 is shown in a perspective view in FIG. Moreover, it shows in FIG. 5 with the top view seen from upper direction. As shown in FIG. 5, a plurality of cavities 20 may be formed in the substrate. Examples of the shape of the cavity 20 include a square shape, a round shape, and a diamond shape, but are not particularly limited.

また、本実施の形態において、第二の配線基板10に形成されたキャビティ20の面積は、第三の電気絶縁性基材5に形成されたキャビティ20の面積と同じかあるいはそれよりも大きい面積であるので、これにより、外部ストレスが加わった場合、キャビティ近傍の変形や応力は第三の電気絶縁性基材により吸収されるため、より信頼性の高い配線基板が得られる。   In the present embodiment, the area of the cavity 20 formed in the second wiring substrate 10 is the same as or larger than the area of the cavity 20 formed in the third electrically insulating substrate 5. Therefore, when external stress is applied, deformation and stress in the vicinity of the cavity are absorbed by the third electrically insulating base material, so that a more reliable wiring board can be obtained.

以上より、第一の配線基板4を部分的に多層化し変更できるため、部品の配置や部品の変更等の設計変更があっても第一の配線基板4を作り直すことなくそのまま使用することができる。したがって、開発時間の短縮やローコスト化ができる。   As described above, since the first wiring board 4 can be partially layered and changed, the first wiring board 4 can be used as it is without being remade even if there is a design change such as arrangement of parts or change of parts. . Therefore, the development time can be shortened and the cost can be reduced.

(実施の形態2)
以下、本発明の実施の形態2について、本発明の特に請求項2に記載の発明について、図面を参照しながら説明する。なお、実施の形態1と同一の構造については、同一番号を付与してその説明を省略する。
(Embodiment 2)
Hereinafter, the second embodiment of the present invention will be described with reference to the drawings. In addition, about the structure same as Embodiment 1, the same number is provided and the description is abbreviate | omitted.

図6は、本実施の形態2における複合配線基板の断面図である。図6において、第一の配線基板4は、第一の電気絶縁性基材1と、この第一の電気絶縁性基材1の両面に形成された配線パターン2と、この両面の配線パターン間を電気的に接続する導電部3からなる。第二の配線基板10は第二の電気絶縁性基材7と、この第二の電気絶縁性基材に形成された配線パターン8と、この両面の配線パターン間を電気的に接続する導電部9からなり、かつ少なくともその一部にキャビティ20を形成している。また、第三の電気絶縁性基材5は、第一の配線基板4と接着し、第一の配線基板4の配線パターン2と前記第二の配線基板10の配線パターン8間を電気的に接続する導電部6を備え、かつ少なくともその一部にキャビティ20を形成したものである。また、第三の電気絶縁性基材5の片面には接着層19が形成されている。   FIG. 6 is a cross-sectional view of the composite wiring board according to the second embodiment. In FIG. 6, the first wiring board 4 includes a first electrically insulating substrate 1, a wiring pattern 2 formed on both surfaces of the first electrically insulating substrate 1, and a wiring pattern between the both surfaces. It consists of the conductive part 3 which electrically connects. The second wiring board 10 includes a second electrically insulating substrate 7, a wiring pattern 8 formed on the second electrically insulating substrate, and a conductive portion that electrically connects the wiring patterns on both sides. 9 and a cavity 20 is formed at least at a part thereof. The third electrically insulating base material 5 is bonded to the first wiring board 4 and electrically connects the wiring pattern 2 of the first wiring board 4 and the wiring pattern 8 of the second wiring board 10. A conductive portion 6 to be connected is provided, and a cavity 20 is formed at least at a part thereof. An adhesive layer 19 is formed on one side of the third electrically insulating substrate 5.

接着層19は、熱硬化性および光硬化性の樹脂からなる接着剤である。そのような材料として、ポリイミド樹脂、フッ素系樹脂および耐熱性エポキシ樹脂が挙げられる。接着層はシート状のものを貼り付けても、ペースト状のものを印刷工法などによって塗布してもよい。樹脂の硬化温度は低温であることが好ましい。   The adhesive layer 19 is an adhesive made of a thermosetting and photocurable resin. Examples of such a material include a polyimide resin, a fluorine resin, and a heat resistant epoxy resin. The adhesive layer may be a sheet-like material, or a paste-like material may be applied by a printing method or the like. The curing temperature of the resin is preferably low.

この構成により第三の電気絶縁性基材を完全に硬化させた状態で接着剤と接合することができ、その結果、基板に発生する反りが抑えられる。   With this configuration, the third electrically insulating substrate can be bonded to the adhesive in a completely cured state, and as a result, warpage generated on the substrate can be suppressed.

(実施の形態3)
以下、本発明の実施の形態3について、本発明の特に請求項3に記載の発明について、図面を参照しながら説明する。なお、実施の形態1と同一の構造については、同一番号を付与してその説明を省略する。
(Embodiment 3)
Hereinafter, the third embodiment of the present invention will be described with reference to the drawings. In addition, about the structure same as Embodiment 1, the same number is provided and the description is abbreviate | omitted.

図7は、本実施の形態3における部品内蔵基板の断面図である。図7において、第一の配線基板4は、第一の電気絶縁性基材1と、この第一の電気絶縁性基材の両面に形成された配線パターン2と、この両面の配線パターン間を電気的に接続する導電部3からなり、全層IVH(Interstitial Via Hole)構造を有した多層配線基板である。第二の配線基板10は、第二の電気絶縁性基材7と、この第二の電気絶縁性基材の両面に形成された配線パターン8と、この両面の配線パターン間を電気的に接続する導電部9からなり、かつ少なくともその一部にキャビティ20を形成している。また、第三の電気絶縁性基材5は第一の配線基板4と第二の配線基板10を接着し、第一の配線基板4の配線パターン2と前記第二の配線基板10の配線パターン8との間を電気的に接続する導電部6を備え、かつ少なくともその一部にキャビティ20を形成したものである。   FIG. 7 is a cross-sectional view of the component-embedded substrate according to the third embodiment. In FIG. 7, the first wiring board 4 includes a first electrically insulating substrate 1, a wiring pattern 2 formed on both surfaces of the first electrically insulating substrate, and a space between the wiring patterns on both surfaces. This is a multilayer wiring board having a conductive layer 3 that is electrically connected and having an all layer IVH (interstitial via hole) structure. The second wiring board 10 is electrically connected between the second electrically insulating substrate 7, the wiring pattern 8 formed on both surfaces of the second electrically insulating substrate, and the wiring patterns on both surfaces. The cavity 20 is formed in at least a part thereof. The third electrically insulating substrate 5 bonds the first wiring board 4 and the second wiring board 10, and the wiring pattern 2 of the first wiring board 4 and the wiring pattern of the second wiring board 10. 8 is provided with a conductive portion 6 that is electrically connected to 8 and a cavity 20 is formed at least at a part thereof.

第一と第二の配線基板4、10は、ガラス織物にエポキシ樹脂を含浸させた基板(ガラス−エポキシ基板)、アラミド繊維不織布にエポキシ樹脂を含浸させた基板(アラミド−エポキシ基板)、紙にフェノール樹脂を含浸させた基板(紙−フェノール基板)、多孔質のフィルム基材に未硬化のエポキシ樹脂を空孔が残るように含浸させたフィルム基材を使ったフレキシブル基板、セラミックス基板など任意の基板から目的に応じて選択し使用できる。全層IVH構造の配線基板としては、ALIVH基板や、ビルドアップ基板を用いることができる。これにより、配線長が短く、高い配線収容性を有した部品内蔵基板を得ることができる。   The first and second wiring boards 4 and 10 are a substrate in which a glass fabric is impregnated with an epoxy resin (glass-epoxy substrate), a substrate in which an aramid fiber nonwoven fabric is impregnated with an epoxy resin (aramid-epoxy substrate), paper Any substrate such as a substrate impregnated with a phenolic resin (paper-phenolic substrate), a flexible substrate using a film base material in which a porous film base material is impregnated with an uncured epoxy resin so that pores remain, a ceramic substrate, etc. It can be selected and used from the substrate according to the purpose. As the wiring substrate having an all-layer IVH structure, an ALIVH substrate or a build-up substrate can be used. As a result, it is possible to obtain a component-embedded substrate having a short wiring length and high wiring capacity.

(実施の形態4)
以下、本発明の実施の形態4について、本発明の特に請求項10、12、13に記載の発明について、図面を参照しながら説明する。なお、実施の形態1と同一の構造については、同一番号を付与してその説明を省略する。
(Embodiment 4)
Hereinafter, the fourth embodiment of the present invention will be described with reference to the drawings. In addition, about the structure same as Embodiment 1, the same number is provided and the description is abbreviate | omitted.

図8は、本実施の形態4における電子部品の実装体の断面図である。図8において、回路部品(半導体素子)11は、第一の配線基板4上に接続電極13とアンダーフィル14により実装され、第三の電気絶縁性基材5と第二の配線基板10に形成されたキャビティ20内に配置されている。別の回路部品12(半導体素子)は、第二の配線基板10に形成されたキャビティ20を跨ぎ、回路部品11が厚み方向に積層されるように接続電極15により実装されている。また、さらに別の回路部品16は、半田17により第二の配線基板10上に実装されている。   FIG. 8 is a cross-sectional view of the electronic component mounting body according to the fourth embodiment. In FIG. 8, a circuit component (semiconductor element) 11 is mounted on the first wiring substrate 4 by the connection electrode 13 and the underfill 14, and is formed on the third electrically insulating base 5 and the second wiring substrate 10. In the cavity 20 formed. Another circuit component 12 (semiconductor element) is mounted by connection electrodes 15 so as to straddle the cavity 20 formed in the second wiring substrate 10 and to be laminated in the thickness direction. Further, another circuit component 16 is mounted on the second wiring board 10 with solder 17.

第一の配線基板4と第二の配線基板10は実施の形態1と同様であるので説明を省略する。   Since the first wiring board 4 and the second wiring board 10 are the same as those in the first embodiment, the description thereof is omitted.

回路部品11、12は、トランジスタ、IC、LSIなどの半導体素子が用いられる。半導体素子は、ベアチップであってもよい。一般的なフリップチップ実装の場合、接続電極13、15はバンプと呼ばれる突起状電極を介して電気的接続がなされる。バンプは、半田や金、銅の金属を用いることができ、ワイヤーボンディングや、メッキ、印刷等により形成できる。半導体ベアチップと配線基板間の接続電極13にアンダーフィル14を注入することによって、接続部に集中する応力を面方向に分散させ、実装信頼性の向上を図ることができる。また、アンダーフィルの替わりに導電性接着剤、異方性導電フィルム(ACF)、非導電性フィルム(NCF)を用いてもよい。実施の形態4では、フリップチップ実装による実装状態を示しているが、本発明はこれに限定されない。Auワイヤーを用いたワイヤーボンディング接続による実装でもよいし、接続電極として、リード端子を有した半導体パッケージでもよい。   As the circuit components 11 and 12, semiconductor elements such as transistors, ICs, and LSIs are used. The semiconductor element may be a bare chip. In the general flip chip mounting, the connection electrodes 13 and 15 are electrically connected via protruding electrodes called bumps. The bump can be made of solder, gold, or copper metal, and can be formed by wire bonding, plating, printing, or the like. By injecting the underfill 14 into the connection electrode 13 between the semiconductor bare chip and the wiring board, stress concentrated on the connection portion can be dispersed in the surface direction, and the mounting reliability can be improved. Moreover, you may use a conductive adhesive, an anisotropic conductive film (ACF), and a nonelectroconductive film (NCF) instead of an underfill. Embodiment 4 shows a mounting state by flip chip mounting, but the present invention is not limited to this. Mounting by wire bonding connection using Au wire may be used, or a semiconductor package having lead terminals as connection electrodes may be used.

回路部品16はディスクリート部品であることが好ましい。これにより、内蔵する部品を新規に開発する必要が無くなり、開発スピードが向上する。また、既存のディスクリート部品の信頼性、精度を利用することができ、特性が向上する。前記においてディスクリート部品とは、例えばコイル、コンデンサ、抵抗、遮断素子等の汎用のチップ部品をいう。また、印刷抵抗や薄膜コンデンサ・インダクタ等を形成しても良い。コンデンサは、バイパスコンデンサやデカップリングコンデンサとして用いたりすることができる。抵抗は電流制限用として用いることができる。遮断素子は、電源ラインの過負荷や短絡等による過電流を検出して、電流の制御を伴う遮断を行う。   The circuit component 16 is preferably a discrete component. This eliminates the need to newly develop a built-in component and improves the development speed. In addition, the reliability and accuracy of existing discrete components can be used, and the characteristics are improved. In the above, the discrete component refers to a general-purpose chip component such as a coil, a capacitor, a resistor, and a cutoff element. Further, a printing resistor, a thin film capacitor, an inductor, or the like may be formed. The capacitor can be used as a bypass capacitor or a decoupling capacitor. The resistor can be used for current limiting. The interrupting element detects an overcurrent caused by an overload or a short circuit of the power supply line, and performs an interrupt with current control.

半田17は、配線パターン8に回路部品16を実装するために用いる。高温半田を用いた場合、実装体をリフローで実装する際の半田の再溶融を防止できる。また、鉛フリー半田を用いることで環境への負荷を軽減できる。本実施の形態では、半田を用いたが導電性接着剤等を用いてもよい。実施の形態4では、第二の配線基板10上にのみ回路部品16を実装しているが、本発明はこれに限定されず、第一の配線基板4上に回路部品を実装してもよい。   The solder 17 is used for mounting the circuit component 16 on the wiring pattern 8. When high-temperature solder is used, remelting of the solder when the mounting body is mounted by reflow can be prevented. Also, the use of lead-free solder can reduce the environmental burden. In this embodiment, solder is used, but a conductive adhesive or the like may be used. In the fourth embodiment, the circuit component 16 is mounted only on the second wiring board 10, but the present invention is not limited to this, and the circuit component may be mounted on the first wiring board 4. .

また、本発明の実施の形態において、回路部品11、12、16と第三の電気絶縁性基材5は密着していないので、これにより外部ストレス等により実装体が変形したとしても、回路部品11、12、16と第三の電気絶縁性基材5にダメージを与えることがなく、回路部品11、12、16と第一および第二の配線基板4、10との接続箇所や、第一と第二の配線基板4、10と第三の電気絶縁性基材5が電気的に接続された導電部にその影響がおよびにくくなる。   Further, in the embodiment of the present invention, the circuit components 11, 12, 16 and the third electrically insulating substrate 5 are not in close contact with each other. 11, 12, 16 and the third electrically insulating base 5 are not damaged, and the connection points between the circuit components 11, 12, 16 and the first and second wiring boards 4, 10, The second wiring boards 4 and 10 and the third electrically insulating base 5 are less likely to be affected by the electrically conductive portion electrically connected.

以上より、キャビティ構造を有した配線基板に三次元的に部品を配置できるため、高密度実装が可能となり、その結果、配線長が短くなり高機能化することができる。また、実装面積を縮小することができるため、小型化できるという効果が得られる。図9にキャビティ構造を有し、部分的に多層化した複合配線基板を使った電子部品の実装体の一例を、上方から見た平面図にて示している。また、図10に断面図を示す。回路部品11の周辺の第一の配線基板4を多層化して、回路部品12が回路部品11上に積層された構造となっている。   As described above, since the components can be three-dimensionally arranged on the wiring board having the cavity structure, high-density mounting is possible, and as a result, the wiring length is shortened and high functionality can be achieved. In addition, since the mounting area can be reduced, the effect of reducing the size can be obtained. FIG. 9 is a plan view of an electronic component mounting body using a composite wiring board having a cavity structure and partially multilayered, as viewed from above. FIG. 10 shows a cross-sectional view. The first wiring board 4 around the circuit component 11 is multi-layered, and the circuit component 12 is laminated on the circuit component 11.

(実施の形態5)
以下、本発明の実施の形態5について、本発明の特に請求項11に記載の発明について、図面を参照しながら説明する。なお、実施の形態1と同一の構造については、同一番号を付与してその説明を省略する。
(Embodiment 5)
The fifth embodiment of the present invention will be described below with reference to the drawings. In addition, about the structure same as Embodiment 1, the same number is provided and the description is abbreviate | omitted.

図11は、本実施の形態5における電子部品の実装体の断面図である。図11において、回路部品(半導体素子)11は、第一の配線基板4上に接続電極13とアンダーフィル14により実装され、第三の電気絶縁性基材5と第二の配線基板10に形成されたキャビティ20内に位置している。回路部品12(半導体素子)は、第二の配線基板10に形成されたキャビティ20を跨ぎ、回路部品11が厚み方向に積層されるように接続電極15により実装されている。回路部品16は、半田17により第二の配線基板10上に実装されている。また、第二の配線基板10上には回路部品12および16を覆うようにモールド樹脂18が形成されており、キャビティ20内に位置している回路部品11もモールド樹脂18で覆われている。   FIG. 11 is a cross-sectional view of the electronic component mounting body according to the fifth embodiment. In FIG. 11, a circuit component (semiconductor element) 11 is mounted on the first wiring board 4 by the connection electrode 13 and the underfill 14, and is formed on the third electrically insulating base 5 and the second wiring board 10. Located in the cavity 20 formed. The circuit component 12 (semiconductor element) is mounted by the connection electrode 15 so as to straddle the cavity 20 formed in the second wiring substrate 10 and the circuit component 11 is laminated in the thickness direction. The circuit component 16 is mounted on the second wiring board 10 with solder 17. A mold resin 18 is formed on the second wiring board 10 so as to cover the circuit components 12 and 16, and the circuit component 11 located in the cavity 20 is also covered with the mold resin 18.

モールド樹脂は、熱硬化性の樹脂を含む材料からなり、金型を利用した樹脂封止法やポッティングのように金型を用いない樹脂封止法を用いてもよい。   The mold resin is made of a material containing a thermosetting resin, and a resin sealing method using a mold or a resin sealing method that does not use a mold such as potting may be used.

これにより、回路部品11、12、16と配線基板との接合強度を高く内蔵できる。その結果、生産性が高く、小型で高密度実装可能な電子部品の実装体を提供できる。   As a result, the bonding strength between the circuit components 11, 12, 16 and the wiring board can be increased. As a result, it is possible to provide an electronic component mounting body that is highly productive and can be mounted in a small size at a high density.

(実施の形態6)
以下、本発明の実施の形態6について、本発明の特に請求項14に記載の発明について、図面を参照しながら説明する。なお、実施の形態1と同一の構造については、同一番号を付与してその説明を省略する。
(Embodiment 6)
The sixth embodiment of the present invention will be described below with reference to the drawings. In addition, about the structure same as Embodiment 1, the same number is provided and the description is abbreviate | omitted.

図12(a)〜(e)は、本実施の形態6における複合配線基板の製造工程を示す断面図である。なお、後述するいずれの実施形態においても、説明の簡略化のため、実施の形態1で説明した内容と同様のものについては、その説明を省略または簡略化する。   12A to 12E are cross-sectional views illustrating the manufacturing process of the composite wiring board according to the sixth embodiment. In any of the embodiments described later, for the sake of simplicity, the description of the same content as that described in Embodiment 1 is omitted or simplified.

まず、図12(a)に示すように、第二の電気絶縁性基材7と、この第二の電気絶縁性基材7の両面に形成された配線パターン8と、この両面の配線パターン間を電気的に接続する導電部9を備えた第二の配線基板10を準備する。   First, as shown in FIG. 12A, the second electrically insulating substrate 7, the wiring pattern 8 formed on both surfaces of the second electrically insulating substrate 7, and the wiring patterns on both surfaces A second wiring board 10 having a conductive portion 9 for electrically connecting the two is prepared.

次に図12(b)に示すように、第二の配線基板10にキャビティ20を形成する。   Next, as shown in FIG. 12B, the cavity 20 is formed in the second wiring board 10.

次に図12(c)に示すように、導電部6を有した第三の電気絶縁性基材5を用意する。   Next, as shown in FIG.12 (c), the 3rd electrically insulating base material 5 which has the electroconductive part 6 is prepared.

次に図12(d)に示すように、第三の電気絶縁性基材5にキャビティ20を形成する。   Next, as shown in FIG. 12 (d), a cavity 20 is formed in the third electrically insulating substrate 5.

次に図12(e)に示すように、第三の電気絶縁性基材5を介して、第一の配線基板4と第二の配線基板10を接着し、第一の配線基板4の配線パターン2と前記第二の配線基板10の配線パターン8との間を導電部6により電気的に接続する。その後、第一の配線基板4と第二の配線基板10の両側から熱を加えて、第三の電気絶縁性基材5を完全に硬化させる。この時、真空熱プレスまたは真空ラミネータ、オーブンを用いて第三の電気絶縁性基材を溶融・硬化を行ってもよい。   Next, as shown in FIG. 12 (e), the first wiring board 4 and the second wiring board 10 are bonded via the third electrically insulating base material 5, and the wiring of the first wiring board 4. The conductive part 6 electrically connects the pattern 2 and the wiring pattern 8 of the second wiring board 10. Thereafter, heat is applied from both sides of the first wiring board 4 and the second wiring board 10 to completely cure the third electrically insulating base material 5. At this time, the third electrically insulating substrate may be melted and cured using a vacuum heat press, a vacuum laminator, or an oven.

これにより第一の配線基板4を部分的に多層化することができ、設計変更等に対応できる複合配線基板を提供し、また回路部品を三次元的に配置できるキャビティ構造を有した複合配線基板を容易に作ることができる。   As a result, the first wiring board 4 can be partially multilayered to provide a composite wiring board capable of responding to design changes and the like, and a composite wiring board having a cavity structure in which circuit components can be arranged three-dimensionally Can be made easily.

(実施の形態7)
以下、本発明の実施の形態7について、本発明の特に請求項15に記載の発明について、図面を参照しながら説明する。なお、実施の形態1と同一の構造については、同一番号を付与してその説明を省略する。
(Embodiment 7)
The seventh embodiment of the present invention will be described below with reference to the drawings. In addition, about the structure same as Embodiment 1, the same number is provided and the description is abbreviate | omitted.

図13(a)〜(g)は、本実施の形態7における複合配線基板の製造工程を示す断面図である。   FIGS. 13A to 13G are cross-sectional views showing the manufacturing process of the composite wiring board in the seventh embodiment.

まず図13(a)に示すように、第二の電気絶縁性基材7と、この第二の電気絶縁性基材7の両面に形成された配線パターン8と、この両面の配線パターン間を電気的に接続する導電部9を備えた第二の配線基板10を準備する。   First, as shown in FIG. 13A, the second electrically insulating substrate 7, the wiring pattern 8 formed on both surfaces of the second electrically insulating substrate 7, and the wiring patterns on both surfaces are separated. A second wiring board 10 having a conductive portion 9 to be electrically connected is prepared.

次に図13(b)に示すように、第二の配線基板10にキャビティ20を形成する。   Next, as shown in FIG. 13B, the cavity 20 is formed in the second wiring board 10.

次に図13(c)に示すように、導電部6を有した第三の電気絶縁性基材5を用意する。   Next, as shown in FIG.13 (c), the 3rd electrically insulating base material 5 which has the electroconductive part 6 is prepared.

次に図13(d)に示すように、第三の電気絶縁性基材5にキャビティ20を形成する。   Next, as shown in FIG. 13 (d), a cavity 20 is formed in the third electrically insulating substrate 5.

次に図13(e)に示すように、第二の配線基板10と第三の電気絶縁性基材5を積層する。積層後、外部から熱を加えて、第三の電気絶縁性基材を硬化させることが好ましい。   Next, as shown in FIG.13 (e), the 2nd wiring board 10 and the 3rd electrically insulating base material 5 are laminated | stacked. After the lamination, it is preferable to apply heat from the outside to cure the third electrically insulating substrate.

次に図13(f)に示すように、第一の配線基板4上に接着層19を形成する。この時、接着層は未硬化であることが好ましい。   Next, as shown in FIG. 13F, an adhesive layer 19 is formed on the first wiring substrate 4. At this time, the adhesive layer is preferably uncured.

次に図13(g)に示すように接着層19を介して第二の配線基板10と積層された第三の電気絶縁性基材5を接着し、第一の配線基板4の配線パターン2と前記第二の配線基板10の配線パターン8との間を導電部6により電気的に接続する。その後、第一の配線基板4と第二の配線基板10の両側から熱を加えて、接着層19を完全に硬化させる。この時、真空熱プレスまたは真空ラミネータ、オーブンを用いて接着層の溶融・硬化を行ってもよい。また、接着層19の硬化は可視光または紫外光を当てて行っても良い。   Next, as shown in FIG. 13G, the third electrically insulating base material 5 laminated with the second wiring board 10 is bonded via the adhesive layer 19, and the wiring pattern 2 of the first wiring board 4 is bonded. And the wiring pattern 8 of the second wiring board 10 are electrically connected by the conductive portion 6. Thereafter, heat is applied from both sides of the first wiring board 4 and the second wiring board 10 to completely cure the adhesive layer 19. At this time, the adhesive layer may be melted and cured using a vacuum hot press, a vacuum laminator, or an oven. The adhesive layer 19 may be cured by applying visible light or ultraviolet light.

これにより第一の配線基板4を部分的に多層化することができ、設計変更等に対応できる複合配線基板を提供し、また回路部品を三次元的に配置できるキャビティ構造を有した複合配線基板を容易に作ることができる。また、第三の電気絶縁性基材5を完全に硬化させた状態で第一の配線基板4と接合することができるため、その結果、複合配線基板全体に発生する反りが抑えられる。   As a result, the first wiring board 4 can be partially multilayered to provide a composite wiring board capable of responding to design changes and the like, and a composite wiring board having a cavity structure in which circuit components can be arranged three-dimensionally Can be made easily. In addition, since the third electrically insulating base material 5 can be bonded to the first wiring board 4 in a completely cured state, warpage occurring in the entire composite wiring board can be suppressed as a result.

(実施の形態8)
以下、本発明の実施の形態8について、本発明の特に請求項16に記載の発明について、図面を参照しながら説明する。なお、実施の形態1と同一の構造については、同一番号を付与してその説明を省略する。
(Embodiment 8)
In the following, an eighth embodiment of the present invention will be described with reference to the drawings. In addition, about the structure same as Embodiment 1, the same number is provided and the description is abbreviate | omitted.

図14(a)〜(g)は、本実施の形態8における複合配線基板の製造工程を示す断面図である。   FIGS. 14A to 14G are cross-sectional views showing the manufacturing process of the composite wiring board in the eighth embodiment.

まず図14(a)に示すように、第二の電気絶縁性基材7と、この第二の電気絶縁性基材7の両面に形成された配線パターン8と、この配線パターンの両面間を電気的に接続する導電部9を備えた第二の配線基板10を準備する。   First, as shown in FIG. 14 (a), the second electrically insulating substrate 7, the wiring pattern 8 formed on both surfaces of the second electrically insulating substrate 7, and the space between both surfaces of the wiring pattern. A second wiring board 10 having a conductive portion 9 to be electrically connected is prepared.

次に図14(b)に示すように、第二の配線基板10にキャビティ20を形成する。   Next, as shown in FIG. 14B, the cavity 20 is formed in the second wiring board 10.

次に図14(c)に示すように、導電部6を有した第三の電気絶縁性基材5を用意する。   Next, as shown in FIG.14 (c), the 3rd electrically insulating base material 5 which has the electroconductive part 6 is prepared.

次に図14(d)に示すように、第三の電気絶縁性基材5にキャビティ20を形成する。   Next, as shown in FIG. 14 (d), a cavity 20 is formed in the third electrically insulating substrate 5.

次に図14(e)に示すように、第二の配線基板10と第三の電気絶縁性基材5を積層する。積層後、外部から熱を加えて、第三の電気絶縁性基材を硬化させることが好ましい。   Next, as shown in FIG. 14E, the second wiring board 10 and the third electrically insulating base material 5 are laminated. After the lamination, it is preferable to apply heat from the outside to cure the third electrically insulating substrate.

次に図14(f)に示すように、第三の電気絶縁性基材5の第二の配線基板10と接着していない面に接着層19を形成する。   Next, as shown in FIG. 14 (f), an adhesive layer 19 is formed on the surface of the third electrically insulating substrate 5 that is not bonded to the second wiring board 10.

次に図14(g)に示すように、接着層19を介して図14(e)で第二の配線基板10と積層された第三の電気絶縁性基材5を第一の配線基板4と接着し、第一の配線基板4の配線パターン2と前記第二の配線基板10の配線パターン8との間を導電部6により電気的に接続する。その後、第一の配線基板4と第二の配線基板10の両側から熱を加えて、接着層19を完全に硬化させる。この時、真空熱プレスまたは真空ラミネータ、オーブンを用いて接着層の溶融・硬化を行ってもよい。また、接着層19の硬化は可視光または紫外光を当てて行っても良い。   Next, as shown in FIG. 14G, the third electrically insulating base material 5 laminated with the second wiring board 10 in FIG. And the wiring pattern 2 of the first wiring board 4 and the wiring pattern 8 of the second wiring board 10 are electrically connected by the conductive portion 6. Thereafter, heat is applied from both sides of the first wiring board 4 and the second wiring board 10 to completely cure the adhesive layer 19. At this time, the adhesive layer may be melted and cured using a vacuum hot press, a vacuum laminator, or an oven. The adhesive layer 19 may be cured by applying visible light or ultraviolet light.

これにより第一の配線基板4を部分的に多層化することができ、設計変更等に対応できる複合配線基板を提供し、また回路部品を三次元的に配置できるキャビティ構造を有した複合配線基板を容易に作ることができる。また、第三の電気絶縁性基材5を完全に硬化させた状態で第一の配線基板4と接合することができるため、その結果、複合配線基板全体に発生する反りが抑えられる。   As a result, the first wiring board 4 can be partially multilayered to provide a composite wiring board capable of responding to design changes and the like, and a composite wiring board having a cavity structure in which circuit components can be arranged three-dimensionally Can be made easily. In addition, since the third electrically insulating base material 5 can be bonded to the first wiring board 4 in a completely cured state, warpage occurring in the entire composite wiring board can be suppressed as a result.

(実施の形態9)
以下、本発明の実施の形態9について、本発明の特に請求項17に記載の発明について、図面を参照しながら説明する。なお、実施の形態1と同一の構造については、同一番号を付与してその説明を省略する。
(Embodiment 9)
Hereinafter, the ninth embodiment of the present invention will be described with reference to the drawings. In addition, about the structure same as Embodiment 1, the same number is provided and the description is abbreviate | omitted.

図15(a)〜(f)は、本実施の形態9における電子部品の実装体の製造工程を示す断面図である。   15 (a) to 15 (f) are cross-sectional views illustrating the manufacturing process of the electronic component mounting body according to the ninth embodiment.

まず図15(a)に示すように、接続電極13とアンダーフィル14により回路部品(半導体素子)11を実装した第一の配線基板4を準備する。   First, as shown in FIG. 15A, the first wiring board 4 on which the circuit component (semiconductor element) 11 is mounted by the connection electrode 13 and the underfill 14 is prepared.

次に図15(b)に示すように、第二の配線基板10にキャビティ20を形成する。   Next, as shown in FIG. 15B, the cavity 20 is formed in the second wiring board 10.

次に図15(c)に示すように、導電部6を有した第三の電気絶縁性基材5を用意する。   Next, as shown in FIG.15 (c), the 3rd electrically insulating base material 5 which has the electroconductive part 6 is prepared.

次に図15(d)に示すように、第三の電気絶縁性基材5にキャビティ20を形成する。   Next, as shown in FIG. 15 (d), a cavity 20 is formed in the third electrically insulating substrate 5.

次に図15(e)に示すように、第一の配線基板4と第二の配線基板10と第三の電気絶縁性基材5を積層する。積層後、外部から熱を加えて、第三の電気絶縁性基材を硬化させることが好ましい。   Next, as shown in FIG. 15E, the first wiring board 4, the second wiring board 10, and the third electrically insulating base material 5 are laminated. After the lamination, it is preferable to apply heat from the outside to cure the third electrically insulating substrate.

次に図15(f)に示すように、別の回路部品12(半導体素子)は、第二の配線基板10に形成されたキャビティ20を跨ぎ、回路部品11が厚み方向に積層されるように接続電極15により実装されている。また、さらに別の回路部品16は、半田17により第二の配線基板10上に実装されている。   Next, as shown in FIG. 15F, another circuit component 12 (semiconductor element) straddles the cavity 20 formed in the second wiring board 10 so that the circuit component 11 is laminated in the thickness direction. It is mounted by the connection electrode 15. Further, another circuit component 16 is mounted on the second wiring board 10 with solder 17.

これにより、三次元的に部品を配置することができるため、たとえば低い部品のある場所のみを選択的に三次元化し、より高密度化することができ、また、全体を低背にした電子部品の実装体を提供できる。   As a result, the components can be arranged three-dimensionally, so that, for example, only a place where a low component is present can be selectively made three-dimensional and densified, and an electronic component with a low overall height. Can be provided.

(実施の形態10)
以下、本発明の実施の形態10について、本発明の特に請求項18に記載の発明について、図面を参照しながら説明する。なお、実施の形態1と同一の構造については、同一番号を付与してその説明を省略する。
(Embodiment 10)
The tenth embodiment of the present invention will be described below with reference to the drawings. In addition, about the structure same as Embodiment 1, the same number is provided and the description is abbreviate | omitted.

図16(a)〜(g)は、本実施の形態10における電子部品の実装体の製造工程を示す断面図である。   16 (a) to 16 (g) are cross-sectional views illustrating the manufacturing process of the electronic component mounting body according to the tenth embodiment.

まず図16(a)に示すように、接続電極13とアンダーフィル14により回路部品(半導体素子)11を実装した第一の配線基板4を準備する。   First, as shown in FIG. 16A, the first wiring board 4 on which the circuit component (semiconductor element) 11 is mounted with the connection electrode 13 and the underfill 14 is prepared.

次に図16(b)に示すように、第二の配線基板10にキャビティ20を形成する。   Next, as shown in FIG. 16B, a cavity 20 is formed in the second wiring board 10.

次に図16(c)に示すように、導電部6を有した第三の電気絶縁性基材5を用意する。   Next, as shown in FIG.16 (c), the 3rd electrically insulating base material 5 which has the electroconductive part 6 is prepared.

次に図16(d)に示すように、第三の電気絶縁性基材5にキャビティ20を形成する。   Next, as shown in FIG. 16 (d), a cavity 20 is formed in the third electrically insulating substrate 5.

次に図16(e)に示すように、第一の配線基板4と第二の配線基板10と第三の電気絶縁性基材5を積層する。積層後、外部から熱を加えて、第三の電気絶縁性基材を硬化させることが好ましい。   Next, as shown in FIG. 16E, the first wiring board 4, the second wiring board 10, and the third electrically insulating base material 5 are laminated. After the lamination, it is preferable to apply heat from the outside to cure the third electrically insulating substrate.

次に図16(f)に示すように、別の回路部品12(半導体素子)は、第二の配線基板10に形成されたキャビティ20を跨ぎ、回路部品11が厚み方向に積層されるように接続電極15により実装されている。また、さらに別の回路部品16は、半田17により第二の配線基板10上に実装されている。   Next, as shown in FIG. 16F, another circuit component 12 (semiconductor element) straddles the cavity 20 formed in the second wiring board 10 so that the circuit component 11 is laminated in the thickness direction. It is mounted by the connection electrode 15. Further, another circuit component 16 is mounted on the second wiring board 10 with solder 17.

次に図16(g)に示すように、第二の配線基板10上には回路部品12および16を覆うようにモールド樹脂18が形成されており、キャビティ20内に位置している回路部品11もモールド樹脂18で覆われている。   Next, as shown in FIG. 16G, a mold resin 18 is formed on the second wiring board 10 so as to cover the circuit components 12 and 16, and the circuit component 11 located in the cavity 20. Is also covered with the mold resin 18.

これにより、三次元的に部品を配置することができるため、たとえば低い部品のある場所のみを選択的に三次元化し、全体を低背にした電子部品の実装体を提供できる。また、モールド樹脂により回路部品を覆うことで、回路部品と配線基板との接合強度を高く内蔵することができ、その結果、生産性が高く高密度な電子部品の実装体を提供できる。   Accordingly, since the components can be arranged three-dimensionally, for example, it is possible to provide an electronic component mounting body in which only a place where there is a low component is selectively three-dimensional and the whole is low-profile. Further, by covering the circuit component with the mold resin, it is possible to incorporate a high bonding strength between the circuit component and the wiring board, and as a result, it is possible to provide a high-density electronic component mounting body with high productivity.

本発明の複合配線基板および電子部品の実装体は、配線基板を部分的に多層化することで基板の設計変更に柔軟に対応可能な複合配線基板を実現すると共に、回路部品を三次元的に配置する配線基板を提供することで高密度実装体を実現し、かつ回路部品のリペアも可能である電子部品の実装体として有用である。   The composite wiring board and electronic component mounting body according to the present invention realizes a composite wiring board that can flexibly cope with a design change of the board by partially multilayering the wiring board, and three-dimensionally the circuit parts. By providing a wiring board to be arranged, a high-density mounting body is realized, and it is useful as a mounting body for electronic components that can repair circuit components.

1 第一の電気絶縁性基材
2 配線パターン
3 導電部
4 第一の配線基板
5 第三の電気絶縁性基材
6 導電部
7 第二の電気絶縁性基材
8 配線パターン
9 導電部
10 第二の配線基板
11 回路部品
12 回路部品
13 接続電極
14 アンダーフィル
15 接続電極
16 回路部品
17 半田
18 モールド樹脂
19 接着層
20 キャビティ
21 保持基材
22 配線転写シート
DESCRIPTION OF SYMBOLS 1 1st electrically insulating base material 2 Wiring pattern 3 Conductive part 4 1st wiring board 5 3rd electrically insulating base material 6 Conductive part 7 2nd electrically insulating base material 8 Wiring pattern 9 Conductive part 10 1st Second wiring board 11 Circuit component 12 Circuit component 13 Connection electrode 14 Underfill 15 Connection electrode 16 Circuit component 17 Solder 18 Mold resin 19 Adhesive layer 20 Cavity 21 Holding substrate 22 Wiring transfer sheet

Claims (18)

第一の電気絶縁性基材と前記第一の電気絶縁性基材に形成された配線パターンを有する第一の配線基板と、
第二の電気絶縁性基材と前記第二の電気絶縁性基材に形成された配線パターンを有し、かつ少なくともその一部にキャビティを形成した第二の配線基板と、
前記第一の配線基板と第二の配線基板を厚み方向に接着し、第一の配線基板の配線パターンと前記第二の配線基板の配線パターン間を電気的に接続する金属粒子と熱硬化性樹脂とを混合した導電性組成物からなる導電部を備え、かつ少なくともその一部にキャビティを形成した第三の電気絶縁性基材と、
前記キャビティの底面に設けられた前記第一の配線基板の配線パターンと、を有する複合配線基板。
A first wiring board having a first electrically insulating substrate and a wiring pattern formed on the first electrically insulating substrate;
A second wiring board having a wiring pattern formed on the second electrically insulating substrate and the second electrically insulating substrate, and having a cavity formed at least in part thereof;
The first wiring board and the second wiring board are bonded in the thickness direction, and the metal particles and thermosetting that electrically connect the wiring pattern of the first wiring board and the wiring pattern of the second wiring board. A third electrically insulating substrate comprising a conductive part made of a conductive composition mixed with a resin and having a cavity formed at least in part thereof;
And a wiring pattern of the first wiring board provided on the bottom surface of the cavity.
第一の電気絶縁性基材と前記第一の電気絶縁性基材に形成された配線パターンを有する第一の配線基板と、
第二の電気絶縁性基材と、前記第二の電気絶縁性基材に形成された配線パターンを有し、かつ少なくともその一部にキャビティを形成した第二の配線基板と、
前記第一の配線基板と第二の配線基板の少なくとも一つを厚み方向に接着し、第一の配線基板の配線パターンと前記第二の配線基板の配線パターン間を電気的に接続する金属粒子と熱硬化性樹脂とを混合した導電性組成物からなる導電部を備え、かつ少なくともその一部にキャビティを形成した第三の電気絶縁性基材と、第三の電気絶縁性基材の少なくとも一つの面に形成された接着剤層と、
前記キャビティの底面に設けられた前記第一の配線基板の配線パターンと、を有する複合配線基板。
A first wiring board having a first electrically insulating substrate and a wiring pattern formed on the first electrically insulating substrate;
A second wiring board having a second electrically insulating substrate, a wiring pattern formed on the second electrically insulating substrate, and having a cavity formed at least in part thereof;
Metal particles for bonding at least one of the first wiring board and the second wiring board in the thickness direction and electrically connecting the wiring pattern of the first wiring board and the wiring pattern of the second wiring board. And a third electrically insulating substrate comprising a conductive part made of a conductive composition obtained by mixing a thermosetting resin and at least part of which has a cavity, and at least a third electrically insulating substrate An adhesive layer formed on one surface;
And a wiring pattern of the first wiring board provided on the bottom surface of the cavity.
第一および第二の配線基板は配線パターン間を接続するスルーホールまたは、ビアを含む多層配線基板から構成されていることを特徴とする請求項1もしくは2のいずれか一つに記載の複合配線基板。 3. The composite wiring according to claim 1, wherein the first and second wiring boards are constituted by a multilayer wiring board including through holes or vias for connecting the wiring patterns. 4. substrate. 第一ないし第三の電気絶縁性基材のいずれか一つが、可撓性を有するフィルム基材で構成されていることを特徴とする請求項1もしくは2のいずれか一つに記載の複合配線基板。 3. The composite wiring according to claim 1, wherein any one of the first to third electrically insulating substrates is made of a flexible film substrate. 4. substrate. 第一および第二の配線基板は、配線パターンの一部分が第一および第二の電気絶縁性基材に埋設されていることを特徴とする請求項1または2のいずれか一つに記載の複合配線基板。 3. The composite according to claim 1, wherein a part of the wiring pattern of the first and second wiring boards is embedded in the first and second electrically insulating substrates. Wiring board. 第三の電気絶縁性基材は、無機フィラと熱硬化性樹脂を含む混合物であることを特徴とする請求項1または2のいずれか一つに記載の複合配線基板。 3. The composite wiring board according to claim 1, wherein the third electrically insulating base is a mixture containing an inorganic filler and a thermosetting resin. 4. 第三の電気絶縁性基材の熱膨張係数は、第一と第二の配線基板の熱膨張係数と異なるものであることを特徴とする請求項1または2のいずれか一つに記載の複合配線基板。 3. The composite according to claim 1, wherein a thermal expansion coefficient of the third electrically insulating substrate is different from that of the first and second wiring boards. Wiring board. 第三の電気絶縁性基材の弾性率は、第一と第二の配線基板の弾性率よりも小さいことを特徴とする請求項1または2のいずれか一つに記載の複合配線基板。 3. The composite wiring board according to claim 1, wherein an elastic modulus of the third electrically insulating base material is smaller than an elastic modulus of the first and second wiring boards. 第二の配線基板に形成されたキャビティの面積は、第三の電気絶縁性基材に形成されたキャビティの面積と同じかあるいはそれよりも大きいことを特徴とする請求項1または2のいずれか一つに記載の複合配線基板。 The area of the cavity formed in the second wiring board is the same as or larger than the area of the cavity formed in the third electrically insulating substrate. The composite wiring board according to one. 第一の電気絶縁性基材と前記第一の電気絶縁性基材に形成された配線パターンを有する第一の配線基板と、
第二の電気絶縁性基材と前記第二の電気絶縁性基材に形成された配線パターンを有し、かつ少なくともその一部にキャビティを形成した第二の配線基板と、
前記第一の配線基板と第二の配線基板を厚み方向に接着し、第一の配線基板の配線パターンと前記第二の配線基板の配線パターン間を電気的に接続する金属粒子と熱硬化性樹脂とを混合した導電性組成物からなる導電部を備え、かつ少なくともその一部にキャビティを形成した第三の電気絶縁性基材と、
前記キャビティの底面に設けられた前記第一基板の配線パターンと、を有する複合配線基板と、
前記キャビティの底面に設けられた前記第一の配線基板の配線パターンに実装された少なくとも一つ以上の回路部品と、を有する電子部品の実装体。
A first wiring board having a first electrically insulating substrate and a wiring pattern formed on the first electrically insulating substrate;
A second wiring board having a wiring pattern formed on the second electrically insulating substrate and the second electrically insulating substrate, and having a cavity formed at least in part thereof;
The first wiring board and the second wiring board are bonded in the thickness direction, and the metal particles and thermosetting that electrically connect the wiring pattern of the first wiring board and the wiring pattern of the second wiring board. A third electrically insulating substrate comprising a conductive part made of a conductive composition mixed with a resin and having a cavity formed at least in part thereof;
A composite wiring board having a wiring pattern of the first board provided on the bottom surface of the cavity;
An electronic component mounting body comprising: at least one circuit component mounted on a wiring pattern of the first wiring board provided on a bottom surface of the cavity.
第一の配線基板と、
第二の電気絶縁性基材と前記第二の電気絶縁性基材に形成された配線パターンを有し、かつ少なくともその一部にキャビティを形成した第二の配線基板と、
前記第一の配線基板と第二の配線基板を厚み方向に接着し、第一の配線基板の配線パターンと前記第二の配線基板の配線パターン間を電気的に接続する金属粒子と熱硬化性樹脂とを混合した導電性組成物からなる導電部を備え、かつ少なくともその一部にキャビティを形成した第三の電気絶縁性基材と、
前記キャビティの底面に設けられた前記第一の配線基板の配線パターンと、を有する複合配線基板と、
第一と第二の配線基板上に実装された少なくとも一つ以上の回路部品と、
第二の配線基板の少なくとも一部と密着し、第二の配線基板に実装された回路部品の少なくとも一部を覆って形成されたモールド樹脂とを、有する電子部品の実装体。
A first wiring board;
A second wiring board having a wiring pattern formed on the second electrically insulating substrate and the second electrically insulating substrate, and having a cavity formed at least in part thereof;
The first wiring board and the second wiring board are bonded in the thickness direction, and the metal particles and thermosetting that electrically connect the wiring pattern of the first wiring board and the wiring pattern of the second wiring board. A third electrically insulating substrate comprising a conductive part made of a conductive composition mixed with a resin and having a cavity formed at least in part thereof;
A composite wiring board having a wiring pattern of the first wiring board provided on the bottom surface of the cavity;
At least one circuit component mounted on the first and second wiring boards;
An electronic component mounting body comprising: a mold resin formed in close contact with at least a part of the second wiring board and covering at least a part of the circuit component mounted on the second wiring board.
回路部品の少なくとも一部と第三の電気絶縁性基材は密着していないことを特徴とする請求項10に記載の電子部品の実装体。 The electronic component mounting body according to claim 10, wherein at least a part of the circuit component and the third electrically insulating base are not in close contact with each other. 回路部品は、半導体、コンデンサ、抵抗、コイル、遮断素子の少なくとも1つを含む請求項10または11のいずれか一つに記載の電子部品の実装体。 The electronic component mounting body according to claim 10, wherein the circuit component includes at least one of a semiconductor, a capacitor, a resistor, a coil, and a cutoff element. 第二の配線基板にキャビティを形成する工程と、
第三の電気絶縁性基材に金属粒子と熱硬化性樹脂とを混合した導電性組成物からなる導電部を形成する工程と、
第三の電気絶縁性基材にキャビティを形成する工程と、
第一の配線基板と第二の配線基板を第三の電気絶縁性基材を介して積層する工程と、第三の電気絶縁性基材を硬化する工程と
を備えた複合配線基板の製造方法。
Forming a cavity in the second wiring board;
Forming a conductive portion made of a conductive composition obtained by mixing metal particles and a thermosetting resin on a third electrically insulating substrate;
Forming a cavity in a third electrically insulating substrate;
A method of manufacturing a composite wiring board, comprising: a step of laminating a first wiring substrate and a second wiring substrate via a third electrically insulating substrate; and a step of curing the third electrically insulating substrate. .
第二の配線基板にキャビティを形成する工程と、
第三の電気絶縁性基材に金属粒子と熱硬化性樹脂とを混合した導電性組成物からなる導電部を形成する工程と、
第三の電気絶縁性基材にキャビティを形成する工程と、
第二の配線基板と第三の電気絶縁性基材を積層する工程と、
第三の電気絶縁性基材を硬化する工程と、
第一の配線基板に接着層を形成する工程と、
第一の配線基板と第三の電気絶縁性基材とを接着層を介して積層する工程と、
接着層を硬化する工程と、
を備えた複合配線基板の製造方法。
Forming a cavity in the second wiring board;
Forming a conductive portion made of a conductive composition obtained by mixing metal particles and a thermosetting resin on a third electrically insulating substrate;
Forming a cavity in a third electrically insulating substrate;
Laminating a second wiring board and a third electrically insulating substrate;
Curing the third electrically insulating substrate;
Forming an adhesive layer on the first wiring board;
A step of laminating a first wiring board and a third electrically insulating substrate via an adhesive layer;
Curing the adhesive layer;
The manufacturing method of the composite wiring board provided with.
第二の配線基板にキャビティを形成する工程と、
第三の電気絶縁性基材に金属粒子と熱硬化性樹脂とを混合した導電性組成物からなる導電部を形成する工程と、
第三の電気絶縁性基材にキャビティを形成する工程と、
第二の配線基板と第三の電気絶縁性基材を積層する工程と、
第三の電気絶縁性基材を硬化する工程と、
第三の電気絶縁性基材に接着層を形成する工程と、
第一の配線基板と第二の配線基板とを接着層を介して積層する工程と、
接着層を硬化する工程と、
を備えた複合配線基板の製造方法。
Forming a cavity in the second wiring board;
Forming a conductive portion made of a conductive composition obtained by mixing metal particles and a thermosetting resin on a third electrically insulating substrate;
Forming a cavity in a third electrically insulating substrate;
Laminating a second wiring board and a third electrically insulating substrate;
Curing the third electrically insulating substrate;
Forming an adhesive layer on the third electrically insulating substrate;
Laminating a first wiring board and a second wiring board via an adhesive layer;
Curing the adhesive layer;
The manufacturing method of the composite wiring board provided with.
第一の配線基板に回路部品を実装する工程と、
第二の配線基板にキャビティを形成する工程と、
第三の電気絶縁性基材に金属粒子と熱硬化性樹脂とを混合した導電性組成物からなる導電部を形成する工程と、
第三の電気絶縁性基材にキャビティを形成する工程と、
第一の配線基板と第二の配線基板を第三の電気絶縁性基材を介して積層する工程と、
第三の電気絶縁性基材を硬化する工程と、
第二の配線基板に回路部品を実装する工程と、
を備えた電子部品の実装体の製造方法。
Mounting circuit components on the first wiring board;
Forming a cavity in the second wiring board;
Forming a conductive portion made of a conductive composition obtained by mixing metal particles and a thermosetting resin on a third electrically insulating substrate;
Forming a cavity in a third electrically insulating substrate;
Laminating a first wiring board and a second wiring board via a third electrically insulating substrate;
Curing the third electrically insulating substrate;
Mounting circuit components on the second wiring board;
A method of manufacturing a mounting body for an electronic component comprising:
第一の配線基板に回路部品を実装する工程と、
第二の配線基板にキャビティを形成する工程と、
第三の電気絶縁性基材に金属粒子と熱硬化性樹脂とを混合した導電性組成物からなる導電部を形成する工程と、
第三の電気絶縁性基材にキャビティを形成する工程と、
第一の配線基板と第二の配線基板を第三の電気絶縁性基材を介して積層する工程と、
第三の電気絶縁性基材を硬化する工程と、
第二の配線基板に回路部品を実装する工程と、
第二の配線基板の少なくとも一部と密着し、第二の配線基板に実装された回路部品の少なくとも一部を覆うようにモールド樹脂を形成するモールド工程と、
を備えた電子部品の実装体の製造方法。
Mounting circuit components on the first wiring board;
Forming a cavity in the second wiring board;
Forming a conductive portion made of a conductive composition obtained by mixing metal particles and a thermosetting resin on a third electrically insulating substrate;
Forming a cavity in a third electrically insulating substrate;
Laminating a first wiring board and a second wiring board via a third electrically insulating substrate;
Curing the third electrically insulating substrate;
Mounting circuit components on the second wiring board;
A molding step of forming a molding resin so as to be in close contact with at least a part of the second wiring board and to cover at least a part of the circuit components mounted on the second wiring board;
A method of manufacturing a mounting body for an electronic component comprising:
JP2011149808A 2011-07-06 2011-07-06 Composite wiring board, manufacturing method thereof, mounting body of electronic component, and manufacturing method of electronic component Pending JP2011233915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011149808A JP2011233915A (en) 2011-07-06 2011-07-06 Composite wiring board, manufacturing method thereof, mounting body of electronic component, and manufacturing method of electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011149808A JP2011233915A (en) 2011-07-06 2011-07-06 Composite wiring board, manufacturing method thereof, mounting body of electronic component, and manufacturing method of electronic component

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006013376A Division JP2007194516A (en) 2006-01-23 2006-01-23 Compound wiring board and its manufacturing method, mounted shape of electronic component, and manufacturing method

Publications (1)

Publication Number Publication Date
JP2011233915A true JP2011233915A (en) 2011-11-17

Family

ID=45322856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011149808A Pending JP2011233915A (en) 2011-07-06 2011-07-06 Composite wiring board, manufacturing method thereof, mounting body of electronic component, and manufacturing method of electronic component

Country Status (1)

Country Link
JP (1) JP2011233915A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014042165A1 (en) * 2012-09-14 2014-03-20 ピーエスフォー ルクスコ エスエイアールエル Semiconductor device and method for manufacturing semiconductor device
CN104221146A (en) * 2012-09-29 2014-12-17 英特尔公司 System in package with embedded RF die in coreless substrate
JP2020532115A (en) * 2017-08-23 2020-11-05 ステムコ カンパニー リミテッド Flexible circuit board and its manufacturing method
US11581290B2 (en) 2020-07-13 2023-02-14 Samsung Electronics Co., Ltd. Semiconductor package
WO2024013827A1 (en) * 2022-07-11 2024-01-18 日本電信電話株式会社 High-speed optical transmission/reception device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07273464A (en) * 1994-03-31 1995-10-20 Ibiden Co Ltd Manufacturing method of ic mounting printed-wiring board
JPH11274736A (en) * 1998-03-20 1999-10-08 Hitachi Chem Co Ltd Multilayer wiring board and manufacture thereof
JP2004056115A (en) * 2002-05-31 2004-02-19 Ngk Spark Plug Co Ltd Multilayer wiring board
JP2005045150A (en) * 2003-07-25 2005-02-17 Matsushita Electric Ind Co Ltd Wiring base material for intermediate connection, multilayer wiring board, and manufacturing methods thereof
JP2005175115A (en) * 2003-12-10 2005-06-30 Matsushita Electric Ind Co Ltd Multilayer printed wiring board and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07273464A (en) * 1994-03-31 1995-10-20 Ibiden Co Ltd Manufacturing method of ic mounting printed-wiring board
JPH11274736A (en) * 1998-03-20 1999-10-08 Hitachi Chem Co Ltd Multilayer wiring board and manufacture thereof
JP2004056115A (en) * 2002-05-31 2004-02-19 Ngk Spark Plug Co Ltd Multilayer wiring board
JP2005045150A (en) * 2003-07-25 2005-02-17 Matsushita Electric Ind Co Ltd Wiring base material for intermediate connection, multilayer wiring board, and manufacturing methods thereof
JP2005175115A (en) * 2003-12-10 2005-06-30 Matsushita Electric Ind Co Ltd Multilayer printed wiring board and its manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014042165A1 (en) * 2012-09-14 2014-03-20 ピーエスフォー ルクスコ エスエイアールエル Semiconductor device and method for manufacturing semiconductor device
US11049845B2 (en) 2012-09-14 2021-06-29 Longitude Licensing Limited Semiconductor device having wires connecting connection pads
CN104221146A (en) * 2012-09-29 2014-12-17 英特尔公司 System in package with embedded RF die in coreless substrate
JP2020532115A (en) * 2017-08-23 2020-11-05 ステムコ カンパニー リミテッド Flexible circuit board and its manufacturing method
US11197377B2 (en) 2017-08-23 2021-12-07 Stemco Co., Ltd. Flexible circuit board and method for producing same
JP7053797B2 (en) 2017-08-23 2022-04-12 ステムコ カンパニー リミテッド Flexible circuit board and its manufacturing method
US11581290B2 (en) 2020-07-13 2023-02-14 Samsung Electronics Co., Ltd. Semiconductor package
WO2024013827A1 (en) * 2022-07-11 2024-01-18 日本電信電話株式会社 High-speed optical transmission/reception device

Similar Documents

Publication Publication Date Title
JP4272693B2 (en) Manufacturing method of module with built-in components
US6489685B2 (en) Component built-in module and method of manufacturing the same
JP2003197849A (en) Module with built-in component and method of manufacturing the same
JP6303443B2 (en) IC built-in substrate manufacturing method
JP3553043B2 (en) Component built-in module and manufacturing method thereof
JP4073945B1 (en) Manufacturing method of multilayer wiring board
JPH11220262A (en) Circuit part built-in module and manufacture thereof
JP2008153693A (en) Manufacturing method of module incorporating circuit component therein
JP2003188340A (en) Part incorporating module and its manufacturing method
JP2014165486A (en) Power device module and manufacturing method thereof
JP2004311788A (en) Sheet module and its manufacturing method
JP2005191156A (en) Wiring plate containing electric component, and its manufacturing method
JP2011233915A (en) Composite wiring board, manufacturing method thereof, mounting body of electronic component, and manufacturing method of electronic component
JP2006210870A (en) Module with built-in component, and manufacturing method thereof
JP2007194516A (en) Compound wiring board and its manufacturing method, mounted shape of electronic component, and manufacturing method
JP2015133387A (en) Wiring board and manufacturing method of the same
TWI435399B (en) Circuit component integrating module and manufacturuing method of circuit component integrating module
JP2004055967A (en) Manufacturing method of board with built-in electronic component
KR100699237B1 (en) Manufacturing Method for Embedded Printed Circuit Board
JP2004363566A (en) Electronic-component mounting body and method of manufacturing the same
JP4417294B2 (en) Probe card component built-in substrate and manufacturing method thereof
JP2007221117A (en) Substrate incorporated with components, and its manufacturing method
JP2005051204A (en) Module for mounting electrical component and method for manufacturing the same
JP2021044332A (en) Circuit board, manufacturing method of circuit-board, and electronic apparatus
JP2004022610A (en) Interposer, semiconductor package, interposer-manufacturing method, and semiconductor package manufacturing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121122

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131112