JP4834292B2 - Super duplex stainless steel with excellent corrosion resistance, embrittlement resistance, castability and hot workability with reduced formation of intermetallic compounds - Google Patents

Super duplex stainless steel with excellent corrosion resistance, embrittlement resistance, castability and hot workability with reduced formation of intermetallic compounds Download PDF

Info

Publication number
JP4834292B2
JP4834292B2 JP2003578609A JP2003578609A JP4834292B2 JP 4834292 B2 JP4834292 B2 JP 4834292B2 JP 2003578609 A JP2003578609 A JP 2003578609A JP 2003578609 A JP2003578609 A JP 2003578609A JP 4834292 B2 JP4834292 B2 JP 4834292B2
Authority
JP
Japan
Prior art keywords
less
corrosion resistance
steel
stainless steel
duplex stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003578609A
Other languages
Japanese (ja)
Other versions
JP2005520934A (en
Inventor
パク,ヨン−ソ
キム,スン−テ
リ,イン−スン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2005520934A publication Critical patent/JP2005520934A/en
Application granted granted Critical
Publication of JP4834292B2 publication Critical patent/JP4834292B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

本発明は、高耐食性二相ステンレス鋼に関し、より詳しくは、高耐食性二相ステンレス鋼の製造(鋳造、熱間圧延または溶接)時に生成される、脆いシグマ(σ)相、カイ(χ)相などの金属間化合物の形成を抑えることにより、高耐食性を維持しつつ、より優れた耐脆化性、鋳造性及び熱間加工性を有するスーパー二相ステンレス鋼に関する。 The present invention relates to a high corrosion resistance duplex stainless steel, and more particularly, a brittle sigma (σ) phase and a chi (χ) phase produced during the production (casting, hot rolling or welding) of a high corrosion resistance duplex stainless steel. The present invention relates to a super duplex stainless steel having more excellent embrittlement resistance, castability and hot workability while maintaining high corrosion resistance by suppressing the formation of intermetallic compounds such as.

二相ステンレス鋼は、優れた加工性を提供するオーステナイト(γ)相と優れた耐食性を提供するフェライト(α)相とが相互に組み合わさって、強度がオーステナイト系ステンレス鋼より少なくとも1.7倍以上高いだけでなく、孔食抵抗性と応力腐食割れ抵抗性に非常に優れており、近年注目されている。孔食抵抗当量(pitting resistance equivalemt)指数「PREW=%Cr+3.3(%Mo+0.5%W)+30%N」値が、約46であるSAF2507(UNS S32750)、UR52N+(UNS 32550)、ZERON100(UNS 32760)のような商用スーパー二相ステンレス鋼が1990年代から様々な用途で使用されている。精錬法の発達により二相ステンレス鋼の品質が改善され、ここ数年間、多様な適用分野において、その使用量が着実に増加している。   Duplex stainless steel is a combination of an austenite (γ) phase that provides excellent workability and a ferrite (α) phase that provides excellent corrosion resistance, and is at least 1.7 times stronger than austenitic stainless steel. In addition to the above, it is very excellent in pitting corrosion resistance and stress corrosion cracking resistance, and has attracted attention in recent years. Pitting resistance equivalemt index “PREW =% Cr + 3.3 (% Mo + 0.5% W) + 30% N” is about 46, SAF2507 (UNS S32750), UR52N + (UNS 32550), ZERON100 ( Commercial super duplex stainless steels such as UNS 32760) have been used in various applications since the 1990s. The quality of duplex stainless steel has been improved by the development of refining methods, and its usage has been steadily increasing in various application fields in recent years.

しかしながら、PREW46級のスーパー二相ステンレス鋼は、PREW38級のSAF2205のような汎用の鋼種よりも、機械的性質及び耐食性を低下させるシグマ(σ)相、カイ(χ)相の主構成元素であるCr、Mo、Wを多量に含有しており、製造時、または使用時に、これらの析出相が生成されやすいという問題点がある。実際、二相ステンレス鋼の連続鋳造後の冷却、熱間圧延後の徐冷、溶接後の熱影響部の徐冷そして鋳造後の鋳塊中心部の徐冷における析出相による脆化が観察されている。そして、添加される合金元素の中で、局部腐食及び応力腐食割れ性の向上のために添加されるMoは、高価であるだけでなく、シグマ(σ)相の形成と475℃脆性を促進する元素であるため、その添加量が制限されている。シグマ(σ)相は、650〜1000℃の高温で生成される非常に脆い金属間化合物である。約1vol%を超えるシグマ相は、二相ステンレス鋼の衝撃靱性と耐食性を急激に低下させる。   However, PREW46 grade super duplex stainless steel is the main constituent element of sigma (σ) phase and chi (χ) phase, which lowers mechanical properties and corrosion resistance compared to general-purpose steel grades such as PREW38 grade SAF2205. It contains a large amount of Cr, Mo, W, and there is a problem that these precipitated phases are easily generated during production or use. In fact, embrittlement due to precipitation phases was observed in the cooling after continuous casting of duplex stainless steel, slow cooling after hot rolling, slow cooling of the heat-affected zone after welding, and slow cooling of the ingot center after casting. ing. Of the alloy elements added, Mo added for improving local corrosion and stress corrosion cracking properties is not only expensive, but also promotes the formation of sigma (σ) phase and 475 ° C brittleness. Since it is an element, its addition amount is limited. The sigma (σ) phase is a very brittle intermetallic compound produced at a high temperature of 650 to 1000 ° C. A sigma phase exceeding about 1 vol% drastically reduces the impact toughness and corrosion resistance of the duplex stainless steel.

従って、製造時、または使用時におけるこのようなシグマ相の形成を抑制するための多くの研究開発がこれまで行われてきた。しかし、このような従来の研究開発を分類して分析してみると、下記のような問題点がある。   Therefore, many researches and developments have been conducted so far to suppress the formation of such a sigma phase during production or use. However, when such conventional research and development is classified and analyzed, there are the following problems.

1)39%Crを含有するフェライト系ステンレス鋼に1〜3%Alを添加するか、AlとNbを複合添加した場合、シグマ相の形成速度が遅延されると同時に、シグマ相の形成温度域が狭められ、シグマ相の析出速度が遅延されることが報告されている(K. Permachandra et al, Materials Science and Technology, Vol.8, p.437(1992))。しかし、オーステナイト及びフェライトが共存する二相ステンレス鋼に適用された事例ではない。 1) When 1-3% Al is added to ferritic stainless steel containing 39% Cr or when Al and Nb are added in combination, the sigma phase formation rate is delayed and the sigma phase formation temperature range It is reported that the precipitation rate of the sigma phase is delayed and the deposition rate of the sigma phase is delayed (K. Permachandra et al, Materials Science and Technology, Vol. 8, p. 437 (1992)). However, this is not an example applied to a duplex stainless steel in which austenite and ferrite coexist.

2)ステンレス鋼にZrを添加した場合、シグマ相の形成速度が減少する。しかし、AlやZrのような合金元素は、強力なフェライト形成元素としてオーステナイト相の分率を減少させ、窒素を含有する他の形態の金属間化合物を形成して耐食性及び機械的性質を低下させるという問題がある(M. B. Cotrie et al、Metallurgical and Materials Transaction 28A (1997)2477)。 2) When Zr is added to stainless steel, the sigma phase formation rate decreases. However, alloying elements such as Al and Zr reduce the fraction of the austenite phase as a strong ferrite-forming element, and form other forms of intermetallic compounds containing nitrogen, reducing corrosion resistance and mechanical properties. (MB Cotrie et al, Metallurgical and Materials Transaction 28A (1997) 2477).

3)43〜46%Crを含有するフェライトステンレス鋼にSnを添加すると、Snが粒界や粒界三重点などシグマ相の核生成個所に析出し、シグマ相の形成速度が減少する。しかし、Snの低い融点(232℃)に起因して、フェライトステンレス鋼が232℃以上の高温に曝される場合、割れが発生するおそれがある。さらに二相ステンレス鋼に適用された事例ではない(Costa et al、Physica Status Solidi、A 139 (1993) 83)。 3) When Sn is added to ferritic stainless steel containing 43 to 46% Cr, Sn precipitates at sigma phase nucleation sites such as grain boundaries and grain boundary triple points, and the sigma phase formation rate decreases. However, due to the low melting point of Sn (232 ° C.), cracks may occur when ferritic stainless steel is exposed to high temperatures of 232 ° C. or higher. It is not the case applied to duplex stainless steel (Costa et al, Physica Status Solidi, A 139 (1993) 83).

4)岡本(Okamoto)らは、3%Mo+2%Wを含有するスーパー二相ステンレス鋼のDP3W(UNS S39274)が、既存の3.8%Moを含有する商用のスーパー二相ステンレス鋼のSAF 2507、UR52N+、ZERON 100に比べて、850℃で10分間の時効熱処理時に、Wの添加によりシグマ相の析出速度が遅延されることを公表している。しかし、大型インゴット及びスラブを熱間圧延する場合、または大型鋳造品を溶解鋳造する場合、脆いカイ(χ)相及びシグマ(σ)相の析出により耐食性及び機械的性質が低下するという問題がある(H. Okamoto et al、4th International Conferences on Duplex Stainless Steels、(1994) Paper 91及び米国特許第5,298,093号)。 4) Okamoto et al., DP3W (UNS S39274), a super duplex stainless steel containing 3% Mo + 2% W, is a commercial super duplex stainless steel SAF 2507 containing 3.8% Mo. Compared to UR52N + and ZERON 100, it is announced that the precipitation rate of the sigma phase is delayed by the addition of W during the aging heat treatment at 850 ° C. for 10 minutes. However, when hot-rolling large ingots and slabs, or when casting large castings, there is a problem that corrosion resistance and mechanical properties deteriorate due to precipitation of brittle chi (χ) phase and sigma (σ) phase. (H. Okamoto et al, 4 th International Conferences on Duplex Stainless Steels, (1994) Paper 91 and U.S. Pat. No. 5,298,093).

特に、前記米国特許第5,298,093号は、耐食性の向上のために、大量のW(1.5%〜5.0%)を添加しても、金属間化合物の形成を加速させない効果があることを見出し、Wを積極的に添加することを特徴としている。一方ではS及びOを固定して熱間加工性を向上させるために、0.02%以下のCa、又は0.02%以下のMg、又は0.02%以下のB、及び総量で0.2%以下のREMからなる群から選択される少なくとも一種の元素を添加することができるとしているが、Ca、B、Mg及びREMがその上限値を越えて添加される場合、これらの合金元素の酸化物及び硫化物が多量に形成され、酸化物及び硫化物のような非金属介在物が孔食の発生個所として作用し、耐食性の低下を招くことを開示している。 In particular, the above-mentioned US Pat. No. 5,298,093 has the effect of not accelerating the formation of intermetallic compounds even when a large amount of W (1.5% to 5.0%) is added to improve corrosion resistance. And is characterized by positively adding W. On the other hand, in order to fix S and O and improve hot workability, 0.02% or less of Ca, or 0.02% or less of Mg, or 0.02% or less of B, and a total amount of 0.02% or less. It is said that at least one element selected from the group consisting of 2% or less of REM can be added, but when Ca, B, Mg and REM are added in excess of the upper limit, these alloy elements It is disclosed that oxides and sulfides are formed in large amounts, and non-metallic inclusions such as oxides and sulfides act as pitting corrosion occurrence sites, leading to a decrease in corrosion resistance.

また、米国特許第5,733,387号は、0.03%以下のC、1.0%以下のSi、2.0%以下のMn、0.04%以下のP、0.004%以下のS、2.0%以下のCu、5.0〜8.0%のNi、22〜27%のCr、1.0〜2.0%のMo、2.0〜5.0%のW及び0.13〜0.30%のNと、所定量のCa、Ce、B及びTiからなる群から選択される少なくとも一種の元素と、残りが鉄で構成される二相ステンレス鋼を開示している。前記特許は、金属間化合物の形成の原因になるMoの含有量を低い範囲に抑えながら、W量の増加により耐食性の向上を図る。しかし、後述するPREW式から明らかであるように、孔食抵抗性を向上させるためのMoの効果は、Wの2倍であるため、Moの含有量を低くすることは、非効果的である。 U.S. Pat. No. 5,733,387 is 0.03% or less C, 1.0% or less Si, 2.0% or less Mn, 0.04% or less P, 0.004% or less S, 2.0% or less Cu, 5.0-8.0% Ni, 22-27% Cr, 1.0-2.0% Mo, 2.0-5.0% W And a duplex stainless steel comprising 0.13 to 0.30% N, a predetermined amount of at least one element selected from the group consisting of Ca, Ce, B and Ti, and the balance being iron. ing. The patent seeks to improve corrosion resistance by increasing the amount of W while keeping the content of Mo that causes the formation of intermetallic compounds in a low range. However, as is apparent from the PREW equation described later, the effect of Mo for improving pitting corrosion resistance is twice that of W, so it is ineffective to reduce the Mo content. .

一方、脆い金属間化合物の生成を抑制するために、二相ステンレス鋼の熱処理時における急冷は必須である。これは二相ステンレス鋼が熱処理温度から冷却される時、金属間化合物の析出温度を通過することになるが、この温度域での冷却速度が十分に速くないと、金属間化合物が急速に析出するためである。このように徐冷中に高温で金属間化合物が析出すると、二相ステンレス鋼は非常に脆くなり、耐食性も大きく低下する。したがって、金属間化合物の析出を抑制させるためのもう一つの従来の技術としては、熱処理時の冷却過程を制御して金属間化合物の生成を抑制しようとするものがある。 On the other hand, in order to suppress the formation of brittle intermetallic compounds, rapid cooling during the heat treatment of the duplex stainless steel is essential. This means that when duplex stainless steel is cooled from the heat treatment temperature, it will pass the precipitation temperature of the intermetallic compound, but if the cooling rate in this temperature range is not fast enough, the intermetallic compound will precipitate rapidly. It is to do. Thus, when an intermetallic compound precipitates at a high temperature during slow cooling, the duplex stainless steel becomes very brittle and the corrosion resistance is greatly reduced. Therefore, another conventional technique for suppressing the precipitation of intermetallic compounds is to control the cooling process during heat treatment to suppress the formation of intermetallic compounds .

日本国公開特許特開平5−271776号には、二相ステンレス鋼の熱処理時に、金属間化合物が析出する冷却速度を上回る速度で金属間化合物の析出温度域の下限温度まで急冷し、その後金属間化合物の析出温度域を下回る200℃を超える温度域に5分間保持する方法により金属間化合物の析出を抑制することができることが開示さている。 The Japanese Patent Publication JP 5-271776, during the heat treatment of duplex stainless steel, quenched at a rate exceeding the cooling rate intermetallic compound is precipitated to the lower limit temperature of the precipitation temperature zone of intermetallic compounds, followed intermetallic it is possible to suppress the precipitation of intermetallic compounds are disclosed by way of holding 5 minutes at a temperature range exceeding 200 ° C. below the deposition temperature range of the compound.

また、日本国特許公報特公昭62−6615号は、二相ステンレス鋼が鋳造状態で機械部品として製造される場合の金属間化合物を抑制する方法を提供する。すなわち、二相ステンレス鋼からなる機械部品の製造時に、通常、砂型に溶鋼を注入して凝固させた後常温まで放置する方法で製品を製造する。しかし、金属間化合物が非常に析出しやすいスーパー二相ステンレス鋼で鋳造品を製造する時は、鋳造後、常温まで冷却する過程中でフェライト相の一部がシグマ相とオーステナイト相とに変態してシグマ相による脆化が現れる。このようなシグマ相の析出を抑制するために、前記日本国特許公報は、二相ステンレス鋼の溶鋼を砂型または金型などに注入し、その後凝固させた鋳造品を1000℃以上で鋳型から取り外し、急冷する方法について開示している。ステンレス鋼が熱処理温度から冷却される時、シグマ相の析出温度を通過するが、この温度域での冷却速度が十分に速くなければ、シグマ相が急速に析出するためである。このように冷却過程でシグマ相が析出すると、ステンレス鋼は非常に脆くなり耐食性も大きく低下する。 Japanese Patent Publication No. Sho 62-6615 provides a method for suppressing intermetallic compounds when duplex stainless steel is produced as a machine part in a cast state. That is, when manufacturing machine parts made of duplex stainless steel, products are usually manufactured by injecting molten steel into a sand mold and solidifying it, and then leaving it to room temperature. However, when manufacturing castings with super duplex stainless steel, in which intermetallic compounds are very likely to precipitate, part of the ferrite phase transforms into a sigma phase and an austenite phase during the process of cooling to room temperature after casting. Embrittlement due to sigma phase appears. In order to suppress the precipitation of such sigma phase, the above Japanese Patent Gazette describes that the cast steel obtained by injecting molten steel of duplex stainless steel into a sand mold or mold and then solidifying it is removed from the mold at 1000 ° C. or higher. Discloses a method of rapid cooling. This is because when the stainless steel is cooled from the heat treatment temperature, it passes the precipitation temperature of the sigma phase, but if the cooling rate in this temperature range is not fast enough, the sigma phase will precipitate rapidly. Thus, when the sigma phase precipitates during the cooling process, the stainless steel becomes very brittle and the corrosion resistance is greatly reduced.

しかし、前述したような第3合金元素の添加や熱処理時の冷却過程の制御による方法では、本発明の対象であるスーパー二相ステンレス鋼においてシグマ相を満足できる水準で抑制することが出来なかった。   However, the method based on the addition of the third alloy element and the control of the cooling process during the heat treatment as described above could not suppress the sigma phase to a satisfactory level in the super duplex stainless steel that is the object of the present invention. .

発明の開示
本発明は、原子半径の大きいBa、Y、Ce、La、Nd、Pr、Ta、Zr、Tiなどを適正量で添加することにより、非常に脆い金属間化合物の拡散及び析出速度を遅延させ、微量のRE系複合化合物、またはBa酸化物を使用することにより、Cr、Mo、Si、Wの拡散をさらに阻止することにより、金属間化合物の析出速度を低減させるとともに、析出量を減少させて、脆化を防止し、かつ耐食性を向上させることを目的とする。
DISCLOSURE OF THE INVENTION The present invention increases the diffusion and precipitation rate of very brittle intermetallic compounds by adding appropriate amounts of Ba, Y, Ce, La, Nd, Pr, Ta, Zr, Ti and the like having large atomic radii. By delaying and using a small amount of RE complex compound or Ba oxide, the diffusion rate of Cr, Mo, Si, W is further prevented, thereby reducing the precipitation rate of intermetallic compounds and reducing the amount of precipitation. The purpose is to reduce, prevent embrittlement, and improve corrosion resistance.

さらに、本発明は、Ti、Mg、Ca、Al及びCa+Alを利用した通常の方法による適正な予備脱酸とともに、MM(ミッシュメタル:原子番号57から71までの希土類金属の混合物であり、50%以上のCeと、所定の量のLa、Nd及びPrと、微量のPm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Scと1%以下のFeと定義される。以下、本発明の詳細な説明及び実施例では、その一例として主成分が51%Ce−26%La−15.5%Nd−5.5%Prで、残部が、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Scと1%以下のFeからなるMMを使用した。以下では、“MM”と略す。)及び/またはYを添加することによって、鋼の諸特性に悪影響を及ぼすAl、MnS非金属介在物の単独生成を防止することを目的とする。 Further, the present invention is a mixture of MM (Misch metal: rare earth metals from atomic number 57 to 71) with proper preliminary deoxidation by a usual method using Ti, Mg, Ca, Al and Ca + Al, and 50% The above-mentioned Ce, predetermined amounts of La, Nd and Pr, trace amounts of Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc and Fe of 1% or less are defined. Hereinafter, in the detailed description and examples of the present invention, as an example, the main component is 51% Ce-26% La-15.5% Nd-5.5% Pr and the balance is Pm, Sm, Eu. , Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc and MM composed of Fe of 1% or less were used, hereinafter abbreviated as “MM”) and / or by adding Y A that adversely affects the properties of steel And to prevent a single product of the 2 O 3, MnS non-metallic inclusions.

また、本発明は、前記MM及び/またはYの希土類金属元素(REM、以下の化合物式では、“RE”と表す。)の溶鋼中の溶解度積を特定範囲に制御することにより、溶鋼内に意図的に直径5μm以下の希土類金属複合化合物「RExOyまたは(RE、Al)xOy+RExOyS+RExSy」を生成させて、凝固時の樹枝状晶の形成時、不均質な核生成サイトを提供して凝固組織を微細化、緻密化すると同時に、Cr、Mo、W、Ni、Mn、Siなど、溶質元素の偏析を制御することにより、機械的特性、物理的特性及び耐食性を向上させることを目的とする。   In addition, the present invention can control the solubility product in the molten steel of the MM and / or Y rare earth metal element (REM, represented by “RE” in the following compound formulas) within a specific range, so The rare earth metal composite compound “RExOy or (RE, Al) xOy + RExOyS + RExSy” having a diameter of 5 μm or less is intentionally generated to provide a heterogeneous nucleation site during formation of dendrites during solidification, thereby finely solidifying the solidified structure. It aims at improving mechanical characteristics, physical characteristics, and corrosion resistance by controlling segregation of solute elements such as Cr, Mo, W, Ni, Mn, Si and the like at the same time.

したがって、本発明は、従来技術では認識しなかった新しい合金元素の添加により、二相ステンレス鋼でシグマ相を含む金属間化合物の形成を顕著に抑制し、量産時の製造歩留まりを著しく向上させることを目的とする。 Therefore, the present invention remarkably suppresses the formation of intermetallic compounds containing a sigma phase in duplex stainless steel by adding a new alloy element not recognized in the prior art, and significantly improves the production yield in mass production. With the goal.

さらに、本発明は、シグマ相を含む金属間化合物の析出速度を大きく低下させて、耐脆化性を改善し、割れの発生を著しく低下させることにより、鋳造及び熱間加工時の歩留まりを大幅に向上させることを目的としている。 Furthermore, the present invention significantly reduces the yield during casting and hot working by greatly reducing the precipitation rate of intermetallic compounds containing a sigma phase, improving the resistance to embrittlement, and significantly reducing the occurrence of cracks. The purpose is to improve.

また、鋳造状態で耐食性及び機械的性質を大きく低下させるシグマ(σ)相及びカイ(χ)相の析出を抑制することによって、及び前述した多様な適用分野で設備部品を必須的に溶接する場合の溶接熱影響部においても同じようにこれらの析出相を制御することによって、耐食性及び機械的性質を大きく向上させて設備の耐久性をより一層向上させることを目的とする。   In addition, by suppressing the precipitation of sigma (σ) phase and chi (χ) phase, which greatly reduces corrosion resistance and mechanical properties in the cast state, and when equipment parts are essentially welded in the various application fields mentioned above In the welding heat-affected zone, the purpose is to further improve the durability of the equipment by greatly improving the corrosion resistance and mechanical properties by controlling these precipitation phases.

ここで、本発明の要旨は、下記のとおりである。   Here, the gist of the present invention is as follows.

(1)重量%で、Cr:21.0%〜38.0%、Ni:3.0%〜12.0%、Mo:1.5%〜6.5%、W:0〜6.5%、Si:3.0%以下、Mn:8.0%以下、N:0.2%〜0.7%、C:0.1%以下、Ba:0.0001〜0.6%、残りは鉄と不可避的不純物からなり、
下記式(1)で定義される孔食抵抗当量指数PREW(Pitting Resistance Equivalent)が40≦PREW≦67を満足する、金属間化合物の形成が抑制された耐食性、耐脆化性、鋳造性及び熱間加工性に優れたスーパー二相ステンレス鋼。
PREW=重量%Cr+3.3(重量%Mo+0.5重量%W)+30重量%N--------(1)
(1) By weight, Cr: 21.0% to 38.0%, Ni: 3.0% to 12.0%, Mo: 1.5% to 6.5%, W: 0 to 6.5 %, Si: 3.0% or less, Mn: 8.0% or less, N: 0.2% to 0.7%, C: 0.1% or less, Ba: 0.0001 to 0.6%, remaining Consists of iron and inevitable impurities,
The pitting resistance equivalent index PREW (Pitting Resistance Equivalent) defined by the following formula (1) satisfies 40 ≦ PREW ≦ 67, and the corrosion resistance, brittleness resistance, castability and heat with suppressed formation of intermetallic compounds. Super duplex stainless steel with excellent hot workability.
PREW = wt% Cr + 3.3 (wt% Mo + 0.5 wt% W) +30 wt% N -------- (1)

(2)前記鋼が、さらにMM及び/またはYを総量で0.0001〜1.0%含有する、(1)記載の金属間化合物の形成が抑制された耐食性、耐脆化性、鋳造性及び熱間加工性に優れたスーパー二相ステンレス鋼。 (2) The steel further contains MM and / or Y in a total amount of 0.0001 to 1.0%. Corrosion resistance, brittleness resistance, and castability in which the formation of the intermetallic compound according to (1) is suppressed. Super duplex stainless steel with excellent hot workability.

(3)前記Baが0.001〜0.2%の範囲内で添加される、(2)記載の金属間化合物の形成が抑制された耐食性、耐脆化性、鋳造性及び熱間加工性に優れたスーパー二相ステンレス鋼。 (3) Corrosion resistance, embrittlement resistance, castability and hot workability in which formation of the intermetallic compound according to (2) is suppressed, wherein the Ba is added in a range of 0.001 to 0.2%. Excellent super duplex stainless steel.

(4)重量%で、Cr:21.0%〜38.0%、Ni:3.0%〜12.0%、Mo:1.5%〜6.5%、W:0〜6.5%、Si:3.0%以下、Mn:8.0%以下、N:0.2%〜0.7%、C:0.1%以下を含有し、MM及び/またはYを総量で0.0001〜1.0%含有し、そして、残りは鉄と不可避的不純物からなり、
下記式(1)で定義される孔食抵抗当量指数PREWが40≦PREW≦67を満足する、金属間化合物の形成が抑制された耐食性、耐脆化性、鋳造性及び熱間加工性に優れたスーパー二相ステンレス鋼。
PREW=重量%Cr+3.3(重量%Mo+0.5重量%W)+30重量%N--------(1)
(4) By weight, Cr: 21.0% to 38.0%, Ni: 3.0% to 12.0%, Mo: 1.5% to 6.5%, W: 0 to 6.5 %, Si: 3.0% or less, Mn: 8.0% or less, N: 0.2% to 0.7%, C: 0.1% or less, and MM and / or Y is 0 in total 0.0001-1.0%, and the balance consists of iron and inevitable impurities,
The pitting corrosion resistance equivalent index PREW defined by the following formula (1) satisfies 40 ≦ PREW ≦ 67, and is excellent in corrosion resistance, brittleness resistance, castability and hot workability with suppressed formation of intermetallic compounds. Super duplex stainless steel.
PREW = wt% Cr + 3.3 (wt% Mo + 0.5 wt% W) +30 wt% N -------- (1)

(5)前記MM及び/またはYと、鋼中Al、O及びSとの溶解度積の関係式[MM及び/またはY+Al]・[O+S]の値が、0.001×10-5〜30,000×10-5[%]2の範囲にある、(2)〜(4)の何れか1項に記載の金属間化合物の形成が抑制された耐食性、耐脆化性、鋳造性及び熱間加工性に優れたスーパー二相ステンレス鋼。 (5) The value of the relational expression [MM and / or Y + Al] · [O + S] of the solubility product of MM and / or Y and Al, O and S in steel is 0.001 × 10 −5 to 30, Corrosion resistance, embrittlement resistance, castability and hot, in which formation of the intermetallic compound according to any one of (2) to (4) is in the range of 000 × 10 −5 [%] 2 Super duplex stainless steel with excellent workability.

(6)前記溶解度積の関係式値が、鋳造製品の場合、1×10-5〜5,000×10-5[%]2の範囲にある、(5)に記載の金属間化合物の形成が抑制された耐食性、耐脆化性、鋳造性及び熱間加工性に優れたスーパー二相ステンレス鋼。 (6) Formation of the intermetallic compound according to (5), wherein the relational value of the solubility product is in the range of 1 × 10 −5 to 5,000 × 10 −5 [%] 2 in the case of a cast product. Super duplex stainless steel with excellent corrosion resistance, brittleness resistance, castability and hot workability.

(7)前記溶解度積の関係式値が、熱間加工製品の場合、0.1×10-5〜2,000×10-5[%]2の範囲にある、(5)に記載の金属間化合物の形成が抑制された耐食性、耐脆化性、鋳造性及び熱間加工性に優れたスーパー二相ステンレス鋼。 (7) The metal according to (5), wherein the relational expression value of the solubility product is in the range of 0.1 × 10 −5 to 2,000 × 10 −5 [%] 2 in the case of a hot-worked product. Super duplex stainless steel with excellent corrosion resistance, embrittlement resistance, castability and hot workability with reduced formation of intermetallic compounds .

(8)前記MM及び/またはYの添加総量が0.01%〜0.6%である、金属間化合物の形成が抑制された(2)〜(4)の何れか一項に記載の耐食性、耐脆化性、鋳造性及び熱間加工性に優れたスーパー二相ステンレス鋼。 (8) Corrosion resistance according to any one of (2) to (4), in which the total amount of MM and / or Y is 0.01% to 0.6%, and formation of intermetallic compounds is suppressed. Super duplex stainless steel with excellent embrittlement resistance, castability and hot workability.

(9)前記MM及び/またはYの添加総量が0.2%〜0.5%である、(8)に記載の金属間化合物の形成が抑制された耐食性、耐脆化性、鋳造性及び熱間加工性に優れたスーパー二相ステンレス鋼。 (9) The total amount of MM and / or Y is 0.2% to 0.5%, and the corrosion resistance, brittleness resistance, castability and the formation of intermetallic compounds according to (8) are suppressed. Super duplex stainless steel with excellent hot workability.

(10)前記鋼が、さらにCa:0.5%以下、Mg:0.5%以下、Al:1.0%以下、Ta:0.5%以下、Nb:0.5%以下、Ti:1.5%以下、Zr:1.0%以下、Sn:1.0%以下及びIn:1.0%以下からなる群から選択される一種以上の元素を含有する、(1)〜(4)の何れか一項に記載の金属間化合物の形成が抑制された耐食性、耐脆化性、鋳造性及び熱間加工性に優れたスーパー二相ステンレス鋼。 (10) The steel is further Ca: 0.5% or less, Mg: 0.5% or less, Al: 1.0% or less, Ta: 0.5% or less, Nb: 0.5% or less, Ti: (1) to (4) containing one or more elements selected from the group consisting of 1.5% or less, Zr: 1.0% or less, Sn: 1.0% or less, and In: 1.0% or less. The super duplex stainless steel excellent in corrosion resistance, embrittlement resistance, castability and hot workability in which the formation of the intermetallic compound according to any one of the above is suppressed.

(11)前記鋼がさらにB:0.1%以下を含有する、(1)〜(4)の何れか一項に記載の金属間化合物の形成が抑制された耐食性、耐脆化性、鋳造性及び熱間加工性に優れたスーパー二相ステンレス鋼。 (11) The steel further contains B: 0.1% or less. Corrosion resistance, embrittlement resistance, casting in which formation of an intermetallic compound according to any one of (1) to (4) is suppressed. Super duplex stainless steel with excellent heat and hot workability.

(12)前記鋼がさらにCu:3.0%以下、Co:3.0%以下の少なくとも一種を含有する、(1)〜(4)の何れか一項に記載の金属間化合物の形成が抑制された耐食性、耐脆化性、鋳造性及び熱間加工性に優れたスーパー二相ステンレス鋼。 (12) The formation of the intermetallic compound according to any one of (1) to (4), wherein the steel further contains at least one of Cu: 3.0% or less and Co: 3.0% or less. Super duplex stainless steel with excellent corrosion resistance, brittleness resistance, castability and hot workability.

(13)オーステナイト相及びフェライト相の耐食性バランスである[PREW(γ)−PREW(α)]値(ここで、PREW(γ)及びPREW(α)は、それぞれオーステナイト相及びフェライト相の孔食抵抗当量指数をいう。以下同)が−5〜10の範囲にある、(1)〜(4)の何れか一項に記載の金属間化合物の形成が抑制された耐食性、耐脆化性、鋳造性及び熱間加工性に優れたスーパー二相ステンレス鋼。 (13) [PREW (γ) −PREW (α)] value (where PREW (γ) and PREW (α) are pitting corrosion resistances of the austenite phase and the ferrite phase, respectively), which is the corrosion resistance balance between the austenite phase and the ferrite phase. Equivalent index ( hereinafter the same) is in the range of -5 to 10, and the corrosion resistance, brittleness resistance, and casting in which the formation of the intermetallic compound according to any one of (1) to (4) is suppressed. Super duplex stainless steel with excellent heat and hot workability.

(14)鋼の組職中のフェライト相の体積分率が、体積%で20〜70%であり、オーステナイト相の体積分率が、体積%で30〜80%である、(1)〜(4)の何れか一項に記載の金属間化合物の形成が抑制された耐食性、耐脆化性、鋳造性及び熱間加工性に優れたスーパー二相ステンレス鋼。 (14) The volume fraction of the ferrite phase in the steel composition is 20 to 70% by volume, and the volume fraction of the austenite phase is 30 to 80% by volume, (1) to ( 4) Super duplex stainless steel excellent in corrosion resistance, embrittlement resistance, castability and hot workability in which the formation of the intermetallic compound according to any one of 4) is suppressed.

本発明を実施するための最良の形態
本発明者らは、最適の合金設計により作製された薄肉の実験室規模の母材は、耐食性及び機械的性質を著しく向上させることはできるとしても、量産の際、厚肉の鋳造製品及び熱間加工品に対する歩留まりを高め、これらの製品での耐食性及び機械的性質を向上させるためには、特別の条件を満たさなければならないという前提の下に、これらの製品の耐食性、耐脆化性、鋳造性及び熱間加工性に決定的な影響をおよぼすシグマ(σ)相及びカイ(χ)相等の金属間化合物の挙動を鋭意研究した結果、下記のような事実を見出した。
Best Mode for Carrying Out the Invention The inventors have shown that thin laboratory-scale preforms made with optimal alloy designs are capable of mass production, even though they can significantly improve corrosion resistance and mechanical properties. In order to increase the yield of thick cast products and hot-worked products, and to improve the corrosion resistance and mechanical properties of these products, these conditions must be met. As a result of earnest research on the behavior of intermetallic compounds such as sigma (σ) phase and chi (χ) phase that have a decisive influence on the corrosion resistance, embrittlement resistance, castability and hot workability of the products of I found the facts.

すなわち、本発明者らは、金属間化合物を形成しやすいことが知られているCr、Mo、Si、Wを含む二相ステンレス鋼を構成する基本合金元素であるFe、Cr、Mo、Ni、W、Mn、Siなどの原子半径に比べて、はるかに大きい原子半径を有するBa、MM(Ce、La、Nd、Pr)及び/またはYなどの合金元素を添加すると、これらの大きい原子半径を有する合金元素の原子が、シグマ(σ)相及びカイ(χ)相等を構成する元素であるCr、Mo、Si、Wの拡散経路として作用する原子空孔(vacancy)を埋めることで、特にオーステナイト及びフェライト相の境界、フェライト相の結晶粒の原子空孔を埋めることによって、1000℃〜650℃温度域でのこれら金属間化合物の生成速度を低減することができるだけでなく、原子半径が大きい合金元素の原子は、原子半径が相対的に小さいCr、Mo、Si、Wの拡散を阻止(blocking)して金属間化合物の析出速度を低下させることができることを見出した。 That is, the present inventors are Fe, Cr, Mo, Ni, which are basic alloy elements constituting a duplex stainless steel containing Cr, Mo, Si, and W, which are known to easily form intermetallic compounds . Addition of alloying elements such as Ba, MM (Ce, La, Nd, Pr) and / or Y, which have a much larger atomic radius compared to atomic radii such as W, Mn, Si, etc. In particular, austenite is formed by filling the atomic vacancies in which the atoms of the alloy elements possessed act as diffusion paths for Cr, Mo, Si, and W, which are elements constituting the sigma (σ) phase and chi (χ) phase, etc. and the boundary of the ferrite phase, by filling the grain vacancy of the ferrite phase, it can only be reduced production rate of these intermetallic compounds at 1000 ° C. to 650 ° C. temperature range , Atoms having a larger atomic radius alloying elements found atomic radius is relatively small Cr, Mo, Si, that can prevent the diffusion of W (blocking) to reduce the deposition rate of the intermetallic compound.

また、原子半径の大きい合金元素は、Fe、Cr、Mo、W、Ni、Mn、Siに比べて、熱力学的に酸化物(oxide)または酸硫化物(oxy-sulfide)を生成する自由エネルギーが極めて低いために、製鋼時、直径5μm以下の微細で均一な酸化物及び酸硫化物を形成することができ、これらの微量の希土類複合化合物またはBa酸化物が、1000℃〜650℃温度域でCr、Mo、Si、Wの拡散をさらに阻止して金属間化合物の析出速度を低減しうることを見出した。 In addition, an alloy element having a large atomic radius is free energy that thermodynamically generates an oxide or an oxysulfide as compared with Fe, Cr, Mo, W, Ni, Mn, and Si. Is extremely low, it is possible to form fine and uniform oxides and oxysulfides having a diameter of 5 μm or less at the time of steel making. Thus, it was found that the diffusion rate of Cr, Mo, Si, and W can be further prevented to reduce the deposition rate of intermetallic compounds .

また、一般に、MnS非金属介在物自体は、マトリックス金属よりも耐食性が劣化しており、腐食起点として作用するが、希土類非金属介在物は、それ自体がマトリックス金属より耐食性が非常に優れており、腐食起点として作用しないことを見出した。   In general, MnS non-metallic inclusions themselves have a lower corrosion resistance than matrix metals and act as a starting point for corrosion, but rare earth non-metallic inclusions themselves have much better corrosion resistance than matrix metals. And found that it does not act as a starting point for corrosion.

すなわち、本発明は、従来の二相ステンレス鋼の主要合金元素であるFe(1.24Å)(括弧内の数字は、原子半径を表す。)、Cr(1.25Å)、Mo(1.36Å)、W(1.37Å)、Ni(1.25Å)、Mn(1.12Å)、Si(1.17Å)に比べて、大きい原子半径を有するBa(2.18Å)を0.0001%〜0.6%添加することにより、前述したメカニズムにより金属間化合物の形成を積極的に抑制することを重要な特徴とする。 That is, the present invention relates to Fe (1.24 Å) (the number in parentheses represents an atomic radius), Cr (1.25 Å), Mo (1.36 Å), which are main alloy elements of conventional duplex stainless steel. ), W (1.37 Å), Ni (1.25 Å), Mn (1.12 Å), Si (1.17 Å), Ba (2.18 Å) having a large atomic radius is 0.0001% to By adding 0.6%, it is an important feature to positively suppress the formation of intermetallic compounds by the mechanism described above.

さらに、本発明は、前述した従来の二相ステンレス鋼の主要合金元素であるFe(1.24Å)、Cr(1.25Å)、Mo(1.36Å)、W(1.37Å)、Ni(1.25Å)、Mn(1.12Å)、Si(1.17Å)に比べて、大きい原子半径を有するMM(Ce:1.83Å、La:1.88Å、Nd:1.82Å、Pr:1.83Åの主元素等と少量のPm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Scと1%以下のFeで構成)及び/またはY(1.82Å)を添加したり、場合によりBa添加とともに添加することにより、前述したメカニズムによって金属間化合物の形成を積極的に抑制することをもう一つの特徴とする。ここで、このような効果を十分発揮するためには、MM及び/またはY、鋼中のAl、O及びSの溶解度積の関係式である[MM及び/またはY+Al]・[O+S]を0.001×10-5ないし30,000×10-5の範囲に制限することを特徴とする。 Furthermore, the present invention provides Fe (1.24 Å), Cr (1.25 Å), Mo (1.36 Å), W (1.37 Å), Ni (which are the main alloy elements of the conventional duplex stainless steel described above. MM (Ce: 1.83 Å, La: 1.88 Å, Nd: 1.82 Å, Pr: 1) compared to 1.25Å), Mn (1.12Å), Si (1.17Å) .83Å main element and the like and a small amount of Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc and Fe of 1% or less) and / or Y (1.82Å) Another feature is that the formation of an intermetallic compound is positively suppressed by the above-described mechanism by adding a silane or optionally with the addition of Ba. Here, in order to sufficiently exhibit such an effect, [MM and / or Y + Al] · [O + S], which is a relational expression of solubility products of MM and / or Y, Al, O, and S in steel, is set to 0. It is limited to the range of 001 × 10 −5 to 30,000 × 10 −5 .

さらに、これに加えて、前記合金元素に比べて原子半径の大きいCa(1.97Å)、Mg(1.6Å)、Al(1.43Å)、Ta(1.43Å)、Nb(1.43Å)、Ti(1.47Å)、Zr(1.62Å)、Sn(1.51Å)、In(1.68Å)のうち少なくとも一つの合金元素を適正量添加すると、シグマ(σ)相及びカイ(χ)相の形成を抑制することに関する前述した効果をより向上させることができる。   In addition to this, Ca (1.97 、), Mg (1.6Å), Al (1.43Å), Ta (1.43Å), Nb (1.43 の) having a larger atomic radius than the alloy elements. ), Ti (1.47 Å), Zr (1.62 Å), Sn (1.51 In), In (1.68 Å) when an appropriate amount of at least one alloy element is added, the sigma (σ) phase and chi ( It is possible to further improve the above-described effect relating to suppressing the formation of the χ) phase.

また、前記原子半径が大きい合金元素に加えて、Fe、Cr、Mo、W、Ni、Mn、Siより極めて原子半径が小さく、これらの間の空間を埋めることができるBをさらに添加すると、Bは、原子半径の大きい元素と共にシグマ相とカイ相などの析出相の生成速度をより低下させることができる。   Further, in addition to the alloy element having a large atomic radius, when B is added, which has an atomic radius that is extremely smaller than Fe, Cr, Mo, W, Ni, Mn, and Si and can fill the space between them, B Can further reduce the rate of formation of precipitated phases such as sigma phase and chi phase along with elements having a large atomic radius.

また、耐酸性及び強度の向上を目的とするCu及びCoのうち、いずれか一つ以上の合金元素をさらに添加することができる。   In addition, any one or more alloy elements of Cu and Co for the purpose of improving acid resistance and strength can be further added.

以下では、本発明による二相ステンレス鋼に添加する合金元素の役割と化学組成範囲を限定する理由について説明する。   Below, the reason for limiting the role and chemical composition range of the alloy element added to the duplex stainless steel according to the present invention will be described.

クロム(Cr):21.0%〜38.0%
クロムは、ステンレス鋼の耐食性の維持に最も重要な基本元素であり、最小限の耐食性を確保するためには、12%以上を添加する必要があるが、本発明の合金ではオーステナイトフェライトの2相組織を得なければならないので、下記式で定義されるクロム当量(Creq)及びニッケル当量(Nieq)とこれにより決定されるオーステナイト/フェライトの相の比率を考慮して、21%以上のクロムを含有しなければならない。C、N、Ni、Mo、W、Si、Mn及びCuのバランスによる二相ステンレス鋼を製造するために上限値を38%に制限する。より好ましい範囲は24%〜28%である。
Creq=%Cr+2%Si+1.5%Mo+0.75%W+5%V+5.5%A1+1.75%Nb+1.5%Ti----(2)
Nieq=%Ni+0.5%Mn+30%C+0.3%Cu+25%N+%Co---------(3)
オーステナイト相の分率(体積%)=100−[55×(Creq/Nieq)−66.1]-----(4)
フェライト相の分率(体積%)=55×(Creq/Nieq)−66.1--------(5)
Chromium (Cr): 21.0% to 38.0%
Chromium is the most important basic element for maintaining the corrosion resistance of stainless steel, and in order to ensure the minimum corrosion resistance, it is necessary to add 12% or more, but in the alloy of the present invention, two phases of austenite ferrite are required. Since the structure has to be obtained, the chromium equivalent (Cr eq ) and nickel equivalent (Ni eq ) defined by the following formula and the austenite / ferrite phase ratio determined thereby are considered to be 21% or more of chromium. Must be included. In order to produce a duplex stainless steel with a balance of C, N, Ni, Mo, W, Si, Mn and Cu, the upper limit is limited to 38%. A more preferable range is 24% to 28%.
Cr eq =% Cr + 2% Si + 1.5% Mo + 0.75% W + 5% V + 5.5% A1 + 1.75% Nb + 1.5% Ti ---- (2)
Ni eq =% Ni + 0.5% Mn + 30% C + 0.3% Cu + 25% N +% Co -------- (3)
Austenitic phase fraction (volume%) = 100− [55 × (Cr eq / Ni eq ) −66.1] ----- (4)
Ferrite phase fraction (volume%) = 55 × (Cr eq / Ni eq ) −66.1 -------- (5)

さらに、本発明による二相ステンレス鋼の耐食性を最大にするための相の比率の好ましい範囲が、後述する本発明の実施例により得られたが、フェライト相の体積分率で20〜70体積%(オーステナイト相の体積分率では30%〜80体積%)であった。   Furthermore, the preferred range of the phase ratio for maximizing the corrosion resistance of the duplex stainless steel according to the present invention was obtained by the examples of the present invention described later, but the volume fraction of the ferrite phase is 20 to 70% by volume. (The volume fraction of the austenite phase was 30% to 80% by volume).

ニッケル(Ni):3%〜12%
ニッケルは、オーステナイト安定化元素として耐食性に関連して全面腐食抵抗性を増加させる有用な元素であるので、少なくとも3%以上を含有する必要がある。クロム当量とニッケル当量の関係を考慮して添加すべきであり、相の比率との関係及び高価の材料であることを考慮して、3.0〜12.0%に限定する。より好ましい範囲は6%〜9%である。
Nickel (Ni): 3% to 12%
Nickel is a useful element that increases the overall corrosion resistance in relation to corrosion resistance as an austenite stabilizing element, so it is necessary to contain at least 3% or more. It should be added in consideration of the relationship between the chromium equivalent and the nickel equivalent, and is limited to 3.0 to 12.0% in consideration of the relationship with the phase ratio and the expensive material. A more preferable range is 6% to 9%.

モリブデン(Mo):1.5%〜6.5%
モリブデンは、クロムとともに、本発明の合金の耐食性維持に重要な元素であり、フェライト相を安定化させる作用をする。本発明の合金ではオーステナイトフェライト二相組織を得なければならないために、クロム当量とニッケル当量及び相の比率を考慮して1.5%以上のモリブデンを含有する必要がある。特に銅と複合添加する場合、高濃度の硫酸(SO 2-)及び塩酸(Cl-)環境で耐食性が大きく向上する。焼鈍状態では機械的性質及び耐食性に対して非常に有用であるが、時効熱処理、熱間圧延または溶接などを行なう場合に悪影響を与えるシグマ相などの金属間化合物を生成させる代表的な元素であることから、クロム当量とニッケル当量そして耐食性及び相安定性に鑑み、その量を6.5%以下に制限する。PREW式から分かるように、孔食抵抗性を向上させるためのMoの効果は、Wの2倍であるので、耐孔食性を確保するためのより好ましいMoの含有量は2%以上である。
Molybdenum (Mo): 1.5% to 6.5%
Molybdenum, together with chromium, is an important element for maintaining the corrosion resistance of the alloy of the present invention, and acts to stabilize the ferrite phase. In the alloy of the present invention, since it is necessary to obtain an austenite ferrite two-phase structure, it is necessary to contain 1.5% or more of molybdenum in consideration of a chromium equivalent, a nickel equivalent, and a phase ratio. In particular, when combined with copper, the corrosion resistance is greatly improved in a high concentration sulfuric acid (SO 4 2− ) and hydrochloric acid (Cl ) environment. It is a representative element that forms intermetallic compounds such as sigma phase, which is very useful for mechanical properties and corrosion resistance in the annealed state, but has an adverse effect when performing aging heat treatment, hot rolling or welding. Therefore, in view of chromium equivalent, nickel equivalent, corrosion resistance and phase stability, the amount is limited to 6.5% or less. As can be seen from the PREW formula, the effect of Mo for improving pitting corrosion resistance is twice that of W, so that the more preferable content of Mo for ensuring pitting corrosion resistance is 2% or more.

タングステン(W):0〜6.5%
タングステンは、フェライト安定化元素として、モリブデンと化学的特性が類似する同族の合金元素である。高農度のSO 2-及びCl-イオン環境での耐食性を向上させ、鋭敏化熱処理または溶接を行った後、脆いシグマ相及びカイ相の析出速度を遅延させて、耐食性及び機械的性質を改善させる有用な元素である。しかし、タングステンは、高価の合金元素であり、また多量に添加すると金属間化合物の生成を促進させるので、相安定性、機械的性質及び耐食性に鑑み、タングステンの含有量を6.5%以下に制限する。より好ましい範囲は4.0%以下である。
Tungsten (W): 0 to 6.5%
Tungsten is an alloying element of the same family that has similar chemical properties to molybdenum as a ferrite stabilizing element. After improving the corrosion resistance in high agricultural grade SO 4 2- and Cl - ion environment, performing sensitizing heat treatment or welding, delaying the precipitation rate of brittle sigma phase and chi-phase to improve the corrosion resistance and mechanical properties. It is a useful element to improve. However, tungsten is an expensive alloy element and, when added in a large amount, promotes the formation of intermetallic compounds. Therefore, in view of phase stability, mechanical properties, and corrosion resistance, the content of tungsten is made 6.5% or less. Restrict. A more preferable range is 4.0% or less.

ケイ素(Si):3%以下
ケイ素は、溶解精錬時に脱酸効果があるフェライト組織を安定化させる元素として、また耐酸性を増加させて鋳造製品の製造時の溶鋼の流動性を増加させて表面の欠陥を低減する元素である。3%を超えて添加すると、非常に脆い金属間化合物の析出速度を増加させ、鋼の延性を低下させる。耐食性を考慮すると、3.0%以下が好ましい。より好ましい範囲は、1.0%以下である。
Silicon (Si): 3% or less Silicon is an element that stabilizes the ferrite structure, which has a deoxidizing effect during melting and refining, and increases the fluidity of molten steel during the production of cast products by increasing acid resistance. It is an element that reduces defects. If added over 3%, the precipitation rate of very brittle intermetallic compounds is increased and the ductility of the steel is reduced. Considering the corrosion resistance, 3.0% or less is preferable. A more preferable range is 1.0% or less.

マンガン(Mn):8%以下
マンガンは、高価のニッケルを代替することのできるオーステナイト安定化元素であり、窒素の固容度を増加させ、高温の変形抵抗を増加させる元素である。窒素含有量を増加させて、耐食性を向上させようとする時、適正量のマンガンは必須の元素である。溶解精錬時に脱酸効果を有するが、多量に添加すると耐食性が低下し、非常に脆い金属間化合物の生成を促進するため、その上限値を8%以下に制限する。より好ましい範囲は1.0%〜3.0%である。
Manganese (Mn): 8% or less Manganese is an austenite stabilizing element that can replace expensive nickel, and is an element that increases the solidity of nitrogen and increases deformation resistance at high temperature. When trying to improve the corrosion resistance by increasing the nitrogen content, the proper amount of manganese is an essential element. Although it has a deoxidizing effect at the time of melting and refining, when it is added in a large amount, the corrosion resistance is lowered and the formation of a very brittle intermetallic compound is promoted, so the upper limit is limited to 8% or less. A more preferable range is 1.0% to 3.0%.

窒素(N):0.2%〜0.7%
窒素は、孔食に対する抵抗性を向上させる有用な元素であり、その効果は、クロムの約30倍以上である。強力なオーステナイト安定化元素として、耐食性に関連して最も重要な元素の一つである。モリブデンと同時に存在すると、シナジー効果により耐食性を大きく向上させる。粒界腐食抵抗性の向上を目的に炭素含有量を低くするとき、窒素を添加して機械的性質の補償を得ることができる。加えて、クロム炭化物の生成を抑制して、延びを低下させることなく引張強度及び降伏強度を高める。C、Cr、Ni、Mo及びWなどとのバランスとオーステナイト/フェライト相の比率を考慮して添加すべきである。耐食性を考慮すると、0.2%以上が好ましいが、0.7%を超えて多量に添加すると、鋳造性(ブローホール、収縮)及び圧延性が低下することがある。より好ましい範囲は、0.32%〜0.45%である。
Nitrogen (N): 0.2% to 0.7%
Nitrogen is a useful element that improves resistance to pitting corrosion, and its effect is about 30 times or more that of chromium. As a strong austenite stabilizing element, it is one of the most important elements related to corrosion resistance. When present at the same time as molybdenum, the corrosion resistance is greatly improved by the synergy effect. When the carbon content is lowered for the purpose of improving intergranular corrosion resistance, nitrogen can be added to obtain mechanical property compensation. In addition, the formation of chromium carbide is suppressed, and the tensile strength and yield strength are increased without reducing elongation. It should be added in consideration of the balance with C, Cr, Ni, Mo and W and the ratio of austenite / ferrite phase. In consideration of corrosion resistance, 0.2% or more is preferable, but when it is added in a large amount exceeding 0.7%, castability (blow hole, shrinkage) and rollability may be deteriorated. A more preferable range is 0.32% to 0.45%.

炭素(C):0.1%以下
炭素は、オーステナイト相を安定化させる代表的な元素として、及び機械的強度の維持に非常に重要である。しかし多量に添加すると、炭化物が析出し、耐食性が劣化するので、0.1%以下、好ましくは0.05%以下に制限するが、時効耐食性を考慮すると0.03%以下がより好ましい。
Carbon (C): 0.1% or less Carbon is a very important element for stabilizing the austenite phase and maintaining mechanical strength. However, if added in a large amount, carbide precipitates and the corrosion resistance deteriorates. Therefore, it is limited to 0.1% or less, preferably 0.05% or less, but considering the aging corrosion resistance, 0.03% or less is more preferable.

PREW値:40ないし67
前述のように、Cr、Mo、W及びNの含有量を制限するほかに、本発明は、下記式で定義されるPREW値を40ないし67範囲に限定することを特徴とする。
PREW value: 40 to 67
As described above, in addition to limiting the contents of Cr, Mo, W and N, the present invention is characterized in that the PREW value defined by the following formula is limited to a range of 40 to 67.

PREW=重量%Cr+3.3(重量%Mo+0.5重量%W)+30重量%N--------(1)   PREW = wt% Cr + 3.3 (wt% Mo + 0.5 wt% W) +30 wt% N -------- (1)

前記下限値を下回ると、耐食性が十分確保できず、前記上限値を超えると、金属間化合物が生成しやすくなる等の問題がある。好ましくは、PREW値は45以上である。 If the lower limit value is not reached, sufficient corrosion resistance cannot be ensured. If the upper limit value is exceeded, intermetallic compounds are likely to be formed. Preferably, the PREW value is 45 or more.

さらに、本発明による二相ステンレス鋼の耐食性を最大にするための相間の耐食性バランス「PREW(α)−PREW(γ)」の好ましい範囲は、後述する本発明の実施例により−5〜10であることがわかった。   Furthermore, the preferred range of the corrosion resistance balance “PREW (α) -PREW (γ)” for maximizing the corrosion resistance of the duplex stainless steel according to the present invention is −5 to 10 according to the examples of the present invention described later. I found out.

バリウム(Ba):0.0001%〜0.6%
前述したように、バリウムは、本発明で最も重要な元素の一つであり、原子半径が2.18Åで二相ステンレス鋼の他の合金元素(Fe、Cr、Mo、W、Ni、Mn、Siなど)に比べて原子半径が著しく大きいバリウムは、非常に脆い金属間化合物形成元素の拡散を阻止するための障壁として作用し、拡散速度及び析出速度を低下させて析出量を減少させるのに著しい効果がある。また固容原子または酸素と結合して酸化物を形成させてσ、χ相の析出速度を遅延させることができる。これらの効果を得るためには、最大0.6%以下が必要である。0.6%を超える場合、経済的でないだけでなく粒界にバリウムが多量に析出して、高温での粒界強度を低下させて、高温割れ感受性の改良効果を相殺するので上限値を0.6%に制限する。一方、0.0001%未満では、その添加効果は期待できない。
Barium (Ba): 0.0001% to 0.6%
As described above, barium is one of the most important elements in the present invention, and has other atomic elements (Fe, Cr, Mo, W, Ni, Mn, Barium, which has a remarkably large atomic radius compared to Si, etc.) acts as a barrier to prevent the diffusion of very brittle intermetallic compound- forming elements, reducing the diffusion rate and precipitation rate to reduce the amount of precipitation. There is a remarkable effect. In addition, it can be combined with solid atoms or oxygen to form an oxide to delay the precipitation rate of σ and χ phases. In order to obtain these effects, a maximum of 0.6% or less is necessary. If it exceeds 0.6%, not only is it not economical, but a large amount of barium precipitates at the grain boundary, lowering the grain boundary strength at high temperature and offsetting the improvement effect of hot cracking susceptibility. Limit to 6%. On the other hand, if it is less than 0.0001%, the addition effect cannot be expected.

さらに、MM及び/またはY、またはZr、Ta、In、Mg、Tiなど原子半径が大きい第3の元素が複合添加される場合、前記効果を発揮するためのBaの好ましい添加量は0.001%〜0.2%である。   Further, when a third element having a large atomic radius such as MM and / or Y, or Zr, Ta, In, Mg, Ti is added in combination, a preferable addition amount of Ba for achieving the above effect is 0.001. % To 0.2%.

ミッシュメタル(MM)及び/またはY:0.0001%〜1.0%
ミッシュメタル(前述のように、本発明の詳細な説明及び実施例では、その一例として51%Ce−26%La−15.5%Nd−5.5%Prの主元素と、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Scと1%以下のFeで構成されるMMを使用する。)及び/またはYは本発明において、バリウムと共に複合添加するか、バリウムの添加無しで添加することができる本発明において最も重要な合金元素の一つである。本発明でMM及び/またはYを添加する場合、鋼の諸特性に悪影響を及ぼすAl、MnS非金属介在物の単独生成を防止して、溶鋼内で直径5μm以下のRExOyまたは(RE、Al)xOy+RExOyS+RExSy希土類複合化合物を生成して、凝固時の不均質核生成サイトとして作用して凝固組織を微細化・緻密化すると同時に、溶質元素の偏析を極力制御することで機械的特性、物理的特性及び耐食性を向上させる。
Misch metal (MM) and / or Y: 0.0001% to 1.0%
Misch metal (as described above, in the detailed description and examples of the present invention, as an example, 51% Ce-26% La-15.5% Nd-5.5% Pr main elements and Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc and MM composed of Fe of 1% or less are used.) And / or Y is combined with barium in the present invention. It is one of the most important alloy elements in the present invention that can be added without adding barium. In the present invention, when MM and / or Y is added, the independent formation of Al 2 O 3 and MnS non-metallic inclusions which adversely affect the properties of the steel is prevented, and RExOy having a diameter of 5 μm or less or (RE , Al) xOy + RExOyS + RExSy Rare earth complex compound is produced, acting as an inhomogeneous nucleation site during solidification, refining and densifying the solidified structure, and at the same time controlling segregation of solute elements as much as possible. Improve mechanical properties and corrosion resistance.

また、本発明の大きい特徴である溶鋼内で原子状態で残留する原子半径の大きいY、MM(Ce、La、Nd、Pr等)、Ba、Zr、Tiなどは、非常に脆い金属間化合物の拡散及び析出速度を遅延させるのに非常に効果的である。この他に、溶接性、高温耐酸化性、切削性及び高温加工性などの向上に非常に重要な元素であり、0.0001〜1.0%に限定する。1.0%を超えての多量の添加は経済的でないだけでなく、諸特性に悪影響を及ぼす。0.0001%以下の添加は前記の添加効果を期待することができない。 Further, Y, MM (Ce, La, Nd, Pr, etc.), Ba, Zr, Ti, etc., which have a large atomic radius remaining in the atomic state in the molten steel, which is a major feature of the present invention, are very brittle intermetallic compounds. It is very effective in delaying the diffusion and precipitation rate. In addition, it is an extremely important element for improving weldability, high temperature oxidation resistance, machinability, high temperature workability, etc., and is limited to 0.0001 to 1.0%. Addition of a large amount exceeding 1.0% is not only economical, but also adversely affects various properties. The addition effect of 0.0001% or less cannot be expected from the above-mentioned addition effect.

また、本発明鋼において、希土類複合化合物(RExOyまたは(RE、Al)xOy+RExOyS+RExSy)が、凝固時の樹枝状結晶の不均質の核生成サイトとして作用することにより、凝固組織の微細化・緻密化による溶質元素の偏析領域の微細均一化する効果と、Y、MM(Ce、La、Nd、Pr等)、Ba、Zr、Tiなどが金属間化合物の形成元素であるCr、Mo、Si、Wの拡散を抑制して、金属間化合物等の析出速度を低下させる効果による、前記の特性を最大限発揮するために、溶鋼内MM及び/またはY、鋼中Al、O及びSの溶解度積の関係式値[MM及び/またはY+Al]・[O+S]を0.001×10-5〜30,000×10-5[%] 2 の範囲に制限する。前記溶解度積の関係式値が0.001×10-5未満である場合、本発明が追求する凝固組織の制御及び溶質元素の偏析の低減と金属間化合物の形成を抑制する効果が殆どなく、前記溶解度積の関係式値が30,000×10-5[%]2を超える場合、希土類複合化合物の生成が多過ぎて、鋼の機械的性質、物理的性質及び耐食性が低下する。前記溶解度積の関係式値を、鋳物製品の場合、1×10-5〜5,000×10-5に、熱間加工製品の場合、0.1×10-5〜2,000×10-5[%]2に制限することが好ましい。 In the steel of the present invention, the rare earth composite compound (RExOy or (RE, Al) xOy + RExOyS + RExSy) acts as a heterogeneous nucleation site of dendritic crystals during solidification, thereby making the solidification structure finer and denser. The effect of finely uniforming the segregation region of the solute element, and Y, MM (Ce, La, Nd, Pr, etc.), Ba, Zr, Ti, etc. of the intermetallic compound forming elements Cr, Mo, Si, W In order to maximize the above-mentioned properties by suppressing the diffusion and reducing the precipitation rate of intermetallic compounds, etc., the relationship between the solubility products of MM and / or Y in the molten steel, Al, O and S in the steel The formula value [MM and / or Y + Al] · [O + S] is limited to the range of 0.001 × 10 −5 to 30,000 × 10 −5 [%] 2 . When the relational value of the solubility product is less than 0.001 × 10 −5 , the present invention pursues the control of solidified structure and the effect of suppressing the segregation of solute elements and the formation of intermetallic compounds , When the relational value of the solubility product exceeds 30,000 × 10 −5 [%] 2 , the production of rare earth composite compounds is excessive, and the mechanical properties, physical properties, and corrosion resistance of the steel are deteriorated. The relational value of the solubility product is 1 × 10 −5 to 5,000 × 10 −5 in the case of a cast product, and 0.1 × 10 −5 to 2,000 × 10 − in the case of a hot-work product. 5 [%] It is preferable to limit to 2 .

また、ミッシュメタル添加量の好ましい範囲は、0.01〜0.6%、より好ましい範囲は、0.2〜0.5%である。   Moreover, the preferable range of the misch metal addition amount is 0.01 to 0.6%, and the more preferable range is 0.2 to 0.5%.

カルシウム(Ca):0.5%以下
カルシウムは、脱酸元素で、耐脆化性を向上させ、高温変形抵抗と切削抵抗を減少させる有用な元素である。多量に添加すると、鋼の清浄度を減少させ耐食性を低下させるため、その含有量を0.5%以下にすることが好ましい。
Calcium (Ca): 0.5% or less Calcium is a deoxidizing element and is a useful element that improves embrittlement resistance and decreases high temperature deformation resistance and cutting resistance. When added in a large amount, the cleanliness of the steel is reduced and the corrosion resistance is lowered, so the content is preferably made 0.5% or less.

アルミニウム(Al)、酸素(O)及び硫黄(S)
アルミニウムはフェライト安定化元素として耐酸化性及び耐脆化性を向上させる有効な元素である。また鋼に添加すると脱酸効果があるため、鋼の清浄度も高め、高温変形抵抗を減少させる有効な元素であるので、1.0%以下で添加することが好ましい。
Aluminum (Al), Oxygen (O) and Sulfur (S)
Aluminum is an effective element for improving oxidation resistance and embrittlement resistance as a ferrite stabilizing element. Moreover, since it has a deoxidation effect when added to steel, it is an effective element that increases the cleanliness of the steel and reduces the high temperature deformation resistance. Therefore, it is preferably added at 1.0% or less.

さらに、鋼中には酸素(O)及び硫黄(S)が不回避的に含まれるが、これらは凝固過程で割れを発生したり、製品の完成後、延性を低下させて材料の脆性の原因になるので、可能であればその含有量を少なくすることが好ましい。鋳物製品の場合、酸素を200ppm以下、硫黄を50ppm以下に抑制することが良く、加工製品の場合、酸素を100ppm以下、硫黄を20ppm以下に抑制することが好ましい。   In addition, oxygen (O) and sulfur (S) are unavoidably contained in the steel, but these cause cracks during the solidification process and, after completion of the product, cause ductility of the material by reducing ductility. Therefore, it is preferable to reduce the content if possible. In the case of casting products, it is preferable to suppress oxygen to 200 ppm or less and sulfur to 50 ppm or less, and in the case of processed products, it is preferable to suppress oxygen to 100 ppm or less and sulfur to 20 ppm or less.

チタニウム(Ti):1.5%以下
チタニウムは、溶解精錬時に脱酸効果があり、チタニウム硫化物を形成させて切削加工性を向上させる。粒界腐食抵抗性を改善させるために、炭素量との関係を考慮して添加することができる。塩素イオンが含まれた環境での鋭敏化熱処理後の耐食性を向上させるために最大1.5%以下で添加することができる。
Titanium (Ti): 1.5% or less Titanium has a deoxidizing effect during melting and refining, and forms titanium sulfide to improve machinability. In order to improve intergranular corrosion resistance, it can be added in consideration of the relationship with the carbon content. In order to improve the corrosion resistance after sensitizing heat treatment in an environment containing chlorine ions, it can be added at a maximum of 1.5% or less.

マグネシウム(Mg):0.5%以下、タンタル(Ta):0.5%以下、ニオビウム(Nb):0.5%以下、ジルコニウム(Zr):1.0%以下、スズ(Sn):1.0%以下、インジウム(In):1.0%以下
既に本発明者等によって明らかにしたように、Fe、Cr、Mo、Wに比べて原子半径の大きいCa(1.97Å)、Al(1.43Å)、Ti(1.47Å)以外に、Mg(1.6Å)、Ta(1.43Å)、Nb(1.43Å)、Zr(1.62Å)、Sn(1.51Å)、In(1.68Å)はσ相及びχ相の形成を抑制するのに効果的であるので、Mg0.5%以下、Ta0.5%以下、Nb0.5%以下、Z1.0%以下、Sn1.0%以下、In1.0%以下の範囲で添加することができる。
Magnesium (Mg): 0.5% or less, Tantalum (Ta): 0.5% or less, Niobium (Nb): 0.5% or less, Zirconium (Zr): 1.0% or less, Tin (Sn): 1 0.0% or less, indium (In): 1.0% or less As already clarified by the present inventors, Ca (1.971), Al (which has a larger atomic radius than Fe, Cr, Mo, W) 1.43 以外), Ti (1.47Å), Mg (1.6Å), Ta (1.43Å), Nb (1.43Å), Zr (1.62Å), Sn (1.51Å), In since (1.68Å) is effective to inhibit the formation of σ phase and χ phase, Mg0.5% or less, Ta0.5% or less, Nb0.5% or less, Z r 1.0% or less, Sn can be added within a range of 1.0% or less and In 1.0% or less.

合金元素が前記範囲を超える場合は、経済的でないだけでなく、粒界脆化を起こし鋳造性及び熱間加工性を損なう。   When the alloy element exceeds the above range, not only is it not economical, but it causes grain boundary embrittlement and impairs castability and hot workability.

ホウ素(B):0.1%以下
ホウ素は、耐脆化性を減少させ、かつ高温での変形抵抗を低減する効果があり、溶接時に溶接高温割れを抑制する。窒素と複合添加する場合、低融点のホウ素窒化物が形成され、切削加工性を向上させる。ホウ素は、特にFe、Cr、Mo、W、Ni、Mn、Siより原子半径が非常に小さく、微細な隙間を埋める。したがって、原子半径が大きい合金元素と共存する際、σ相、χ相の析出速度をより低下させることができる。含有量を0.1%以下にすることが好ましい。
Boron (B): 0.1% or less Boron has the effect of reducing embrittlement resistance and reducing deformation resistance at high temperatures, and suppresses hot welding cracks during welding. When combined with nitrogen, boron nitride having a low melting point is formed, and the machinability is improved. Boron has an atomic radius much smaller than that of Fe, Cr, Mo, W, Ni, Mn, and Si, and fills minute gaps. Therefore, when coexisting with an alloy element having a large atomic radius, the precipitation rate of the σ phase and the χ phase can be further reduced. The content is preferably 0.1% or less.

銅(Cu):3%以下
銅は、オーステナイト安定化元素であり、耐食性に有用な元素として作用する。特にモリブデンと複合添加する場合、濃硫酸及び塩酸の酸化環境での耐食性を大幅に向上させて、アノード分極特性に関連して腐食電流密度、不動態化電流密度、臨界電流密度及び水素交換電流密度を低減させ、水素過電圧を増加させて耐食性が向上する。さらに、銅は置換型固溶体強化効果を誘発し、引張強度及び降伏強度を高める。相の比率とクロム、モリブデンなどの元素との適正な比率が合わなければ、孔食に対する抵抗性を弱化させる。加工硬化速度を低減させて切削加工性を向上させる重要な元素である。3%以上添加すると赤熱脆性を誘発するので最大3%以下に制限する。
Copper (Cu): 3% or less Copper is an austenite stabilizing element and acts as an element useful for corrosion resistance. Especially when combined with molybdenum, the corrosion resistance in concentrated sulfuric acid and hydrochloric acid oxidation environments is greatly improved, and the corrosion current density, passivation current density, critical current density and hydrogen exchange current density are related to the anodic polarization characteristics. And the hydrogen overvoltage is increased to improve the corrosion resistance. Furthermore, copper induces a substitutional solid solution strengthening effect and increases tensile strength and yield strength. If the phase ratio and the appropriate ratio of elements such as chromium and molybdenum do not match, the resistance to pitting corrosion is weakened. It is an important element that improves the workability by reducing the work hardening rate. Addition of 3% or more induces red hot brittleness, so it is limited to 3% or less.

コバルト(Co):3.0%以下
コバルトは、オーステナイト安定化元素としてNiを代替することができるとともに、耐食性及び強度向上に有効な元素であるが、高価である。相の比率及び相の間の耐食性のバランスから最大3.0%以下に制限する。
Cobalt (Co): 3.0% or less Cobalt is an element that can replace Ni as an austenite stabilizing element and is effective in improving corrosion resistance and strength, but is expensive. It is limited to a maximum of 3.0% or less from the balance of phase ratio and corrosion resistance between phases.

実施例1:発明鋼の製造及び実験方法
本発明による最適の合金設計方案及びその製造方法は次の通りである。合金設計方案は、式(1)の孔食抵抗当量指数PREW、相の間の耐食性バランスに対する[PREW(γ)−PREW(α)]、式(2)のクロム当量Creq、式(3)のニッケル当量Nieqなどの合金設計因子を好適に組み合せ、得られた結果を表2に示す。
Example 1: Production of Inventive Steel and Experimental Method The optimum alloy design method and production method according to the present invention are as follows. The alloy design method includes the pitting resistance equivalent index PREW of the formula (1), [PREW (γ) −PREW (α)] with respect to the corrosion resistance balance between phases, the chromium equivalent Cr eq of the formula (2), the formula (3) Table 2 shows the results obtained by suitably combining alloy design factors such as nickel equivalent Ni eq .

本発明鋼は、クロム当量とニッケル当量とを式(2)及び(3)に基づいて計算して組成を決定した後、商業用品位のグレードの純度を有するFe、Cr、Mo、Ni、W、Cu、Si、Mn、Fe−Cr−Nなど本発明の請求の範囲の成分組成の鋼を高周波誘導炉を用いて溶解した後、Ti、Mg、Al、Ca脱酸またはAl+Ca複合脱酸による通常の方法による脱酸を行った。鋳造製品の試験材は大気中で、熱間圧延製品の試験材は真空及び窒素ガス雰囲気下でマグネシア坩堝で溶解した。表2の相の間の耐食性バランスに関する[PREW(γ)−PREW(α)]値は、表4から分かるように、オーステナイト(γ)及びフェライト(α)相を構成しているCr、Mo、W及びN成分を分析した後、式(1)の孔食抵抗当量指数PREWに代入して得られたものである。   The steel of the present invention calculates the chromium equivalent and the nickel equivalent based on the formulas (2) and (3), determines the composition, and then has Fe, Cr, Mo, Ni, W having purity of commercial grade. , Cu, Si, Mn, Fe—Cr—N, etc., steels having the composition of the claims of the present invention are melted using a high frequency induction furnace, and then Ti, Mg, Al, Ca deoxidation or Al + Ca composite deoxidation is used. Deoxidation was performed by a conventional method. The test material for the cast product was melted in the atmosphere, and the test material for the hot-rolled product was melted in a magnesia crucible in a vacuum and nitrogen gas atmosphere. [PREW (γ) −PREW (α)] values relating to the corrosion resistance balance between the phases in Table 2, as can be seen from Table 4, Cr, Mo, which constitute the austenite (γ) and ferrite (α) phases, This is obtained by analyzing the W and N components and then substituting them into the pitting resistance equivalent index PREW of equation (1).

もう一つの態様として、本発明の請求の範囲内の成分で製造した溶鋼をAl、Ca脱酸またはAl+Caの複合脱酸による通常の方法で予備脱酸を行った後、本発明者等が意図する適量のBa酸化物または希土類複合化合物(RexOy or (RE、Al)xOy+RExOyS+RExSy)を生成するために、Ba及び/またはMM及び/またはYを添加して溶鋼内溶解度積を[Ba及び/またはMM及び/またはY+Al]・[O+S]=0.001×10-5〜30,000×10-5の範囲にする方法によって溶鋼を製造した。 As another embodiment, the present inventors intend that the molten steel produced with the components within the scope of the claims of the present invention is subjected to preliminary deoxidation by a conventional method using Al, Ca deoxidation or Al + Ca complex deoxidation, and then Ba and / or MM and / or Y is added to produce a suitable amount of Ba oxide or rare earth composite compound (RexOy or (RE, Al) xOy + RExOyS + RExSy). And / or Y + Al] · [O + S] = 0.001 × 10 −5 to 30,000 × 10 −5 .

その後、板状耐火物モールドに溶湯を注入し、25Kg重量の板状鋳造製品(厚さ9mm)を作製し、熱間圧延板製品は、予熱された角型鋼鋳型に溶湯を注入して30Kg重量のインゴットを作製した。熱間圧延用インゴットは、研削または機械加工を行って適正な大きさに加工した後、1250℃で均熱し、厚さ6mmまで熱間圧延を行った。固容化熱処理は鋳造製品及び熱間圧延製品の何れも1050〜1150℃の範囲で行った。このように固容化熱処理された発明鋼に対する化学組成を比較鋼及び従来鋼と対比して表1に表した。   Thereafter, the molten metal is poured into a plate-like refractory mold to produce a plate-like cast product (thickness 9 mm) weighing 25 kg, and the hot-rolled sheet product is poured into a preheated square steel mold and weighed 30 kg. An ingot was prepared. The ingot for hot rolling was processed into an appropriate size by grinding or machining, and then soaked at 1250 ° C. and hot rolled to a thickness of 6 mm. The solidification heat treatment was performed in the range of 1050 to 1150 ° C. for both the cast product and the hot rolled product. The chemical composition of the invention steel subjected to solidification heat treatment is shown in Table 1 in comparison with the comparative steel and the conventional steel.

固容化熱処理材及び850℃で30分時効熱処理に対する諸特性を評価するために、ミクロ組織、X線回折試験、アノード分極試験、臨界孔食温度、臨界隙間腐食温度及び機械的性質を測定した。   Microstructure, X-ray diffraction test, anodic polarization test, critical pitting temperature, critical crevice corrosion temperature and mechanical properties were measured in order to evaluate the properties of the solidified heat treatment material and aging heat treatment at 850 ° C. for 30 minutes. .

ミクロ組織を観察するために、SiC研磨紙で2000番まで研磨し、アルミナを使用して仕上研磨した後、村上(Murakami)水溶液(30g KFe(CN)+30g KOH+蒸溜水 100ml)を使用して80℃でエッチング後、アセトンと蒸溜水内で超音波洗浄後、光学顕微鏡で観察した。 In order to observe the microstructure, after polishing to 2000 with SiC polishing paper and finish polishing using alumina, Murakami aqueous solution (30 g K 3 Fe (CN) 6 +30 g KOH + distilled water 100 ml) is used. Then, after etching at 80 ° C., it was ultrasonically cleaned in acetone and distilled water, and then observed with an optical microscope.

850℃で30分間時効熱処理により析出したσ相、χ相を確認するために、X線回折試験を行った。使用した装置は、Rikagu D/MAX−Bであり、加速電圧35kvと電流35mAで分析し、CuターゲットにNiフィルターを使用した。組織を観察した結果、析出相の最も多い試験片を30゜〜120゜で12゜/min.の速度で分析した後、析出相のピークが集中している40゜〜50゜の範囲において1゜/min.の速度で精密分析を行った。   In order to confirm the σ phase and χ phase precipitated by aging heat treatment at 850 ° C. for 30 minutes, an X-ray diffraction test was performed. The apparatus used was Rikagu D / MAX-B, which was analyzed at an acceleration voltage of 35 kv and a current of 35 mA, and a Ni filter was used as the Cu target. As a result of observing the structure, the specimen having the largest number of precipitated phases was analyzed at a rate of 12 ° / min. At 30 ° to 120 °, and then 1 in the range of 40 ° to 50 ° where the peak of the precipitated phase was concentrated. Precise analysis was performed at a speed of ° / min.

アノード分極試験は、ASTM G5を利用し、脱気した50℃、70℃の0.5N HCl+1.0N NaCl混合溶液で1mV/sec走査速度で行った。   The anodic polarization test was performed using ASTM G5 and a degassed 0.5N HCl + 1.0N NaCl mixed solution at 50 ° C. and 70 ° C. at a scanning rate of 1 mV / sec.

臨界孔食温度は、ASTM G 48A−92により測定し、臨界隙間腐食温度は、ASTM G 48Dによって測定した。   The critical pitting temperature was measured according to ASTM G 48A-92, and the critical crevice temperature was measured according to ASTM G 48D.

材料の硬度を測定するために、600番まで研磨した後、ロックウェル(Rockwell)硬度計を使用してC−scaleで測定した。   In order to measure the hardness of the material, after polishing to No. 600, it was measured by C-scale using a Rockwell hardness meter.

実施例2:時効材のミクロ組織の比較
図1A〜1Fは、850℃で30分間時効熱処理した発明鋼4(図1A)、発明鋼10(図1B)、発明鋼36(図1C)、比較鋼47(図1D)、従来の商用スーパー二相ステンレス鋼UR 52N+(図1E)及びSAF 2507(図1F)における、耐食性及び機械的性質を低下させる脆い金属間化合物、シグマ(σ)相及びカイ(χ)相の析出程度を表したミクロ組織の写真である。図において明るい部分は“オーステナイト相”で、暗い部分は、時効熱処理時に“フェライト相”が“シグマ相+オーステナイト相”に分解されたことを表す。金属間化合物の析出程度の順位は、“発明鋼4=発明鋼10=発明鋼36≪従来鋼UR 52N+<従来鋼SAF 2507≪比較鋼 47”であり、本発明鋼4、10、36は、従来鋼UR 52N+、SAF 2507及び比較鋼47に比べて金属間化合物等の析出が顕著に減少し、耐脆化性が大幅に向上したことが確認された。
Example 2: Comparison of microstructure of aging material FIGS. 1A to 1F show invention steel 4 (FIG. 1A), invention steel 10 (FIG. 1B), invention steel 36 (FIG. 1C), which were aged at 850 ° C. for 30 minutes, comparison Steel 47 (FIG. 1D), conventional commercial super duplex stainless steel UR 52N + (FIG. 1E) and SAF 2507 (FIG. 1F), brittle intermetallics , sigma (σ) phase and chia that reduce corrosion resistance and mechanical properties It is a photograph of the microstructure showing the degree of precipitation of the (χ) phase. In the figure, the bright part is the “austenite phase” and the dark part indicates that the “ferrite phase” was decomposed into “sigma phase + austenite phase” during the aging heat treatment. The order of the degree of precipitation of intermetallic compounds is “invention steel 4 = invention steel 10 = invention steel 36 << conventional steel UR 52N + <conventional steel SAF 2507 << comparative steel 47”, and invented steels 4, 10, 36 are: Compared with the conventional steel UR 52N +, SAF 2507 and comparative steel 47, it was confirmed that precipitation of intermetallic compounds and the like was remarkably reduced, and the embrittlement resistance was greatly improved.

実施例3:X線回折分析試験
図2A〜2Dは、850℃で30分間時効熱処理された発明鋼4(図2A)、比較鋼47(図2B)、従来の商用スーパー二相ステンレス鋼UR 52N+(図2C)、SAF 2507(図2D)における、耐食性及び機械的性質を低下させる脆い金属間化合物、シグマ(σ)相及びカイ(χ)相の析出程度を表したX線回折分析試験の結果である。発明鋼4は、比較鋼47及び従来鋼UR 52N+、SAF2507に比べてσ相は全く析出せず、χ相はごくわずかに析出するにすぎず、耐脆化性が大幅に向上したことがわかる。
Example 3 X-ray Diffraction Analysis Tests FIGS. 2A-2D show invention steel 4 (FIG. 2A), comparative steel 47 (FIG. 2B), conventional commercial super duplex stainless steel UR 52N + that was aged at 850 ° C. for 30 minutes. (FIG. 2C), SAF 2507 (FIG. 2D), X-ray diffraction analysis test results showing the degree of precipitation of brittle intermetallic compounds , sigma (σ) phase and chi (χ) phase that reduce corrosion resistance and mechanical properties It is. Inventive steel 4 does not precipitate σ phase at all and χ phase precipitates only slightly compared to comparative steel 47, conventional steel UR 52N +, and SAF 2507, and it can be seen that the embrittlement resistance is greatly improved. .

実施例4:鋳造状態でのマクロ組織とミクロ組織との比較
図3A〜図3Dは、鋳造状態における本発明の凝固組織の制御、溶質元素偏析の制御および金属間化合物の生成制御に関する技術によって製造された発明鋼10と比較鋼47のインゴット(φ110mmxL550mm)中央部のマクロ組織(図3A及び図3B)とミクロ組織(図3C及び3D)を表したものである。
Example 4: Comparison of Macrostructure and Microstructure in Casting State FIGS. 3A to 3D are produced by the techniques relating to the control of solidified structure, the control of solute element segregation, and the control of the formation of intermetallic compounds of the present invention in the cast state. 3 shows the macrostructure (FIGS. 3A and 3B) and the microstructure (FIGS. 3C and 3D) in the center of the ingot (φ110 mm × L550 mm) of the inventive invention steel 10 and the comparative steel 47. FIG.

溶鋼内MM(Ce、La、Nd、Pr)及びAlとO、Sの溶解度積[MM+Al]・[O+S]が352.0×10-5[%]2である発明鋼10(0.09% MM、0.02% Al、0.025% O、0.007% S)のマクロ組織(図3A)は、MM及びAlが添加されず溶解度積がゼロである比較鋼47(0.015% O、0.007% S)のマクロ組織(図3B)に比べて、柱状結晶の成長が抑制された微細な等軸晶組織であり、緻密な凝固組織を有し、V偏析部と逆V偏析部がほとんど存在しない良好な組織を有することが確認された。 Invented steel 10 (0.09%) in which MM (Ce, La, Nd, Pr) in molten steel and the solubility product [MM + Al] · [O + S] of Al, O, and S are 352.0 × 10 −5 [%] 2 MM, 0.02% Al, 0.025% O, 0.007% S) macrostructure (FIG. 3A) is a comparative steel 47 (0.015%) in which MM and Al are not added and the solubility product is zero. O, 0.007% S) is a fine equiaxed crystal structure in which the growth of columnar crystals is suppressed compared to the macro structure (FIG. 3B), has a dense solidified structure, and has a V segregation portion and a reverse V It was confirmed to have a good structure with almost no segregation part.

さらに、発明鋼10のミクロ組織(図3C)は比較鋼47のミクロ組織(図3D)に比べて耐食性及び機械的性質を低下させる金属間化合物であるシグマ(σ)相及びカイ(χ)相の析出が著しく抑制されており、オーステナイト及びフェライト相の大きさが微細になっていることが確認された。 Furthermore, the microstructure of Invention Steel 10 (FIG. 3C) is a sigma (σ) phase and chi (χ) phase , which are intermetallic compounds that reduce the corrosion resistance and mechanical properties compared to the microstructure of comparative steel 47 (FIG. 3D). Precipitation was remarkably suppressed, and it was confirmed that the austenite and ferrite phases were reduced in size.

実施例5:鋳造状態でのアノード分極試験結果
図4は、固容化熱処理をしない鋳造状態での発明鋼4、10、26、36と比較鋼47とのアノード分極試験結果を表したものである。孔食抵抗性の順位は下記の通りである。
Example 5: Anodic Polarization Test Results in Cast State FIG. 4 shows the anodic polarization test results of Invention Steels 4, 10, 26, and 36 and Comparative Steel 47 in a cast state without solidification heat treatment. is there. The order of pitting corrosion resistance is as follows.

発明鋼10>発明鋼4>発明鋼36≧発明鋼26>比較鋼47 Invention Steel 10> Invention Steel 4> Invention Steel 36 ≧ Invention Steel 26> Comparison Steel 47

実施例6:臨界孔食温度及び隙間腐食温度試験結果
図5は、固容化熱処理された発明鋼4、10、26、36と従来の商用スーパー二相ステンレス鋼であるUR 52N+、SAF 2507、ZERON 100、従来の汎用二相ステンレス鋼SAF 2205、従来の商用スーパーオーステナイトステンレス鋼SR−50A、従来の汎用オーステナイトステンレス鋼AISI 316Lの臨界孔食温度を比較して表したものである。臨界孔食温度が大きいほど孔食抵抗性に優れているので、発明鋼と従来鋼の耐食性レベルを下記のように表すことができる。
Example 6: Critical Pitting Temperature and Crevice Corrosion Temperature Test Results FIG. 5 shows solidified heat-treated invention steels 4, 10, 26, 36 and conventional commercial super duplex stainless steels UR 52N +, SAF 2507, The critical pitting temperatures of ZERON 100, conventional general-purpose duplex stainless steel SAF 2205, conventional commercial super austenitic stainless steel SR-50A, and conventional general-purpose austenitic stainless steel AISI 316L are shown in comparison. The higher the critical pitting temperature, the better the pitting resistance. Therefore, the corrosion resistance levels of the inventive steel and the conventional steel can be expressed as follows.

発明鋼10=発明鋼26=発明鋼36>従来鋼SR−50A>発明鋼4>従来鋼UR 52N+=従来鋼ZERON 100>従来鋼SAF 2507>従来鋼SAF 2205>従来鋼AISI 316L Invention Steel 10 = Invention Steel 26 = Invention Steel 36> Conventional Steel SR-50A> Invention Steel 4> Conventional Steel UR 52N + = Conventional Steel ZERON 100> Conventional Steel SAF 2507> Conventional Steel SAF 2205> Conventional Steel AISI 316L

発明鋼10、26、36の孔食抵抗性は商用スーパー二相ステンレス鋼であるUR 52N+、SAF 2507、ZERON 100より遙かに優れており、高価のスーパーオーステナイトステンレス鋼である従来鋼SR−50Aよりも優れた耐食性を示していた。本発明鋼は比較鋼及び従来鋼に比べて臨界孔食温度が著しく高いため、臨界隙間腐食温度も、表2に示すように高く、隙間腐食抵抗性が大幅に向上したことがわかる。この臨界孔食温度及び臨界隙間腐食温度値は、表2に詳細に表している。   Inventive steels 10, 26 and 36 have a pitting corrosion resistance far superior to that of commercial super duplex stainless steels UR 52N +, SAF 2507 and ZERON 100, and conventional steel SR-50A which is an expensive super austenitic stainless steel. Better corrosion resistance. Since the steel of the present invention has a significantly higher critical pitting corrosion temperature than the comparative steel and the conventional steel, the critical crevice corrosion temperature is also high as shown in Table 2, indicating that the crevice corrosion resistance has been greatly improved. The critical pitting temperature and critical crevice corrosion temperature values are shown in detail in Table 2.

実施例7:固容化熱処理材のアノード分極試験結果
図6A〜6Cは、固容化熱処理された発明鋼4、10、26、36のアノード分極試験の結果(図6A)と従来の商用スーパー二相ステンレス鋼UR 52N+、SAF 2507、ZERON 100のアノード分極試験の結果(図6B)及び従来の商用スーパーオーステナイトステンレス鋼AL−6XN、SR−50A、254SMOのアノード分極試験の結果(図6C)を比較して表したものである。本発明鋼および従来鋼の孔食抵抗性の順位は下記のとおりである。
Example 7: Anodic Polarization Test Results of Solidification Heat Treated Materials FIGS. 6A to 6C show the results of anodic polarization tests (FIG. 6A) of inventive steels 4, 10, 26, and 36 subjected to solidification heat treatment and conventional commercial supermarkets. Results of anodic polarization test of duplex stainless steel UR 52N +, SAF 2507, ZERON 100 (FIG. 6B) and anodic polarization test of conventional commercial super austenitic stainless steel AL-6XN, SR-50A, 254SMO (FIG. 6C). It is a comparison. The order of pitting corrosion resistance of the steel of the present invention and the conventional steel is as follows.

発明鋼26=発明鋼36=従来鋼SR−50A>発明鋼10>発明鋼4≧従来鋼AL−6XN>従来鋼254SMO≧従来鋼UR52N+=SAF2507=ZERON 100 Invention Steel 26 = Invention Steel 36 = Conventional Steel SR-50A> Invention Steel 10> Invention Steel 4 ≧ Conventional Steel AL-6XN> Conventional Steel 254SMO ≧ Conventional Steel UR52N + = SAF 2507 = ZERON 100

実施例6で示した本発明鋼は、比較鋼及び従来鋼に比べて臨界孔食温度及び臨界隙間腐食温度が非常に高いために、アノード分極試験による孔食電位も高くなっており(表2に詳細に表している)、これら3つの試験結果の傾向が一致していることを分かる。   Since the steel of the present invention shown in Example 6 has a very high critical pitting temperature and critical crevice corrosion temperature compared to the comparative steel and the conventional steel, the pitting corrosion potential by the anodic polarization test is also high (Table 2). It can be seen that these three test results tend to match.

実施例8:時効材(850℃x10分)のアノード分極試験結果
図7A及び7Bは、850℃で10分間時効熱処理された発明鋼4、10、26、36のアノード分極試験結果(図7A)と従来の商用スーパー二相ステンレス鋼UR 52N+、SAF 2507、ZERON 100のアノード分極試験の結果(図7B)とを比較して表したものである。各鋼の孔食抵抗性の順位は下記のとおりである。
Example 8: Anodic Polarization Test Results of Aged Material (850 ° C. × 10 Minutes) FIGS. 7A and 7B are anodic polarization test results of invention steels 4, 10, 26 and 36 subjected to aging heat treatment at 850 ° C. for 10 minutes (FIG. 7A). And comparison results of the anode polarization test of conventional commercial super duplex stainless steel UR 52N +, SAF 2507, and ZERON 100 (FIG. 7B). The order of pitting resistance of each steel is as follows.

発明鋼4=発明鋼10=発明鋼26>発明鋼36>従来鋼ZERON100>従来鋼SAF 2507>従来鋼UR 52N+ Invention Steel 4 = Invention Steel 10 = Invention Steel 26> Invention Steel 36> Conventional Steel ZERON 100> Conventional Steel SAF 2507> Conventional Steel UR 52N +

この結果から、本発明鋼4、10、26は、従来鋼UR 52N+、SAF 2507、ZERON 100より時効熱処理時に、金属間化合物であるシグマ(σ)相及びカイ(χ)相の析出速度の遅延によって孔食抵抗性が向上したことが確認された。 From this result, the steels of the present invention 4, 10, and 26 have a delayed precipitation rate of sigma (σ) phase and chi (χ) phase, which are intermetallic compounds , during the aging heat treatment from the conventional steels UR 52N +, SAF 2507, and ZERON 100. It was confirmed that the pitting corrosion resistance was improved.

実施例9:時効材(850℃x30分)のアノード分極試験及び硬度測定の結果
図8A及び8Bは、850℃で30分間時効熱処理された本発明鋼4、10、26、36のアノード分極試験結果(図8A)と従来のスーパー二相ステンレス鋼UR 52N+、SAF 2507、ZERON 100のアノード分極試験結果(図8B)とを比較して表したものである。各鋼の孔食抵抗性順位は下記のとおりである。
Example 9: Results of Anodic Polarization Test and Hardness Measurement of Aged Material (850 ° C. × 30 Minutes) FIGS. 8A and 8B are anodic polarization tests of steels of the present invention 4, 10, 26, and 36 that were aging heat treated at 850 ° C. for 30 minutes. The result (FIG. 8A) and the anodic polarization test result (FIG. 8B) of conventional super duplex stainless steel UR 52N +, SAF 2507, and ZERON 100 are shown in comparison. The pitting corrosion resistance ranking of each steel is as follows.

発明鋼10>発明鋼4>発明鋼36=発明鋼26=従来鋼SAF 2507=従来鋼ZERON 100>従来鋼UR 52N+ Invention Steel 10> Invention Steel 4> Invention Steel 36 = Invention Steel 26 = Conventional Steel SAF 2507 = Conventional Steel ZERON 100> Conventional Steel UR 52N +

この結果から、本発明鋼4、10は、従来鋼UR 2N+、SAF 507、ZERON 100より時効熱処理時に金属間化合物であるシグマ(σ)相及びカイ(χ)相の析出速度の遅延によって孔食抵抗性が大幅に向上し、発明鋼36、26は、従来鋼と同等以上の孔食抵抗性を表すことが確認された。 From this result, the inventive steels 4 and 10 are pitting corrosion due to the delay of precipitation rate of the sigma (σ) phase and chi (χ) phase, which are intermetallic compounds, during the aging heat treatment from the conventional steels UR 2N +, SAF 507, and ZERON 100. It was confirmed that the resistance was greatly improved, and the inventive steels 36 and 26 exhibited pitting corrosion resistance equal to or higher than that of the conventional steel.

850℃で30分間時効熱処理された本発明鋼等の硬度値(H)から固容化熱処理された本発明鋼等の硬度値(HS.A.)を引いた硬度値の変化(ΔH=H−HS.A.)を表2に表した。一般に硬く、脆いシグマ(σ)相及びカイ(χ)相が多いほど、ΔH値は大きくなり、これによって耐食性及び強度、伸び、衝撃強度値が大きく低下する。本発明鋼のΔH値は表2に表すように、金属間化合物の析出速度の遅延に起因して0.1〜3.7程度と小さく測定されたが、比較鋼は10.3〜16.2、従来鋼は5.6〜6.2となっていた。したがって、本発明鋼は、比較鋼及び従来鋼よりも耐脆化性が大幅に改善されていることを確認することができた。 Hardness values, such as the present invention steels is aging 30 minutes at 850 ℃ (H A) from KataHiroshi of heat-treated invention hardness value such as steel (H S.A.) the minus change of the hardness value ([Delta] H = a H a -H S.A.) shown in Table 2. In general, the more hard and brittle sigma (σ) and chi (χ) phases, the greater the ΔH value, thereby greatly reducing the corrosion resistance and strength, elongation, and impact strength values. As shown in Table 2, the ΔH value of the steel of the present invention was measured as small as about 0.1 to 3.7 due to the delay in the precipitation rate of the intermetallic compound, whereas the comparative steel was 10.3 to 16. 2. The conventional steel was 5.6 to 6.2. Therefore, it was confirmed that the steel of the present invention has significantly improved brittleness resistance compared to the comparative steel and the conventional steel.

実施例10:機械的性質
表3は、大気誘導溶解された鋳造まま材を1130℃で固容化熱処理した後、引張試験を行い、降伏強度、引張強度及び伸びを表したものである。本発明鋼は、高窒素添加による侵入型固溶体の強化効果により、強度の向上と共に5μm以下の微細なBa及び希土類酸化物または酸硫化物により結晶粒界を固着させて強度及び伸びが同時に向上し、比較鋼よりも機械的性質に優れていることが分かる。
Example 10: Mechanical properties Table 3 shows the yield strength, tensile strength, and elongation after a solid solution heat treatment at 1130 ° C. of a cast material melted in the air by induction, followed by a tensile test. In the steel of the present invention, the strength and elongation are improved simultaneously by strengthening the interstitial solid solution by adding high nitrogen and fixing the grain boundaries with fine Ba and rare earth oxides or oxysulfides of 5 μm or less as well as the strength. It can be seen that the mechanical properties are superior to those of the comparative steel.

実施例11:熱間圧延製品の特性
表5は真空及び窒素雰囲気下で溶解鋳造を施した後、熱間圧延した板材に対する臨界孔食温度、機械的性質及び熱間加工性を表わすものである。健全なミクロ組織を有する熱間圧延製品の機械的性質は、大気中で溶解鋳造された発明鋼に比べて10%以上向上し、耐食性は同じであることが分かる。
Example 11 Properties of Hot Rolled Products Table 5 shows critical pitting corrosion temperature, mechanical properties and hot workability for hot rolled sheet material after melt casting in vacuum and nitrogen atmosphere. . It can be seen that the mechanical properties of the hot-rolled product having a healthy microstructure are improved by 10% or more compared to the invention steel melt-cast in the atmosphere, and the corrosion resistance is the same.

熱間加工性は、比較材に比べて熱間圧延時にエッジで割れの発生が少なく良好であることが確認された。   It was confirmed that the hot workability was good with less cracking at the edge during hot rolling compared to the comparative material.

Figure 0004834292

Figure 0004834292
Figure 0004834292

Figure 0004834292

Figure 0004834292

Figure 0004834292
Figure 0004834292

Figure 0004834292

Figure 0004834292
Figure 0004834292

Figure 0004834292

Figure 0004834292
Figure 0004834292

Figure 0004834292

Figure 0004834292
Figure 0004834292

産業上利用可能性
本発明は、原子半径の大きいBa、Y、Ce、La、Nd、Pr、Ta、Zr、Tiなどを適正量原子状態で固容させて、脆い金属間化合物の拡散及び析出速度を遅延させ、微細なRE系複合化合物またはBa酸化物がCr、Mo、Si、Wの拡散をさらに阻止することによって、金属間化合物の析出速度を低下させ、析出量を減少させることによって脆性の防止及び耐食性の向上を図ることができる。
INDUSTRIAL APPLICABILITY The present invention allows diffusion and precipitation of brittle intermetallic compounds by solidifying Ba, Y, Ce, La, Nd, Pr, Ta, Zr, Ti, etc. having large atomic radii in an appropriate amount in an atomic state. By slowing down the speed, the fine RE complex compound or Ba oxide further inhibits the diffusion of Cr, Mo, Si, W, thereby reducing the precipitation rate of intermetallic compounds and reducing the amount of precipitation. Prevention and corrosion resistance can be improved.

また、本発明は、Ti、Mg、Ca、Al及びCa+Alを利用した通常の方法による適正な予備脱酸を施すとともに、MM及び/またはYを添加することにより、鋼の諸特性に悪影響を及ぼすAl、MnS非金属介在物の単独生成を防止する。このためには、本発明者等が見出した溶解度積[MM及び/またはY+Al]・[O+S]=0.001×10-5〜30,000×10-5[%]2の相関関係式を適用して意図的に溶鋼内に直径5μm以下のRexOyまたは(RE、Al)xOy+RExOyS+RExSy複合化合物を生成させて凝固時の樹枝状結晶の形成時に、不均質な核生成サイトを供給して凝固組織を微細化・緻密化すると同時にCr、Mo、W、Ni、Mn、Siなど溶質元素の偏析を制御することによって、機械的特性、物理的特性及び耐食性を向上させることができる。 In addition, the present invention adversely affects various properties of steel by adding appropriate MM and / or Y while performing appropriate preliminary deoxidation by a usual method using Ti, Mg, Ca, Al and Ca + Al. Prevents single formation of Al 2 O 3 and MnS non-metallic inclusions. For this purpose, the solubility equation [MM and / or Y + Al] · [O + S] = 0.001 × 10 −5 to 30,000 × 10 −5 [%] 2 found by the present inventors is used. When intentionally forming RexOy or (RE, Al) xOy + RExOyS + RExSy complex compound with a diameter of 5 μm or less in molten steel to form dendritic crystals during solidification, a heterogeneous nucleation site is supplied to form a solidified structure. By controlling the segregation of solute elements such as Cr, Mo, W, Ni, Mn, and Si at the same time as miniaturization and densification, mechanical characteristics, physical characteristics, and corrosion resistance can be improved.

従って、本発明は、従来技術では認識されなかった新しい合金元素の添加により、二相系ステンレス鋼においてシグマ相を含む金属間化合物の形成を著しく抑制し、窮極的には、量産の際、著しく歩留まりを向上させることができる製造方法を提供することが可能になる。 Therefore, the present invention remarkably suppresses the formation of intermetallic compounds including a sigma phase in the duplex stainless steel by adding a new alloy element that has not been recognized in the prior art. It becomes possible to provide a manufacturing method capable of improving the yield.

さらに、本発明は、このようなシグマ相を含む金属間化合物の析出速度を大きく低下させて、耐脆化性を改善させるとともに、割れの発生を著しく低下させることによって鋳造及び熱間加工時の歩留まりを大幅に向上させることが可能である。 Furthermore, the present invention greatly reduces the precipitation rate of such an intermetallic compound containing a sigma phase to improve embrittlement resistance and significantly reduce the occurrence of cracks, thereby reducing the occurrence of cracking and hot working. The yield can be greatly improved.

また、鋳造状態で耐食性及び機械的性質を大きく低下させるσ相及びχ相等の析出を顕著に抑制することによって、今後、前述した多様な適用分野で設備部品を必須的に接合する場合、溶接熱影響部でのこれら析出相を制御することによって耐食性及び機械的性質を大きく向上させて設備の耐久性をより一層向上させることができる。   In addition, by significantly suppressing the precipitation of σ phase and χ phase, etc., which greatly reduces the corrosion resistance and mechanical properties in the cast state, in the future, when joining equipment parts in various application fields described above, By controlling these precipitated phases in the affected area, the corrosion resistance and mechanical properties can be greatly improved, and the durability of the equipment can be further improved.

図1Aは、850℃で30分間時効熱処理された発明鋼4のミクロ組織の写真である。FIG. 1A is a photograph of the microstructure of invention steel 4 that was aged at 850 ° C. for 30 minutes. 図1Bは、850℃で30分間時効熱処理された発明鋼10のミクロ組織の写真である。FIG. 1B is a photograph of the microstructure of invention steel 10 that has been aged at 850 ° C. for 30 minutes. 図1Cは、850℃で30分間時効熱処理された発明鋼36のミクロ組織の写真である。FIG. 1C is a photograph of the microstructure of invention steel 36 that was aged at 850 ° C. for 30 minutes. 図1Dは、850℃で30分間時効熱処理された比較鋼47のミクロ組織の写真である。FIG. 1D is a photograph of the microstructure of comparative steel 47 that was aged at 850 ° C. for 30 minutes. 図1Eは、850℃で30分間時効熱処理された従来鋼UR52N+のミクロ組織の写真である。FIG. 1E is a photograph of the microstructure of a conventional steel UR52N + that has been aged at 850 ° C. for 30 minutes. 図1Fは、850℃で30分間時効熱処理された従来鋼SAF2507のミクロ組織の写真である。FIG. 1F is a photograph of the microstructure of a conventional steel SAF2507 that has been aged at 850 ° C. for 30 minutes. 図2Aは、850℃で30分間時効熱処理された発明鋼4のX線回折試験結果を示す図である。FIG. 2A is a diagram showing an X-ray diffraction test result of Invention Steel 4 that has been subjected to an aging heat treatment at 850 ° C. for 30 minutes. 図2Bは、850℃で30分間時効熱処理された比較鋼47のX線回折試験結果を示す図である。FIG. 2B is a diagram showing an X-ray diffraction test result of comparative steel 47 that has been subjected to an aging heat treatment at 850 ° C. for 30 minutes. 図2Cは、850℃で30分間時効熱処理された従来鋼UR52N+のX線回折試験結果を示す図である。FIG. 2C is a diagram showing an X-ray diffraction test result of a conventional steel UR52N + that has been subjected to an aging heat treatment at 850 ° C. for 30 minutes. 図2Dは、850℃で30分間時効熱処理された従来鋼SAF2507のX線回折試験結果を示す図である。FIG. 2D is a diagram showing an X-ray diffraction test result of a conventional steel SAF2507 that has been subjected to an aging heat treatment at 850 ° C. for 30 minutes. 図3Aは、発明鋼10のインゴット(φ110mmxL550mm)中央部のマクロ組織を示す写真である。FIG. 3A is a photograph showing the macro structure of the central part of the ingot (φ110 mm × L550 mm) of Invention Steel 10. 図3Bは、比較鋼47のインゴット(φ110mmxL550mm)中央部のマクロ組織を示す写真である。FIG. 3B is a photograph showing the macro structure of the central portion of the ingot (φ110 mm × L550 mm) of the comparative steel 47. 図3Cは、発明鋼10のインゴット(φ110mmxL550mm)中央部のミクロ組織を示す写真である。FIG. 3C is a photograph showing the microstructure of the central part of the ingot (φ110 mm × L550 mm) of Invention Steel 10. 図3Dは、比較鋼47のインゴット(φ110mmxL550mm)中央部のミクロ組織を示す写真である。FIG. 3D is a photograph showing the microstructure of the central part of the ingot (φ110 mm × L550 mm) of the comparative steel 47. 図4は、鋳造状態での本発明鋼と従来鋼との脱気された50℃の0.5N HCl+1.0N NaCl溶液中でのアノード分極特性試験結果を比較して示す図である。FIG. 4 is a diagram comparing the results of an anodic polarization characteristic test in a degassed 0.5 ° HCl + 1.0N NaCl solution of the present invention steel and a conventional steel in a cast state. 図5は、本発明鋼及び従来鋼の6%FeCl溶液中での臨界孔食温度試験結果を比較して示す図である。FIG. 5 is a diagram showing a comparison of the critical pitting temperature test results of the steel of the present invention and the conventional steel in a 6% FeCl 3 solution. 図6Aは、1130℃で固容化熱処理された本発明鋼の脱気された70℃の0.5N HCl+1.0N NaCl溶液中でのアノード分極特性試験結果を示す図である。FIG. 6A is a graph showing the results of an anodic polarization property test in a degassed 0.5 ° HCl + 1.0N NaCl solution at 70 ° C. of the steel of the present invention that has been heat-treated at 1130 ° C. FIG. 図6Bは、1130℃で固容化熱処理された従来のスーパー二相ステンレス鋼の脱気された70℃の0.5N HCl+1.0N NaCl溶液中でのアノード分極特性試験結果を示す図である。FIG. 6B is a graph showing the results of an anodic polarization characteristic test in a degassed 70 ° C. 0.5N HCl + 1.0N NaCl solution of a conventional super duplex stainless steel subjected to solidification heat treatment at 1130 ° C. FIG. 図6Cは、1130℃で固容化熱処理された従来のスーパーオーステナイトステンレス鋼の脱気された70℃の0.5N HCl+1.0N NaCl溶液中でのアノード分極特性試験結果を示す図である。FIG. 6C is a graph showing the results of an anodic polarization property test in a degassed 70 ° C. 0.5N HCl + 1.0N NaCl solution of a conventional superaustenitic stainless steel subjected to a solidification heat treatment at 1130 ° C. FIG. 図7Aは、850℃で10分間時効熱処理された本発明鋼の脱気された50℃の0.5N HCl+1.0N NaCl溶液中でのアノード分極特性試験結果を示す図である。FIG. 7A is a graph showing the results of an anodic polarization property test in a degassed 50 ° C. 0.5N HCl + 1.0N NaCl solution of the steel of the present invention that has been aged at 850 ° C. for 10 minutes. 図7Bは、850℃で10分間時効熱処理された従来のスーパー二相ステンレス鋼の脱気された50℃の0.5N HCl+1.0N NaCl溶液中でのアノード分極特性試験結果を示す図である。FIG. 7B is a graph showing the results of an anodic polarization property test in a degassed 50 ° C. 0.5N HCl + 1.0N NaCl solution of a conventional super duplex stainless steel that has been aged at 850 ° C. for 10 minutes. 図8Aは、850℃で30分間時効熱処理された本発明鋼の脱気された50℃の0.5N HCl+1.0N NaCl溶液中でのアノード分極特性試験結果を示す図である。FIG. 8A is a graph showing the results of an anodic polarization property test in a degassed 50 ° C. 0.5N HCl + 1.0N NaCl solution of the steel of the present invention that has been aged at 850 ° C. for 30 minutes. 図8Bは、850℃で30分間時効熱処理された従来のスーパー二相ステンレス鋼の脱気された50℃の0.5N HCl+1.0N NaCl溶液中でのアノード分極特性試験結果を示す図である。FIG. 8B is a graph showing the results of an anodic polarization property test in a degassed 50 ° C. 0.5 N HCl + 1.0 N NaCl solution of a conventional super duplex stainless steel that has been heat-treated at 850 ° C. for 30 minutes.

Claims (10)

重量%で、Cr:21.0%〜38.0%、Ni:3.0%〜12.0%、Mo:1.5%〜6.5%、W:0〜6.5%、Si:3.0%以下、Al:1.0%以下、Mn:8.0%以下、N:0.2%〜0.7%、C:0.1%以下、Ba:0.0001〜0.6%、及びB:0.1%以下、Cu:3.0%以下、Co:3.0%以下の少なくとも一種、を含有し、残りは鉄と不可避的不純物からなり、
下記式(1)で定義される孔食抵抗当量指数PREWが40≦PREW≦67を満足する、金属間化合物の形成が抑制された耐食性、耐脆化性、鋳造性及び熱間加工性に優れたスーパー二相ステンレス鋼。
PREW=重量%Cr+3.3(重量%Mo+0.5重量%W)+30重量%N--------(1)
By weight, Cr: 21.0% to 38.0%, Ni: 3.0% to 12.0%, Mo: 1.5% to 6.5%, W: 0 to 6.5%, Si : 3.0% or less, Al: 1.0% or less, Mn: 8.0% or less, N: 0.2% to 0.7%, C: 0.1% or less, Ba: 0.0001 to 0 .6%, and B: 0.1% or less, Cu: 3.0% or less, Co: 3.0% or less, and the remainder is composed of iron and inevitable impurities,
The pitting corrosion resistance equivalent index PREW defined by the following formula (1) satisfies 40 ≦ PREW ≦ 67, and is excellent in corrosion resistance, brittleness resistance, castability and hot workability with suppressed formation of intermetallic compounds. Super duplex stainless steel.
PREW = wt% Cr + 3.3 (wt% Mo + 0.5 wt% W) +30 wt% N -------- (1)
前記鋼が、さらにMM及び/またはYを総量で0.0001〜1.0%含有し、ここで前記MMは、La,Ce,Pr,Nd,Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu及びScの総量であり、
前記MM及び/またはYと、鋼中Al、O及びSとの溶解度積の関係式[MM及び/またはY+Al]・[O+S]の値が、0.001×10-5〜30,000×10-5[%]2の範囲にある、請求項1に記載の金属間化合物の形成が抑制された耐食性、耐脆化性、鋳造性及び熱間加工性に優れたスーパー二相ステンレス鋼。
The steel further contains MM and / or Y in a total amount of 0.0001 to 1.0%, where the MM is La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, The total amount of Ho, Er, Tm, Yb, Lu and Sc,
The value of the relational expression [MM and / or Y + Al] · [O + S] of the solubility product of MM and / or Y and Al, O and S in steel is 0.001 × 10 −5 to 30,000 × 10. -5 [%] is in the second range, the corrosion resistance of the formation of intermetallic compound of claim 1 is suppressed, embrittlement-resistant, castability and hot workability excellent super duplex stainless steel.
前記Baが0.001〜0.2%の範囲内である、請求項2に記載の金属間化合物の形成が抑制された耐食性、耐脆化性、鋳造性及び熱間加工性に優れたスーパー二相ステンレス鋼。  The super excellent in corrosion resistance, embrittlement resistance, castability and hot workability in which the formation of the intermetallic compound according to claim 2 is suppressed, wherein the Ba is in the range of 0.001 to 0.2%. Duplex stainless steel. 前記溶解度積の関係式値が、鋳造製品の場合、1×10-5〜5,000×10-5[%]2の範囲にある、請求項2又は3に記載の金属間化合物の形成が抑制された耐食性、耐脆化性、鋳造性及び熱間加工性に優れたスーパー二相ステンレス鋼。The relational value of the solubility product is in the range of 1 × 10 −5 to 5,000 × 10 −5 [%] 2 in the case of a cast product, and the formation of the intermetallic compound according to claim 2 or 3. Super duplex stainless steel with excellent corrosion resistance, brittleness resistance, castability and hot workability. 前記溶解度積の関係式値が、熱間加工製品の場合、0.1×10-5〜2,000×10-5[%]2の範囲にある、請求項2又は3に記載の金属間化合物の形成が抑制された耐食性、耐脆化性、鋳造性及び熱間加工性に優れたスーパー二相ステンレス鋼。The relation values of solubility product is, in the case of hot working product, the range of 0.1 × 10 -5 ~2,000 × 10 -5 [%] 2, between a metal according to claim 2 or 3 Super duplex stainless steel excellent in corrosion resistance, embrittlement resistance, castability and hot workability with suppressed compound formation. 前記MM及び/またはYの総量が0.01%〜0.6%である、請求項2又は3に記載の金属間化合物の形成が抑制された耐食性、耐脆化性、鋳造性及び熱間加工性に優れたスーパー二相ステンレス鋼。The total amount of the MM and / or Y is 0.01% to 0.6%, and the corrosion resistance, brittleness resistance, castability, and hotness in which formation of the intermetallic compound according to claim 2 or 3 is suppressed. Super duplex stainless steel with excellent workability. 前記MM及び/またはYの総量が0.2%〜0.5%である、請求項に記載の金属間化合物の形成が抑制された耐食性、耐脆化性、鋳造性及び熱間加工性に優れたスーパー二相ステンレス鋼。The total amount of the MM and / or Y is 0.2% to 0.5%, corrosion resistance, brittleness resistance, castability, and hot workability with suppressed formation of intermetallic compounds according to claim 6 . Excellent super duplex stainless steel. 前記鋼が、さらにCa:0.5%以下、Mg:0.5%以下、Ta:0.5%以下、Nb:0.5%以下、Ti:1.5%以下、Zr:1.0%以下、Sn:1.0%以下及びIn:1.0%以下からなる群から選択される一種以上の元素を含有する、請求項1〜の何れか一項に記載の金属間化合物の形成が抑制された耐食性、耐脆化性、鋳造性及び熱間加工性に優れたスーパー二相ステンレス鋼。The steel is further Ca: 0.5% or less, Mg: 0.5% or less, Ta: 0.5% or less, Nb: 0.5% or less, Ti: 1.5% or less, Zr: 1.0 % or less, Sn: 1.0% or less, and in: containing one or more elements selected from the group consisting of 1.0% or less, according to claim 1 to 3, 6, 7 any one of Super duplex stainless steel with excellent corrosion resistance, embrittlement resistance, castability and hot workability with reduced formation of intermetallic compounds. オーステナイト相及びフェライト相の耐食性バランスである[PREW(γ)−PREW(α)]値(ここで、PREW(γ)及びPREW(α)は、それぞれオーステナイト相及びフェライト相の孔食抵抗当量指数をいう。)が−5〜10の範囲にある、請求項1〜の何れか一項に記載の金属間化合物の形成が抑制された耐食性、耐脆化性、鋳造性及び熱間加工性に優れたスーパー二相ステンレス鋼。[PREW (γ) −PREW (α)] value (where PREW (γ) and PREW (α) are the corrosion resistance balance of the austenite phase and the ferrite phase, respectively) say.) is in the range of -5~10 claim 1-3, 6, 7 or corrosion formation of intermetallic compounds according to one item is suppressed, the embrittlement-resistant, castability and hot Super duplex stainless steel with excellent hot workability. 鋼の組職中のフェライト相の体積分率が、体積%で20〜70%であり、オーステナイト相の体積分率が、体積%で30〜80%である、請求項1〜の何れか一項に記載の金属間化合物の形成が抑制された耐食性、耐脆化性、鋳造性及び熱間加工性に優れたスーパー二相ステンレス鋼。The volume fraction of the ferrite phase in the set positions of the steel, 20 to 70% by volume%, volume fraction of the austenite phase is 30 to 80% by volume%, claim 1-3, 6, A super duplex stainless steel excellent in corrosion resistance, embrittlement resistance, castability and hot workability in which the formation of the intermetallic compound according to any one of 7 is suppressed.
JP2003578609A 2002-03-25 2003-03-24 Super duplex stainless steel with excellent corrosion resistance, embrittlement resistance, castability and hot workability with reduced formation of intermetallic compounds Expired - Fee Related JP4834292B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2002-0016214 2002-03-25
KR10-2002-0016214A KR100460346B1 (en) 2002-03-25 2002-03-25 Super duplex stainless steel with a suppressed formation of intermetallic phases and having an excellent corrosion resistance, embrittlement resistance, castability and hot workability
PCT/KR2003/000568 WO2003080886A1 (en) 2002-03-25 2003-03-24 High-grade duplex stainless steel with much suppressed formation of intermetallic phases and having an excellent corrosion resistance , embrittlement resistance, castability and hot workability

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011055831A Division JP2011174183A (en) 2002-03-25 2011-03-14 High-grade duplex stainless steel with much suppressed formation of intermetallic phases and having excellent corrosion resistance, embrittlement resistance, castability and hot workability

Publications (2)

Publication Number Publication Date
JP2005520934A JP2005520934A (en) 2005-07-14
JP4834292B2 true JP4834292B2 (en) 2011-12-14

Family

ID=28450068

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2003578609A Expired - Fee Related JP4834292B2 (en) 2002-03-25 2003-03-24 Super duplex stainless steel with excellent corrosion resistance, embrittlement resistance, castability and hot workability with reduced formation of intermetallic compounds
JP2011055831A Pending JP2011174183A (en) 2002-03-25 2011-03-14 High-grade duplex stainless steel with much suppressed formation of intermetallic phases and having excellent corrosion resistance, embrittlement resistance, castability and hot workability

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2011055831A Pending JP2011174183A (en) 2002-03-25 2011-03-14 High-grade duplex stainless steel with much suppressed formation of intermetallic phases and having excellent corrosion resistance, embrittlement resistance, castability and hot workability

Country Status (8)

Country Link
US (1) US20050158201A1 (en)
EP (2) EP1495150B1 (en)
JP (2) JP4834292B2 (en)
KR (1) KR100460346B1 (en)
CN (2) CN101580917A (en)
AU (1) AU2003221202A1 (en)
DE (1) DE60313763T8 (en)
WO (1) WO2003080886A1 (en)

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE527175C2 (en) * 2003-03-02 2006-01-17 Sandvik Intellectual Property Duplex stainless steel alloy and its use
SE528782C2 (en) * 2004-11-04 2007-02-13 Sandvik Intellectual Property Duplex stainless steel with high yield strength, articles and use of the steel
JP4502131B2 (en) * 2005-09-20 2010-07-14 住友金属工業株式会社 Duplex stainless steel with excellent hot workability
CN100432262C (en) * 2006-07-21 2008-11-12 上海大学 Rare earth-containing high-nitrogen ultralow-nickel super-duplex stainless steel alloy materials and method for preparing same
SE530711C2 (en) * 2006-10-30 2008-08-19 Sandvik Intellectual Property Duplex stainless steel alloy and use of this alloy
EP2172574B1 (en) * 2007-08-02 2019-01-23 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic-austenitic stainless steel excellent in corrosion resistance and workability and process for manufacturing the same
KR101587392B1 (en) * 2007-11-29 2016-01-21 에이티아이 프로퍼티즈, 인코퍼레이티드 Lean austenitic stainless steel
US8337749B2 (en) 2007-12-20 2012-12-25 Ati Properties, Inc. Lean austenitic stainless steel
EP2245202B1 (en) * 2007-12-20 2011-08-31 ATI Properties, Inc. Austenitic stainless steel low in nickel containing stabilizing elements
PL2229463T3 (en) 2007-12-20 2018-01-31 Ati Properties Llc Corrosion resistant lean austenitic stainless steel
JP5365499B2 (en) * 2009-12-18 2013-12-11 新日鐵住金株式会社 Duplex stainless steel and urea production plant for urea production plant
KR101256522B1 (en) 2010-12-28 2013-04-22 주식회사 포스코 Method for heat-treating welding parts of superduplex stainless steel
WO2012102330A1 (en) 2011-01-27 2012-08-02 新日鐵住金ステンレス株式会社 Alloying element-saving hot rolled duplex stainless steel material, clad steel sheet having duplex stainless steel as mating material therefor, and production method for same
US20120241878A1 (en) * 2011-03-24 2012-09-27 International Business Machines Corporation Magnetic tunnel junction with iron dusting layer between free layer and tunnel barrier
CN102162074A (en) * 2011-03-29 2011-08-24 陈才金 In-situ cast stainless steel
RU2603735C2 (en) * 2011-05-26 2016-11-27 Юнайтед Пайплайнс Лимитед Austenite stainless steel
JP5329634B2 (en) * 2011-12-06 2013-10-30 新日鐵住金ステンレス株式会社 Duplex stainless steel, duplex stainless steel cast, and duplex stainless steel
JP5329632B2 (en) * 2011-10-21 2013-10-30 新日鐵住金ステンレス株式会社 Duplex stainless steel, duplex stainless steel cast, and duplex stainless steel
KR101632516B1 (en) * 2011-10-21 2016-06-21 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material
FI125854B (en) * 2011-11-04 2016-03-15 Outokumpu Oy Duplex stainless steel
JP6405078B2 (en) * 2012-05-07 2018-10-17 株式会社神戸製鋼所 Duplex stainless steel and duplex stainless steel pipe
JP5857914B2 (en) * 2012-08-23 2016-02-10 新日鐵住金株式会社 Welding material for duplex stainless steel
CN103060712B (en) * 2012-12-26 2015-06-03 宁波市瑞通新材料科技有限公司 Stainless acid-resistant steel for boiler
CN104919072B (en) * 2013-01-15 2017-07-14 株式会社神户制钢所 Two phase stainless steel steel and two phase stainless steel steel pipe
JP5890342B2 (en) * 2013-03-05 2016-03-22 株式会社神戸製鋼所 Duplex stainless steel and duplex stainless steel pipe
JP5890330B2 (en) * 2013-01-15 2016-03-22 株式会社神戸製鋼所 Duplex stainless steel and duplex stainless steel pipe
CN103451573A (en) * 2013-08-02 2013-12-18 安徽三联泵业股份有限公司 Cavitation corrosion-resistant stainless steel alloy material for water pump impeller and manufacturing method thereof
RU2545856C2 (en) * 2013-08-02 2015-04-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) High-strength cryogenic austenite weldable structural steel and steel obtainment method
CN103451567A (en) * 2013-08-02 2013-12-18 安徽三联泵业股份有限公司 Stainless steel material with strong corrosion-resisting capacity for water pump shafts and manufacturing method thereof
WO2015029167A1 (en) * 2013-08-28 2015-03-05 株式会社日立製作所 Duplex stainless steel, and duplex stainless steel structure, marine structure, petroleum/gas environment structure, pump impeller, pump casing, and flow adjustment valve body using same
JP6327633B2 (en) * 2013-09-19 2018-05-23 セイコーインスツル株式会社 Diaphragm made of duplex stainless steel
DE102013110743B4 (en) 2013-09-27 2016-02-11 Böhler Edelstahl GmbH & Co. KG Process for producing a duplex steel
KR102277880B1 (en) * 2013-12-27 2021-07-15 산드빅 인터렉츄얼 프로퍼티 에이비 Corrosion resistant duplex steel alloy, objects made thereof, and method of making the alloy
CN103938115A (en) * 2014-03-03 2014-07-23 黄忠波 Double phase stainless steel alloy material
JP6303851B2 (en) * 2014-06-18 2018-04-04 新日鐵住金株式会社 Duplex stainless steel pipe
JP6482074B2 (en) * 2014-09-02 2019-03-13 日本冶金工業株式会社 Duplex stainless steel sheet and its manufacturing method
JP2016084522A (en) * 2014-10-29 2016-05-19 株式会社神戸製鋼所 Two-phase stainless steel material and two-phase stainless steel tube
KR101668532B1 (en) * 2014-12-26 2016-10-24 주식회사 포스코 Super duplex stainless steel with excellent yield strength and imfact toughness, and menufacturing method thereof
US20160207110A1 (en) * 2015-01-20 2016-07-21 General Electric Company Corrosion resistant article and methods of making
RU2585899C1 (en) * 2015-02-02 2016-06-10 Григорьянц Александр Григорьевич Structural cryogenic austenitic high-strength welded steel and method for production thereof
EP3258523A4 (en) * 2015-02-13 2018-01-31 Nippon Steel & Sumitomo Metal Corporation Separator for solid polymer fuel cell and method for producing same
KR101677146B1 (en) * 2015-03-17 2016-11-17 한국생산기술연구원 Duplex stainless steel and method of manufacturing the same
RU2576773C1 (en) * 2015-04-07 2016-03-10 Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) High-corrosion-resistant steels of the transition class
ES2788648T3 (en) * 2015-06-15 2020-10-22 Nippon Steel Corp Austenitic stainless steel based on high Cr content
MX2018006361A (en) * 2015-11-25 2018-11-09 Questek Innovations Llc Grain boundary cohesion enhanced sulfide stress cracking (ssc)-resistant steel alloys.
GB2545768B (en) * 2015-12-23 2018-04-25 Goodwin Plc A steel, a cast, forged or wrought product and a welded product
US10793930B2 (en) 2016-02-17 2020-10-06 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic-austenitic two-phase stainless steel material and method for manufacturing same
CN105803351A (en) * 2016-04-27 2016-07-27 无锡环宇精密铸造有限公司 Casting method for corrosion-resistant duplex stainless steel castings
RU2615936C1 (en) * 2016-06-16 2017-04-11 Юлия Алексеевна Щепочкина Steel
JP2018006423A (en) * 2016-06-28 2018-01-11 日立化成株式会社 Composition for passivation layer formation, passivation layer-attached semiconductor substrate, method for manufacturing passivation layer-attached semiconductor substrate, solar battery element, method for manufacturing solar battery element, and solar battery
CN106498299A (en) * 2016-10-21 2017-03-15 过冬 A kind of new metallic material and preparation method thereof
KR101889176B1 (en) * 2016-12-15 2018-08-16 주식회사 포스코 High strength duplex stainless steel reduced cracking and method for manufacturing the same
KR101903181B1 (en) * 2016-12-23 2018-10-01 주식회사 포스코 Duplex stainless steel with improved corrosion resistance and formability and method of manufacturing the same
CN107245631A (en) * 2017-04-28 2017-10-13 四川和鼎环保工程有限责任公司 Corrosion resistant photovoltaic panel frame framework
CN107254641B (en) * 2017-06-02 2019-03-19 江阴国润机械有限公司 High temperature oxidation resisting fire grate segment and its casting mold and pouring technology
CN107309405B (en) * 2017-06-06 2018-12-21 洛阳双瑞特种装备有限公司 A kind of casting method of super-duplex stainless steel 5A material impeller
RU2693718C2 (en) * 2017-06-16 2019-07-04 Акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" АО "НПО "ЦНИИТМАШ" Duplex stainless steel for production of shutoff and control valves
JP6652226B2 (en) * 2017-09-13 2020-02-19 日本製鉄株式会社 Steel material with excellent rolling fatigue characteristics
CA3080706A1 (en) 2017-11-15 2019-05-23 Nippon Steel Corporation Duplex stainless steel and method for producing duplex stainless steel
KR20190072280A (en) * 2017-12-15 2019-06-25 주식회사 포스코 Duplex stainless steel having excellent hole expansion and method of manufacturing the same
LT3502293T (en) * 2017-12-22 2020-07-10 Saipem S.P.A. Uses of duplex stainless steels
CN108456821B (en) * 2017-12-25 2020-07-14 宁波骑士马具用品制造有限公司 Metal wire for horseshoe nail and preparation method thereof
KR102154389B1 (en) * 2018-02-05 2020-09-09 부산대학교 산학협력단 Super duplex stainless steel with improved corrosion resistance and manufacturing method thereof
WO2019158663A1 (en) * 2018-02-15 2019-08-22 Sandvik Intellectual Property Ab New duplex stainless steel
CN108220813B (en) * 2018-03-29 2020-09-15 东北大学 Super-grade duplex stainless steel and alloy component optimization design method thereof
CN108570629B (en) * 2018-04-27 2020-03-20 钢铁研究总院 High-strength acid corrosion resistant duplex stainless steel and preparation method thereof
CN108728892B (en) * 2018-05-07 2020-08-14 钢铁研究总院 Method for separating two-phase structure in two-phase stainless steel and reticular ferrite microporous material
CN108774716A (en) * 2018-06-27 2018-11-09 赵云飞 One kind stainless steel material containing yttrium and preparation method thereof
CN109648064B (en) * 2019-01-25 2021-04-20 北京科技大学 Method for realizing sigma phase transformation of super austenitic stainless steel solidification structure
CN110079744A (en) * 2019-05-14 2019-08-02 东南大学 One kind two phase stainless steel containing heavy rare earth and preparation method thereof
RU2700440C1 (en) * 2019-05-23 2019-09-17 Акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения", АО "НПО "ЦНИИТМАШ" Austenitic-ferritic stainless steel
CN110334664B (en) * 2019-07-09 2021-06-04 中南大学 Statistical method and device for alloy precipitated phase fraction, electronic equipment and medium
EP3835438A1 (en) 2019-12-13 2021-06-16 The Swatch Group Research and Development Ltd Paramagnetic hard stainless steel and method for manufacturing same
CN111088459A (en) * 2019-12-31 2020-05-01 兴化市锐达建材机械有限公司 High-strength corrosion-resistant stainless steel for bridge piles
JPWO2022145061A1 (en) * 2020-12-28 2022-07-07
CN113210420B (en) * 2021-04-21 2022-12-06 鞍钢联众(广州)不锈钢有限公司 Double-phase stainless steel coil and manufacturing method thereof
CN113235017A (en) * 2021-05-17 2021-08-10 湖北上大模具材料科技股份有限公司 High-performance plastic die steel and manufacturing method thereof
FR3124804B1 (en) * 2021-06-30 2023-11-10 Association Pour La Rech Et Le Developpement Des Methodes Et Processus Industriels Armines Austenitic stainless steel
CN113667806B (en) * 2021-07-26 2022-10-25 中国科学院金属研究所 Multistage heat treatment method for solving Gd-containing duplex stainless steel hot working cracks
CN115679225A (en) * 2021-07-28 2023-02-03 叶均蔚 High chromium silicon corrosion resistant steel and use thereof
KR20230151617A (en) 2022-04-26 2023-11-02 박용수 Copper mother alloy containing barium and its manufacutring method
CN115491608B (en) * 2022-09-29 2023-08-15 桂林理工大学 A kind of (Cr, fe) 7 C 3 TiC composite reinforced medium manganese steel and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593246A (en) * 1991-09-30 1993-04-16 Sumitomo Metal Ind Ltd Highly corrosion resistant duplex stainless steel and its production
JPH05132741A (en) * 1991-11-11 1993-05-28 Sumitomo Metal Ind Ltd High strength duplex stainless steel excellent in corrosion resistance
JPH06116684A (en) * 1992-10-06 1994-04-26 Sumitomo Metal Ind Ltd Two-phase stainless steel excellent in corrosion resistance and phase stability
JPH07278755A (en) * 1994-04-05 1995-10-24 Sumitomo Metal Ind Ltd Dual phase stainless steel
JPH08218154A (en) * 1995-02-14 1996-08-27 Nippon Steel Corp High strength ferritic heat resistant steel excellent in intermetallic compound precipitating embrittlement resistance

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4414023A (en) * 1982-04-12 1983-11-08 Allegheny Ludlum Steel Corporation Iron-chromium-aluminum alloy and article and method therefor
SU1148893A1 (en) * 1982-07-30 1985-04-07 Научно-исследовательский институт автотракторных материалов Structural steel
JPS59107019A (en) * 1982-12-09 1984-06-21 Nippon Stainless Steel Co Ltd Production of two phase stainless cast steel product of high cr and low ni having excellent sea water resistance
US4735771A (en) * 1986-12-03 1988-04-05 Chrysler Motors Corporation Method of preparing oxidation resistant iron base alloy compositions
JPH02298235A (en) * 1989-05-11 1990-12-10 Nippon Steel Corp Duplex stainless steel having excellent corrosion resistance in heat affected zone in sulfide environment
EP0646657B1 (en) * 1993-03-19 1998-08-26 Nippon Yakin Kogyo Co., Ltd. Ferritic stainless steel excellent in oxidation resistance
JPH0813094A (en) * 1994-06-24 1996-01-16 Sumitomo Metal Mining Co Ltd Duplex stainless cast steel and production thereof
JP3041050B2 (en) * 1995-06-05 2000-05-15 ポハング アイアン アンド スチール カンパニー リミテッド Duplex stainless steel and its manufacturing method
JPH09209087A (en) * 1996-02-01 1997-08-12 Sumitomo Metal Mining Co Ltd Duplex stainless steel
US6033497A (en) * 1997-09-05 2000-03-07 Sandusky International, Inc. Pitting resistant duplex stainless steel alloy with improved machinability and method of making thereof
SE519589C2 (en) * 1998-02-18 2003-03-18 Sandvik Ab Use of high-strength stainless steel in equipment for making caustic soda

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593246A (en) * 1991-09-30 1993-04-16 Sumitomo Metal Ind Ltd Highly corrosion resistant duplex stainless steel and its production
JPH05132741A (en) * 1991-11-11 1993-05-28 Sumitomo Metal Ind Ltd High strength duplex stainless steel excellent in corrosion resistance
JPH06116684A (en) * 1992-10-06 1994-04-26 Sumitomo Metal Ind Ltd Two-phase stainless steel excellent in corrosion resistance and phase stability
JPH07278755A (en) * 1994-04-05 1995-10-24 Sumitomo Metal Ind Ltd Dual phase stainless steel
JPH08218154A (en) * 1995-02-14 1996-08-27 Nippon Steel Corp High strength ferritic heat resistant steel excellent in intermetallic compound precipitating embrittlement resistance

Also Published As

Publication number Publication date
EP1495150A4 (en) 2005-09-07
DE60313763T2 (en) 2008-01-24
EP1495150A1 (en) 2005-01-12
AU2003221202A1 (en) 2003-10-08
EP1495150B1 (en) 2007-05-09
JP2005520934A (en) 2005-07-14
CN100343410C (en) 2007-10-17
WO2003080886A1 (en) 2003-10-02
KR20030077239A (en) 2003-10-01
CN1643176A (en) 2005-07-20
CN101580917A (en) 2009-11-18
KR100460346B1 (en) 2004-12-08
EP1803832A1 (en) 2007-07-04
DE60313763T8 (en) 2008-05-29
DE60313763D1 (en) 2007-06-21
US20050158201A1 (en) 2005-07-21
JP2011174183A (en) 2011-09-08

Similar Documents

Publication Publication Date Title
JP4834292B2 (en) Super duplex stainless steel with excellent corrosion resistance, embrittlement resistance, castability and hot workability with reduced formation of intermetallic compounds
JP5072285B2 (en) Duplex stainless steel
KR101232533B1 (en) Cobalt-chromium-iron-nickel-alloys amenable to nitrides strengthening
KR970008165B1 (en) Duplex stainless steel with high manganese
KR20070089971A (en) An austenitic steel and a steel product
WO2016052397A1 (en) High-strength steel material for oil wells, and oil well pipe
WO2021033672A1 (en) Duplex stainless steel material
JP2016526601A (en) Duplex ferrite and austenitic stainless steel
JP2023515568A (en) Precipitation hardened stainless steel with high fracture toughness and high strength
JP6837600B2 (en) Ferritic stainless steel with excellent rigging resistance
JPH08170153A (en) Highly corrosion resistant two phase stainless steel
WO2017168972A1 (en) Chromium-based two-phase alloy and product using said two-phase alloy
TWI768941B (en) Precipitation hardening type Matian iron-based stainless steel sheet with excellent fatigue resistance
JP7440805B2 (en) steel material
WO2018066303A1 (en) Cr-BASED TWO PHASE ALLOY PRODUCT AND PRODUCTION METHOD THEREFOR
WO2022145065A1 (en) Steel material
JPH11279684A (en) High tensile strength steel for welding, excellent in toughness in extra large heat input weld heat-affected zone
JP4672433B2 (en) Heat-resistant casting alloy and manufacturing method thereof
JP2970432B2 (en) High temperature stainless steel and its manufacturing method
JP2005325387A (en) Low specific gravity iron alloy
KR100215727B1 (en) Super duplex stainless steel with high wear-resistance
JP2003342670A (en) Non-heat treated high tensile steel having excellent toughness
WO2022138194A1 (en) Precipitation-hardened martensitic stainless steel having excellent fatigue-resistance characteristics
KR970001326B1 (en) High functional duplex stainless steel having a minimized content of molybdenum and a high content of tungsten
JP2017080765A (en) Continuous casting method for casting piece for steel pipe

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080116

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080123

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080213

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080220

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080314

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20091109

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20091116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110926

R150 Certificate of patent or registration of utility model

Ref document number: 4834292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees