WO2015029167A1 - Duplex stainless steel, and duplex stainless steel structure, marine structure, petroleum/gas environment structure, pump impeller, pump casing, and flow adjustment valve body using same - Google Patents

Duplex stainless steel, and duplex stainless steel structure, marine structure, petroleum/gas environment structure, pump impeller, pump casing, and flow adjustment valve body using same Download PDF

Info

Publication number
WO2015029167A1
WO2015029167A1 PCT/JP2013/073038 JP2013073038W WO2015029167A1 WO 2015029167 A1 WO2015029167 A1 WO 2015029167A1 JP 2013073038 W JP2013073038 W JP 2013073038W WO 2015029167 A1 WO2015029167 A1 WO 2015029167A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
less
duplex stainless
phase
heat treatment
Prior art date
Application number
PCT/JP2013/073038
Other languages
French (fr)
Japanese (ja)
Inventor
直也 沖崎
祐策 丸野
雅史 能島
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/073038 priority Critical patent/WO2015029167A1/en
Priority to CN201380079140.6A priority patent/CN105492641A/en
Priority to JP2015533851A priority patent/JP6286435B2/en
Priority to EP13892680.3A priority patent/EP3040434B1/en
Publication of WO2015029167A1 publication Critical patent/WO2015029167A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to duplex stainless steel and a structure using the same.
  • a duplex stainless steel mainly composed of a two-phase metal structure of a ferrite phase ( ⁇ phase) and an austenite phase ( ⁇ phase) has high strength and is resistant to pitting corrosion in a chloride / sulfide environment, And excellent in crevice corrosion resistance characteristics. Utilizing this property, it is widely used as a material for marine structures and petrochemical industries. However, when exposed to high temperatures depending on the manufacturing conditions and conditions of use, hard and brittle intermetallic compounds ( ⁇ phase, ⁇ phase, Laves phase) and nitride / carbide embrittled phases mainly composed of Cr, Mo, etc. Is formed and the toughness is known to decrease.
  • solution heat treatment is performed at 950 ° C to 1200 ° C in order to optimize the phase ratio between ferrite phase and austenite phase, and the precipitation of the above-mentioned embrittled phase and 475 ° C embrittlement are avoided after solution heat treatment
  • a quenching treatment such as water cooling is performed from the solution heat treatment temperature to room temperature.
  • thin-walled materials such as thin plates and pipes do not pose a major problem, but in large-sized structures, particularly in thick-walled structures produced by casting or forging, due to the difference between the surface and the internal cooling rate Since the embrittled phase precipitates inside the material, there is a problem that stable production is difficult.
  • Patent Document 1 Cr: 21.0% by weight for the purpose of suppressing the formation of intermetallic compounds that degrade corrosion resistance and mechanical properties, such as sigma ( ⁇ ) phase and chi ( ⁇ ) phase.
  • ⁇ 38.0% Ni: 3.0% to 12.0%, Mo: 1.5% to 6.5%, W: 0 to 6.5%, Si: 3.0% or less, Al: 1 .0% or less, Mn: 8.0% or less, N: 0.2% to 0.7%, C: 0.1% or less; and B: 0.1% or less, Cu: 3.0% or less,
  • a super duplex stainless steel containing at least one of Co: 3.0% or less is disclosed.
  • This super duplex stainless steel further contains Ca: 0.5% or less, Mg: 0.5% or less, Ta: 0.5% or less, Nb: 0.5% or less, Ti: 1.5% or less, Zr It is also described that it is desirable to contain one or more elements selected from the group consisting of: 1.0% or less, Sn: 1.0% or less, and In: 1.0% or less.
  • Patent Document 1 since the content of nitrogen is large, a nitride is easily formed, the additive element is not appropriately dissolved in the alloy, and the embrittlement may proceed.
  • the present invention suppresses formation of intermetallic compounds ( ⁇ phase, ⁇ phase, Laves phase) and nitride in duplex stainless steel, and improves corrosion resistance, embrittlement resistance, manufacturability, weldability and heat treatment property. With the goal.
  • the duplex stainless steel of the present invention is, by mass%, N: 0.3% or less, C: 0.1% or less, P: 0.1% or less, Si: 3.0% or less, Mn: 8.0 % Or less, Ni: 3.0 to 12.0%, Cr: 20.0 to 40.0%, Mo: 7.0% or less, W: 6.5% or less, Ta: 0.05 to 1.0 %, And the balance is Fe and unavoidable impurities.
  • the present invention since the amount of nitrogen contained in the duplex stainless steel containing tantalum is small, the formation of nitride can be suppressed. Furthermore, since metal tantalum which does not become nitride inhibits the diffusion of the intermetallic compound-forming element, the corrosion resistance, embrittlement resistance, manufacturability, weldability and heat treatment property of duplex stainless steel can be improved. .
  • the present invention relates to a duplex stainless steel and a structure using the same, and more particularly, it is formed at the time of manufacturing of a high corrosion resistant duplex stainless steel (in casting, forging, hot rolling or welding), welding and heat treatment. Resistance to corrosion while maintaining high corrosion resistance by suppressing the formation of a brittle phase (such as nitrides, precipitates such as carbides, and intermetallic compounds such as sigma (.sigma.) Phases and chi (.zeta.) Phases).
  • the present invention relates to duplex stainless steel which realizes embrittlement and manufacturability and a product using the same.
  • the present application contains a plurality of means for solving the above problems, as one example, in order to suppress the formation of the intermetallic compound in the duplex stainless steel, positively adding Ta which inhibits the diffusion of the intermetallic compound forming element It is characterized by
  • N 0.7% or less
  • C 0.1% or less
  • P 0.1% or less
  • Si 3.0% or less
  • Mn 8.0% or less
  • Ni 3.% by mass.
  • Cr 20.0 to 40.0%
  • Mo not more than 7%
  • W not more than 6.5%
  • Ta 0.05 to 1.0% added Stainless steel.
  • the N content is more preferably 0.3% or less.
  • N is particularly preferably 0.05 to 0.19%.
  • Si that promotes the formation of the intermetallic compound is preferably reduced to 0.5% or less because diffusion inhibition by Ta can not be expected. Moreover, it is preferable to limit the range of the element resulting from corrosion resistance from a viewpoint of corrosion resistance, and to satisfy the pitting resistance index (PREW) defined by the following formula with 40 or more.
  • PREW pitting resistance index
  • (PREW) % Cr + 3.3 ⁇ (% Mo + 0.5 ⁇ % W) + 30 ⁇ % N
  • % Cr,% Mo,% W and% N are values of each composition expressed by mass%.
  • N 0.05 to 0.25%
  • C 0.02% or less
  • P 0.02% or less
  • Si 0.5% or less
  • Mn 1.2% or less
  • Ta 0.2 to 0.5%
  • the super duplex stainless steel has a pitting resistance index (PREW) of 40 or more.
  • An alloy of the above composition is prepared by forging or casting and then subjected to solution heat treatment at a temperature of 950 ° C. to 1200 ° C. for 30 minutes to 2 hours to set the austenite / ferrite phase ratio to 0.2 to 0.8.
  • the duplex stainless steel structure can suppress the formation of an embrittled phase particularly in the inside of the structure, and can provide a product with good toughness.
  • Particularly useful as structures of alloys of the above components are pump impellers, pump casings and flow control valves used in marine structures, oil and gas environment structures, and chemical plant structures.
  • the inventors have found that embrittlement phase precipitation by intermetallic compounds and carbonitrides in order to improve the manufacturability and resistance to embrittlement of thick-walled cast products, forged products and hot-worked products while maintaining high corrosion resistance. As a result of researching suppression technology, the following facts were found.
  • FIG. 1A is a conceptual view showing an embrittlement phase formation mechanism in a conventional duplex stainless steel.
  • the duplex stainless steel includes a ferrite phase 1, an austenite phase 2, and grain boundaries 3 formed therebetween.
  • ferrite phase 1 Cr, Mo, W, etc., which are elements forming the intermetallic compound (intermetallic compound forming element 5), diffuse through the holes 4 and move toward the grain boundary 3.
  • Intermetallic compounds 6 and carbo-nitrides 7 are generated in the grain boundary regions including the grain boundaries 3. These are also called embrittled phases. When the amount of this embrittlement phase is large, the material becomes brittle, and the corrosion resistance, the embrittlement resistance, the manufacturability, the weldability and the heat treatment property tend to be lowered.
  • FIG. 1B is a conceptual view showing an embrittlement phase formation suppression mechanism in the duplex stainless steel of the present invention.
  • the intermetallic compound 6 is composed of a sigma phase, ⁇ phase, etc., and is known to be easily precipitated on the ⁇ phase side from the ⁇ phase // phase interface.
  • the elements constituting the intermetallic compound 6 (intermetallic compound forming element 5), Cr, Mo, Si and W are concentrated in the metal matrix at the grain boundaries of the ⁇ phase / ⁇ phase interface, and the intermetallic compound 6 It precipitates as. Therefore, if the diffusion rate of these intermetallic compound forming elements 5 can be reduced, it is considered that the precipitation of the intermetallic compound 6 can be delayed.
  • Cr, Mo and W are oversize elements having an atomic radius larger than the average atomic diameter of the elements constituting the stainless steel, and atomic vacancies in the metal matrix (vacancy 4) And the air holes 4 are considered to move as a preferential diffusion path.
  • the diffusion rate of the intermetallic compound-forming element 5 can be reduced particularly in the temperature range of 650 ° C. to 950 ° C. where the precipitation of the embrittled phase is a problem.
  • the embrittlement in this temperature range can be avoided by quenching in the case of a stainless steel (steel material) having a small size, but becomes a problem when it is difficult to quench the inside of the steel material because the size is large.
  • the present invention solves this problem by adjusting the composition of the steel material.
  • a metal element having a large atomic radius has extremely low free energy to form nitrides and carbides.
  • Ta was selected as an additive element, which is difficult to precipitate as an intermetallic compound.
  • Chromium (Cr) 20.0 to 40.0% Chromium is the most important basic element in maintaining the corrosion resistance of stainless steel. In the case of duplex stainless steel, it is necessary to obtain a two-phase structure of austenite and ferrite, so the chromium equivalent (Cr eq ) and nickel equivalent (Ni eq ) defined by the following formulas and the ferrite phase determined thereby The amount of chromium was 20% or more in consideration of the ratio (fraction) of In addition, since it is necessary to increase Ni eq if Cr eq is increased, the upper limit is set to 40% in consideration of economics. A more preferable range is 24% to 26%.
  • Molybdenum (Mo) 7.0% or less Molybdenum, together with chromium, is an element important for maintaining corrosion resistance, and acts to stabilize the ferrite phase, but promotes the formation of intermetallic compounds by addition. For this reason, the amount is limited to 7.0% or less. A more preferable range is 3.0% to 5.0%.
  • Tungsten (W): 6.5% or less Tungsten is an element that improves the corrosion resistance, retards the deposition rate of intermetallic compounds by replacing it with Mo in one-half amount, and improves the corrosion resistance and mechanical properties. is there.
  • tungsten is an expensive alloying element, and addition of a large amount thereof promotes the formation of intermetallic compounds and reduces the corrosion resistance of the weld, so the content is limited to 6.5% or less. A more preferable range is 4.0% or less.
  • Silicon 3.0% or less Silicon is an element that stabilizes the ferrite structure, and is an element effective for deoxidation during production. In addition, it is an element that reduces the surface defects by increasing the fluidity of the molten steel at the time of production or welding. However, 3.0% or less is preferable because it is an element that increases the deposition rate of intermetallic compounds and reduces the ductility of the steel. More preferably, it is 0.5% or less.
  • Manganese (Mn) 8.0% or less
  • Manganese is an austenite stabilizing element that can replace expensive nickel, and is an element that increases the solid solution degree of nitrogen and increases the deformation resistance at high temperature.
  • nitrogen is positively added to improve corrosion resistance
  • addition of an appropriate amount of manganese is essential. It has a deoxidizing effect at the time of smelting and refining, but when added in large amounts, the corrosion resistance decreases and promotes the formation of intermetallic compounds. For this reason, the upper limit was limited to 8% or less. A more preferable range is 1.2% or less.
  • Nitrogen 0.7% or less Nitrogen is a useful element that improves resistance to pitting corrosion. The effect is one of the most important elements associated with corrosion resistance reaching about 30 times that of chromium.
  • nitrogen is added to compensate for the strength. However, if it is added in excess of 0.7%, cracks may occur due to blow holes during production. Therefore, it is preferable to make it 0.7% or less.
  • Ta is added, a nitride containing Ta is formed to inhibit the effect.
  • the content is more preferably 0.3% or less, preferably 0.05% to 0.25%. Is even more preferred. Furthermore, a range of 0.05 to 0.19% is particularly desirable.
  • Carbon (C) 0.1% or less Carbon is an element that forms carbides and induces grain boundary sensitization during welding. In particular, when Ta is added, a carbide containing Ta is formed, and the effect of Ta addition is inhibited. However, since the reduction of C causes an increase in manufacturing cost, it is 0.1% or less. A more preferable range is 0.02% or less.
  • Tantalum (Ta) 0.05% to 1.0% Tantalum is one of the elements that characterize the present invention. As described above, since the atomic radius is large compared to the average atomic radius of the elements constituting the duplex stainless steel, the effect of preventing the diffusion of the main intermetallic compound-forming elements and reducing the precipitation rate of the intermetallic compounds There is. However, if the addition amount is too large, not only it is not economical but also the balance of the ferrite / austenite phase ratio is broken, so the upper limit is limited to 1.0%. On the other hand, if it is less than 0.05%, the addition effect can not be expected. Further, in view of the balance of the solid solution amount in the nitride phase and the ferrite phase, it is more preferably in the range of 0.2 to 0.5%.
  • Phosphorus (P) 0.1% or less Phosphorus is an impurity inevitably mixed in steel and not only degrades corrosion resistance but also segregates in grain boundaries and promotes precipitation of the embrittled phase, so the less it is desirable. Therefore, 0.1% or less is desirable, 0.02% or less is more desirable, and 0.005% or less is particularly desirable. However, excessive reduction of P causes an increase in manufacturing cost. Therefore, the addition amount of P is determined in consideration of this point as well.
  • Table 1 shows the chemical composition (unit: mass%) of the duplex stainless steel of Example 1 (inventive material (preparation material C)) and comparative examples 1 and 2 (comparative materials (preparation materials A and B)) It is a thing.
  • the manufacturing material A has a component equivalent to the standard material S32750.
  • the production material B has a reduced content of N, C and Si.
  • the production material C is a alloy in which a small amount of Ta is added to an alloy having the same component as the production material B.
  • the above ingot was heated to 1250 ° C. and forged to obtain a plate of 20 ⁇ 50 ⁇ 150 (mm).
  • the forged plate material was subjected to solution heat treatment at 1100 ° C. for 1 hour in order to obtain an appropriate phase ratio of ferrite phase / austenite phase, and then quenched by water cooling to avoid precipitation of the embrittled phase.
  • FIGS. 2A, 2B and 2C respectively show appearance photographs of forged preparation materials A, B and C.
  • FIG. 2A, 2B and 2C respectively show appearance photographs of forged preparation materials A, B and C.
  • FIGS. 3A, 3B and 3C show the results of observation of the gold phase of the manufactured materials A, B and C, respectively.
  • the ferrite phase 31 is colored brown, and the intermetallic compounds, carbides and nitrides are colored black. Moreover, the austenite phase 32 is white.
  • test pieces were subjected to ultrasonic cleaning with acetone and distilled water and then observed with an optical microscope.
  • the subsequent gold phase observation is also carried out in the same manner.
  • any of the prepared materials has a distinct ferrite / austenite two-phase structure.
  • Heat treatment at 800 ° C. which is a temperature range in which the embrittled phase tends to precipitate, was performed on the above-described materials in order to evaluate embrittled phase precipitation under reheating conditions by cooling during production and welding.
  • FIG. 4 is a graph showing the relationship between the heat treatment time at 800 ° C. and the amount of residual ferrite.
  • the heat treatment time is taken on the horizontal axis, and the amount of ferrite is taken on the vertical axis.
  • the amount of ferrite was measured by a ferrite scope using a magnetic induction method.
  • the intermetallic compound precipitation proceeds by the decomposition of the ferrite phase into the intermetallic compound phase and the austenite phase under the precipitation temperature conditions, so the precipitation tendency of the intermetallic compound is evaluated by evaluating the amount of residual ferrite. It can be evaluated.
  • Example 1 the reduction rate of the ferrite phase is slower than in Comparative Examples 1 and 2, and the decomposition of the ferrite phase is suppressed.
  • FIGS. 5A, 5B, and 5C are respectively metal phase observation photographs of fabrication materials A, B, and C after heat treatment at 800 ° C. for 30 minutes.
  • embrittlement phase 53 is increased in addition to the ferrite phase 51 and the austenite phase 52.
  • the amount of precipitation of the embrittlement phase 53 is smaller in the preparation material C of the invention material than in the preparation materials A and B, which are comparison materials, and the precipitation of the embrittlement phase 53 is suppressed.
  • the embrittled phase 53 is particularly large.
  • FIG. 6 shows the measurement results of Charpy impact value after heat treatment at 800 ° C. for 5 minutes.
  • the Charpy impact value was measured in accordance with JIS Z2242 (2005).
  • the outline of the measurement procedure is as follows.
  • the Charpy impact value after heat processing is high. From this, it is understood that the toughness is improved by suppressing the formation of the intermetallic compound.
  • FIGS. 7A to 7D show the results of EDX measurement at grain boundaries ( ⁇ / ⁇ boundaries) after heat treatment at 800 ° C. for 1 minute.
  • FIG. 7A is an electron micrograph of fabrication material A which is a comparative material
  • FIG. 7B shows the result of measuring the concentration distribution of each element in the arrow direction at the analysis position (line segment) in FIG. 7A. .
  • FIG. 7C is an electron micrograph of the manufacturing material C which is an invention material
  • FIG. 7D shows the result of having measured the concentration distribution of each element in the arrow direction in the analysis position (line segment) of FIG. 7C. It is.
  • FIGS. 7A and 7C the microstructures of the ferrite phase 71 and the austenite phase 72 are clearly represented. Grain boundaries are indicated by broken lines. At the analysis position 73 represented by the line segment, the concentration of each element was measured in the direction of the arrow (from the austenite phase 72 to the ferrite phase 71).
  • the horizontal axis is a distance
  • the vertical axis is a concentration
  • the concentrations of Mo and Cr in the vicinity of the grain boundary on the ferrite phase side are high.
  • Ta preferentially diffuses to the ⁇ / ⁇ grain boundaries, and inhibits the diffusion of Mo and Cr, which are intermetallic compound forming elements.
  • tensile residual stress was applied by using a grindstone of particle size # 46 and applying a strongly processed layer by surface grinding to the plate surface at a rotational speed of 1440 rpm and a cutting amount of 0.01 mm.
  • a heat treatment was performed on a test material having residual stress applied to the surface by surface grinding, assuming PWHT at 650 ° C. for 30 minutes to evaluate the influence of heat treatment conditions on residual stress and mechanical properties.
  • FIG. 8 shows the results of comparison of residual stress before and after heat treatment.
  • the residual stress was measured in each of the ferrite phase and the austenite phase, and the average value obtained by multiplying the volume ratio was evaluated as macro stress.
  • FIG. 9 shows the results of comparison of the results of Charpy impact test before and after heat treatment.
  • the invention material improves the impact value, leaving an impact value of about 100 J / cm 2 after heat treatment, and relieves 80% of the residual stress by heat treatment at 650 ° C. for 30 minutes. While maintaining an impact value of 100 J / cm 2 or more.
  • the pitting potential was measured in accordance with JIS G0577 (2005).
  • FIG. 10 shows the pitting corrosion potential of the inventive material and the comparative material in comparison.
  • the pitting resistance of each material is as follows.
  • Preparation material C (inventive material)> Preparation material B (comparative material)> Preparation material A (comparative material, equivalent to conventional material S32750).
  • the inventive material has a higher pitting potential than conventional materials.
  • the inventive material has pitting corrosion resistance higher than that of the conventional material despite suppressing embrittlement.
  • FIG. 11 is a cross-sectional view of a vertical axis mixed flow seawater pump according to the present invention.
  • the vertical mixed flow seawater pump efficiently uses bellmouth 117 to rectify seawater entering from the suction channel, shaft 111 to transmit the rotational power of the prime mover, impeller hub 115 fixed to shaft 111, and rotational power to the prime mover Impeller vanes 113 given to seawater, casing liner 114 whose inner surface is spherical so that the clearance on the outer periphery of impeller vanes 113 is always constant, casing 112 which converts velocity energy given to seawater from impeller vanes 113 into pressure energy, pressurization It consists of a column pipe 119, an impeller cap 116, a cone 118, etc. through which the stored seawater passes.
  • the casing liner 114 and the casing 112 were each made of the cast steel of Example 1, and the impeller hub 115 and the impeller vane 113 were each made of the forging of Example 1.
  • solution heat treatment at 1100 ° C. for 1 h was performed, and then water cooling was performed to obtain a two-phase composition with a ferrite content of 40 to 50%.
  • the junction between the casing liner 114 and the casing 112 and the junction between the impeller hub 115 and the impeller vane 113 are joined by MIG welding, a band heater is wound, and the welding heat affected zone is heated to 650 ° C. A heat treatment of 30 min was carried out at that temperature to rapidly cool it.
  • FIG. 12 is a cross-sectional view of a flow control valve according to the present invention.
  • the flow rate control valve includes a casing 121 for supporting the entire valve, a valve body 122 for adjusting the flow rate, a valve seat 123 in which the valve body 122 is fitted, a handle 125, and a shaft for adjusting the position of the valve body 122 And the like.
  • the casing 121 was made of the cast steel of Example 1. By using the steel material of Example 1, it was possible to manufacture a large flow rate control valve with high corrosion resistance.
  • the flow control valve can be used in seawater, petroleum and chemical plant environments.
  • ferrite phase 2 2: austenite phase 3: 3: grain boundary 4: 4: interstitial compound forming element 6: 6: intermetallic compound 7: 7: carbon / nitride 11: tantalum atom 12: grain boundary Area: 31, 51, 71: ferrite phase, 32, 52, 72: austenite phase, 53: embrittled phase, 73: analysis position, 111: shaft, 112: casing, 113: impeller vane, 114: casing liner, 115 : Impeller hub, 116: impeller cap, 117: bell mouth, 118: cone, 119: column pipe, 121: casing, 122: valve body, 123: valve seat, 124: shaft, 125: handle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

This duplex stainless steel is characterized in comprising, in mass%, N: 0.3% or less, C: 0.1% or less, P: 0.1% or less, Si: 3.0% or less, Mn: 8.0% or less, Ni: 3.0-12.0%, Cr: 20.0-40.0%, Mo: 7.0% or less, W: 6.5% or less, and Ta: 0.05-1.0%, with the remainder being Fe and unavoidable impurities. The formation of tantalum nitride can thereby be limited.

Description

二相ステンレス鋼並びにこれを用いた二相ステンレス鋼製構造物、海洋構造物、石油・ガス環境構造物、ポンプインペラ、ポンプケーシング及び流量調節弁の弁体Duplex stainless steel and duplex stainless steel structure using the same, marine structure, oil and gas environment structure, pump impeller, pump casing and valve body of flow control valve
 本発明は、二相ステンレス鋼及びこれを用いた構造物に関する。 The present invention relates to duplex stainless steel and a structure using the same.
 主にフェライト相(α相)とオーステナイト相(γ相)の2相の金属組織から構成される二相ステンレス鋼は、高い強度を持ち、且つ塩化物・硫化物環境下での耐孔食性、及び耐すき間腐食特性に優れている。この特性を利用して、海洋構造物や石油化学工業などの材料として広く利用されている。しかしながら、製造条件や使用条件により高温に曝された場合には、Cr、Mo等を主成分とする硬く脆い金属間化合物(σ相、χ相、Laves相)や窒化物・炭化物の脆化相が形成され、靭性が低下することが知られている。 A duplex stainless steel mainly composed of a two-phase metal structure of a ferrite phase (α phase) and an austenite phase (γ phase) has high strength and is resistant to pitting corrosion in a chloride / sulfide environment, And excellent in crevice corrosion resistance characteristics. Utilizing this property, it is widely used as a material for marine structures and petrochemical industries. However, when exposed to high temperatures depending on the manufacturing conditions and conditions of use, hard and brittle intermetallic compounds (σ phase, χ phase, Laves phase) and nitride / carbide embrittled phases mainly composed of Cr, Mo, etc. Is formed and the toughness is known to decrease.
 二相ステンレス鋼では、下記式で表される耐孔食指数(PREW)が高いほど耐食性が向上する。 In duplex stainless steel, the higher the pitting resistance index (PREW) represented by the following formula, the higher the corrosion resistance.
 (PREW)=%Cr+3.3×(%Mo+0.5×%W)+30×%N
 (式中、%Cr、%Mo、%W及び%Nは、質量%で表した各組成の値である。)
 しかしながら、Cr、Mo及びWの含有量が高いほど金属間化合物が析出しやすくなる。また、Nが高いほど窒化物が析出し易くなり、添加量が過剰であると製造時にブローホール発生による欠陥が生じる。
(PREW) =% Cr + 3.3 × (% Mo + 0.5 ×% W) + 30 ×% N
(In the formula,% Cr,% Mo,% W and% N are values of each composition expressed by mass%.)
However, the higher the content of Cr, Mo and W, the more easily the intermetallic compound precipitates. In addition, as N is higher, nitrides are more likely to precipitate, and when the addition amount is excessive, defects are generated due to the generation of blow holes during production.
 二相ステンレス鋼の製造工程では、フェライト相とオーステナイト相の相比を適正化するため、950℃~1200℃で溶体化熱処理された後、前述の脆化相の析出や475℃脆化を避けるべく溶体化熱処理温度から室温まで水冷等による急冷処置が施される。その際、薄板や配管などの薄肉材については大きな問題にならないが、大型の構造品で、特に鋳造や鍛造で作製する厚肉の構造物では、表面と内部の冷却速度の差に起因して、材料内部で脆化相が析出することから、安定した製造が難しいという課題があった。 In the production process of duplex stainless steel, solution heat treatment is performed at 950 ° C to 1200 ° C in order to optimize the phase ratio between ferrite phase and austenite phase, and the precipitation of the above-mentioned embrittled phase and 475 ° C embrittlement are avoided after solution heat treatment In order to achieve this, a quenching treatment such as water cooling is performed from the solution heat treatment temperature to room temperature. At that time, thin-walled materials such as thin plates and pipes do not pose a major problem, but in large-sized structures, particularly in thick-walled structures produced by casting or forging, due to the difference between the surface and the internal cooling rate Since the embrittled phase precipitates inside the material, there is a problem that stable production is difficult.
 また、溶接による熱影響を受けた場所や、残留応力除去等を目的とした焼鈍でも、前述の脆化相析出による靭性低下の課題があった。 In addition, even in a place affected by heat due to welding or annealing for the purpose of removing residual stress, there has been a problem of the above-mentioned decrease in toughness due to the precipitation of the embrittled phase.
 これまで、材料組成に着目して、製造時または使用時における脆化相を抑制する手法が提案されている。 Heretofore, a method of suppressing the embrittlement phase at the time of production or use has been proposed, focusing on the material composition.
 特許文献1には、耐食性及び機械的性質を劣化させる金属間化合物、例えばシグマ(σ)相及びカイ(χ)相の形成を抑制することを目的として、重量%で、Cr:21.0%~38.0%、Ni:3.0%~12.0%、Mo:1.5%~6.5%、W:0~6.5%、Si:3.0%以下、Al:1.0%以下、Mn:8.0%以下、N:0.2%~0.7%、C:0.1%以下;及びB:0.1%以下、Cu:3.0%以下、Co:3.0%以下の少なくとも一種を含有するスーパー二相ステンレス鋼が開示されている。このスーパー二相ステンレス鋼は、さらにCa:0.5%以下、Mg:0.5%以下、Ta:0.5%以下、Nb:0.5%以下、Ti:1.5%以下、Zr:1.0%以下、Sn:1.0%以下及びIn:1.0%以下からなる群から選択される一種以上の元素を含有することが望ましいことも記載されている。 In Patent Document 1, Cr: 21.0% by weight for the purpose of suppressing the formation of intermetallic compounds that degrade corrosion resistance and mechanical properties, such as sigma (σ) phase and chi (χ) phase. ~ 38.0%, Ni: 3.0% to 12.0%, Mo: 1.5% to 6.5%, W: 0 to 6.5%, Si: 3.0% or less, Al: 1 .0% or less, Mn: 8.0% or less, N: 0.2% to 0.7%, C: 0.1% or less; and B: 0.1% or less, Cu: 3.0% or less, A super duplex stainless steel containing at least one of Co: 3.0% or less is disclosed. This super duplex stainless steel further contains Ca: 0.5% or less, Mg: 0.5% or less, Ta: 0.5% or less, Nb: 0.5% or less, Ti: 1.5% or less, Zr It is also described that it is desirable to contain one or more elements selected from the group consisting of: 1.0% or less, Sn: 1.0% or less, and In: 1.0% or less.
特開2011-174183号公報JP, 2011-174183, A
 特許文献1の場合、窒素の含有量が多いため、窒化物が形成されやすく、添加元素が合金中に適切に固溶せず、脆化が進行するおそれがある。 In the case of Patent Document 1, since the content of nitrogen is large, a nitride is easily formed, the additive element is not appropriately dissolved in the alloy, and the embrittlement may proceed.
 本発明は、二相ステンレス鋼において金属間化合物(σ相、χ相、Laves相)及び窒化物の形成を抑制し、耐食性、耐脆化性、製造性、溶接性及び熱処理性を向上することを目的とする。 The present invention suppresses formation of intermetallic compounds (σ phase, χ phase, Laves phase) and nitride in duplex stainless steel, and improves corrosion resistance, embrittlement resistance, manufacturability, weldability and heat treatment property. With the goal.
 本発明の二相ステンレス鋼は、質量%で、N:0.3%以下、C:0.1%以下、P:0.1%以下、Si:3.0%以下、Mn:8.0%以下、Ni:3.0~12.0%、Cr:20.0~40.0%、Mo:7.0%以下、W:6.5%以下、Ta:0.05~1.0%を含有し、残部がFe及び不可避的不純物であることを特徴とする。 The duplex stainless steel of the present invention is, by mass%, N: 0.3% or less, C: 0.1% or less, P: 0.1% or less, Si: 3.0% or less, Mn: 8.0 % Or less, Ni: 3.0 to 12.0%, Cr: 20.0 to 40.0%, Mo: 7.0% or less, W: 6.5% or less, Ta: 0.05 to 1.0 %, And the balance is Fe and unavoidable impurities.
 本発明によれば、タンタルを含む二相ステンレス鋼に含まれる窒素の量が少ないため、窒化物の形成を抑制することができる。さらに、これにより、窒化物とならない金属タンタルが金属間化合物形成元素の拡散を阻害するため、二相ステンレス鋼の耐食性、耐脆化性、製造性、溶接性及び熱処理性を向上することができる。 According to the present invention, since the amount of nitrogen contained in the duplex stainless steel containing tantalum is small, the formation of nitride can be suppressed. Furthermore, since metal tantalum which does not become nitride inhibits the diffusion of the intermetallic compound-forming element, the corrosion resistance, embrittlement resistance, manufacturability, weldability and heat treatment property of duplex stainless steel can be improved. .
従来の二相ステンレス鋼における脆化相形成機構を示す概念図である。It is a conceptual diagram which shows the embrittlement phase formation mechanism in the conventional duplex stainless steel. 本発明の二相ステンレス鋼における脆化相形成抑制機構を示す概念図である。It is a conceptual diagram which shows the embrittlement phase formation suppression mechanism in the duplex stainless steel of this invention. 鍛造した作製材Aの外観写真である。It is an external appearance photograph of the produced preparation material A. 鍛造した作製材Bの外観写真である。It is an external appearance photograph of the produced preparation material B. 鍛造した作製材Cの外観写真である。It is an external appearance photograph of the produced preparation material C. 作製材Aの金相観察結果である。It is a metal phase observation result of the preparation material A. 作製材Bの金相観察結果である。It is a metal phase observation result of the preparation material B. 作製材Cの金相観察結果である。It is a metal phase observation result of the preparation material C. 800℃における熱処理時間と残存フェライト量との関係を示すグラフである。It is a graph which shows the relationship between the heat processing time in 800 degreeC, and the amount of residual ferrites. 800℃、30分の熱処理を施した後の作製材Aの金相観察写真である。It is a metal phase observation photograph of preparation material A after giving heat processing for 800 ° C and 30 minutes. 800℃、30分の熱処理を施した後の作製材Bの金相観察写真である。It is a metal phase observation photograph of preparation material B after performing heat treatment for 30 minutes at 800 ° C. 800℃、30分の熱処理を施した後の作製材Cの金相観察写真である。It is a metal phase observation photograph of preparation material C after giving heat processing for 800 ° C and 30 minutes. 溶体化まま及び800℃、5分の熱処理後におけるシャルピー衝撃値の測定結果を示すグラフである。It is a graph which shows the measurement result of the Charpy impact value as it is in solution and after heat treatment at 800 ° C. for 5 minutes. 比較材である作製材Aの電子顕微鏡写真である。It is an electron micrograph of the preparation materials A which are comparative materials. 図7Aの分析位置(線分)における矢印方向の各元素の濃度分布を測定した結果を示すグラフである。It is a graph which shows the result of having measured concentration distribution of each element in the arrow direction in an analysis position (line segment) of Drawing 7A. 発明材である作製材Cの電子顕微鏡写真である。It is an electron micrograph of the preparation material C which is an invention material. 図7Cの分析位置(線分)における矢印方向の各元素の濃度分布を測定した結果を示すグラフである。It is a graph which shows the result of having measured concentration distribution of each element of the arrow direction in an analysis position (line segment) of Drawing 7C. 熱処理前後の残留応力を比較した結果を示すグラフである。It is a graph which shows the result of having compared the residual stress before and behind heat processing. 熱処理前後のシャルピー衝撃試験の結果を比較した結果を示すグラフである。It is a graph which shows the result of having compared the result of the Charpy impact test before and behind heat treatment. 発明材と比較材の孔食発生電位を比較して示すグラフである。It is a graph which compares and shows the pitting corrosion electrical potential of an invention material and a comparison material. 発明材を用いて作製した立軸斜流海水ポンプを示す断面図である。It is sectional drawing which shows the vertical axis mixed flow seawater pump produced using the invention material. 発明材を用いて作製した流量調節弁を示す断面図である。It is sectional drawing which shows the flow control valve produced using the invention material.
 本発明は、二相ステンレス鋼及びこれを用いた構造物に関し、より詳しくは、高耐食性二相ステンレス鋼の製造時(鋳造、鍛造、熱間圧延または溶接の際)、溶接時及び熱処理時に生成される脆化相(窒化物、炭化物などの析出物、シグマ(σ)相、カイ(χ)相などの金属間化合物)の形成を抑えることにより、高耐食性を維持しつつ、より優れた耐脆化性及び製造性を実現した二相ステンレス鋼及びこれを用いた製品に関する。 The present invention relates to a duplex stainless steel and a structure using the same, and more particularly, it is formed at the time of manufacturing of a high corrosion resistant duplex stainless steel (in casting, forging, hot rolling or welding), welding and heat treatment. Resistance to corrosion while maintaining high corrosion resistance by suppressing the formation of a brittle phase (such as nitrides, precipitates such as carbides, and intermetallic compounds such as sigma (.sigma.) Phases and chi (.zeta.) Phases). The present invention relates to duplex stainless steel which realizes embrittlement and manufacturability and a product using the same.
 本願は上記課題を解決する手段を複数含んでいるが、その一例として、二相ステンレス鋼での金属間化合物形成を抑制するため、金属間化合物形成元素の拡散を阻害するTaを積極添加することを特徴とする。 Although the present application contains a plurality of means for solving the above problems, as one example, in order to suppress the formation of the intermetallic compound in the duplex stainless steel, positively adding Ta which inhibits the diffusion of the intermetallic compound forming element It is characterized by
 すなわち、質量%で、N:0.7%以下、C:0.1%以下、P:0.1%以下、Si:3.0%以下、Mn:8.0%以下、Ni:3.0~12.0%、Cr:20.0~40.0%、Mo:7%以下、W:6.5%以下で、Ta:0.05~1.0%を添加したことを特徴とするステンレス鋼である。Nについては、更に好ましくは、0.3%以下である。 That is, N: 0.7% or less, C: 0.1% or less, P: 0.1% or less, Si: 3.0% or less, Mn: 8.0% or less, Ni: 3.% by mass. 0 to 12.0%, Cr: 20.0 to 40.0%, Mo: not more than 7%, W: not more than 6.5%, Ta: 0.05 to 1.0% added Stainless steel. The N content is more preferably 0.3% or less.
 より好ましくは、Ta添加による効果を損なわないために、N:0.05~0.25%、 C:0.02%以下として、窒化物及び炭化物の形成を抑制することが好ましい。Nは、0.05~0.19%が特に望ましい。 More preferably, in order not to impair the effect by the addition of Ta, it is preferable to suppress the formation of nitride and carbide with N: 0.05 to 0.25%, C: 0.02% or less. N is particularly preferably 0.05 to 0.19%.
 また、金属間化合物の形成を促進するSiは、Taによる拡散阻害が期待できないため、0.5%以下に軽減することが好ましい。また、耐食性の観点からは耐食性に起因する元素の範囲を制限し、下記式で定義される耐孔食指数(PREW)が40以上を満足させることが好ましい。 Further, Si that promotes the formation of the intermetallic compound is preferably reduced to 0.5% or less because diffusion inhibition by Ta can not be expected. Moreover, it is preferable to limit the range of the element resulting from corrosion resistance from a viewpoint of corrosion resistance, and to satisfy the pitting resistance index (PREW) defined by the following formula with 40 or more.
 (PREW)=%Cr+3.3×(%Mo+0.5×%W)+30×%N
 (式中、%Cr、%Mo、%W及び%Nは、質量%で表した各組成の値である。)
 すなわち、質量%で、N:0.05~0.25%、C:0.02%以下、P:0.02%以下、Si:0.5%以下 Mn:1.2%以下、Ni:6.0~8.0%、Cr:24.0~26.0%、Mo:3.0~5.0%、W:4.0%以下で、Ta:0.2~0.5%の範囲にあり、耐孔食指数(PREW)が40以上を満足させるスーパー二相ステンレス鋼である。
(PREW) =% Cr + 3.3 × (% Mo + 0.5 ×% W) + 30 ×% N
(In the formula,% Cr,% Mo,% W and% N are values of each composition expressed by mass%.)
That is, by mass%, N: 0.05 to 0.25%, C: 0.02% or less, P: 0.02% or less, Si: 0.5% or less Mn: 1.2% or less, Ni: 6.0 to 8.0%, Cr: 24.0 to 26.0%, Mo: 3.0 to 5.0%, W: 4.0% or less, Ta: 0.2 to 0.5% The super duplex stainless steel has a pitting resistance index (PREW) of 40 or more.
 上記成分の合金で、鍛造又は鋳造により作製した後、950℃~1200℃の温度で30分~2時間の溶体化熱処理を施してオーステナイト/フェライト相比を0.2~0.8とした二相ステンレス鋼製構造物は、特に構造物の内部における脆化相形成が抑制され、良好な靭性を持つ製品を提供できる。 An alloy of the above composition is prepared by forging or casting and then subjected to solution heat treatment at a temperature of 950 ° C. to 1200 ° C. for 30 minutes to 2 hours to set the austenite / ferrite phase ratio to 0.2 to 0.8. The duplex stainless steel structure can suppress the formation of an embrittled phase particularly in the inside of the structure, and can provide a product with good toughness.
 上記成分の合金の構造物として特に有用なものは、海洋構造物や石油・ガス環境構造物、化学プラント構造物で使用されるポンプインペラ、ポンプケーシング及び流量調節弁である。 Particularly useful as structures of alloys of the above components are pump impellers, pump casings and flow control valves used in marine structures, oil and gas environment structures, and chemical plant structures.
 以下、本発明の実施形態について図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 本発明者は、高い耐食性を保ったまま、厚肉の鋳造製品、鍛造製品及び熱間加工品の製造性及び耐脆化性を向上させるため、金属間化合物及び炭窒化物による脆化相析出抑制技術について研究した結果、下記のような事実を見出した。 The inventors have found that embrittlement phase precipitation by intermetallic compounds and carbonitrides in order to improve the manufacturability and resistance to embrittlement of thick-walled cast products, forged products and hot-worked products while maintaining high corrosion resistance. As a result of researching suppression technology, the following facts were found.
 まず、Taを含まない従来例の脆化相形成機構を説明する。 First, the embrittlement phase formation mechanism of the conventional example not containing Ta will be described.
 図1Aは、従来の二相ステンレス鋼における脆化相形成機構を示す概念図である。 FIG. 1A is a conceptual view showing an embrittlement phase formation mechanism in a conventional duplex stainless steel.
 本図において、二相ステンレス鋼は、フェライト相1と、オーステナイト相2と、これらの間に形成された粒界3とを含む。フェライト相1においては、金属間化合物を形成する元素(金属間化合物形成元素5)であるCr、Mo、W等が空孔4を介して拡散し、粒界3に向かって移動する。 In the figure, the duplex stainless steel includes a ferrite phase 1, an austenite phase 2, and grain boundaries 3 formed therebetween. In the ferrite phase 1, Cr, Mo, W, etc., which are elements forming the intermetallic compound (intermetallic compound forming element 5), diffuse through the holes 4 and move toward the grain boundary 3.
 粒界3を含む粒界領域には、金属間化合物6及び炭・窒化物7(炭化物及び窒化物)が発生する。これらは脆化相とも呼ばれる。この脆化相が多い場合、材料がもろくなり、耐食性、耐脆化性、製造性、溶接性及び熱処理性が低下する傾向がある。 Intermetallic compounds 6 and carbo-nitrides 7 (carbides and nitrides) are generated in the grain boundary regions including the grain boundaries 3. These are also called embrittled phases. When the amount of this embrittlement phase is large, the material becomes brittle, and the corrosion resistance, the embrittlement resistance, the manufacturability, the weldability and the heat treatment property tend to be lowered.
 つぎに、Taを含む本発明のステンレス鋼における脆化相形成抑制機構を説明する。 Below, the embrittlement phase formation suppression mechanism in stainless steel of this invention containing Ta is demonstrated.
 図1Bは、本発明の二相ステンレス鋼における脆化相形成抑制機構を示す概念図である。 FIG. 1B is a conceptual view showing an embrittlement phase formation suppression mechanism in the duplex stainless steel of the present invention.
 本図の場合、タンタル原子11の方が金属間化合物形成元素5よりも空孔4を占有しやすいため、金属間化合物形成元素5の拡散が阻害される。これにより、粒界領域12に金属間化合物形成元素5の窒化物等が生じるのを防ぐことができる。 In the case of this figure, since the tantalum atom 11 tends to occupy the holes 4 more easily than the intermetallic compound forming element 5, the diffusion of the intermetallic compound forming element 5 is inhibited. Thereby, it is possible to prevent the formation of nitrides or the like of intermetallic compound formation element 5 in grain boundary region 12.
 金属間化合物6は、σ相、χ相等で構成されており、α相/γ相界面を起点としてα相側に析出し易いことが知られている。金属間化合物6を構成する元素(金属間化合物形成元素5)であるCr、Mo、Si及びWは、金属母材中からα相/γ相界面の結晶粒界に濃縮し、金属間化合物6として析出する。そのため、これらの金属間化合物形成元素5の拡散速度を低減できれば、金属間化合物6の析出を遅延することができると考えられる。これらの元素のうち、Cr、Mo及びWは、ステンレス鋼を構成する元素の平均原子径に比べて大きな原子半径を有するオーバーサイズ元素であり、金属母材中の原子空孔(空孔4)との相互作用が強く、空孔4を優先的な拡散経路として移動するとされている。 The intermetallic compound 6 is composed of a sigma phase, χ phase, etc., and is known to be easily precipitated on the に phase side from the 相 phase // phase interface. The elements constituting the intermetallic compound 6 (intermetallic compound forming element 5), Cr, Mo, Si and W are concentrated in the metal matrix at the grain boundaries of the α phase / γ phase interface, and the intermetallic compound 6 It precipitates as. Therefore, if the diffusion rate of these intermetallic compound forming elements 5 can be reduced, it is considered that the precipitation of the intermetallic compound 6 can be delayed. Among these elements, Cr, Mo and W are oversize elements having an atomic radius larger than the average atomic diameter of the elements constituting the stainless steel, and atomic vacancies in the metal matrix (vacancy 4) And the air holes 4 are considered to move as a preferential diffusion path.
 このような現象があるため、これらの元素よりも原子半径が大きく、空孔4とより強く相互作用する元素を添加し、空孔4を添加元素にトラップさせ、金属間化合物形成元素5の拡散を阻害することが重要となる。これにより、特に、脆化相の析出が問題となる650℃~950℃の温度域において金属間化合物形成元素5の拡散速度を低下させることができる。この温度域における脆化は、寸法の小さいステンレス鋼(鋼材)の場合、急冷することにより回避することができるが、寸法が大きく鋼材の内部を急冷することが困難な場合には問題となる。本発明は、この問題について鋼材の組成を調整することにより解決するものである。 Because of such a phenomenon, an atomic radius is larger than these elements, and an element that interacts more strongly with the holes 4 is added to trap the holes 4 in the additive element, and the diffusion of the intermetallic compound forming element 5 It is important to inhibit Thereby, the diffusion rate of the intermetallic compound-forming element 5 can be reduced particularly in the temperature range of 650 ° C. to 950 ° C. where the precipitation of the embrittled phase is a problem. The embrittlement in this temperature range can be avoided by quenching in the case of a stainless steel (steel material) having a small size, but becomes a problem when it is difficult to quench the inside of the steel material because the size is large. The present invention solves this problem by adjusting the composition of the steel material.
 原子半径の大きな添加元素の候補としてはいくつか考えられるが、一般に、原子半径の大きい金属元素は、窒化物や炭化物を生成する自由エネルギーが極めて低い。 Although there are several possible candidates for the additive element having a large atomic radius, in general, a metal element having a large atomic radius has extremely low free energy to form nitrides and carbides.
 熱平衡計算の結果、Zr、Ti、Hf等の窒・炭化物形成能が高い元素を添加した場合には、特に窒素を添加することにより耐食性を向上させているスーパー二相ステンレス鋼の場合には、製造時に液相の段階で窒化物を形成し、母相中への固溶が困難である。また、比較的窒化物形成能の低い元素のうち、Nbはそれ自体が金属間化合物であるσ相に取り込まれやすい元素であるとされている。 As a result of thermal equilibrium calculation, in the case of super duplex stainless steel in which the corrosion resistance is improved by adding nitrogen, especially when an element having high ability to form nitrogen and carbide, such as Zr, Ti, Hf, etc., is added, At the time of production, a nitride is formed at the liquid phase stage, and it is difficult to form a solid solution in the matrix. Further, among elements having a relatively low ability to form nitride, Nb itself is considered to be an element that is easily taken into the σ phase, which is an intermetallic compound.
 以上のことから、製造時に金属母相中に固溶させる事が比較的容易で、かつ金属間化合物として析出し難い、Taを添加元素として選定した。 From the above, it was relatively easy to form a solid solution in the metal matrix at the time of production, and Ta was selected as an additive element, which is difficult to precipitate as an intermetallic compound.
 以下では、本発明による二相ステンレス鋼に添加する合金元素の役割と化学組成範囲を限定する理由について説明する。 Hereinafter, the role of the alloying elements added to the duplex stainless steel according to the present invention and the reason for limiting the range of the chemical composition will be described.
 クロム(Cr):20.0~40.0%
 クロムは、ステンレス鋼の耐食性の維持に最も重要な基本元素である。二相ステンレスの場合には、オーステナイトとフェライトの2相組織を得なければならないので、下記式で定義されるクロム当量(Creq)及びニッケル当量(Nieq)と、これにより決定されるフェライト相の比率(分率)とを考慮して、20%以上のクロム量とした。また、Creqを増加させるとNieqも増加させる必要があるため、経済性を考慮して上限値を40%とした。より好ましい範囲は24%~26%である。
Chromium (Cr): 20.0 to 40.0%
Chromium is the most important basic element in maintaining the corrosion resistance of stainless steel. In the case of duplex stainless steel, it is necessary to obtain a two-phase structure of austenite and ferrite, so the chromium equivalent (Cr eq ) and nickel equivalent (Ni eq ) defined by the following formulas and the ferrite phase determined thereby The amount of chromium was 20% or more in consideration of the ratio (fraction) of In addition, since it is necessary to increase Ni eq if Cr eq is increased, the upper limit is set to 40% in consideration of economics. A more preferable range is 24% to 26%.
 Creq=%Cr+2%Si+1.5%Mo+0.75%W+5%V+5.5%Al+1.75%Nb+1.5%Ti
 Nieq=%Ni+0.5%Mn+30%C+0.3%Cu+25%N+%Co
 (式中、%Cr、%Si、%Mo、%W、%V、%Al、%Nb、%Ti、%Ni、%Mn、%C、%Cu、%N及び%Coは、質量%で表した各組成の値である。)
 フェライト相の分率(体積%)=55×(Creq/Nieq)-66.1
 ニッケル(Ni):3.0%~12.0%
 ニッケルは、オーステナイト安定化元素として耐食性に関連して全面腐食抵抗性を増加させる有用な元素であるので、少なくとも3%以上とした。クロム当量とニッケル当量との関係、相の比率、及び経済性を考慮して、上限値を12%以下とした。より好ましい範囲は6%~8%である。
Cr eq =% Cr + 2% Si + 1.5% Mo + 0.75% W + 5% V + 5.5% Al + 1.75% Nb + 1.5% Ti
Ni eq =% Ni + 0.5% Mn + 30% C + 0.3% Cu + 25% N +% Co
(Wherein,% Cr,% Si,% Mo,% W,% V,% Al,% Nb,% Ti,% Ni,% Mn,% C,% Cu,% N and% Co are% by mass) It is the value of each composition expressed.)
Fraction of ferrite phase (volume%) = 55 × (Cr eq / Ni eq ) -66.1
Nickel (Ni): 3.0% to 12.0%
Nickel is a useful element that increases overall corrosion resistance in connection with corrosion resistance as an austenite stabilizing element, so it is at least 3% or more. The upper limit is set to 12% or less in consideration of the relationship between the chromium equivalent and the nickel equivalent, the phase ratio, and the economy. A more preferable range is 6% to 8%.
 モリブデン(Mo):7.0%以下
 モリブデンは、クロムとともに、耐食性の維持に重要な元素であり、フェライト相を安定化させる作用をするが、添加により金属間化合物形成を促進する。このため、その量を7.0%以下に制限する。より好ましい範囲は3.0%~5.0%である。
Molybdenum (Mo): 7.0% or less Molybdenum, together with chromium, is an element important for maintaining corrosion resistance, and acts to stabilize the ferrite phase, but promotes the formation of intermetallic compounds by addition. For this reason, the amount is limited to 7.0% or less. A more preferable range is 3.0% to 5.0%.
 タングステン(W):6.5%以下
 タングステンは、耐食性を向上させ、1/2の量のMoと置換することにより金属間化合物の析出速度を遅延させ、耐食性及び機械的性質を改善する元素である。しかし、タングステンは、高価な合金元素であり、また、多量に添加すると金属間化合物の生成を促進し、溶接部の耐食性を低下させるので、含有量を6.5%以下に制限する。より好ましい範囲は4.0%以下である。
Tungsten (W): 6.5% or less Tungsten is an element that improves the corrosion resistance, retards the deposition rate of intermetallic compounds by replacing it with Mo in one-half amount, and improves the corrosion resistance and mechanical properties. is there. However, tungsten is an expensive alloying element, and addition of a large amount thereof promotes the formation of intermetallic compounds and reduces the corrosion resistance of the weld, so the content is limited to 6.5% or less. A more preferable range is 4.0% or less.
 ケイ素(Si):3.0%以下
 ケイ素は、フェライト組織を安定化させる元素であり、製造時の脱酸に有効な元素である。また、製造時や溶接時の溶鋼の流動性を増加させて表面の欠陥を低減する元素である。しかしながら、金属間化合物の析出速度を増加させ、鋼の延性を低下させる元素であるため、3.0%以下が好ましい。より好ましくは、0.5%以下である。
Silicon (Si): 3.0% or less Silicon is an element that stabilizes the ferrite structure, and is an element effective for deoxidation during production. In addition, it is an element that reduces the surface defects by increasing the fluidity of the molten steel at the time of production or welding. However, 3.0% or less is preferable because it is an element that increases the deposition rate of intermetallic compounds and reduces the ductility of the steel. More preferably, it is 0.5% or less.
 マンガン(Mn):8.0%以下
 マンガンは、高価なニッケルを代替することのできるオーステナイト安定化元素であり、窒素の固溶度を増加させ、高温の変形抵抗を増加させる元素である。特に、窒素を積極的に添加して耐食性を向上させようとする場合には、適正量のマンガン添加は必須である。溶解精錬時に脱酸効果を有するが、多量に添加すると耐食性が低下し、金属間化合物の生成を促進する。このため、その上限値を8%以下に制限した。より好ましい範囲は1.2%以下である。
Manganese (Mn): 8.0% or less Manganese is an austenite stabilizing element that can replace expensive nickel, and is an element that increases the solid solution degree of nitrogen and increases the deformation resistance at high temperature. In particular, when nitrogen is positively added to improve corrosion resistance, addition of an appropriate amount of manganese is essential. It has a deoxidizing effect at the time of smelting and refining, but when added in large amounts, the corrosion resistance decreases and promotes the formation of intermetallic compounds. For this reason, the upper limit was limited to 8% or less. A more preferable range is 1.2% or less.
 窒素(N):0.7%以下
 窒素は、孔食に対する抵抗性を向上させる有用な元素である。その効果は、クロムの約30倍に達する耐食性に関連して最も重要な元素の一つである。また、粒界鋭敏化を防止することを目的に炭素含有量を低くするとき、窒素を添加して強度を補填する。しかし、0.7%を超えて添加すると、製造時にブローホール発生により割れを生じることがある。よって、0.7%以下とすることが好ましい。特に、Taを添加する場合には、Taを含む窒化物を形成し、効果を阻害する。このため、α相とγ相とにバランスよく固溶し、耐食性を損なわないようにするためには、0.3%以下とすることが更に好ましく、0.05%~0.25%とすることがより一層好ましい。さらに、0.05~0.19%の範囲が特に望ましい。
Nitrogen (N): 0.7% or less Nitrogen is a useful element that improves resistance to pitting corrosion. The effect is one of the most important elements associated with corrosion resistance reaching about 30 times that of chromium. In addition, when the carbon content is lowered for the purpose of preventing grain boundary sensitization, nitrogen is added to compensate for the strength. However, if it is added in excess of 0.7%, cracks may occur due to blow holes during production. Therefore, it is preferable to make it 0.7% or less. In particular, when Ta is added, a nitride containing Ta is formed to inhibit the effect. Therefore, in order to form a solid solution in a balanced manner in the α phase and the γ phase and to prevent the corrosion resistance from being impaired, the content is more preferably 0.3% or less, preferably 0.05% to 0.25%. Is even more preferred. Furthermore, a range of 0.05 to 0.19% is particularly desirable.
 炭素(C):0.1%以下
 炭素は、炭化物を形成し、且つ溶接時の粒界鋭敏化を誘発する元素である。特に、Taを添加する場合には、Taを含む炭化物を形成し、Ta添加の効果を阻害するため、少ないほど好ましい。しかし、Cの低減は製造コストの上昇を招くため、0.1%以下とした。より好ましい範囲は0.02%以下である。
Carbon (C): 0.1% or less Carbon is an element that forms carbides and induces grain boundary sensitization during welding. In particular, when Ta is added, a carbide containing Ta is formed, and the effect of Ta addition is inhibited. However, since the reduction of C causes an increase in manufacturing cost, it is 0.1% or less. A more preferable range is 0.02% or less.
 タンタル(Ta):0.05%~1.0%
 タンタルは、本発明を特徴づける元素の一つである。前述したように、原子半径が二相ステンレス鋼を構成する元素の平均原子半径と比較して大きいため、主要な金属間化合物形成元素の拡散を阻止し、金属間化合物の析出速度を低下させる効果がある。しかしながら、添加量が多すぎると、経済的でないだけでなく、フェライト/オーステナイトの相比のバランスを崩すため、上限値を1.0%に制限した。一方、0.05%未満では、その添加効果は期待できない。また、窒化物相とフェライト相への固溶量のバランスから、より好ましくは0.2~0.5%の範囲である。
Tantalum (Ta): 0.05% to 1.0%
Tantalum is one of the elements that characterize the present invention. As described above, since the atomic radius is large compared to the average atomic radius of the elements constituting the duplex stainless steel, the effect of preventing the diffusion of the main intermetallic compound-forming elements and reducing the precipitation rate of the intermetallic compounds There is. However, if the addition amount is too large, not only it is not economical but also the balance of the ferrite / austenite phase ratio is broken, so the upper limit is limited to 1.0%. On the other hand, if it is less than 0.05%, the addition effect can not be expected. Further, in view of the balance of the solid solution amount in the nitride phase and the ferrite phase, it is more preferably in the range of 0.2 to 0.5%.
 リン(P):0.1%以下
 リンについては、鋼中に不可避に混入する不純物であり、耐食性を劣化するのみでなく粒界に偏析し、脆化相の析出を促進するため、少ないほど望ましい。このため、0.1%以下が望ましく、0.02%以下が更に望ましく、0.005%以下が特に望ましい。しかしながら、Pを過剰に低減する場合は製造コストの上昇を招く。よって、Pの添加量は、この点も考慮して決定する。
Phosphorus (P): 0.1% or less Phosphorus is an impurity inevitably mixed in steel and not only degrades corrosion resistance but also segregates in grain boundaries and promotes precipitation of the embrittled phase, so the less it is desirable. Therefore, 0.1% or less is desirable, 0.02% or less is more desirable, and 0.005% or less is particularly desirable. However, excessive reduction of P causes an increase in manufacturing cost. Therefore, the addition amount of P is determined in consideration of this point as well.
 以下、実施例を説明する。 Examples will be described below.
 表1は、実施例1(発明材(作製材C))並びに比較例1及び2(比較材(作製材A及びB))の二相ステンレス鋼について化学組成(単位:質量%)を示したものである。 Table 1 shows the chemical composition (unit: mass%) of the duplex stainless steel of Example 1 (inventive material (preparation material C)) and comparative examples 1 and 2 (comparative materials (preparation materials A and B)) It is a thing.
 これらの材料に製造時の冷却、及び溶接による再熱を模擬した熱処理を施し、比較した。 These materials were subjected to heat treatment simulating cooling during production and reheating by welding and compared.
 表1に示す化学組成の二相ステンレス鋼をそれぞれ20kg、真空溶解炉で溶製してインゴットを得た。作製材Aは、規格材S32750と同等の成分を有する。作製材Bは、N、C及びSiの含有量を低減したものである。作製材Cは、作製材Bと同等の成分の合金に対してTaを微量添加したものである。 20 kg of each of the duplex stainless steels of the chemical composition shown in Table 1 was melted in a vacuum melting furnace to obtain an ingot. The manufacturing material A has a component equivalent to the standard material S32750. The production material B has a reduced content of N, C and Si. The production material C is a alloy in which a small amount of Ta is added to an alloy having the same component as the production material B.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記のインゴットを1250℃に加熱し、鍛造し、20×50×150(mm)の板材を得た。鍛造した板材は、適正なフェライト相/オーステナイト相の相比を得るため、1100℃×1時間で溶体化熱処理を実施したのち、脆化相の析出を避ける為、水冷で急冷した。 The above ingot was heated to 1250 ° C. and forged to obtain a plate of 20 × 50 × 150 (mm). The forged plate material was subjected to solution heat treatment at 1100 ° C. for 1 hour in order to obtain an appropriate phase ratio of ferrite phase / austenite phase, and then quenched by water cooling to avoid precipitation of the embrittled phase.
 図2A、2B及び2Cはそれぞれ、鍛造した作製材A、B及びCの外観写真を示したものである。 FIGS. 2A, 2B and 2C respectively show appearance photographs of forged preparation materials A, B and C. FIG.
 これらの写真から、鍛造による割れや欠陥を生じることなく製造できていることがわかる。 From these photographs, it can be seen that production is possible without causing cracks or defects due to forging.
 図3A、3B及び3Cはそれぞれ、製造後の作製材A、B及びCの金相観察結果を示したものである。 FIGS. 3A, 3B and 3C show the results of observation of the gold phase of the manufactured materials A, B and C, respectively.
 金相観察においては、SiC研磨紙で2000番まで研磨し、1μmのダイヤモンド砥粒を用いて仕上げ研磨した後、10%NaOH水溶液を使用して電解エッチングを施した。これにより、フェライト相31は褐色に、金属間化合物、炭化物及び窒化物は黒色に着色される。また、オーステナイト相32は白色である。 In the metal phase observation, after polishing to No. 2000 with SiC abrasive paper and finish polishing using 1 μm diamond abrasive grains, electrolytic etching was performed using a 10% aqueous NaOH solution. As a result, the ferrite phase 31 is colored brown, and the intermetallic compounds, carbides and nitrides are colored black. Moreover, the austenite phase 32 is white.
 試験片は、アセトン及び蒸留水を用いて超音波洗浄を施した後、光学顕微鏡で観察した。以降の金相観察も同様の方法で実施している。これらの図に示す金相観察の結果、いずれの作製材も明瞭に区別できるフェライト/オーステナイトの二相組織を有していることが分かる。 The test pieces were subjected to ultrasonic cleaning with acetone and distilled water and then observed with an optical microscope. The subsequent gold phase observation is also carried out in the same manner. As a result of the metal phase observation shown in these figures, it can be seen that any of the prepared materials has a distinct ferrite / austenite two-phase structure.
 上記の作製材に対して、製造時の冷却及び溶接による再熱条件における脆化相析出を評価するため、脆化相が析出しやすい温度域である800℃での熱処理を実施した。 Heat treatment at 800 ° C., which is a temperature range in which the embrittled phase tends to precipitate, was performed on the above-described materials in order to evaluate embrittled phase precipitation under reheating conditions by cooling during production and welding.
 図4は、800℃における熱処理時間と残存フェライト量との関係を示すグラフである。横軸に熱処理時間を、縦軸にフェライト量をとっている。フェライト量は、磁気誘導法を用いたフェライトスコープで測定した。脆化相析出のうち、金属間化合物析出は析出温度条件でフェライト相が金属間化合物相とオーステナイト相に分解することで進行するため、残存フェライト量を評価することにより金属間化合物の析出傾向を評価できる。 FIG. 4 is a graph showing the relationship between the heat treatment time at 800 ° C. and the amount of residual ferrite. The heat treatment time is taken on the horizontal axis, and the amount of ferrite is taken on the vertical axis. The amount of ferrite was measured by a ferrite scope using a magnetic induction method. Among the precipitation of the embrittlement phase, the intermetallic compound precipitation proceeds by the decomposition of the ferrite phase into the intermetallic compound phase and the austenite phase under the precipitation temperature conditions, so the precipitation tendency of the intermetallic compound is evaluated by evaluating the amount of residual ferrite. It can be evaluated.
 本図から、比較例1及び2と比べ、実施例1は、フェライト相の減少速度が遅く、フェライト相の分解が抑制されていることが分かる。 From this figure, it can be seen that in Example 1, the reduction rate of the ferrite phase is slower than in Comparative Examples 1 and 2, and the decomposition of the ferrite phase is suppressed.
 図5A、5B及び5Cはそれぞれ、800℃、30分の熱処理を施した後の作製材A、B及びCの金相観察写真である。 FIGS. 5A, 5B, and 5C are respectively metal phase observation photographs of fabrication materials A, B, and C after heat treatment at 800 ° C. for 30 minutes.
 本図においては、フェライト相51及びオーステナイト相52に加え、脆化相53が増加していることがわかる。 In this figure, it can be seen that the embrittlement phase 53 is increased in addition to the ferrite phase 51 and the austenite phase 52.
 比較材である作製材A及びBと比べて、発明材である作製材Cにおいては、脆化相53の析出量が少なく、脆化相53の析出が抑制されていることが分かる。作製材Bは、脆化相53が特に多くなっている。 It can be seen that the amount of precipitation of the embrittlement phase 53 is smaller in the preparation material C of the invention material than in the preparation materials A and B, which are comparison materials, and the precipitation of the embrittlement phase 53 is suppressed. In the production material B, the embrittled phase 53 is particularly large.
 図6は、800℃×5分の熱処理後におけるシャルピー衝撃値の測定結果を示したものである。 FIG. 6 shows the measurement results of Charpy impact value after heat treatment at 800 ° C. for 5 minutes.
 シャルピー衝撃値については、JIS Z2242(2005)に準拠して測定した。測定手順の概略は、次のとおりである。 The Charpy impact value was measured in accordance with JIS Z2242 (2005). The outline of the measurement procedure is as follows.
 熱処理前後の板材に対して、中心部がノッチ部となるように板の長手方向から10mm×10mm×55mmの2mmVノッチシャルピー試験片を採取し、衝撃値を測定した。 For the plate before and after heat treatment, a 10 mm × 10 mm × 55 mm 2 mm V-notch Charpy test specimen was sampled from the longitudinal direction of the plate so that the central portion was a notch portion, and the impact value was measured.
 本図から、比較材である作製材A及びBと比べて、発明材である作製材Cにおいては、熱処理後におけるシャルピー衝撃値が高くなっている。このことから、金属間化合物の形成抑制により靭性が改善していることがわかる。 From this figure, compared with the preparation materials A and B which are comparative materials, in the preparation material C which is an invention material, the Charpy impact value after heat processing is high. From this, it is understood that the toughness is improved by suppressing the formation of the intermetallic compound.
 図7A~7Dは、800℃×1分の熱処理後の粒界(α/γ境界)におけるEDX測定の結果を示したものである。 FIGS. 7A to 7D show the results of EDX measurement at grain boundaries (α / γ boundaries) after heat treatment at 800 ° C. for 1 minute.
 図7Aは、比較材である作製材Aの電子顕微鏡写真であり、図7Bは、図7Aの分析位置(線分)における矢印方向の各元素の濃度分布を測定した結果を示したものである。 FIG. 7A is an electron micrograph of fabrication material A which is a comparative material, and FIG. 7B shows the result of measuring the concentration distribution of each element in the arrow direction at the analysis position (line segment) in FIG. 7A. .
 また、図7Cは、発明材である作製材Cの電子顕微鏡写真であり、図7Dは、図7Cの分析位置(線分)における矢印方向の各元素の濃度分布を測定した結果を示したものである。 Moreover, FIG. 7C is an electron micrograph of the manufacturing material C which is an invention material, FIG. 7D shows the result of having measured the concentration distribution of each element in the arrow direction in the analysis position (line segment) of FIG. 7C. It is.
 図7A及び7Cにおいては、フェライト相71及びオーステナイト相72の微細構造が明瞭に表されている。粒界は、破線で示している。線分で表した分析位置73においては、矢印の方向に(オーステナイト相72からフェライト相71に向かって)各元素の濃度測定を行った。 In FIGS. 7A and 7C, the microstructures of the ferrite phase 71 and the austenite phase 72 are clearly represented. Grain boundaries are indicated by broken lines. At the analysis position 73 represented by the line segment, the concentration of each element was measured in the direction of the arrow (from the austenite phase 72 to the ferrite phase 71).
 図7B及び7Dにおいては、横軸に距離をとり、縦軸に濃度をとっている。 In FIGS. 7B and 7D, the horizontal axis is a distance, and the vertical axis is a concentration.
 図7Bに示す比較材においては、フェライト相側の粒界の近傍におけるMo及びCrの濃度が高くなっている。 In the comparative material shown in FIG. 7B, the concentrations of Mo and Cr in the vicinity of the grain boundary on the ferrite phase side are high.
 これに対して、図7Dに示す発明材においては、フェライト相側の粒界の近傍においてTaの濃度のピークが生じ、Mo及びCrの濃度は図7Bに比べて低くなっている。 On the other hand, in the invention material shown in FIG. 7D, a peak of concentration of Ta occurs near the grain boundary on the ferrite phase side, and the concentrations of Mo and Cr are lower than those of FIG. 7B.
 言い換えると、Taは、α/γ粒界に優先的に拡散し、金属間化合物形成元素であるMo及びCrの拡散を阻害していることがわかる。 In other words, it is understood that Ta preferentially diffuses to the α / γ grain boundaries, and inhibits the diffusion of Mo and Cr, which are intermetallic compound forming elements.
 以上より、Taを添加した場合、Ta自体が結晶粒界に拡散することにより、Mo、Cr等の金属間化合物形成元素の拡散を阻害し、金属間化合物の形成を遅延させることがわかった。 From the above, it was found that when Ta is added, the diffusion of Ta itself to the grain boundaries inhibits the diffusion of the intermetallic compound-forming element such as Mo and Cr, and delays the formation of the intermetallic compound.
 (残留応力及び衝撃値に熱処理が及ぼす影響)
 残留応力緩和を目的とした溶接後熱処理(PWHT)を想定して、発明材及び比較材に熱処理を実施し、熱処理が残留応力及び衝撃値に及ぼす影響を評価した。
(Effect of heat treatment on residual stress and impact value)
The post-welding heat treatment (PWHT) for the purpose of residual stress relaxation was assumed, the heat treatment was performed on the invention material and the comparative material, and the influence of the heat treatment on the residual stress and the impact value was evaluated.
 作製材A、B及びCについて、粒度#46の砥石を用い、回転速度1440rpm、切り込み量0.01mmで板材表面に平面研削による強加工層を付与することにより、引張残留応力を付与した。平面研削により表面に残留応力を付与した供試材に対して、PWHTを想定して650℃×30分の熱処理を実施し、残留応力と機械的特性に及ぼす熱処理条件の影響を評価した。 With respect to the preparation materials A, B and C, tensile residual stress was applied by using a grindstone of particle size # 46 and applying a strongly processed layer by surface grinding to the plate surface at a rotational speed of 1440 rpm and a cutting amount of 0.01 mm. A heat treatment was performed on a test material having residual stress applied to the surface by surface grinding, assuming PWHT at 650 ° C. for 30 minutes to evaluate the influence of heat treatment conditions on residual stress and mechanical properties.
 図8は、熱処理前後の残留応力を比較した結果を示したものである。残留応力をフェライト相、オーステナイト相それぞれで測定し、体積比を掛けた平均値をマクロ応力として評価した。 FIG. 8 shows the results of comparison of residual stress before and after heat treatment. The residual stress was measured in each of the ferrite phase and the austenite phase, and the average value obtained by multiplying the volume ratio was evaluated as macro stress.
 表面加工によって、900~1100MPa程度の引張付応力が付与されていたが、650℃×30分の熱処理で何れも約200MPa程度の引張応力に低下し、8割程度の応力緩和効果が得られた。 Surface tension applied a tensile stress of about 900 to 1100 MPa, but heat treatment at 650 ° C for 30 minutes reduced the tensile stress to about 200 MPa and a stress relaxation effect of about 80% was obtained. .
 図9は、熱処理前後のシャルピー衝撃試験の結果を比較した結果を示したものである。 FIG. 9 shows the results of comparison of the results of Charpy impact test before and after heat treatment.
 本図から、比較材に対して、発明材は、衝撃値が改善し、熱処理後も100J/cm程度の衝撃値を残しており、650℃×30分の熱処理で残留応力を8割緩和しつつ、100J/cm以上の衝撃値を保っている。 From this figure, compared with the comparison material, the invention material improves the impact value, leaving an impact value of about 100 J / cm 2 after heat treatment, and relieves 80% of the residual stress by heat treatment at 650 ° C. for 30 minutes. While maintaining an impact value of 100 J / cm 2 or more.
 (孔食発生電位に熱処理が及ぼす影響)
 熱処理(650℃×30分)前後の孔食発生電位測定の結果を以下に示す。
(The effect of heat treatment on the pitting potential)
The results of the pitting corrosion potential measurement before and after heat treatment (650 ° C. × 30 minutes) are shown below.
 孔食電位については、JIS G0577(2005)に準拠して測定した。 The pitting potential was measured in accordance with JIS G0577 (2005).
 図10は、発明材と比較材の孔食発生電位を比較して示したものである。 FIG. 10 shows the pitting corrosion potential of the inventive material and the comparative material in comparison.
 本図に示すように、各材料の孔食抵抗性順位(熱処理後)は下記のとおりである。 As shown in the figure, the pitting resistance of each material (after heat treatment) is as follows.
 作製材C(発明材)>作製材B(比較材)>作製材A(比較材、従来材S32750相当)。 Preparation material C (inventive material)> Preparation material B (comparative material)> Preparation material A (comparative material, equivalent to conventional material S32750).
 すなわち、発明材は、従来材より高い孔食発生電位を有する。 That is, the inventive material has a higher pitting potential than conventional materials.
 以上の結果から、発明材は、脆化を抑制しているにもかかわらず、従来材以上の耐孔食性を有することが確認された。 From the above results, it was confirmed that the inventive material has pitting corrosion resistance higher than that of the conventional material despite suppressing embrittlement.
 (発明材を用いた製品1)
 図11は、本発明に係る立軸斜流海水ポンプの断面図である。
(Product 1 using invention material)
FIG. 11 is a cross-sectional view of a vertical axis mixed flow seawater pump according to the present invention.
 本図において、立軸斜流海水ポンプは、吸込水路から入った海水を整流するベルマウス117、原動機の回転動力を伝達するシャフト111、シャフト111に固定されたインペラハブ115、原動機の回転動力を効率良く海水に与えるインペラベーン113、インペラベーン113の外周の隙間が常に一定になるよう内側を球面にしたケーシングライナ114、インペラベーン113から海水に与えた速度エネルギーを圧力エネルギーに変換するケーシング112、加圧された海水が内部を通っていくコラムパイプ119、インペラキャップ116、コーン118などからなる。 In this figure, the vertical mixed flow seawater pump efficiently uses bellmouth 117 to rectify seawater entering from the suction channel, shaft 111 to transmit the rotational power of the prime mover, impeller hub 115 fixed to shaft 111, and rotational power to the prime mover Impeller vanes 113 given to seawater, casing liner 114 whose inner surface is spherical so that the clearance on the outer periphery of impeller vanes 113 is always constant, casing 112 which converts velocity energy given to seawater from impeller vanes 113 into pressure energy, pressurization It consists of a column pipe 119, an impeller cap 116, a cone 118, etc. through which the stored seawater passes.
 ケーシングライナ114及びケーシング112は、各々、実施例1の鋳鋼で作製し、インペラハブ115及びインペラベーン113は、各々、実施例1の鍛造材で作製した。鋳造及び鍛造後、1100℃×1hの溶体化熱処理をし、その後、水冷し、フェライト量40~50%の2相組成とした。その後、ケーシングライナ114とケーシング112との接合部、及びインペラハブ115とインペラベーン113との接合部をMIG溶接で接合し、バンドヒータを巻きつけ、溶接熱影響部を650℃まで昇温した後、その温度で30minの熱処理を実施し、急冷した。 The casing liner 114 and the casing 112 were each made of the cast steel of Example 1, and the impeller hub 115 and the impeller vane 113 were each made of the forging of Example 1. After casting and forging, solution heat treatment at 1100 ° C. for 1 h was performed, and then water cooling was performed to obtain a two-phase composition with a ferrite content of 40 to 50%. Thereafter, the junction between the casing liner 114 and the casing 112 and the junction between the impeller hub 115 and the impeller vane 113 are joined by MIG welding, a band heater is wound, and the welding heat affected zone is heated to 650 ° C. A heat treatment of 30 min was carried out at that temperature to rapidly cool it.
 X線残留応力測定により溶接熱影響部の残留応力を測定したところ、引張応力は80MPaまで低下していた。実施例1の鋼材を用いることにより、溶接部の靭性低下も抑制され、疲労強度も向上した使用寿命の長い海水ポンプを製作することできた。 When residual stress in the weld heat affected zone was measured by X-ray residual stress measurement, the tensile stress was reduced to 80 MPa. By using the steel material of Example 1, the toughness fall of a welding part was also suppressed and the sea water pump with a long service life which fatigue strength improved was able to be manufactured.
 (発明材を用いた製品2)
 図12は、本発明に係る流量調節弁の断面図である。
(Product 2 using invention material)
FIG. 12 is a cross-sectional view of a flow control valve according to the present invention.
 本図において、流量調節弁は、弁全体を支えるケーシング121、流量を調節する弁体122、弁体122が収まる弁座123、ハンドル125、ハンドル125の回転により弁体122の位置を調節するシャフト124などで構成されている。 In the figure, the flow rate control valve includes a casing 121 for supporting the entire valve, a valve body 122 for adjusting the flow rate, a valve seat 123 in which the valve body 122 is fitted, a handle 125, and a shaft for adjusting the position of the valve body 122 And the like.
 ケーシング121を実施例1の鋳鋼によって構成した。実施例1の鋼材を用いることにより、耐食性が高く、大型の流量調節弁を製作することできた。 The casing 121 was made of the cast steel of Example 1. By using the steel material of Example 1, it was possible to manufacture a large flow rate control valve with high corrosion resistance.
 本流量調節弁は、海水、石油及び化学プラント環境で使用できる。 The flow control valve can be used in seawater, petroleum and chemical plant environments.
 1:フェライト相、2:オーステナイト相、3:粒界、4:空孔、5:金属間化合物形成元素、6:金属間化合物、7:炭・窒化物、11:タンタル原子、12:粒界領域、31、51、71:フェライト相、32、52、72:オーステナイト相、53:脆化相、73:分析位置、111:シャフト、112:ケーシング、113:インペラベーン、114:ケーシングライナ、115:インペラハブ、116:インペラキャップ、117:ベルマウス、118:コーン、119:コラムパイプ、121:ケーシング、122:弁体、123:弁座、124:シャフト、125:ハンドル。 1: ferrite phase 2: 2: austenite phase 3: 3: grain boundary 4: 4: interstitial compound forming element 6: 6: intermetallic compound 7: 7: carbon / nitride 11: tantalum atom 12: grain boundary Area: 31, 51, 71: ferrite phase, 32, 52, 72: austenite phase, 53: embrittled phase, 73: analysis position, 111: shaft, 112: casing, 113: impeller vane, 114: casing liner, 115 : Impeller hub, 116: impeller cap, 117: bell mouth, 118: cone, 119: column pipe, 121: casing, 122: valve body, 123: valve seat, 124: shaft, 125: handle.

Claims (10)

  1.  質量%で、N:0.3%以下、C:0.1%以下、P:0.1%以下、Si:3.0%以下、Mn:8.0%以下、Ni:3.0~12.0%、Cr:20.0~40.0%、Mo:7.0%以下、W:6.5%以下、Ta:0.05~1.0%を含有し、残部がFe及び不可避的不純物であることを特徴とする二相ステンレス鋼。 N: 0.3% or less, C: 0.1% or less, P: 0.1% or less, Si: 3.0% or less, Mn: 8.0% or less, Ni: 3.0 to 10% by mass 12.0%, Cr: 20.0 to 40.0%, Mo: 7.0% or less, W: 6.5% or less, Ta: 0.05 to 1.0%, the balance being Fe and A duplex stainless steel characterized by being an unavoidable impurity.
  2.  質量%で、N:0.05~0.25%、C:0.02%以下、P:0.02%以下、Si:0.5%以下、Mn:1.2%以下、Ni:6.0~8.0%、Cr:24.0~26.0%、Mo:3.0~5.0%、W:6.5%以下、Ta:0.2~0.5%を含有し、残部がFe及び不可避的不純物であることを特徴とする二相ステンレス鋼。 N: 0.05 to 0.25%, C: 0.02% or less, P: 0.02% or less, Si: 0.5% or less, Mn: 1.2% or less, Ni: 6 in mass% .0 to 8.0%, Cr: 24.0 to 26.0%, Mo: 3.0 to 5.0%, W: up to 6.5%, Ta: 0.2 to 0.5% And the balance is Fe and unavoidable impurities.
  3.  下記式で定義される耐孔食指数(PREW)が40以上であることを特徴とする請求項1又は2に記載の二相ステンレス鋼。
     (PREW)=%Cr+3.3×(%Mo+0.5×%W)+30×%N
     (式中、%Cr、%Mo、%W及び%Nは、質量%で表した各組成の値である。)
    The duplex stainless steel according to claim 1 or 2, wherein a pitting resistance index (PREW) defined by the following formula is 40 or more.
    (PREW) =% Cr + 3.3 × (% Mo + 0.5 ×% W) + 30 ×% N
    (In the formula,% Cr,% Mo,% W and% N are values of each composition expressed by mass%.)
  4.  請求項1~3のいずれか一項に記載の二相ステンレス鋼を用いたことを特徴とする二相ステンレス鋼製構造物。 A duplex stainless steel structure using the duplex stainless steel according to any one of claims 1 to 3.
  5.  鍛造又は鋳造により作製した後、950℃~1200℃の温度で30分~2時間の溶体化熱処理を施してオーステナイト/フェライト相比を0.2~0.8としたことを特徴とする二相ステンレス鋼製構造物。 After preparing by forging or casting, solution heat treatment is performed at a temperature of 950 ° C. to 1200 ° C. for 30 minutes to 2 hours to make the austenite / ferrite phase ratio 0.2 to 0.8. Stainless steel structure.
  6.  請求項4又は5に記載の二相ステンレス鋼製構造物であることを特徴とする海洋構造物。 A marine structure comprising the duplex stainless steel structure according to claim 4 or 5.
  7.  請求項4又は5に記載の二相ステンレス鋼製構造物であることを特徴とする石油・ガス環境構造物。 An oil and gas environment structure comprising the duplex stainless steel structure according to claim 4 or 5.
  8.  請求項4又は5に記載の二相ステンレス鋼製構造物であることを特徴とするポンプインペラ。 A pump impeller comprising the duplex stainless steel structure according to claim 4 or 5.
  9.  請求項4又は5に記載の二相ステンレス鋼製構造物であることを特徴とするポンプケーシング。 It is a duplex stainless steel structure of Claim 4 or 5, The pump casing characterized by the above-mentioned.
  10.  請求項4又は5に記載の二相ステンレス鋼製構造物であることを特徴とする流量調節弁の弁体。 It is a duplex stainless steel structure of Claim 4 or 5, The valve body of the flow control valve characterized by the above-mentioned.
PCT/JP2013/073038 2013-08-28 2013-08-28 Duplex stainless steel, and duplex stainless steel structure, marine structure, petroleum/gas environment structure, pump impeller, pump casing, and flow adjustment valve body using same WO2015029167A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2013/073038 WO2015029167A1 (en) 2013-08-28 2013-08-28 Duplex stainless steel, and duplex stainless steel structure, marine structure, petroleum/gas environment structure, pump impeller, pump casing, and flow adjustment valve body using same
CN201380079140.6A CN105492641A (en) 2013-08-28 2013-08-28 Duplex stainless steel, and duplex stainless steel structure, marine structure, petroleum/gas environment structure, pump impeller, pump casing, and flow adjustment valve body using same
JP2015533851A JP6286435B2 (en) 2013-08-28 2013-08-28 Duplex stainless steel and duplex stainless steel structure using the same
EP13892680.3A EP3040434B1 (en) 2013-08-28 2013-08-28 Duplex stainless steel, and duplex stainless steel structure, marine structure, petroleum/gas environment structure, pump impeller, pump casing, and flow adjustment valve body using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/073038 WO2015029167A1 (en) 2013-08-28 2013-08-28 Duplex stainless steel, and duplex stainless steel structure, marine structure, petroleum/gas environment structure, pump impeller, pump casing, and flow adjustment valve body using same

Publications (1)

Publication Number Publication Date
WO2015029167A1 true WO2015029167A1 (en) 2015-03-05

Family

ID=52585786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073038 WO2015029167A1 (en) 2013-08-28 2013-08-28 Duplex stainless steel, and duplex stainless steel structure, marine structure, petroleum/gas environment structure, pump impeller, pump casing, and flow adjustment valve body using same

Country Status (4)

Country Link
EP (1) EP3040434B1 (en)
JP (1) JP6286435B2 (en)
CN (1) CN105492641A (en)
WO (1) WO2015029167A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016053213A (en) * 2014-09-02 2016-04-14 日本冶金工業株式会社 Two-phase stainless steel sheet and manufacturing method therefor
JP2017031493A (en) * 2015-08-05 2017-02-09 新日鐵住金株式会社 Manufacturing method of stainless steel pipe
CN107312979A (en) * 2016-04-26 2017-11-03 天津碧宇舟机械制造有限公司 A kind of high-power corrosion-resistant blade wheel of slurry pump and its manufacture method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107312951A (en) * 2016-04-26 2017-11-03 天津碧宇舟机械制造有限公司 A kind of homogenizer highly stressed rotor and preparation method thereof
CN105755397B (en) * 2016-05-24 2017-07-07 江苏金基特钢有限公司 The processing method that a kind of corrosion-resistant easy is molded special steel
SE1950909A1 (en) 2019-07-31 2021-02-01 Ferritico Ab Duplex steel with improved embrittlement properties and method of producing such

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441214A (en) * 1977-09-08 1979-04-02 Nippon Yakin Kogyo Co Ltd Twoophase highhstrength stainless steel
JP2004520491A (en) * 2001-04-27 2004-07-08 リサーチ インスティチュート オブ インダストリアル サイエンス アンド テクノロジー High manganese duplex stainless steel having excellent hot workability and method for producing the same
JP2005520934A (en) * 2002-03-25 2005-07-14 パク,ヨン−ソ Super duplex stainless steel with excellent corrosion resistance, embrittlement resistance, castability and hot workability with suppressed formation of intermetallic phases

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4055448A (en) * 1973-04-10 1977-10-25 Daido Seiko Kabushiki Kaisha Ferrite-austenite stainless steel
DE19628350B4 (en) * 1996-07-13 2004-04-15 Schmidt & Clemens Gmbh & Co Use of a stainless ferritic-austenitic steel alloy
US9771628B2 (en) * 2011-02-14 2017-09-26 Nippon Steel & Sumitomo Metal Corporation Duplex stainless steel and production method therefor
JP5890330B2 (en) * 2013-01-15 2016-03-22 株式会社神戸製鋼所 Duplex stainless steel and duplex stainless steel pipe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441214A (en) * 1977-09-08 1979-04-02 Nippon Yakin Kogyo Co Ltd Twoophase highhstrength stainless steel
JP2004520491A (en) * 2001-04-27 2004-07-08 リサーチ インスティチュート オブ インダストリアル サイエンス アンド テクノロジー High manganese duplex stainless steel having excellent hot workability and method for producing the same
JP2005520934A (en) * 2002-03-25 2005-07-14 パク,ヨン−ソ Super duplex stainless steel with excellent corrosion resistance, embrittlement resistance, castability and hot workability with suppressed formation of intermetallic phases
JP2011174183A (en) 2002-03-25 2011-09-08 Yong-Soo Park High-grade duplex stainless steel with much suppressed formation of intermetallic phases and having excellent corrosion resistance, embrittlement resistance, castability and hot workability

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016053213A (en) * 2014-09-02 2016-04-14 日本冶金工業株式会社 Two-phase stainless steel sheet and manufacturing method therefor
JP2017031493A (en) * 2015-08-05 2017-02-09 新日鐵住金株式会社 Manufacturing method of stainless steel pipe
CN107312979A (en) * 2016-04-26 2017-11-03 天津碧宇舟机械制造有限公司 A kind of high-power corrosion-resistant blade wheel of slurry pump and its manufacture method

Also Published As

Publication number Publication date
JPWO2015029167A1 (en) 2017-03-02
EP3040434A4 (en) 2017-05-03
EP3040434A1 (en) 2016-07-06
JP6286435B2 (en) 2018-02-28
CN105492641A (en) 2016-04-13
EP3040434B1 (en) 2019-03-27

Similar Documents

Publication Publication Date Title
JP6693217B2 (en) High Mn steel for cryogenic temperatures
WO2015029167A1 (en) Duplex stainless steel, and duplex stainless steel structure, marine structure, petroleum/gas environment structure, pump impeller, pump casing, and flow adjustment valve body using same
JP6645103B2 (en) High Mn steel material and method for producing the same
JP6540922B1 (en) Martensitic stainless steel seamless steel pipe for oil well pipe and method for producing the same
JP6144417B2 (en) High chromium heat resistant steel
WO2019035329A1 (en) High strength stainless seamless steel pipe for oil wells, and method for producing same
JP2012140690A (en) Method of manufacturing two-phase stainless steel excellent in toughness and corrosion resistance
US20100239425A1 (en) Nickel-base alloy for turbine rotor of steam turbine and turbine rotor of steam turbine using the same
US6793744B1 (en) Martenstic stainless steel having high mechanical strength and corrosion
JP5088455B2 (en) Duplex stainless steel
JP6816779B2 (en) Austenitic heat-resistant alloy member and its manufacturing method
JPWO2018003823A1 (en) Austenitic stainless steel
JP6160942B1 (en) Low thermal expansion super heat resistant alloy and manufacturing method thereof
JP2014043616A (en) Duplex stainless steel, and manufacturing method thereof
JP2012255424A (en) Ni-BASED ALLOY FOR CASTING USED FOR STEAM TURBINE AND CASTING COMPONENT OF STEAM TURBINE
JP2022160634A (en) steel
JP2010150585A (en) Ni-based alloy for casting part of steam turbine excellent in high-temperature strength, castability and weldability, turbine casing of steam turbine, valve casing of steam turbine, nozzle box of steam turbine, and pipe of steam turbine
JP2010280950A (en) Heat resistant steel for exhaust valve and method for producing the same
JP2017036477A (en) Austenitic heat resistant alloy member and manufacturing method therefor
JP6602462B2 (en) Chromium-based two-phase alloy and product using the two-phase alloy
JP5578916B2 (en) Ni-based alloy for cast components of steam turbine and cast components of steam turbine
JP2005325388A (en) Low specific gravity iron alloy
JP2019183193A (en) Austenite stainless steel
JP6575392B2 (en) High Cr ferritic heat resistant steel
JP2018059135A (en) Ni-BASED HEAT-RESISTANT ALLOY MEMBER AND METHOD FOR PRODUCING THE SAME

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380079140.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13892680

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013892680

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013892680

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015533851

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE