JP4834563B2 - Methane fermentation system and method - Google Patents

Methane fermentation system and method Download PDF

Info

Publication number
JP4834563B2
JP4834563B2 JP2007008183A JP2007008183A JP4834563B2 JP 4834563 B2 JP4834563 B2 JP 4834563B2 JP 2007008183 A JP2007008183 A JP 2007008183A JP 2007008183 A JP2007008183 A JP 2007008183A JP 4834563 B2 JP4834563 B2 JP 4834563B2
Authority
JP
Japan
Prior art keywords
methane fermentation
tank
aerobic
methane
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007008183A
Other languages
Japanese (ja)
Other versions
JP2008173554A (en
Inventor
知樹 小林
修 濱本
隆之 丸本
睦明 今岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Zosen Environment Engineering Corp
Original Assignee
Mitsui Zosen Environment Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Zosen Environment Engineering Corp filed Critical Mitsui Zosen Environment Engineering Corp
Priority to JP2007008183A priority Critical patent/JP4834563B2/en
Publication of JP2008173554A publication Critical patent/JP2008173554A/en
Application granted granted Critical
Publication of JP4834563B2 publication Critical patent/JP4834563B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Treatment Of Sludge (AREA)
  • Processing Of Solid Wastes (AREA)

Description

本発明は、有機性廃棄物をメタン発酵槽でメタン発酵させるメタン発酵システムおよび方法に関するものである。   The present invention relates to a methane fermentation system and method for methane fermentation of organic waste in a methane fermenter.

畜産廃棄物や生ゴミ等の有機性廃棄物の処理する技術として、嫌気性条件下のメタン発酵槽において、嫌気性菌であるメタン生成菌を用いてメタン発酵させるメタン発酵処理(嫌気性消化)が知られており、バイオガス(嫌気性微生物の代謝により産生されるメタンを主成分とするガス)を回収し、リサイクルエネルギーとして活用できることから、風力発電、太陽光発電などと並び、再生可能なエネルギー資源の一つに位置付けられ今後の普及が期待されている。   As a technology for processing organic waste such as livestock waste and garbage, methane fermentation treatment using anaerobic methane-producing bacteria in an anaerobic methane fermentation tank (anaerobic digestion) Is known and can recover biogas (gas mainly composed of methane produced by the metabolism of anaerobic microorganisms) and use it as recycled energy. It is positioned as one of the energy resources and is expected to spread in the future.

前記メタン発酵処理を行う場合、メタン発酵効率を高めるために、メタン発酵槽の前段に大型の可溶化処理槽を設け、メタン発酵槽内でのメタン発酵処理の前に、前記可溶化処理槽にて好気性菌を用いた分解処理(好気性処理)を行うことによって有機性廃棄物を可溶化し、続くメタン発酵処理を容易にする方法が取られていた(特許文献1:特開2003−164840号公報)。   When performing the methane fermentation treatment, in order to increase the methane fermentation efficiency, a large solubilization treatment tank is provided in the front stage of the methane fermentation tank, and before the methane fermentation treatment in the methane fermentation tank, In other words, a method has been adopted in which organic waste is solubilized by performing a decomposition treatment (aerobic treatment) using an aerobic bacterium to facilitate the subsequent methane fermentation treatment (Patent Document 1: Japanese Patent Laid-Open No. 2003-2003). 164840).

また、欧州等においては、上述のような可溶化処理槽での可溶化処理を行わず、メタン発酵槽に加水分解酵素(セルロース分解酵素)を添加することによりメタン発酵を促進させ、メタン発酵効率を更に向上させる方法が、検討されている。
特開2003−164840号公報
In Europe and the like, the solubilization treatment in the solubilization treatment tank as described above is not performed, but methane fermentation is promoted by adding a hydrolase (cellulose-degrading enzyme) to the methane fermentation tank, thereby improving the methane fermentation efficiency. A method for further improving the above has been studied.
JP 2003-164840 A

特許文献1に記載された可溶化処理槽による可溶化処理は、メタン発酵槽に供給する前の有機性廃棄物の全量に対して行う前処理であり、メタン発酵槽と同規模の大きな可溶化処理槽を設置しなければならない。   The solubilization treatment by the solubilization treatment tank described in Patent Document 1 is a pretreatment to be performed on the total amount of organic waste before being supplied to the methane fermentation tank, and a large solubilization of the same scale as the methane fermentation tank. A treatment tank must be installed.

また、メタン発酵槽に酵素を添加する方法では、可溶化処理槽を設けなくてもよいので、省スペースでメタン発酵システムに必要な設備の設置が可能であり、設備等の導入コストが抑えられる。
しかし、メタン発酵を促進する前記酵素は非常に高価であり、しかも、該酵素は継続的に添加しなければならないため、維持コストがかかるという問題があった。
In addition, in the method of adding an enzyme to the methane fermentation tank, it is not necessary to provide a solubilization treatment tank, so it is possible to install equipment necessary for the methane fermentation system in a small space, and the installation cost of equipment and the like can be suppressed. .
However, the enzyme that promotes methane fermentation is very expensive, and the enzyme has to be continuously added.

本発明の目的は、大型の可溶化処理槽を必要とせず、しかも、メタン発酵槽への酵素添加を行わなくても、メタン発酵槽におけるメタン発酵効率を向上させることのできるメタン発酵システムおよび方法を提供することにある。   An object of the present invention is to provide a methane fermentation system and method that do not require a large-sized solubilization tank and can improve the methane fermentation efficiency in the methane fermentation tank without adding an enzyme to the methane fermentation tank. Is to provide.

上記目的を達成するため、本発明の第1の態様に係るメタン発酵システムは、有機性廃棄物を嫌気性条件下でメタン発酵するメタン発酵槽と、該メタン発酵槽内のメタン発酵液の一部と栄養源が送られて好気性条件下で好気性菌を培養する好気性培養槽と、を備え、前記好気性培養槽で培養された培養液が、前記メタン発酵槽に戻されるように構成されたことを特徴とする。   In order to achieve the above object, a methane fermentation system according to a first aspect of the present invention includes a methane fermentation tank for methane fermentation of an organic waste under anaerobic conditions, and a methane fermentation solution in the methane fermentation tank. An aerobic culture tank in which an aerobic bacterium is cultured under an aerobic condition by sending a part and a nutrient source, so that the culture solution cultured in the aerobic culture tank is returned to the methane fermentation tank It is structured.

メタン発酵槽内では、嫌気性菌であるメタン生成菌が増殖し、メタン発酵が行われているが、該メタン発酵槽内の発酵液中には、嫌気性条件下では増殖できない好気性菌が存在する。
本発明によれば、メタン発酵槽内の発酵液の一部が抜き出されて、栄養源と共に好気性条件下に移されるので、その抜き出されたメタン発酵液中に含まれる好気性菌は、好気性条件の下で培養される。これにより、培養液中に好気性菌によって加水分解酵素が生成される。その培養液を再びメタン発酵槽内に戻し、生成された加水分解酵素をメタン発酵槽に供給することによって、該加水分解酵素は嫌気性下でも有機性廃棄物を加水分解するため、メタン発酵槽内では当該加水分解酵素によって有機性廃棄物の加水分解が進行しつつ、メタン生成菌によるメタン発酵が進行し、メタン発酵効率を向上させることができる。
In the methane fermentation tank, anaerobic methane-producing bacteria are grown and methane fermentation is carried out. In the fermentation liquid in the methane fermentation tank, there are aerobic bacteria that cannot grow under anaerobic conditions. Exists.
According to the present invention, a part of the fermentation broth in the methane fermenter is extracted and transferred to the aerobic condition together with the nutrient source, so the aerobic bacteria contained in the extracted methane fermentation broth are Incubated under aerobic conditions. Thereby, a hydrolase is produced | generated by an aerobic microbe in a culture solution. The culture broth is returned again into the methane fermenter, and the hydrolyzing enzyme is hydrolyzed to organic waste even under anaerobic conditions by supplying the produced hydrolase to the methane fermenter. In the inside, hydrolysis of organic waste proceeds by the hydrolase, and methane fermentation by the methanogen progresses, so that methane fermentation efficiency can be improved.

したがって、メタン発酵槽へ酵素試薬を添加する必要がないので、メタン発酵システムを稼動させるための維持コストを低減することができる。
また、メタン発酵槽に供給する前の有機性廃棄物の全量を処理するための、大きな可溶化処理槽を設置する必要がないので、その導入コストや維持コストがかからず経済的である。
Therefore, since it is not necessary to add an enzyme reagent to a methane fermentation tank, the maintenance cost for operating a methane fermentation system can be reduced.
Moreover, since it is not necessary to install a large solubilization processing tank for processing the whole amount of the organic waste before supplying to the methane fermentation tank, its introduction cost and maintenance cost are not required and it is economical.

本発明の第2の態様に係るメタン発酵システムは、第1の態様において、単位時間当たりにメタン発酵槽に供給される有機性廃棄物量であり、且つ、単位時間当たりにメタン発酵槽から排出されるメタン発酵液量であるメタン発酵槽供給排出量の1〜10%の量のメタン発酵液を、メタン発酵槽から好気性培養槽に送るように構成したことを特徴とする。   The methane fermentation system according to the second aspect of the present invention is the amount of organic waste supplied to the methane fermentation tank per unit time in the first aspect, and is discharged from the methane fermentation tank per unit time. 1 to 10% of the amount of methane fermenter supplied and discharged, which is the amount of methane fermentation broth, is sent from the methane fermenter to the aerobic culture tank.

本発明によれば、メタン発酵槽から好気性培養槽に送る発酵液量は、前記メタン発酵槽において処理する有機性廃棄物量に対して少量でよいので、メタン発酵槽に供給される有機性廃棄物量の全量を処理するための可溶化処理槽に比して、好気性培養槽は小規模で足り、好気性培養槽の導入コストや維持コストが低く抑えられる。   According to the present invention, the amount of the fermented liquid sent from the methane fermentation tank to the aerobic culture tank may be small with respect to the amount of organic waste to be treated in the methane fermentation tank, so that the organic waste supplied to the methane fermentation tank Compared to the solubilization tank for processing the whole quantity, the aerobic culture tank is small and the introduction cost and maintenance cost of the aerobic culture tank can be kept low.

本発明の第3の態様に係るメタン発酵システムは、第1または第2の態様において、前記好気性培養槽における培養滞留時間が1〜5日であることを特徴とする。
好気性菌は生育して加水分解酵素を生産し、メタン発酵効率を高める加水分解酵素を培養液中に生成する。その際、好気性培養槽において、1日間の培養滞留時間によって、メタン発酵槽におけるメタン発酵効率を向上させるために十分な量の加水分解酵素を生成する。前記培養滞留時間を5日間にすると、加水分解酵素の生成量は更に多くなるが、好気性培養槽に滞留する培養液の量も5倍になり、該好気性培養槽が大型化するため、5日を上限とすることが望ましい。
In the methane fermentation system according to the third aspect of the present invention, in the first or second aspect, the culture residence time in the aerobic culture tank is 1 to 5 days.
Aerobic bacteria grow and produce hydrolase, and produce hydrolase in the culture solution that enhances methane fermentation efficiency. At that time, a sufficient amount of hydrolase is produced in the aerobic culture tank to improve the methane fermentation efficiency in the methane fermentation tank by the culture residence time for one day. When the culture residence time is 5 days, the amount of hydrolase produced is further increased, but the amount of the culture solution retained in the aerobic culture tank is also increased five times, and the aerobic culture tank is enlarged. It is desirable to set the upper limit to 5 days.

本発明の第4の態様に係るメタン発酵システムは、第1乃至第3のいずれかの態様において、前記好気性培養槽における好気性条件は、曝気、大気開放下での機械式撹拌、および/またはポンプによる培養液循環によって確保されることを特徴とする。
本発明によれば、好気性培養槽内を好気性菌の生育に必要な好気性条件とすることができる。
The methane fermentation system according to the fourth aspect of the present invention is the methane fermentation system according to any one of the first to third aspects, wherein the aerobic condition in the aerobic culture tank is aeration, mechanical agitation under open air, and / or Or it is ensured by culture solution circulation by a pump.
According to the present invention, the aerobic culture tank can be set to aerobic conditions necessary for the growth of aerobic bacteria.

本発明の第5の態様に係るメタン発酵システムは、第1乃至第4のいずれかの態様において、前記栄養源として、多糖類、高級脂肪酸、単糖類、二糖類、アミノ酸、油脂類、の少なくとも一成分を、メタン発酵槽内から送られたメタン発酵液の量に対して10mg/リットル以上の濃度になるように添加することを特徴とする。
本発明によれば、好気性菌を良好に生育させるとともに、該好気性菌による加水分解酵素の生産が良好に行われる。
The methane fermentation system according to the fifth aspect of the present invention is the methane fermentation system according to any one of the first to fourth aspects, wherein the nutrient source is at least one of polysaccharides, higher fatty acids, monosaccharides, disaccharides, amino acids, and fats and oils. One component is added so that it may become a density | concentration of 10 mg / liter or more with respect to the quantity of the methane fermentation liquid sent from the inside of a methane fermenter.
ADVANTAGE OF THE INVENTION According to this invention, while producing aerobic bacteria favorably, production of the hydrolase by this aerobic bacteria is performed favorably.

本発明の第6の態様に係るメタン発酵システムは、第1乃至第5のいずれかの態様において、前記好気性培養槽内の培養液の温度を、前記メタン発酵槽内のメタン発酵液の温度の±5℃以内に設定することを特徴とする。
本発明によれば、好気性培養槽内の培養液を、メタン発酵槽内に戻す際の、メタン発酵槽内の発酵液の温度変化を少なくすることができる。
The methane fermentation system according to a sixth aspect of the present invention is the methane fermentation system according to any one of the first to fifth aspects, wherein the temperature of the culture solution in the aerobic culture tank is the temperature of the methane fermentation solution in the methane fermentation tank. It is characterized by being set within ± 5 ° C.
ADVANTAGE OF THE INVENTION According to this invention, the temperature change of the fermentation liquid in a methane fermentation tank at the time of returning the culture liquid in an aerobic culture tank in a methane fermentation tank can be decreased.

本発明の第7の態様に係るメタン発酵方法は、有機性廃棄物をメタン発酵させるメタン発酵槽内のメタン発酵液の一部と栄養源とを好気性培養槽に送り、該好気性培養槽において好気性条件下で好気性菌を培養した後、その培養液を前記メタン発酵槽に戻すことを特徴とする。本発明によれば、第1の態様と同様の作用効果が得られる。   In the methane fermentation method according to the seventh aspect of the present invention, a part of the methane fermentation solution in the methane fermentation tank for methane fermentation of organic waste and a nutrient source are sent to the aerobic culture tank, and the aerobic culture tank After culturing aerobic bacteria under aerobic conditions, the culture solution is returned to the methane fermentation tank. According to the present invention, the same effect as the first aspect can be obtained.

本発明によれば、大型の可溶化処理槽を必要とせず、しかも、メタン発酵槽への酵素添加を行わなくても、メタン発酵槽におけるメタン発酵効率を向上させることができる。   According to the present invention, the methane fermentation efficiency in the methane fermentation tank can be improved without requiring a large-sized solubilization tank and without adding an enzyme to the methane fermentation tank.

[実施例1]
本発明に係るメタン発酵システムの一実施例を図1に基いて詳細に説明する。
図1のメタン発酵システムは、有機性廃棄物1を磨砕する磨砕機41と、磨砕された有機性廃棄物1が送られて該有機性廃棄物1をメタン発酵させるメタン発酵槽11と、前記メタン発酵槽11内から抜き出された発酵液2の一部と栄養源4が送られて、好気性条件下で好気性菌を培養する好気性培養槽21と、を備えており、好気性培養槽21内の培養液3がメタン発酵槽11に戻されるように構成されている。
[Example 1]
An embodiment of the methane fermentation system according to the present invention will be described in detail with reference to FIG.
The methane fermentation system of FIG. 1 includes a grinder 41 for grinding organic waste 1, a methane fermentation tank 11 for sending ground organic waste 1 and methane fermentation of organic waste 1. A part of the fermentation liquid 2 extracted from the methane fermentation tank 11 and the nutrient source 4 are sent, and an aerobic culture tank 21 for culturing aerobic bacteria under aerobic conditions, The culture solution 3 in the aerobic culture tank 21 is configured to be returned to the methane fermentation tank 11.

本発明で使用する有機性廃棄物1としては、例えば、生ごみ、排水処理汚泥、畜産廃棄物や緑農廃棄物などを挙げることができる。ここで、畜産廃棄物としては、家畜の糞尿や、屠体、その加工品が挙げられ、より具体的にはブタ、牛、羊、山羊、ニワトリなどの家畜の糞尿やこれらの屠体、そこから分離された骨、肉、脂肪、内臓、血液、脳、眼球、皮、蹄、角などのほか、例えば肉骨粉、肉粉、骨粉、血粉などに代表される家畜屠体の骨、肉等を破砕した破砕物や、血液などを乾燥した乾燥物も含まれる。その他の廃棄物としては、家庭の生ごみのほか、産業廃棄物生ごみとして農水産業廃棄物、食品加工廃棄物等が含まれる。なお、有機性廃棄物1の状態により、必要に応じて前処理として二軸破砕機による破砕工程や分別工程を実施することができる。   Examples of the organic waste 1 used in the present invention include garbage, wastewater treatment sludge, livestock waste, and green farm waste. Here, livestock waste includes livestock manure, carcass, and processed products thereof. More specifically, livestock manure such as pigs, cattle, sheep, goats, chickens, and carcasses thereof, In addition to bone, meat, fat, internal organs, blood, brain, eyeballs, skin, hoofs, horns, etc. isolated from, such as bones, meat, etc. of livestock carcasses represented by meat and bone meal, meat meal, bone meal, blood meal etc. Also included are crushed crushed materials and dried products obtained by drying blood. Examples of other waste include household waste, industrial waste, agricultural and marine industrial waste, food processing waste, and the like. In addition, according to the state of the organic waste 1, a crushing process and a sorting process by a biaxial crusher can be performed as a pretreatment as necessary.

有機性廃棄物1は磨砕機41によって、メタン生成菌による発酵が行われやすいように微細に磨砕される。磨砕された有機性廃棄物1は有機性廃棄物供給ライン10を介して有機性廃棄物供給口12からメタン発酵槽11内に供給され、メタン発酵槽11内においてメタン生成菌によるメタン発酵が行われる。   The organic waste 1 is finely ground by the grinder 41 so that fermentation by the methanogen is easily performed. The ground organic waste 1 is supplied into the methane fermentation tank 11 from the organic waste supply port 12 via the organic waste supply line 10, and methane fermentation by the methane producing bacteria is performed in the methane fermentation tank 11. Done.

磨砕された有機性廃棄物1が有機性廃棄物供給口12からメタン発酵槽11へ供給されるとともに、メタン発酵槽11内のメタン発酵液2は、メタン発酵液排出口13から排出され、スラリータンク42に送られて数ヶ月間貯留されるようになっている。メタン発酵槽11に供給される有機性廃棄物1の量はメタン発酵槽11から排出されるメタン発酵液2の量と同量であり、これを以下の説明では「メタン発酵槽供給排出量」と称する。   While the ground organic waste 1 is supplied from the organic waste supply port 12 to the methane fermentation tank 11, the methane fermentation liquid 2 in the methane fermentation tank 11 is discharged from the methane fermentation liquid discharge port 13, It is sent to the slurry tank 42 and stored for several months. The amount of the organic waste 1 supplied to the methane fermentation tank 11 is the same amount as the amount of the methane fermentation liquid 2 discharged from the methane fermentation tank 11, and this is referred to as “methane fermentation tank supply / discharge amount” in the following description. Called.

メタン発酵槽11内の温度は55℃に設定され、いわゆる高温メタン発酵を行うようになっている。メタン発酵によって生成されたバイオガスは、脱硫処理などの精製処理工程に送られる。有機性廃棄物1のメタン発酵槽11での滞留時間は例えば15日間(メタン発酵槽容積/メタン発酵槽供給排出量=15日)に設定されている。   The temperature in the methane fermentation tank 11 is set to 55 ° C., and so-called high temperature methane fermentation is performed. The biogas produced by methane fermentation is sent to a purification process such as desulfurization. The residence time of the organic waste 1 in the methane fermentation tank 11 is set to, for example, 15 days (methane fermentation tank volume / methane fermentation tank supply / discharge amount = 15 days).

メタン発酵槽11内の温度を37℃に設定して中温メタン発酵を行うこともできる。その場合、有機性廃棄物1のメタン発酵槽11での滞留時間は例えば35日間(メタン発酵槽容積/供給排出量=35日)に設定することができる。   Intermediate temperature methane fermentation can also be performed by setting the temperature in the methane fermentation tank 11 to 37 ° C. In that case, the residence time of the organic waste 1 in the methane fermentation tank 11 can be set to 35 days (methane fermentation tank volume / supply discharge amount = 35 days), for example.

メタン発酵槽11内のメタン発酵液2の一部は、メタン発酵液抜出口14から抜き出され、メタン発酵液移送ライン20を介して送られ、メタン発酵液供給口22から好気性培養槽21内に供給される。メタン発酵槽11から好気性培養槽21内に送られるメタン発酵液2の量は、単位時間当たりにメタン発酵槽11に供給される有機性廃棄物1量であり、且つ、単位時間当たりにメタン発酵槽11から排出されるメタン発酵液2量であるメタン発酵槽供給排出量に対して1〜10%であることが望ましい。   A part of the methane fermentation broth 2 in the methane fermentation tank 11 is extracted from the methane fermentation liquid outlet 14, sent via the methane fermentation liquid transfer line 20, and from the methane fermentation liquid supply port 22 to the aerobic culture tank 21. Supplied in. The amount of the methane fermentation liquid 2 sent from the methane fermentation tank 11 into the aerobic culture tank 21 is one amount of organic waste supplied to the methane fermentation tank 11 per unit time, and methane per unit time. It is desirable that it is 1 to 10% with respect to the methane fermenter supply / discharge amount which is 2 amount of methane fermentation liquid discharged from the fermenter 11.

好気性発酵槽21は、曝気装置24および撹拌機25を備え、曝気を行いながら大気開放下で撹拌されることによって好気性条件を確保するように構成されている。更に、ポンプ(図示せず)によって、培養液3を好気性培養槽21内で循環させるように構成されていることが好ましい。曝気条件、撹拌速度、培養液の循環速度等は、該培養槽21の容積や培養温度によって決定される。   The aerobic fermenter 21 includes an aeration device 24 and a stirrer 25, and is configured to ensure aerobic conditions by being agitated under open air while performing aeration. Furthermore, it is preferable that the culture solution 3 is circulated in the aerobic culture tank 21 by a pump (not shown). The aeration conditions, the stirring speed, the circulation speed of the culture solution, and the like are determined by the volume of the culture tank 21 and the culture temperature.

前記メタン発酵槽11から前記メタン発酵液2が供給された好気性培養槽21には、好気性菌の生育に適した栄養源4が添加され、前記好気性条件下において、好気性菌が培養される。前記栄養源4としては、デンプン等の多糖類、ステアリン酸等の高級脂肪酸、グルコース等の単糖類、シュークロース等の二糖類、グリシン等のアミノ酸、ステアリン酸トリグリセリド等の油脂類が挙げられる。これらのうち少なくとも一成分を、メタン発酵槽11内から送られたメタン発酵液2の量に対して10mg/リットル以上の濃度になるように加えると、栄養源の必要量を満たせるので、そのようにすることが望ましい。   A nutrient source 4 suitable for the growth of aerobic bacteria is added to the aerobic culture tank 21 to which the methane fermentation liquid 2 is supplied from the methane fermentation tank 11, and the aerobic bacteria are cultured under the aerobic condition. Is done. Examples of the nutrient source 4 include polysaccharides such as starch, higher fatty acids such as stearic acid, monosaccharides such as glucose, disaccharides such as sucrose, amino acids such as glycine, and fats and oils such as stearic acid triglyceride. When at least one of these components is added to a concentration of 10 mg / liter or more with respect to the amount of the methane fermentation solution 2 sent from the methane fermentation tank 11, the necessary amount of the nutrient source can be satisfied. It is desirable to make it.

好気性培養槽21内の温度は、メタン発酵槽11内の温度とほぼ同じであることが好ましく、好気性培養槽21の培養液3の温度が、メタン発酵槽内11のメタン発酵液2の温度の±5℃以内となるように設定されることが好ましい。
また、好気性培養槽21における培養滞留時間が1〜5日になるように、好気性培養液21の容積が設定されている。
The temperature in the aerobic culture tank 21 is preferably substantially the same as the temperature in the methane fermentation tank 11, and the temperature of the culture solution 3 in the aerobic culture tank 21 is that of the methane fermentation solution 2 in the methane fermentation tank 11. It is preferable that the temperature is set within ± 5 ° C.
Further, the volume of the aerobic culture solution 21 is set so that the culture residence time in the aerobic culture tank 21 is 1 to 5 days.

好気性培養槽21内で所定時間培養された培養液3は、該好気性発酵槽21の培養液抜出口23から抜き出され、培養液移送ライン30を介して送られ、培養液供給口15からメタン発酵槽11内に戻される。   The culture solution 3 cultured for a predetermined time in the aerobic culture tank 21 is extracted from the culture solution outlet 23 of the aerobic fermentation tank 21, sent via the culture solution transfer line 30, and supplied to the culture solution supply port 15. Is returned to the methane fermentation tank 11.

尚、実際にメタン発酵システムを運転する際には、メタン発酵液2がメタン発酵槽11から好気性培養槽21へ連続的に供給されるとともに、好気性培養槽21内の培養液3が好気性培養槽21から連続的に抜き出され、培養液移送ライン30を介してメタン発酵槽11に戻され、メタン発酵液3と培養液2が循環するように構成されている。   In actual operation of the methane fermentation system, the methane fermentation solution 2 is continuously supplied from the methane fermentation tank 11 to the aerobic culture tank 21 and the culture solution 3 in the aerobic culture tank 21 is preferred. It is continuously extracted from the aerobic culture tank 21 and returned to the methane fermentation tank 11 through the culture liquid transfer line 30 so that the methane fermentation liquid 3 and the culture liquid 2 are circulated.

好気性培養槽21に供給されるメタン発酵液2の量は好気性培養槽21からメタン発酵槽へ送られる培養液3の量と同量であり、これを以下の説明では「好気性培養槽供給排出量」と称する。
好気性培養槽21の容積は、好気性培養槽21での培養滞留時間に応じて、好気性培養槽容積/好気性培養槽供給排出量=培養滞留時間となるような大きさに設定される。
The amount of the methane fermentation broth 2 supplied to the aerobic culture tank 21 is the same as the amount of the culture liquid 3 sent from the aerobic culture tank 21 to the methane fermentation tank. This is referred to as “supply discharge amount”.
The volume of the aerobic culture tank 21 is set according to the culture residence time in the aerobic culture tank 21 such that the aerobic culture tank volume / aerobic culture tank supply / discharge amount = culture residence time. .

次に、上記実施例の作用を説明する。
メタン発酵槽11内では、嫌気性菌であるメタン生成菌が増殖し、メタン発酵が行われているが、該メタン発酵槽11内のメタン発酵液2中には、嫌気性条件下では増殖できない好気性菌が存在する。
Next, the operation of the above embodiment will be described.
In the methane fermentation tank 11, methanogens that are anaerobic bacteria grow and methane fermentation is carried out. However, the methane fermentation liquid 2 in the methane fermentation tank 11 cannot grow under anaerobic conditions. There are aerobic bacteria.

本実施例によれば、前記メタン発酵槽11内のメタン発酵液2中に含まれる好気性菌を好気性培養槽21に移して、好気性条件下で培養することにより、培養液3中に好気性菌が増殖し、その増殖に伴って加水分解酵素が生成される。加水分解酵素が生成された培養液3を、再びメタン発酵槽11内に戻し、生成された加水分解酵素をメタン発酵槽11内に供給することによって、該加水分解酵素は嫌気性下でも有機性廃棄物1を加水分解するため、メタン発酵槽11内では当該加水分解酵素によって有機性廃棄物1の加水分解が進行しつつ、メタン生成菌によるメタン発酵が進行し、メタン発酵効率を向上させることができる。   According to the present embodiment, the aerobic bacteria contained in the methane fermentation solution 2 in the methane fermentation tank 11 are transferred to the aerobic culture tank 21 and cultured under aerobic conditions. Aerobic bacteria grow and hydrolases are produced as they grow. The culture solution 3 in which the hydrolase is produced is returned again into the methane fermentation tank 11 and the produced hydrolase is supplied into the methane fermentation tank 11 so that the hydrolase is organic even under anaerobic conditions. In order to hydrolyze the waste 1, the hydrolysis of the organic waste 1 proceeds with the hydrolase in the methane fermentation tank 11, while the methane fermentation by the methane-producing bacteria proceeds to improve the methane fermentation efficiency. Can do.

したがって、メタン発酵槽11へ酵素試薬を添加する必要がないので、メタン発酵システムを稼動させるための維持コストを低減することができる。
また、メタン発酵槽11に供給する前の有機性廃棄物1の全量を処理するための、大きな可溶化処理槽を設置する必要がないので、その導入コストや維持コストがかからず経済的である。
Therefore, since it is not necessary to add an enzyme reagent to the methane fermentation tank 11, the maintenance cost for operating the methane fermentation system can be reduced.
Moreover, since it is not necessary to install a large solubilization processing tank for processing the whole amount of the organic waste 1 before supplying it to the methane fermentation tank 11, its introduction cost and maintenance cost are not required and it is economical. is there.

メタン発酵槽11から好気性培養槽21に送るメタン発酵液2の量は、単位時間当たりにメタン発酵槽11に供給される有機性廃棄物1量であり、且つ、単位時間当たりにメタン発酵槽11から排出されるメタン発酵液2量であるメタン発酵槽供給排出量に対して1〜10%でよい。また、好気性培養槽21において、1日間の培養滞留時間によって、メタン発酵槽11におけるメタン発酵効率を向上させるために十分な量の加水分解酵素を生成する。前記培養滞留時間を5日間にすると、加水分解酵素の生成量は更に多くなるが、好気性培養槽21に滞留する培養液3の量も5倍になり、該好気性培養槽21が大型化するため、5日を上限とすることが望ましい。
このことによって、好気性培養槽21は、メタン発酵槽11に供給される有機性廃棄物量1の全量を処理する可溶化処理槽に比して小規模で足り、好気性培養槽21の導入コストや維持コストが低く抑えられる。
The amount of the methane fermentation liquid 2 sent from the methane fermentation tank 11 to the aerobic culture tank 21 is one amount of organic waste supplied to the methane fermentation tank 11 per unit time, and the methane fermentation tank per unit time. 11 to 10% of the methane fermenter supply / discharge amount, which is 2 amounts of methane fermentation liquid discharged from No. 11. Further, in the aerobic culture tank 21, a sufficient amount of hydrolase is generated to improve the methane fermentation efficiency in the methane fermentation tank 11 by the culture residence time for one day. When the culture residence time is 5 days, the amount of hydrolase produced is further increased, but the amount of the culture solution 3 retained in the aerobic culture tank 21 is also increased five times, and the aerobic culture tank 21 is enlarged. Therefore, it is desirable to set the upper limit to 5 days.
As a result, the aerobic culture tank 21 is smaller than the solubilization tank that processes the entire amount of the organic waste 1 supplied to the methane fermentation tank 11, and the introduction cost of the aerobic culture tank 21 is sufficient. And maintenance costs are kept low.

例えば、55℃の高温メタン発酵を行うメタン発酵槽11において、90m/日の有機性廃棄物1を処理する場合に必要なメタン発酵槽11の容積は1350mである。このメタン発酵の前処理として可溶化処理槽を設ける場合、該可溶化処理槽としてはほぼ同程度の容積が必要となる。
一方、本実施例に必要な好気性培養槽21の容積は、メタン発酵槽11から好気性培養槽21に送るメタン発酵液2の量や培養滞留時間にもよるが、0.9〜45mでよく、好気性培養槽21の導入費用および維持費用が少なく経済的である。
For example, in the methane fermentation tank 11 that performs high-temperature methane fermentation at 55 ° C., the volume of the methane fermentation tank 11 that is required when processing the organic waste 1 of 90 m 3 / day is 1350 m 3 . When a solubilization tank is provided as a pretreatment for methane fermentation, the solubilization tank requires approximately the same volume.
On the other hand, the volume of the aerobic culture tank 21 required for this example depends on the amount of the methane fermentation broth 2 sent from the methane fermentation tank 11 to the aerobic culture tank 21 and the culture residence time, but is 0.9 to 45 m 3. The introduction cost and maintenance cost of the aerobic culture tank 21 are small and economical.

また、前記好気性培養槽21における好気性条件は、曝気および大気開放下での機械式撹拌によって確保されるように構成されているため、曝気条件、撹拌速度を変更することによって、好気性菌が加水分解酵素を生産するのに最適な好気性条件となるように調整することができる。ポンプを用いて培養液を循環させて空気を取り入れている場合は、培養液の循環速度を変更することによっても、好気性条件の調整が可能である。   In addition, since the aerobic condition in the aerobic culture tank 21 is configured to be ensured by aeration and mechanical agitation under open air, the aerobic bacteria can be changed by changing the aeration condition and the agitation speed. Can be adjusted to be optimal aerobic conditions for producing hydrolase. When the culture medium is circulated using a pump and air is taken in, the aerobic condition can also be adjusted by changing the circulation rate of the culture liquid.

また、前記好気性培養槽21内の培養液3の温度を、前記メタン発酵槽11内のメタン発酵液2の温度の±5℃以内に設定されているので、好気性培養槽21内の培養液3を、メタン発酵槽11内に戻したことによるメタン発酵槽11内のメタン発酵液2の温度変化を少なくすることができる。   Moreover, since the temperature of the culture solution 3 in the aerobic culture tank 21 is set within ± 5 ° C. of the temperature of the methane fermentation solution 2 in the methane fermentation tank 11, the culture in the aerobic culture tank 21 is performed. The temperature change of the methane fermentation liquid 2 in the methane fermentation tank 11 due to the return of the liquid 3 into the methane fermentation tank 11 can be reduced.

[実施例2]
本発明に係るメタン発酵システムの他の実施例を図2に基いて詳細に説明する。
[Example 2]
Another embodiment of the methane fermentation system according to the present invention will be described in detail with reference to FIG.

本実施例においては、好気性培養槽21内で所定時間培養された培養液3が、該好気性発酵槽21から培養液供給ライン30を介して有機性廃棄物供給ライン10に導入され、有機性廃棄物1をメタン発酵槽11に供給する有機性廃棄物供給口12からメタン発酵槽11に戻されるように構成されている。   In this embodiment, the culture solution 3 cultured for a predetermined time in the aerobic culture tank 21 is introduced from the aerobic fermentation tank 21 into the organic waste supply line 10 via the culture solution supply line 30, and organic The organic waste 1 is returned to the methane fermentation tank 11 from the organic waste supply port 12 for supplying the organic waste 1 to the methane fermentation tank 11.

本実施例によれば、培養液3をメタン発酵槽11に供給する際に、培養液3を有機性廃棄物供給ライン10に導入して有機性廃棄物供給口12から供給することによって、メタン発酵槽11に培養液供給口を別途設ける必要がなく、メタン発酵槽11の設計変更を要しない。尚、他の構成については実施例1と同様である。   According to this embodiment, when the culture solution 3 is supplied to the methane fermenter 11, the culture solution 3 is introduced into the organic waste supply line 10 and supplied from the organic waste supply port 12, whereby methane There is no need to separately provide a culture solution supply port in the fermenter 11 and no design change of the methane fermenter 11 is required. Other configurations are the same as those in the first embodiment.

[他の実施例]
メタン発酵液を好気性条件下で培養した培養液を、メタン発酵槽に添加した時のメタン発酵効率を調べるため、バッチ法によるメタン発酵試験を行った。図5は、メタン発酵試験に用いたメタン発酵槽の概略構成図である。
[Other embodiments]
In order to investigate the methane fermentation efficiency when the culture solution obtained by culturing the methane fermentation broth under an aerobic condition was added to the methane fermentation tank, a methane fermentation test by a batch method was performed. FIG. 5 is a schematic configuration diagram of the methane fermentation tank used in the methane fermentation test.

試験用メタン発酵槽51の中央には投入口55が備えられ、投入口55から有機性廃棄物54が投入される。有機性廃棄物54の投入後は該投入口55に投入口キャップ56がされて空気の出入りが遮断され、試験用メタン発酵槽51内は嫌気性条件となる。また、撹拌用ハンドル58を回転させて撹拌パドル57が回転し、メタン発酵液53を撹拌できるように構成されている。試験用メタン発酵槽51は、恒温水槽52によって一定の温度に保たれる。メタン発酵槽51の容量は10リットルである。
試験用メタン発酵槽51内でのメタン発酵によって発生したバイオガス60の量は、湿式ガスメーター59によって測定される。
An inlet 55 is provided in the center of the test methane fermentation tank 51, and the organic waste 54 is introduced from the inlet 55. After the introduction of the organic waste 54, the input port 55 is provided with an input port cap 56 to block air from entering and exiting, and the inside of the test methane fermentation tank 51 is in an anaerobic condition. Further, the stirring handle 58 is rotated to rotate the stirring paddle 57 so that the methane fermentation liquid 53 can be stirred. The test methane fermentation tank 51 is maintained at a constant temperature by a constant temperature water tank 52. The capacity of the methane fermentation tank 51 is 10 liters.
The amount of biogas 60 generated by methane fermentation in the test methane fermenter 51 is measured by a wet gas meter 59.

メタン発酵槽の温度を、高温メタン発酵である55℃に設定したメタン発酵試験1と、中温メタン発酵である37℃に設定したメタン発酵試験2と、を行った。   The methane fermentation test 1 which set the temperature of the methane fermentation tank to 55 degreeC which is high temperature methane fermentation, and the methane fermentation test 2 which set to 37 degreeC which is medium temperature methane fermentation were performed.

[メタン発酵試験1]
メタン発酵試験1におけるメタン発酵槽の条件を以下に示す。
メタン発酵温度: 55℃(高温メタン発酵)
有機性廃棄物量: 700ミリリットル(搾乳牛糞尿)
メタン発酵液量: 10リットル
上記試験用メタン発酵槽51からメタン発酵液53を抜き出し、その抜出メタン発酵液61を好気性条件下で1日間培養した。好気性培養槽として、前記抜出メタン発酵液61の量の10〜20倍程度の容量のビーカーを用い、大気開放下で撹拌子によって撹拌した。本試験は小スケールであるため、撹拌子による撹拌のみでも、好気性菌の生育に十分な好気性条件が得られるため、曝気装置による曝気は行わなかった。好気性菌の栄養源として、多糖類であるデンプンを抜出メタン発酵液(培養液)に対して100mg/リットルとなるように加えた。
[Methane fermentation test 1]
The conditions of the methane fermentation tank in the methane fermentation test 1 are shown below.
Methane fermentation temperature: 55 ° C (high temperature methane fermentation)
Organic waste volume: 700ml (milking cow manure)
Methane fermentation liquid volume: 10 liters The methane fermentation liquid 53 was extracted from the test methane fermentation tank 51, and the extracted methane fermentation liquid 61 was cultured under aerobic conditions for 1 day. As an aerobic culture tank, a beaker having a volume of about 10 to 20 times the amount of the extracted methane fermentation broth 61 was used, and stirred with a stirrer in an open atmosphere. Since this test is a small scale, aerobic conditions sufficient for the growth of aerobic bacteria can be obtained only by stirring with a stir bar, and thus aeration with an aeration apparatus was not performed. As a nutrient source for aerobic bacteria, starch, which is a polysaccharide, was extracted and added to the methane fermentation broth (culture liquid) at 100 mg / liter.

本試験において、メタン発酵槽から抜き出した抜出メタン発酵液量を表1に示す。表1に記載した、抜出メタン発酵液量/メタン発酵槽供給排出量(%)は、メタン発酵槽に投入した有機性廃棄物量に対する、メタン発酵槽から抜き出した発酵液量の割合である。本試験はバッチ法によって行うため、「メタン発酵槽に投入した有機性廃棄物量」を「メタン発酵槽供給排出量」として計算した。   Table 1 shows the amount of the extracted methane fermentation liquid extracted from the methane fermentation tank in this test. The extracted methane fermentation liquid amount / methane fermenter supply / discharge amount (%) described in Table 1 is the ratio of the amount of fermentation liquid extracted from the methane fermentation tank to the amount of organic waste charged into the methane fermentation tank. Since this test is performed by a batch method, the “amount of organic waste input to the methane fermenter” was calculated as the “methane fermenter supply / discharge amount”.

また比較例として、メタン発酵槽になにも添加しないもの(比較例1)と、加水分解酵素(COWATEC社製:MethaPlus1,000)添加した場合もの(比較例2〜比較例4)の試験を行った。表2に、比較例における加水分解酵素の添加量を示す。   Moreover, as a comparative example, the test of what is not added to a methane fermenter (Comparative Example 1) and the case where a hydrolase (COWATEC: MethaPlus 1,000) is added (Comparative Example 2 to Comparative Example 4) went. Table 2 shows the amount of hydrolase added in the comparative example.

Figure 0004834563
Figure 0004834563

Figure 0004834563
メタン発酵槽から抜き出した抜出メタン発酵液61を好気性条件下で1日間培養した培養液の全量を、再びメタン発酵槽に戻し、発生するバイオガスを測定した。図3は、メタン発酵試験1における発生バイオガス積算量とバイオガス発生速度の関係を示す図である。
Figure 0004834563
The whole amount of the culture solution obtained by culturing the extracted methane fermentation solution 61 extracted from the methane fermentation tank for 1 day under aerobic conditions was returned to the methane fermentation tank, and the generated biogas was measured. FIG. 3 is a diagram showing the relationship between the generated biogas integrated amount and the biogas generation rate in the methane fermentation test 1.

加水分解酵素を1g添加した場合(比較例2)は、そのメタン発酵効率は加水分解酵素を添加しない場合(比較例1)とほとんど変わらず、効果がないと言える。加水分解酵素を10g添加した場合(比較例3)は、バイオガス発生速度が上がり、メタン発酵効率が向上している。比較例3の2倍量の加水分解酵素(20g)を添加したした場合(比較例4)も、比較例1に比してバイオガス発生速度が上がっているが、添加量の増加に比例した効果は得られなかった。   When 1 g of hydrolase is added (Comparative Example 2), the methane fermentation efficiency is almost the same as when no hydrolase is added (Comparative Example 1), and it can be said that there is no effect. When 10 g of hydrolase is added (Comparative Example 3), the biogas generation rate is increased and the methane fermentation efficiency is improved. When the amount of hydrolase (20 g) twice that of Comparative Example 3 was added (Comparative Example 4), the biogas generation rate was higher than that of Comparative Example 1, but was proportional to the increase in the amount added. The effect was not obtained.

次に、メタン発酵槽からメタン発酵液を抜き出し、該発酵液に栄養源を加え、好気性条件下で1日間培養した培養液をメタン発酵槽に戻してメタン発酵を行った実施例1〜実施例4について説明する。
有機性廃棄物量の0.7%のメタン発酵液を抜き出した実施例1のバイオガス発生速度は、比較例1とほとんど変わらず、メタン発酵効率向上の効果は得られなかったが、投入した有機性廃棄物量の1.0%のメタン発酵液を抜き出した実施例2は、加水分解酵素10gを加えた比較例3および加水分解酵素20gを加えた比較例4と同等のメタン発酵効率の向上効果が得られている。メタン発酵液の抜き出し量を増やした実施例3および実施例4は、実施例2よりも更にバイオガス発生速度が上がり、より効果的である。
Next, the methane fermentation broth was extracted from the methane fermenter, a nutrient source was added to the fermented broth, and the culture broth cultured for one day under aerobic conditions was returned to the methane fermenter to perform methane fermentation. Example 4 will be described.
The biogas generation rate of Example 1 from which 0.7% of the organic waste amount of methane fermentation liquid was extracted was almost the same as that of Comparative Example 1, and the effect of improving methane fermentation efficiency was not obtained. Example 2 which extracted 1.0% of methane fermentation liquid of the amount of toxic waste is the improvement effect of the methane fermentation efficiency equivalent to the comparative example 3 which added hydrolase 10g, and the comparative example 4 which added hydrolase 20g. Is obtained. Example 3 and Example 4 which increased the extraction amount of the methane fermentation broth are more effective than Example 2 because the biogas generation rate is further increased.

メタン発酵槽の発酵温度が55℃である高温メタン発酵の場合、投入した有機性廃棄物量に対して1.0%以上の量のメタン発酵液を抜き出し、栄養源を与えて好気性条件下において培養することによって、加水分解酵素の添加による効果以上のメタン発酵効率の向上を実現することができた。   In the case of high-temperature methane fermentation where the fermentation temperature of the methane fermenter is 55 ° C, 1.0% or more of the methane fermentation broth is extracted with respect to the amount of the organic waste added, and the nutrient source is provided under aerobic conditions. By culturing, the methane fermentation efficiency could be improved more than the effect of adding hydrolase.

[メタン発酵試験2]
メタン発酵槽の発酵温度が37℃の場合について、メタン発酵試験1と同様に、試験用メタン発酵槽を用いたメタン発酵試験を行った。メタン発酵試験2におけるメタン発酵槽の条件を以下に示す。
メタン発酵温度: 37℃(中温メタン発酵)
有機性廃棄物量: 300ミリリットル(搾乳牛糞尿)
メタン発酵液量: 10リットル
メタン発酵槽からメタン発酵液を抜き出し、好気性培養槽において培養後、該培養液をメタン発酵槽に戻し、発生するバイオガスを測定する試験方法は、メタン発酵試験1と同様であるため、その説明は省略する。
[Methane fermentation test 2]
About the case where the fermentation temperature of a methane fermentation tank is 37 degreeC, the methane fermentation test using the test methane fermentation tank was done similarly to the methane fermentation test 1. FIG. The conditions of the methane fermentation tank in the methane fermentation test 2 are shown below.
Methane fermentation temperature: 37 ° C (medium temperature methane fermentation)
Organic waste volume: 300ml (milking cow manure)
The amount of methane fermentation broth: 10 liters The methane fermentation broth was extracted from the methane fermentation tank, cultured in an aerobic culture tank, returned to the methane fermentation tank, and the test method for measuring the generated biogas is the methane fermentation test 1 Since this is the same, the description thereof is omitted.

本試験において、メタン発酵槽から抜き出した抜出メタン発酵液量を表3に示す。表3に記載した、抜出メタン発酵液量/メタン発酵槽供給排出量(%)の説明は、メタン発酵試験1と同様であるのでここでは省略する。
また比較例として、メタン発酵槽になにも添加しないもの(比較例5)と、加水分解酵素(COWATEC社製:MethaPlus1,000)添加した場合もの(比較例6)の試験を行った。表4に、比較例における加水分解酵素の添加量を示す。
Table 3 shows the amount of the extracted methane fermentation liquid extracted from the methane fermentation tank in this test. The explanation of the extracted methane fermentation liquid amount / methane fermenter supply / discharge amount (%) described in Table 3 is the same as in the methane fermentation test 1 and is omitted here.
Moreover, as a comparative example, a test was carried out on a sample not added to the methane fermenter (Comparative Example 5) and a case where a hydrolase (COWATEC: MethaPlus 1,000) was added (Comparative Example 6). Table 4 shows the amount of hydrolase added in the comparative example.

Figure 0004834563
Figure 0004834563

Figure 0004834563
図4は、メタン発酵試験2における発生バイオガス積算量とバイオガス発生速度の関係を示す図である。
投入した有機性廃棄物量の0.3%のメタン発酵液を抜き出した実施例5のバイオガス発生速度は、比較例5とほとんど変わらず、メタン発酵効率向上の効果は得られなかったが、投入した有機性廃棄物量の1.0%のメタン発酵液を抜き出した実施例6は、加水分解酵素10gを加えた比較例6よりもメタン発酵効率は向上している。メタン発酵液の抜き出し量を増やした実施例7および実施例8は、実施例5よりも更にバイオガス発生速度が上がり、より効果的である。
Figure 0004834563
FIG. 4 is a diagram showing the relationship between the generated biogas integrated amount and the biogas generation rate in the methane fermentation test 2.
The biogas generation rate of Example 5, which extracted 0.3% of the methane fermentation liquid of the amount of the organic waste input, was almost the same as that of Comparative Example 5, and the effect of improving the methane fermentation efficiency was not obtained. Example 6 which extracted 1.0% of methane fermentation liquid of the amount of the organic waste which performed did methane fermentation efficiency is improving rather than the comparative example 6 which added hydrolase 10g. Example 7 and Example 8 which increased the extraction amount of the methane fermentation broth are more effective than Example 5 because the biogas generation rate is further increased.

メタン発酵槽の発酵温度が37℃である中温メタン発酵の場合には、投入した有機性廃棄物量に対して1.0%以上の量のメタン発酵液を抜き出し、栄養源を与えて好気性条件下において培養することによって、加水分解酵素の添加による効果以上のメタン発酵効率の向上を実現することができた。   In the case of mesophilic methane fermentation where the fermentation temperature of the methane fermenter is 37 ° C., 1.0% or more of the methane fermentation broth is extracted with respect to the amount of organic waste added, and a nutrient source is provided to provide aerobic conditions. By culturing below, the methane fermentation efficiency could be improved more than the effect of adding hydrolase.

尚、メタン発酵試験1およびメタン発酵試験2において、好気性菌の栄養源は多糖類であるデンプンを用いたが、ステアリン酸等の高級脂肪酸、グルコース等の単糖類、シュークロース等の二糖類、グリシン等のアミノ酸、ステアリン酸トリグリセリド等の油脂類を栄養源として加えても、同様の結果が得られることが試験により分かっている。   In addition, in the methane fermentation test 1 and the methane fermentation test 2, the nutrient source of the aerobic bacteria used polysaccharides starch, but higher fatty acids such as stearic acid, monosaccharides such as glucose, disaccharides such as sucrose, Tests have shown that similar results can be obtained by adding amino acids such as glycine and fats and oils such as stearic acid triglyceride as nutrient sources.

本発明は、有機性廃棄物をメタン発酵槽でメタン発酵させるメタン発酵システムおよび方法に利用可能である。   The present invention is applicable to a methane fermentation system and method for methane fermentation of organic waste in a methane fermenter.

本発明に係るメタン発酵システムの一実施例を示す概略構成図である。It is a schematic structure figure showing one example of a methane fermentation system concerning the present invention. 本発明に係るメタン発酵システムの他の実施例を示す概略構成図である。It is a schematic block diagram which shows the other Example of the methane fermentation system which concerns on this invention. メタン発酵試験1(高温メタン発酵)における発生バイオガス積算量とバイオガス発生速度の関係を示す図であるIt is a figure which shows the relationship between the amount of generation | occurrence | production biogas in the methane fermentation test 1 (high temperature methane fermentation), and biogas generation | occurence | production speed | velocity. メタン発酵試験2(中温メタン発酵)における発生バイオガス積算量とバイオガス発生速度の関係を示す図であるIt is a figure which shows the relationship between the amount of generation | occurrence | production biogas in the methane fermentation test 2 (medium temperature methane fermentation), and biogas generation | occurence | production speed | velocity. メタン発酵試験に用いたメタン発酵槽の概略構成図である。It is a schematic block diagram of the methane fermentation tank used for the methane fermentation test.

符号の説明Explanation of symbols

1 有機性廃棄物、 2 メタン発酵液、 3 培養液、
4 栄養源、 5 空気、
10 有機性廃棄物供給ライン、
11 メタン発酵槽、 12 有機性廃棄物供給口、
13 メタン発酵液排出口、 14 メタン発酵液抜出口、
20 メタン発酵液移送ライン、
21 好気性培養槽、 22 メタン発酵液供給口、 23 培養液抜出口、
24 曝気装置、 25 撹拌機、
30 培養液移送ライン、
41 磨砕機、 42 スラリータンク、43 バイオガス
51 試験用メタン発酵槽、 52 恒温水槽、 53 メタン発酵液、
54 有機性廃棄物、 55 投入口、 56 投入口キャップ、
57 撹拌パドル、 58 拡販用ハンドル、 59 湿式ガスメーター、
60 バイオガス 61 抜出メタン発酵液
1 organic waste, 2 methane fermentation broth, 3 culture broth,
4 nutrient sources, 5 air,
10 Organic waste supply line,
11 Methane fermentation tank, 12 Organic waste supply port,
13 Methane fermentation liquid outlet, 14 Methane fermentation liquid outlet,
20 Methane fermentation broth transfer line,
21 aerobic culture tank, 22 methane fermentation broth supply port, 23 culture broth outlet,
24 aeration device, 25 stirrer,
30 culture fluid transfer line,
41 grinding machine, 42 slurry tank, 43 biogas 51 methane fermentation tank for testing, 52 thermostatic water tank, 53 methane fermentation liquid,
54 organic waste, 55 inlet, 56 inlet cap,
57 Stir paddle, 58 Sales handle, 59 Wet gas meter,
60 Biogas 61 Extracted methane fermentation liquor

Claims (6)

有機性廃棄物を嫌気性条件下でメタン発酵するメタン発酵槽と、該メタン発酵槽内のメタン発酵液の一部と栄養源が送られて、該メタン発酵液中に含まれる好気性菌を好気性条件下で培養することにより、当該培養液中に加水分解酵素を生成させる好気性培養槽と、を備え、
前記栄養源として、少なくとも油脂類を、メタン発酵槽内から送られたメタン発酵液の量に対して10mg/リットル以上の濃度になるように添加するとともに
前記好気性培養槽において加水分解酵素が生成された培養液が、前記メタン発酵槽に戻されるように構成されたことを特徴とするメタン発酵システム。
A methane fermentation tank for methane fermentation of organic waste under anaerobic conditions, and a part of the methane fermentation liquid in the methane fermentation tank and a nutrient source are sent to aerobic bacteria contained in the methane fermentation liquid. An aerobic culture tank for producing a hydrolase in the culture medium by culturing under aerobic conditions,
As the nutrient source, at least oils and fats are added so as to have a concentration of 10 mg / liter or more with respect to the amount of the methane fermentation solution sent from the methane fermentation tank ,
A methane fermentation system, wherein a culture solution in which a hydrolase is generated in the aerobic culture tank is returned to the methane fermentation tank.
請求項1において、単位時間当たりにメタン発酵槽に供給される有機性廃棄物量であり、且つ、単位時間当たりにメタン発酵槽から排出されるメタン発酵液量であるメタン発酵槽供給排出量の1〜10%の量のメタン発酵液を、メタン発酵槽から好気性培養槽に送るように構成したことを特徴とするメタン発酵システム。   The amount of organic waste supplied to the methane fermenter per unit time in claim 1 and 1 of the methane fermenter supply / discharge amount that is the amount of methane fermentation liquid discharged from the methane fermenter per unit time A methane fermentation system configured to send a methane fermentation solution having an amount of 10% to 10% from a methane fermentation tank to an aerobic culture tank. 請求項1または2において、前記好気性培養槽における培養滞留時間が1〜5日であることを特徴とするメタン発酵システム。   The methane fermentation system according to claim 1 or 2, wherein a culture residence time in the aerobic culture tank is 1 to 5 days. 請求項1から3のいずれか1項において、前記好気性培養槽における好気性条件は、曝気、大気開放下での機械式撹拌、および/またはポンプによる培養液循環によって確保されることを特徴とするメタン発酵システム。   The aerobic condition in the aerobic culture tank according to any one of claims 1 to 3 is ensured by aeration, mechanical agitation in an open atmosphere, and / or culture medium circulation by a pump. Methane fermentation system. 請求項1からのいずれか1項において、前記好気性培養槽内の培養液の温度を、前記メタン発酵槽内のメタン発酵液の温度の±5℃以内に設定することを特徴とするメタン発酵システム。 In any one of claims 1 to 4, wherein the methane, characterized in that the temperature of the culture of aerobic fermenter is set within ± 5 ℃ temperature methane fermentation liquid in the methane fermentation tank Fermentation system. 有機性廃棄物をメタン発酵させるメタン発酵槽内のメタン発酵液の一部と、前記栄養源として、少なくとも油脂類を、前記メタン発酵槽内から送られるメタン発酵液の量に対して10mg/リットル以上の濃度になるように好気性培養槽に送り、該好気性培養槽において、前記メタン発酵液中に含まれる好気性菌を、好気性条件下で培養して当該培養液中に加水分解酵素を生成させた後、その加水分解酵素が生成した培養液を前記メタン発酵槽に戻すことを特徴とするメタン発酵方法。 Part of the methane fermentation liquid in the methane fermentation tank for methane fermentation of organic waste, and at least oils and fats as the nutrient source, 10 mg / liter with respect to the amount of the methane fermentation liquid sent from the methane fermentation tank The aerobic culture tank is sent to an aerobic culture tank so as to have the above concentration, and the aerobic bacteria contained in the methane fermentation broth are cultured under aerobic conditions in the aerobic culture tank and hydrolase is contained in the culture liquid. Then, the culture broth produced by the hydrolase is returned to the methane fermentation tank.
JP2007008183A 2007-01-17 2007-01-17 Methane fermentation system and method Active JP4834563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007008183A JP4834563B2 (en) 2007-01-17 2007-01-17 Methane fermentation system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007008183A JP4834563B2 (en) 2007-01-17 2007-01-17 Methane fermentation system and method

Publications (2)

Publication Number Publication Date
JP2008173554A JP2008173554A (en) 2008-07-31
JP4834563B2 true JP4834563B2 (en) 2011-12-14

Family

ID=39700988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007008183A Active JP4834563B2 (en) 2007-01-17 2007-01-17 Methane fermentation system and method

Country Status (1)

Country Link
JP (1) JP4834563B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5551044B2 (en) * 2010-10-07 2014-07-16 住友重機械工業株式会社 Biological wastewater treatment apparatus and biological wastewater treatment method
KR101248311B1 (en) 2012-12-14 2013-03-27 효성에바라엔지니어링 주식회사 Apparatus and method for anaerobic digestion of organic waste

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61181597A (en) * 1985-02-07 1986-08-14 Agency Of Ind Science & Technol Anaerobic digestion treatment of organic sewage
JPH05253595A (en) * 1991-12-06 1993-10-05 Daiwa Resin Kogyo Kk Apparatus for treating organic waste
JP2000254697A (en) * 1999-03-12 2000-09-19 Mitsubishi Heavy Ind Ltd Treatment of organic waste
JP2003340412A (en) * 2002-05-28 2003-12-02 National Institute Of Advanced Industrial & Technology Method for anaerobic digestive treatment of organic waste and apparatus therefor
JP4354311B2 (en) * 2004-03-12 2009-10-28 株式会社荏原製作所 Method and apparatus for anaerobic treatment of processing object containing cellulosic organic matter

Also Published As

Publication number Publication date
JP2008173554A (en) 2008-07-31

Similar Documents

Publication Publication Date Title
Singh et al. Impact of mixing intensity and duration on biogas production in an anaerobic digester: a review
Ahring et al. Anaerobic treatment of manure together with industrial waste
Luste et al. Co-digestion of dairy cattle slurry and industrial meat-processing by-products–effect of ultrasound and hygienization pre-treatments
Handous et al. Two-stage anaerobic digestion of meat processing solid wastes: methane potential improvement with wastewater addition and solid substrate fermentation
CN112441859B (en) Method for treating epidemic animal wastewater by aerobic-anaerobic two-step fermentation
CN102741390A (en) Anaerobic process
JP4834563B2 (en) Methane fermentation system and method
CN207862214U (en) The device of biological organic fertilizer is prepared using pig breeding waste
KR100907035B1 (en) Organic weaste treatment apparatus and method
JP5030722B2 (en) Methane fermentation method
CN111534416A (en) Fermentation equipment and fermentation method for organic matters
JP5230243B2 (en) Method and system for methane fermentation treatment of organic waste
JP2009279534A (en) Method for treating organic waste
Tie et al. The effect of calcium hydroxide addition on enhancing ammonia recovery during thermophilic composting in a self-heated pilot-scale reactor
WO2012118319A2 (en) Apparatus for producing liquid fertilizer made of amino acids using blood
KR101756446B1 (en) Reduction and Biogas Production System Using Anaerobic Digestion of Organic Waste and Livestock manure and Operation Method Using the Same
JP2015229136A (en) Recovery method of deactivated methane fermentation tank, methane fermentation method and methane fermentation system
CN212669681U (en) Fermentation equipment of organic matter
RU2413408C1 (en) Method of methane fermentation of manure drains
CN113817644A (en) Method for combining gas-oil-feeding by coupling anaerobic digestion of marine product processing waste with microalgae culture
WO2016209183A1 (en) Use of a cellulose hydrolysate for biogas production
KR20010054083A (en) A producing method of bio-gas and apparatus thereof
CN207142916U (en) A kind of anaerobic processing device of liquid debirs
JP7459139B2 (en) Anaerobic biogas plant and digestion method
MEDINA et al. Anaerobic digestion of slaughterhouse solid waste for the optimization of biogas production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110926

R150 Certificate of patent or registration of utility model

Ref document number: 4834563

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350