JP2017080765A - Continuous casting method for casting piece for steel pipe - Google Patents

Continuous casting method for casting piece for steel pipe Download PDF

Info

Publication number
JP2017080765A
JP2017080765A JP2015210819A JP2015210819A JP2017080765A JP 2017080765 A JP2017080765 A JP 2017080765A JP 2015210819 A JP2015210819 A JP 2015210819A JP 2015210819 A JP2015210819 A JP 2015210819A JP 2017080765 A JP2017080765 A JP 2017080765A
Authority
JP
Japan
Prior art keywords
less
value
alloy
average
precipitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015210819A
Other languages
Japanese (ja)
Other versions
JP6528644B2 (en
Inventor
悠衣 山下
Yui Yamashita
悠衣 山下
水上 英夫
Hideo Mizukami
英夫 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2015210819A priority Critical patent/JP6528644B2/en
Publication of JP2017080765A publication Critical patent/JP2017080765A/en
Application granted granted Critical
Publication of JP6528644B2 publication Critical patent/JP6528644B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for restraining formation of an embrittlement phase when continuously producing a highly corrosion-resistant duplex stainless steel.SOLUTION: When continuously casting an alloy comprising, by mass%, 0.03% or less C, 0.4% or less Si, 3.0% or less Mn, 0.04% or less P, 0.008% or less S, 0.2-2.0% Cu, 5.0-7.0% Ni, 23-30% Cr, 2.5-5.0% Mo, 1.5-4.0% W, 0.24-0.40% N, 0.030% or less Al, and 10-300 ppm by mass, a relation between a ratio I/Iof the deposition amounts Iand I of intermetallic compound at a center of cross-section of the casting piece in such a case that Bi is not contained and in a case contained and an average Md value of the alloy defined by ΣX×(Md)[eV] (Xis the atomic fraction of an alloy component i; and (Md)is the Md value [eV] of the alloy component i), and a relation between the average Md value of the alloy and included Bi amount are determined, and such a Bi content that the average Md value of the alloy is 0.97 or less and the ratio I/Igets to 0.70 or less is provided.SELECTED DRAWING: Figure 4

Description

本発明は、鋼管用鋳片として使用する高耐食性二相ステンレス鋼を連続鋳造する方法である。詳しくは、高耐食性二相ステンレス鋼の製造時に、脆化相であるシグマ(σ)相やカイ(Χ)相などの金属間化合物の析出を抑制することにより、高耐食性を維持しつつ、より優れた、耐脆化性、鋳造性、および熱間加工性を有する、高耐食性二相ステンレス鋼を連続鋳造する方法に関するものである。   The present invention is a method for continuously casting a high corrosion resistance duplex stainless steel used as a steel pipe slab. Specifically, while producing high corrosion resistance duplex stainless steel, by suppressing the precipitation of intermetallic compounds such as sigma (σ) phase and chi (カ イ) phase, which are embrittled phases, while maintaining high corrosion resistance, The present invention relates to a method for continuously casting a high corrosion resistance duplex stainless steel having excellent embrittlement resistance, castability, and hot workability.

近年、石油や天然ガスの需要は年々増大し、その重要性は益々高まってきている。一方で新たに開発する対象となる石油や天然ガスの貯留層はより深い位置になってきており、より過酷な環境に耐えることができる高強度、高耐食性を有する油井管が開発されてきている。特に、このような過酷な環境ではCO2 或いはH2S などの腐食性ガスを含んでいることが多く、優れた耐食性及び強度を有する二相ステンレス鋼が多用されている。 In recent years, demand for oil and natural gas has been increasing year by year, and its importance has been increasing. On the other hand, oil and natural gas reservoirs to be newly developed have become deeper and oil well pipes having high strength and high corrosion resistance that can withstand harsh environments have been developed. . In particular, in such a harsh environment, a corrosive gas such as CO 2 or H 2 S is often contained, and duplex stainless steel having excellent corrosion resistance and strength is frequently used.

二相ステンレス鋼の耐食性、特に耐孔食性を示すパラメータとして、PRE (Pitting Resistance Equivalent:Cr+3.3Mo +16N )、またはPRE にWを加えた改良式であるPREW(Cr+ 3.3(Mo+0.5W)+ 16N)が知られており、一般にPRE またはPREWの値を高めるようにCr,Mo,W およびN の含有量を調整した材質設計を行っている。   PRE (Pitting Resistance Equivalent: Cr + 3.3Mo + 16N) or PREW (Cr + 3.3 (Mo + 0.5W), which is a formula that adds W to PRE, as a parameter indicating the corrosion resistance of duplex stainless steel, especially pitting corrosion resistance ) + 16N) is known, and in general, the material is designed with the Cr, Mo, W and N contents adjusted to increase the PRE or PREW value.

一方で、Cr,MoやW の含有量を高めた二相ステンレス鋼は、機械的特性および耐食性を低下させるσ相やΧ相といった金属間化合物が析出しやすいことが課題である。特に、鋳造時の凝固偏析部が残存すると、当該残存領域で脆化相の溶体化、析出温度上昇により、さらに析出しやすくなる。このσ相やΧ相の析出は素材を著しく硬化させ、割れが発生し易くなって加工性を極端に低下させることに加え、最終製品であっても金属間化合物周辺の耐食性や靱性が劣化し、所望の性能を確保することが困難になる。   On the other hand, the problem with duplex stainless steels with increased Cr, Mo, and W contents is that intermetallic compounds such as σ phase and anodic phase, which lower mechanical properties and corrosion resistance, are likely to precipitate. In particular, if a solidified segregation portion at the time of casting remains, it becomes more likely to precipitate due to the formation of a brittle phase in the remaining region and an increase in the precipitation temperature. This precipitation of sigma phase and soot phase significantly hardens the material and is prone to cracking, resulting in extremely low workability, and even in the final product, the corrosion resistance and toughness around the intermetallic compound deteriorate. It becomes difficult to ensure the desired performance.

従って、高耐食性二相ステンレス鋼の製造に際しては、金属間化合物の析出を極力抑制することが望ましく、従来から多くの提案がなされている。   Therefore, in the production of high corrosion resistance duplex stainless steel, it is desirable to suppress the precipitation of intermetallic compounds as much as possible, and many proposals have heretofore been made.

例えば特許文献1では、耐食性および強度を向上させるために、Cr,Ni,MoおよびN の含有量を高めた高耐食性二相ステンレス鋼継目無管の製造方法が提案されている。この特許文献1で提案された方法は、Si含有量の低減と共に最終工程前に施すソーキング熱処理の温度範囲と処理時間を規定し、かつその後の固溶化熱処理条件も規定している。そして、このようにすることで、金属間化合物の析出を抑制して、非常に優れた耐食性と良好な靱性を有する高強度二相ステンレス鋼継目無管を安定して量産できるとしている。   For example, Patent Document 1 proposes a method for producing a highly corrosion-resistant duplex stainless steel seamless pipe having an increased content of Cr, Ni, Mo and N 2 in order to improve corrosion resistance and strength. The method proposed in Patent Document 1 defines the temperature range and treatment time of the soaking heat treatment performed before the final process as well as the reduction of the Si content, and also defines the subsequent solution heat treatment conditions. And by doing in this way, precipitating of an intermetallic compound is suppressed and it is supposed that the high intensity | strength duplex stainless steel seamless pipe which has very excellent corrosion resistance and favorable toughness can be mass-produced stably.

また、特許文献2では、二相ステンレス鋼を1110℃以上に加熱した後、熱間加工を施して高強度二相ステンレス鋼継目無管を製造する方法において、最終圧延終了後に800 +5Cr +25Mo+15W ≦T (℃)≦1150を満足する温度範囲まで再加熱して溶体化処理した後、急冷却する高強度二相ステンレス鋼管の製造方法が提案されている。   In Patent Document 2, in a method of manufacturing a high-strength duplex stainless steel seamless pipe by heating the duplex stainless steel to 1110 ° C. or higher and then performing hot working, 800 + 5Cr + 25Mo after the final rolling is completed. There has been proposed a method for producing a high-strength duplex stainless steel pipe that is reheated to a temperature range satisfying + 15W ≦ T (° C.) ≦ 1150, solution treated, and then rapidly cooled.

このように、金属間化合物の析出に対しては、連続鋳造以降の工程において、金属間化合物析出の起因となる凝固偏析を拡散させて解消する目的で、均質化処理する方法や(特許文献1)、熱処理条件を管理する方法(特許文献2)が一般的である。   Thus, with respect to the precipitation of intermetallic compounds, a homogenization process is performed for the purpose of diffusing and eliminating solidification segregation that causes the precipitation of intermetallic compounds in the processes after continuous casting (Patent Document 1). ), A method of managing the heat treatment conditions (Patent Document 2) is common.

しかしながら、均熱化処理は当然のことながら生産工期の長期化、およびロスコスト増を招来するので、好ましくない。また、熱処理後の冷却過程において金属間化合物の析出を防止するためには、冷却開始温度を金属間化合物の析出温度以上とする必要があり、高温での熱処理が適用されるため、粗粒な組織となり、耐水素脆化特性に悪い影響を与えるなど、新たな課題が生じることになる。   However, the soaking process is not preferable because it naturally increases the production period and increases the loss cost. Moreover, in order to prevent precipitation of intermetallic compounds in the cooling process after heat treatment, it is necessary to set the cooling start temperature to be equal to or higher than the precipitation temperature of intermetallic compounds. It becomes a structure, and new problems arise, such as adversely affecting the hydrogen embrittlement resistance.

そこで、連続鋳造以降の工程における技術ではなく、金属間化合物が析出する凝固過程に着目した技術が特許文献3〜5に記載または提案されている。   Then, the technique which paid its attention to the solidification process in which an intermetallic compound precipitates is described or proposed in the patent documents 3-5 instead of the technique in the process after continuous casting.

特許文献3では、PRE の値を上げて二相ステンレス鋼の耐食性を向上させるにはCr,Moの増加が有効であるが、これらの元素は金属間化合物(σ相等)の生成を促すという好ましくない作用を持つため、PSI (Phase Stability Index:Cr+ 3.3Mo+ 3Si)が40以下となるようにCr,MoおよびSiの含有量を決定することが有効であることが記載されており、通常の熱間加工時の加熱条件、熱処理条件および溶接条件で金属間化合物が生成しないとしている。   In Patent Document 3, an increase in Cr and Mo is effective for increasing the PRE value and improving the corrosion resistance of the duplex stainless steel. However, these elements preferably promote the formation of intermetallic compounds (σ phase, etc.). It is described that it is effective to determine the contents of Cr, Mo and Si so that PSI (Phase Stability Index: Cr + 3.3Mo + 3Si) is 40 or less. It is said that no intermetallic compound is produced under the heating conditions, heat treatment conditions and welding conditions during the inter-working.

また、特許文献4では、Moの含有量を低減させてσ相の生成を抑制し、フェライト量およびPREWを所定範囲とした二相ステンレス鋼が提案されている。   Patent Document 4 proposes a duplex stainless steel in which the content of Mo is reduced to suppress the formation of the σ phase, and the ferrite content and PREW are in a predetermined range.

しかしながら、特許文献3,4のようにCrやMoの含有量を低減させると、二相ステンレス鋼としての強度及び耐食性を損なうことになる。   However, if the content of Cr or Mo is reduced as in Patent Documents 3 and 4, the strength and corrosion resistance as a duplex stainless steel are impaired.

また、特許文献5には、原子半径の大きいMM(原子番号が57から71までの希土類金属の混合物)および/またはY を総量で0.0001〜1.0 質量%含有させ、非常に脆い金属間化合物の拡散および析出速度を遅延させ、微量のRE系複合化合物、またはBa酸化物を使用することにより、Cr,Mo,Si,W の拡散をさらに阻止することにより、金属間化合物の析出速度を低減させ、析出を抑制する技術が提案されている。   Further, Patent Document 5 contains MM (a mixture of rare earth metals having an atomic number of 57 to 71) and / or Y 2 in a total amount of 0.0001 to 1.0% by mass to diffuse a very brittle intermetallic compound. And by slowing the deposition rate and using a small amount of RE-based composite compound or Ba oxide, further preventing the diffusion of Cr, Mo, Si, W, reducing the deposition rate of intermetallic compounds, Techniques for suppressing precipitation have been proposed.

しかしながら、特許文献5で提案された技術で添加するMMやY は(複合)酸化物を形成しやすいので、ノズル閉塞を発生しやすくなり、安定生産が難しくなることに加えて、コスト増を招来することも課題となる。   However, MM and Y added by the technique proposed in Patent Document 5 tend to form (composite) oxides, so that nozzle clogging is likely to occur, and stable production becomes difficult. To do is also a challenge.

特開平4−165019号公報Japanese Patent Laid-Open No. 4-165019 特開平9−241746号公報Japanese Patent Laid-Open No. 9-241746 特開平5−132741号公報JP-A-5-132741 特表2003−503596号公報Special table 2003-503596 gazette 特開2011−174183号公報JP 2011-174183 A

本発明が解決しようとする問題点は、特許文献1,2で提案された技術は、連続鋳造以降の工程における金属間化合物の析出抑制技術であり、熱処理や工程数の増加など、生産工期の長期化、およびロスコスト増を招くという点である。加えて、熱処理により粗粒な組織となり、耐水素脆化特性に悪い影響を与えるという点である。   The problem to be solved by the present invention is that the techniques proposed in Patent Documents 1 and 2 are techniques for suppressing the precipitation of intermetallic compounds in the processes after continuous casting, such as heat treatment and an increase in the number of processes. Longer time and increased loss cost. In addition, the heat treatment results in a coarse structure and adversely affects the hydrogen embrittlement resistance.

また、特許文献3,4で記載又は提案された技術は、高強度および高耐食性に大きく影響するCrやMoの含有量を低減させるので、所望の特性を得られない可能性があるという点である。   In addition, since the techniques described or proposed in Patent Documents 3 and 4 reduce the content of Cr and Mo, which greatly affects high strength and high corrosion resistance, there is a possibility that desired characteristics may not be obtained. is there.

また、特許文献5で提案された技術は、金属間化合物の拡散および析出速度を遅延させることから有用であると考えられるが、ノズル閉塞を発生しやすく、安定生産に不向きであるという点である。また、添加元素の価格が高く、ロスコスト増となるという点である。   The technique proposed in Patent Document 5 is thought to be useful because it delays the diffusion and precipitation rate of intermetallic compounds, but it is prone to nozzle clogging and is not suitable for stable production. . In addition, the price of the additive element is high, resulting in an increase in loss cost.

つまり、金属間化合物の析出抑制を連続鋳造以降の工程で行う従来技術の場合は、熱処理や工程数の増加など、生産工期の長期化、およびロスコスト増を招く。また、連続鋳造における金属間化合物の析出抑制技術に関しても、所望の特性、および操業性に影響を与えることなく金属間化合物の析出を抑制する技術は確立されていないことが課題であった。   That is, in the case of the prior art in which the precipitation of intermetallic compounds is suppressed in the processes after continuous casting, the production period is prolonged and the loss cost is increased, such as heat treatment and an increase in the number of processes. In addition, regarding the technique for suppressing precipitation of intermetallic compounds in continuous casting, there has been a problem that a technique for suppressing precipitation of intermetallic compounds without affecting desired characteristics and operability has not been established.

本発明は、上記実情に鑑みてなされたものであり、高耐食性二相ステンレス鋼の製造時に、脆化相であるσ相やΧ相等の金属間化合物の析出を、CrやMoの含有量を低減させることなく抑制し、高耐食性を維持しつつ、より優れた耐脆化性、鋳造性および熱間加工性を有する二相ステンレス鋼の製造方法を提供することを目的としている。   The present invention has been made in view of the above circumstances, and during the production of highly corrosion-resistant duplex stainless steel, precipitation of intermetallic compounds such as σ phase and slag phase, which is an embrittlement phase, is carried out by reducing the content of Cr and Mo. It aims at providing the manufacturing method of the duplex stainless steel which has the more excellent embrittlement resistance, castability, and hot workability, suppressing without reducing and maintaining high corrosion resistance.

すなわち、本発明は、
質量%で、C :0.03%以下、Si:0.4 %以下、Mn:3.0 %以下、P :0.04%以下、S :0.008%以下、Cu:0.2〜2.0%、Ni:5.0〜7.0%、Cr:23〜30%、Mo:2.5 〜5.0%、W :1.5〜4.0%、N :0.24〜0.40%、Al:0.030%以下に加えて、さらにBiを10〜300質量ppm含有し、残部がFeおよび不純物からなる合金を連続鋳造して鋼管製造用の素材となる鋳片を製造する方法において、
前記合金中にBiを含有させない場合の連続鋳造鋳片の横断面中心における金属間化合物の析出量I0と、Biを含有させた前記合金の連続鋳造鋳片の横断面中心における金属間化合物の析出量I との比I /I0と下記式で定義される前記合金の平均Md値との関係、並びに、前記合金の平均Md値と含有Bi量の関係を求め、この関係に基づき、前記合金の平均Md値が0.97以下で、前記の比I /I0が0.70以下となるBi含有量とすることを最も主要な特徴としている。
平均Md値=ΣΧi・(Md)i [eV]
ここで、Χi:合金成分i の原子分率 [-]
(Md)i:合金成分iのMd値 [eV]
That is, the present invention
In mass%, C: 0.03% or less, Si: 0.4% or less, Mn: 3.0% or less, P: 0.04% or less, S: 0.008% or less, Cu: 0.2-2.0%, Ni: 5.0-7.0%, Cr: In addition to 23 to 30%, Mo: 2.5 to 5.0%, W: 1.5 to 4.0%, N: 0.24 to 0.40%, Al: 0.030% or less, Bi is further contained in 10 to 300 ppm by mass, the balance being Fe and In the method of continuously casting an alloy made of impurities to produce a slab that is a material for steel pipe production,
The amount of intermetallic compound precipitation I 0 at the center of the cross-section of the continuous cast slab when Bi is not contained in the alloy, and the amount of intermetallic compound at the center of the cross-section of the continuous cast slab of the alloy containing Bi The relationship between the ratio I 1 / I 0 of the precipitation amount I and the average Md value of the alloy defined by the following formula, and the relationship between the average Md value of the alloy and the Bi content, and based on this relationship, The most important characteristic is that the Bi content is such that the average Md value of the alloy is 0.97 or less and the ratio I / I 0 is 0.70 or less.
Average Md value = ΣΧ i・ (Md) i [eV]
Where Χ i : atomic fraction of alloy component i [-]
(Md) i : Md value of alloy component i [eV]

本発明において、Bi含有量を所定の含有量だけ添加するには、鋳造時に、Biを合金化させたワイヤーをタンディッシュ内の溶鋼に挿入することで添加すればよい。   In the present invention, the Bi content may be added by a predetermined content by inserting a wire alloyed with Bi into the molten steel in the tundish at the time of casting.

本発明では、鋳型内の溶鋼、二次冷却帯における未凝固溶鋼の少なくとも一方に電磁攪拌力を作用させることで、金属間化合物の析出のより高い抑制効果を発揮することができる。   In the present invention, an electromagnetic stirring force is applied to at least one of the molten steel in the mold and the unsolidified molten steel in the secondary cooling zone, thereby exhibiting a higher suppression effect of precipitation of intermetallic compounds.

上記本発明方法によって鋳造された鋳片は、組織が微細化しており、相安定性が変化することで脆化相である金属間化合物の析出が抑制される。   The slab cast by the above-described method of the present invention has a fine structure, and changes in phase stability suppress precipitation of an intermetallic compound that is an embrittled phase.

本発明方法により製造された連続鋳造鋳片は、脆化相である金属間化合物(σ相およびΧ相)の析出が抑制されており、加工性に優れた性質を有する鋼管用の鋳片を得ることができる。   The continuous cast slab produced by the method of the present invention is a slab for steel pipes, in which precipitation of intermetallic compounds (σ phase and slag phase) which are embrittled phases is suppressed, and which has excellent workability. Can be obtained.

本発明の金属間化合物の評価位置を説明する図である。It is a figure explaining the evaluation position of the intermetallic compound of this invention. Bi濃度と、凝固組織粗さの比d /d0、および金属間化合物の発生指標である平均Md値との関係を示す図である。And Bi concentration, the ratio d / d 0 solidification structure roughness, and a diagram showing the relationship between the average Md value is generated indication of intermetallic compounds. Bi濃度に対する平均Md値を示す図である。It is a figure which shows the average Md value with respect to Bi density | concentration. 平均Md値と金属間化合物の面積率比I /I0との関係を示す図である。Is a graph showing the relationship between the average Md value and the area ratio I / I 0 of the intermetallic compound.

発明者らは、上述の課題を解決するために鋭意検討を重ねた結果、連続鋳造の過程で溶鋼に界面活性元素であるBiを所定量含有させれば、Biを含有しない場合に比べ、金属間化合物の析出が抑制された、加工性に優れた鋼管に好適な二相ステンレス鋼の鋳片を得られることを知見し、本発明を完成させた。   As a result of intensive studies in order to solve the above-mentioned problems, the inventors have found that when a predetermined amount of Bi, which is a surface active element, is contained in the molten steel in the process of continuous casting, compared to the case of not containing Bi, It was found that a duplex stainless steel slab suitable for a steel pipe excellent in workability in which precipitation of intermetallic compounds was suppressed, and the present invention was completed.

以下、本知見について詳細に説明する。
A)金属間化合物への影響について
通常、連続鋳造鋳片の凝固組織はデンドライト形態を呈している。複雑な組織として知られる二相ステンレス鋼も、初晶であるフェライトが晶出してデンドライトに成長し、その後、包共晶反応によりオーステナイトが晶出し、フェライト及びオーステナイト二相で凝固を完了する。この際、凝固過程でデンドライト形態である柱状晶から分岐柱状晶、等軸晶となった場合でも、溶質が排出される組織の樹間部からオーステナイトが晶出する。また、室温までの冷却過程でも、フェライトがオーステナイトに変態し、形態が大きく変わることが知られている。
Hereinafter, this knowledge will be described in detail.
A) Influence on intermetallic compounds Normally, the solidification structure of a continuous cast slab has a dendritic form. In a duplex stainless steel known as a complex structure, ferrite, which is a primary crystal, crystallizes and grows into dendrites, and then austenite crystallizes by a peritectic eutectic reaction, and solidification is completed in the ferrite and austenite two phases. At this time, even when the dendrite-like columnar crystal is changed to a branched columnar crystal or an equiaxed crystal in the solidification process, austenite is crystallized from the intertree portion of the structure where the solute is discharged. In addition, it is known that ferrite is transformed into austenite even in the cooling process to room temperature, and its form changes greatly.

このように、凝固組織は凝固過程における溶質元素の拡散に起因して形成され、溶質元素はその平衡分配係数に依存して、デンドライトや分岐柱状晶、柱状晶の樹間部において濃化する。二相ステンレス鋼に含有されるCrやMoの平衡分配係数は1.0 より小さいことから樹間部において濃化し、ミクロ的には特にオーステナイト晶出後、最終凝固位置となる粒界に、マクロ的には図1に示すように、最終凝固部1となる中心部に凝固偏析が残存し、当該領域で脆化相の溶体化、析出温度が上昇することにより、金属間化合物(σ相、Χ相)がさらに析出しやすいという特徴を有している。なお、図1中の2は外周部に形成された柱状晶域、3は柱状晶域2と最終凝固部1間の分岐柱状晶域又は等軸晶域を示す。   Thus, the solidified structure is formed due to diffusion of solute elements in the solidification process, and the solute elements are concentrated in dendrites, branched columnar crystals, and the intertree portions of the columnar crystals depending on the equilibrium partition coefficient. Since the equilibrium partition coefficient of Cr and Mo contained in the duplex stainless steel is less than 1.0, it concentrates in the tree part, and microscopically, at the grain boundary that becomes the final solidification position macroscopically, especially after austenite crystallization. As shown in FIG. 1, solidification segregation remains in the central portion that becomes the final solidified portion 1, and the solution and precipitation temperature of the embrittled phase increases in the region, thereby causing intermetallic compounds (σ phase, phase ) Is more likely to precipitate. In FIG. 1, 2 indicates a columnar crystal region formed in the outer peripheral portion, and 3 indicates a branched columnar crystal region or equiaxed crystal region between the columnar crystal region 2 and the final solidified portion 1.

金属間化合物は、母相とは全く異なる結晶構造を持ち、その析出は化学量論比に大きく左右される。例えばΧ相はFe18Cr6Mo5といった複雑な構造を有している。このような構造を有する金属間化合物の析出は、ミクロ的には最終凝固部であるフェライト−オーステナイト粒界、およびマクロ的には最終凝固部である中心部の溶質元素の濃化に起因するため、発明者らは後述の一方向凝固試験を実施し、凝固組織を観察することで界面活性元素であるBiを微量に添加した場合の影響を調査した。 Intermetallic compounds have a completely different crystal structure from the parent phase, and their precipitation is greatly influenced by the stoichiometric ratio. For example, the soot phase has a complex structure such as Fe 18 Cr 6 Mo 5 . Precipitation of intermetallic compounds having such a structure is due to the concentration of solute elements in the ferrite-austenite grain boundary, which is the final solidified part, and in the central part, which is the final solidified part, macroscopically. The inventors conducted a unidirectional solidification test, which will be described later, and investigated the effect of adding a trace amount of Bi, which is a surface active element, by observing the solidified structure.

顕微鏡およびSEM-EDX(走査型電子顕微鏡(Scanning Electron Microscope;以下、SEM と略す。)と、それに付属するエネルギー分散型X線分析装置(Energy Dispersive X-ray Detector;以下、EDX と略す。))による観察の結果、発明者らは、Bi添加により凝固組織が微細化し、Χ相やσ相の金属間化合物の析出が大幅に抑制されることを確認した。   Microscope and SEM-EDX (Scanning Electron Microscope (hereinafter abbreviated as SEM) and energy dispersive X-ray detector (Energy Dispersive X-ray Detector; hereinafter abbreviated as EDX)) As a result of the observation, the inventors confirmed that the addition of Bi refined the solidified structure, and the precipitation of the intermetallic compound of the liquid phase and the σ phase was significantly suppressed.

前記二相ステンレス鋼に界面活性元素であるBiを微量に添加することで、金属間化合物の析出が抑制される理由として以下の2点の効果が考えられる。   The following two effects can be considered as the reason why precipitation of intermetallic compounds is suppressed by adding a small amount of Bi, which is a surface active element, to the duplex stainless steel.

第一の点は、粒界および最終凝固部における溶質元素の濃化低減である。
溶質元素の濃化は凝固組織の粗さに依存することが知られており、これが低減したことにより溶質元素の濃化自体が抑制され、金属間化合物の析出が抑制される。
The first point is a reduction in concentration of solute elements at the grain boundaries and the final solidified part.
It is known that the concentration of the solute element depends on the roughness of the solidified structure, and by reducing this, the concentration of the solute element itself is suppressed and the precipitation of intermetallic compounds is suppressed.

第二の点は、金属間化合物の相安定性の変化である。
金属間化合物の析出は局所的な相安定性に大きく影響を受けることが報告されており、多元系の相安定性の指標の一つとして合金の各成分のd軌道にある電子軌道エネルギーを意味するMd値[eV]を用いて析出傾向を予測するPHACOMP(Phase Computation)法が確立されている。
The second point is a change in phase stability of the intermetallic compound.
It has been reported that precipitation of intermetallic compounds is greatly affected by local phase stability, which means the electron orbital energy in the d orbital of each component of the alloy as one of the indicators of phase stability of multicomponent systems. A PHACOMP (Phase Computation) method has been established to predict the precipitation tendency using the Md value [eV].

発明者らは、前記Md値を使用してBi添加による金属間化合物の析出の抑制状況を整理し、評価することを想到した。なお、合金のMd値は下記(1) 式の平均Md値で定義されている(森永ら、鉄と鋼、71(1985)、p.1441〜1451。以下、非特許文献1という。)。
平均Md値=ΣΧi・(Md)i [eV] …(1)
ここで、Χi:合金成分iの原子分率 [-]
(Md)i:合金成分iのMd値[eV]
The inventors conceived of using the Md value to organize and evaluate the suppression state of precipitation of intermetallic compounds due to Bi addition. The Md value of the alloy is defined by the average Md value of the following formula (1) (Morinaga et al., Iron and Steel, 71 (1985), p. 1441 to 1451. Hereinafter referred to as Non-Patent Document 1).
Average Md value = ΣΧ i · (Md) i [eV]… (1)
Where Χ i : atomic fraction of alloy component i [-]
(Md) i : Md value of alloy component i [eV]

前記合金成分iのMd値は、クラスター計算(数個〜数十個からなる原子の集合体(クラスター)模型を用いて行う分子軌道計算法)により求めることができる(M.Morinaga et al.,J. Phys. Soc. Jpn.,53(1984), p.653)。   The Md value of the alloy component i can be obtained by cluster calculation (a molecular orbital calculation method using a cluster model of atoms consisting of several to tens of atoms) (M. Morinaga et al., J. Phys. Soc. Jpn., 53 (1984), p. 653).

合金の平均Md値は、初期組成と偏析比より求められる粒界および最終凝固部の組成を原子分率に換算してΧiを算出することで、金属間化合物の析出を整理することが可能である。 The average Md value of the alloy can be arranged from the precipitation of intermetallic compounds by calculating Χ i by converting the composition of the grain boundary and final solidified part calculated from the initial composition and segregation ratio into atomic fraction. It is.

つまり、金属間化合物固有の析出臨界値に対して、Md値が大きければ金属間化合物の相が安定し、析出しやすいことを示す。反対に、Md値が小さければ析出抑制傾向であることを示す。   That is, when the Md value is large with respect to the precipitation critical value unique to the intermetallic compound, the phase of the intermetallic compound is stabilized and is likely to precipitate. Conversely, a smaller Md value indicates a tendency to suppress precipitation.

金属間化合物の析出は温度履歴にも大きく影響されることが報告されており、実験により観察するためには、製管やその後の熱処理工程を模擬した熱履歴や圧下比を付与し、その後、金属間化合物現出用の試薬を用いて評価する必要があり、鋳造のままの組織からMd値を用いて金属間化合物の析出傾向を予測できれば、より簡便な制御方法と言える。   It has been reported that the precipitation of intermetallic compounds is also greatly affected by the temperature history, and in order to observe by experiment, a thermal history and a rolling ratio simulating pipe making and the subsequent heat treatment process were given, If it is necessary to evaluate using a reagent for revealing an intermetallic compound and the precipitation tendency of the intermetallic compound can be predicted from the as-cast structure using the Md value, it can be said to be a simpler control method.

発明者らは、前記非特許文献1で、Biを所定量含有する合金鋼では、金属間化合物が析出すると報告されている臨界値を超えないことを、後述する一方向凝固試験により知見した。   The inventors have found by a unidirectional solidification test described later that the alloy steel containing a predetermined amount of Bi in Non-Patent Document 1 does not exceed the critical value reported to precipitate an intermetallic compound.

これは粒界および最終凝固部における溶質元素の濃化バランスが変化したことを示しており、その理由として凝固組織(デンドライト、分岐柱状晶、等軸晶)の間隔を変化させたことにより、凝固組織軸芯からの溶質の拡散量、および凝固組織の樹間から凝固組織軸芯への逆拡散量が変化したことが推測される。   This indicates that the concentration balance of the solute elements at the grain boundaries and the final solidification zone has changed. The reason for this is that the solidification structure (dendrites, branched columnar crystals, equiaxed crystals) has changed by changing the interval. It is presumed that the amount of diffusion of the solute from the tissue axis and the amount of back diffusion from the space between the solidified tissues to the solidified tissue axis changed.

これにより最終的にデンドライト樹間の溶質元素の濃化バランスが変化し、金属間化合物の析出が抑制されたと考えられる。   As a result, the concentration balance of solute elements between dendritic trees finally changed, and it is considered that precipitation of intermetallic compounds was suppressed.

B)最終組織および機械特性への影響について
二相ステンレス鋼は、フェライトとオーステナイトの二相組織であり、通常、凝固組織が微細であることが知られている。しかしながら、Biの微量添加により、両組織がさらに微細となり、さらなる高強度化の効果がある。
B) Influence on final structure and mechanical properties Duplex stainless steel is a two-phase structure of ferrite and austenite, and it is generally known that the solidified structure is fine. However, the addition of a small amount of Bi makes both structures finer and has the effect of further increasing the strength.

本発明は、前述の知見に基づいて完成されたものであり、下記の二相ステンレス鋼の鋼管用鋳片を連続鋳造する方法である。なお、以下の説明では、鋼の成分組成については、特に断らない限り、「%」は「質量%」を意味し、「ppm」は「質量ppm」を意味する。   The present invention has been completed based on the above-described knowledge, and is a method for continuously casting the following duplex stainless steel slabs for steel pipes. In the following description, “%” means “mass%” and “ppm” means “mass ppm” unless otherwise specified.

すなわち、本発明は、
C :0.03%以下、Si:0.4 %以下、Mn:3.0 %以下、P :0.04%以下、S :0.008%以下、Cu:0.2〜2.0%、Ni:5.0〜7.0%、Cr:23〜30%、Mo:2.5 〜5.0%、W :1.5〜4.0%、N :0.24〜0.40%、Al:0.030%以下に加えて、さらにBiを10〜300ppm含有し、残部がFeおよび不純物からなる合金を連続鋳造して鋼管製造用の素材となる鋳片を製造する方法において、
前記合金中にBiを含有させない場合の連続鋳造鋳片の横断面中心における金属間化合物の析出量I0と、Biを含有させた前記合金の連続鋳造鋳片の横断面中心における金属間化合物の析出量I との比I /I0と下記式で定義される前記合金の平均Md値との関係、並びに、前記合金の平均Md値と含有Bi量の関係を求め、この関係に基づき、前記合金の平均Md値が0.97以下で、前記の比I /I0が0.70以下となるBi含有量とするものである。
That is, the present invention
C: 0.03% or less, Si: 0.4% or less, Mn: 3.0% or less, P: 0.04% or less, S: 0.008% or less, Cu: 0.2-2.0%, Ni: 5.0-7.0%, Cr: 23-30% , Mo: 2.5 to 5.0%, W: 1.5 to 4.0%, N: 0.24 to 0.40%, Al: 0.030% or less, and further containing 10 to 300ppm of Bi with the balance being Fe and impurities. In a method for producing a slab that is cast and becomes a material for steel pipe production,
The amount of intermetallic compound precipitation I 0 at the center of the cross-section of the continuous cast slab when Bi is not contained in the alloy, and the amount of intermetallic compound at the center of the cross-section of the continuous cast slab of the alloy containing Bi The relationship between the ratio I 1 / I 0 of the precipitation amount I and the average Md value of the alloy defined by the following formula, and the relationship between the average Md value of the alloy and the Bi content, and based on this relationship, The Bi content is such that the average Md value of the alloy is 0.97 or less and the ratio I / I 0 is 0.70 or less.

本発明における二相ステンレス鋼の成分組成及びその限定理由を以下に説明する。   The component composition of the duplex stainless steel in the present invention and the reason for limitation will be described below.

C :0.03%以下
C はオーステナイト相を安定化する上で必要な元素である。しかしながら、含有量が過剰な場合は炭化物が析出しやすくなって耐食性が劣化するので、本発明では、C 含有量の上限を0.03%とした。より好ましい上限は0.02%である。上記の効果を得たい場合には、C を0.01%以上含有することが望ましい。
C: 0.03% or less
C is an element necessary for stabilizing the austenite phase. However, if the content is excessive, carbides are likely to precipitate and the corrosion resistance deteriorates. Therefore, in the present invention, the upper limit of the C content is set to 0.03%. A more preferred upper limit is 0.02%. In order to obtain the above effect, it is desirable to contain 0.01% or more of C 2.

Si:0.4 %以下
Siは製錬時の溶鋼の脱酸に必要な元素である。しかしながら、含有量が過剰になるとσ相の生成が促進されるので、本発明では、Si含有量の上限を0.4 %とした。
Si: 0.4% or less
Si is an element necessary for deoxidation of molten steel during smelting. However, since the formation of the σ phase is promoted when the content is excessive, the upper limit of the Si content is set to 0.4% in the present invention.

Mn:3.0 %以下
Mnは、Siと同様に、溶鋼の脱酸に必要な元素であるとともに、オーステナイト相の安定化に有効な元素である。また、Mnは熱間加工性の向上に寄与する元素でもある。さらに、MnにはN の溶解度を大きくする作用がある。しかしながら、Mn含有量が過剰であると耐食性を劣化させる。従って、本発明では、Mn含有量の上限を3.0 %とした。
Mn: 3.0% or less
Like Si, Mn is an element necessary for deoxidation of molten steel and an element effective for stabilizing the austenite phase. Mn is also an element contributing to improvement of hot workability. Furthermore, Mn has the effect of increasing the solubility of N 2. However, if the Mn content is excessive, the corrosion resistance is deteriorated. Therefore, in the present invention, the upper limit of the Mn content is set to 3.0%.

P :0.04%以下
P は不純物として不可避的に混入する。しかしながら、P の含有量が過剰であると耐食性や靱性の劣化が著しくなる。従って、本発明では、P の含有量の上限を0.04%とした。
P: 0.04% or less
P is inevitably mixed as an impurity. However, if the P content is excessive, the corrosion resistance and toughness deteriorate significantly. Therefore, in the present invention, the upper limit of the content of P is set to 0.04%.

S :0.008%以下
S もP と同様に不純物として不可避的に混入する。過剰なS は加工性を害するとともに、硫化物は孔食の発生起点となり耐孔食性を劣化させる。従って、本発明では、S の含有量の上限を0.008 %とした。
S: 0.008% or less
S, like P, is inevitably mixed as an impurity. Excessive S impairs workability, and sulfides are the starting point for pitting corrosion and deteriorate pitting corrosion resistance. Therefore, in the present invention, the upper limit of the content of S is set to 0.008%.

Cu:0.2〜2.0%
Cuは還元性の低いとされる低pH環境、例えばH2SO4またはH2S環境での耐食性向上に特に有効な元素である。これらの効果を得るためには、Cuを0.2%以上含有させる必要がある。しかしながら、過剰に含有させた場合、熱間加工性を劣化させるだけでなく、金属間化合物の析出を促進する。そのため、本発明では、Cuの含有量の上限を2.0%とした。
Cu: 0.2-2.0%
Cu is an element particularly effective for improving the corrosion resistance in a low pH environment, for example, H 2 SO 4 or H 2 S environment, which is considered to have low reducing ability. In order to acquire these effects, it is necessary to contain Cu 0.2% or more. However, when excessively contained, not only the hot workability is deteriorated, but also precipitation of intermetallic compounds is promoted. Therefore, in the present invention, the upper limit of the Cu content is set to 2.0%.

Ni:5.0〜7.0%
Niは、オーステナイト相を安定化させるために必須の元素である。しかしながら、その含有量が低いと、フェライト量が多くなりすぎて、二相ステンレス鋼としての特徴が失われる。また、フェライト中へのN の固溶度が小さいため、フェライト量が多くなると窒化物が析出しやすくなり耐食性が劣化する。そのため、本発明では、Niの含有量の下限を5.0%とした。一方で、Ni含有量が過剰な場合、金属間化合物の析出が容易になり靱性が劣化する。従って、本発明では、Niの含有量の上限を7.0%とした。
Ni: 5.0-7.0%
Ni is an essential element for stabilizing the austenite phase. However, if the content is low, the amount of ferrite becomes too large and the characteristics as a duplex stainless steel are lost. In addition, since the solid solubility of N 2 in ferrite is small, when the amount of ferrite increases, nitrides are likely to precipitate and the corrosion resistance deteriorates. Therefore, in the present invention, the lower limit of the Ni content is set to 5.0%. On the other hand, when the Ni content is excessive, precipitation of intermetallic compounds is facilitated and toughness is deteriorated. Therefore, in the present invention, the upper limit of the Ni content is set to 7.0%.

Cr:23〜30%
Crは、耐食性および強度を確保するために必須の元素である。しかしながら、その含有量が低いと、いわゆるスーパー二相ステンレス鋼といえるだけの耐食性が得られない。従って、本発明では、Crの含有量の下限を23%とした。一方、その含有量が過剰な場合、金属間化合物の析出が顕著になり、耐食性の低下とともに熱間加工性の低下を招く。従って、本発明では、Cr含有量の上限を30%とした。
Cr: 23-30%
Cr is an essential element for ensuring corrosion resistance and strength. However, if the content is low, corrosion resistance sufficient for so-called super duplex stainless steel cannot be obtained. Therefore, in the present invention, the lower limit of the Cr content is set to 23%. On the other hand, when the content is excessive, precipitation of intermetallic compounds becomes remarkable, which causes a decrease in hot workability as well as a decrease in corrosion resistance. Therefore, in the present invention, the upper limit of the Cr content is set to 30%.

Mo:2.5 〜5.0 %
Moは耐孔食性を改善する作用を有する元素である。また、鋼の高強度化にも有用な元素である。しかしながら、その含有量が2.5 %未満では、その効果が得られない。一方、その含有量が過剰な場合、Crと同様、金属間化合物の析出の起因となる。従って、本発明では、Moの含有量の上限を5.0 %とした。
Mo: 2.5-5.0%
Mo is an element having an effect of improving pitting corrosion resistance. It is also an element useful for increasing the strength of steel. However, if the content is less than 2.5%, the effect cannot be obtained. On the other hand, when the content is excessive, it causes precipitation of intermetallic compounds like Cr. Therefore, in the present invention, the upper limit of the Mo content is set to 5.0%.

W :1.5 〜4.0 %
W はMoと比較して金属間化合物の析出の起因となることが少なく、耐食性、特に耐孔食性および耐隙間腐食性を向上させる元素である。また、鋼の高強度化にも非常に有効な元素であり、W を適宜含有させれば、CrおよびMoさらにはN の含有量を増やさずに高い耐食性を確保することができる。そのため、本発明では、W の含有量の下限を1.5 %とした。一方、W を過剰に含有させても耐食性の向上効果は飽和する。従って、本発明では、W の含有量の上限を4.0 %とした。
W: 1.5-4.0%
W is an element that causes less precipitation of intermetallic compounds than Mo and improves corrosion resistance, particularly pitting corrosion resistance and crevice corrosion resistance. Further, it is an element that is very effective for increasing the strength of steel. If W is appropriately contained, high corrosion resistance can be secured without increasing the contents of Cr, Mo, and N. Therefore, in the present invention, the lower limit of the content of W is set to 1.5%. On the other hand, even if W is excessively contained, the effect of improving the corrosion resistance is saturated. Therefore, in the present invention, the upper limit of the content of W is 4.0%.

N :0.24〜0.40%
N は強力なオーステナイト生成元素であり、二相ステンレス鋼の熱的安定性および耐食性の向上、ならびに高強度化に有効な元素である。フェライト相とオーステナイト相とのバランスを適正なものにするため、フェライト生成元素であるCrおよびMoの含有量との関係でN を適宜含有させる必要がある。N は、Cr、MoおよびW と同様に合金の耐食性を向上させる効果も有する。そのため、本発明では、N の含有量の下限を0.24%とした。一方、その含有量が過剰な場合、ブローホールの発生による欠陥、溶接時の熱影響による窒化物生成等により鋼の靱性および耐食性を劣化させる。従って、本発明では、N の含有量の上限を0.40%とした。
N: 0.24-0.40%
N is a strong austenite-forming element, and is an element effective for improving the thermal stability and corrosion resistance of duplex stainless steel and increasing the strength. In order to achieve an appropriate balance between the ferrite phase and the austenite phase, it is necessary to appropriately contain N 2 in relation to the contents of the ferrite-forming elements Cr and Mo. N, like Cr, Mo and W, also has the effect of improving the corrosion resistance of the alloy. Therefore, in the present invention, the lower limit of the N 2 content is set to 0.24%. On the other hand, when the content is excessive, the toughness and corrosion resistance of the steel are deteriorated due to defects due to the occurrence of blowholes, nitride formation due to the thermal effect during welding, and the like. Therefore, in the present invention, the upper limit of the N 2 content is set to 0.40%.

Al:0.030%以下
Alは精錬時の溶鋼の脱酸に用いられる元素であるが、窒化物(AlN )を形成すると靱性の低下が懸念される。従って、本発明では、Alの含有量の下限を0.030%とした。
Al: 0.030% or less
Al is an element used for deoxidizing molten steel during refining, but if nitride (AlN) is formed, the toughness may be reduced. Therefore, in the present invention, the lower limit of the Al content is 0.030%.

Bi:10〜300ppm
Biは、本発明において重要な役割を果たす。当該合金がBiを含有することによって、鋳片の凝固組織が微細化し、ミクロ偏析を生じやすい当該合金においても鋳片の組織が均一となり、所望のσ相およびΧ相といった金属間化合物の析出を抑制する効果が得られる。当該効果を得るためには10 ppm以上のBi含有量が必要である。しかしながら、Bi含有量が300ppmを超えると、微量とはいえ鋳片の熱間加工での脆化が問題となることに加え、コスト増を招来することから、本発明では、Bi含有量の上限を300ppmとした。
Bi: 10-300ppm
Bi plays an important role in the present invention. When the alloy contains Bi, the solidification structure of the slab becomes finer, and the structure of the slab becomes uniform even in the alloy, which is prone to microsegregation, and precipitation of intermetallic compounds such as desired σ phase and slag phase occurs. The effect of suppressing is acquired. In order to obtain this effect, a Bi content of 10 ppm or more is necessary. However, if the Bi content exceeds 300 ppm, the embrittlement in the hot working of the slab becomes a problem, although it is a small amount, and also causes an increase in cost. Therefore, in the present invention, the upper limit of the Bi content Was set to 300 ppm.

ところで、Biは低融点金属として知られており、純Biの融点は274 ℃、沸点は1564℃であり、溶鋼の出鋼温度よりも低いので、歩留りの低下が予想される。そのため、融点および沸点を上昇させる目的でNiと合金化させたBiNiワイヤーを75%Bi-25%Niとして製造し、鋳造時にタンディッシュ内の溶鋼に挿入することで添加することが望ましい。   By the way, Bi is known as a low-melting-point metal. Pure Bi has a melting point of 274 ° C. and a boiling point of 1564 ° C., which is lower than the temperature at which molten steel is discharged. Therefore, it is desirable to add BiNi wire alloyed with Ni for the purpose of raising the melting point and boiling point as 75% Bi-25% Ni and insert it into the molten steel in the tundish at the time of casting.

発明者らは、上記方法で連続鋳造の過程で溶鋼にBiを添加し、鋼塊に微量(10 ppm以上、300ppm以下)のBiを含有させることにより、鋼の凝固組織を微細化し、脆化相である金属間化合物の析出を低減可能であることを、以下の一方向凝固試験により見出した。   The inventors refined the solidification structure of the steel and made it brittle by adding Bi to the molten steel in the process of continuous casting by the above method and adding a small amount (10 ppm or more and 300 ppm or less) of Bi to the steel ingot. It was found by the following unidirectional solidification test that precipitation of intermetallic compounds as phases can be reduced.

さらに、発明者らは、後述の実機試験より、Biを含有させた溶鋼に対し、鋳型内の溶鋼、二次冷却帯における未凝固溶鋼の少なくとも一方に、電磁攪拌力を作用させることで、より微量のBi添加量であっても効果的に金属間化合物の析出を低減可能であることを見出した。   Further, the inventors have made an electromagnetic stirring force to act on at least one of the molten steel in the mold and the unsolidified molten steel in the secondary cooling zone with respect to the molten steel containing Bi from the actual machine test described later. It was found that the precipitation of intermetallic compounds can be effectively reduced even with a small amount of Bi added.

電磁攪拌の条件は、いずれも凝固組織溶断による核の個数密度の増加を目的とし、鋳型内の溶鋼の場合、湯面から300 mm深さの位置に電磁攪拌用のコイルを設置し、凝固シェル前面における攪拌流速が40〜50cm/s となる範囲で鋳造する。一方、二次冷却帯における電磁攪拌は、鋳型直下にコイルを設置し、凝固シェル前面の攪拌流速が鋳型内の溶鋼を電磁攪拌する場合と同程度となるように付与する。二次冷却帯に置ける電磁攪拌は、上述の凝固組織溶断による核の個数密度の増加に加え、低温鋳造による過冷領域拡大効果もあり、等軸晶率の増加に寄与する。   The electromagnetic stirring conditions are all aimed at increasing the number density of nuclei by melting the solidified structure. In the case of molten steel in the mold, a coil for electromagnetic stirring is installed at a depth of 300 mm from the molten metal surface, and the solidified shell Casting is performed in the range where the stirring flow velocity at the front is 40 to 50 cm / s. On the other hand, the electromagnetic stirring in the secondary cooling zone is applied so that a coil is installed directly under the mold and the stirring flow velocity on the front surface of the solidified shell is approximately the same as when the molten steel in the mold is electromagnetically stirred. The electromagnetic stirring in the secondary cooling zone has the effect of expanding the supercooling region by low-temperature casting, in addition to the increase in the number density of nuclei due to the above-mentioned solidification structure cutting, and contributes to the increase in equiaxed crystal ratio.

その結果を、後述のように、図3に示す。Bi濃度が40ppmの場合に、電磁攪拌を作用させない場合の平均Md値は0.9 eV程度であるが、電磁攪拌を鋳型内の溶鋼、二次冷却帯における未凝固溶鋼の一方にのみ作用させた場合の平均Md値は0.7 eV、電磁攪拌を鋳型内の溶鋼、二次冷却帯における未凝固溶鋼の両方に作用させた場合の平均Md値は0.5 eV程度であった。   The result is shown in FIG. 3 as described later. When Bi concentration is 40 ppm, the average Md value when electromagnetic stirring is not applied is about 0.9 eV, but when electromagnetic stirring is applied only to one of the molten steel in the mold and the unsolidified molten steel in the secondary cooling zone. The average Md value was 0.7 eV, and the average Md value was about 0.5 eV when electromagnetic stirring was applied to both the molten steel in the mold and the unsolidified molten steel in the secondary cooling zone.

本効果は、電磁攪拌を付与することで、初期凝固組織であるフェライトのデンドライトの組織が分断され、非常に微細な核の個数密度が増加したことにより、等軸晶率が増大し、前述の図1に示す最終凝固部1となる中心部への凝固偏析が低減したことにより、より等方的な組織になったためであると考えられる。   The effect is that by applying electromagnetic stirring, the structure of the dendrites of ferrite, which is the initial solidification structure, is divided, and the number density of very fine nuclei is increased, thereby increasing the equiaxed crystal ratio. This is probably because the solidification segregation to the central portion that is the final solidification portion 1 shown in FIG. 1 is reduced, resulting in a more isotropic structure.

(一方向凝固試験の試験条件)
直径が15mm、高さが50mmの円柱形で、Bi含有量が11ppm、23ppm 、38ppm 、および52ppm である鋳塊と、Biを含有しない鋳塊について一方向凝固試験を行った。冷却は円柱の底面からのみ行い、冷却速度は連続鋳造の冷却速度に合わせて 5〜15℃/min とした。
(Test conditions for unidirectional solidification test)
Unidirectional solidification tests were performed on ingots having a diameter of 15 mm and a height of 50 mm and ingots containing Bi, 11 ppm, 23 ppm, 38 ppm, and 52 ppm, and ingots containing no Bi. Cooling was performed only from the bottom of the cylinder, and the cooling rate was 5 to 15 ° C / min in accordance with the cooling rate of continuous casting.

得られた鋳塊は、下記条件によりエッチングを実施し、凝固組織の観察を行った。凝固後の組織は二相組織であり、デンドライトアーム間隔測定による凝固組織の比較はできない。そのため、観察では、エッチング後の試料の各観察視野に対して、鋳造方向に垂直な線を10本引き、一定な長さの線分が粒界を横切る数をカウントして算術平均した値を各鋳塊の凝固組織粗さとした。   The obtained ingot was etched under the following conditions, and the solidified structure was observed. The solidified tissue is a two-phase tissue, and comparison of solidified tissues by dendrite arm interval measurement is not possible. Therefore, in observation, for each observation field of the sample after etching, 10 lines perpendicular to the casting direction were drawn, and the arithmetic average value was obtained by counting the number of lines with a certain length crossing the grain boundary. It was set as the solidification structure roughness of each ingot.

さらにエッチング後の試料の上記縦断面の表面よりフェライト−オーステナイト粒界を20箇所無作為に選定し、SEM-EDAXにより原子数分率を測定してMd値を算出した。   Furthermore, 20 ferrite-austenite grain boundaries were randomly selected from the surface of the longitudinal section of the sample after etching, and the Md value was calculated by measuring the atomic fraction with SEM-EDAX.

(エッチング条件)
エッチング液:10体積%シュウ酸水溶液
エッチング方法:電解エッチング
エッチング液の温度:室温
エッチング時間:60〜180秒
(Etching conditions)
Etching solution: 10% by volume oxalic acid aqueous solution Etching method: Electrolytic etching Etching solution temperature: Room temperature Etching time: 60 to 180 seconds

図2はBi濃度と凝固組織粗さの比、および金属間化合物の発生指標である平均Md値との関係を示す図である。図2では縦軸のうち主軸に、凝固組織粗さd の、Biを含有しない鋳塊の凝固組織粗さd0に対する比d /d0を示し、第2軸に平均Md値を示した。また、図2においては、凝固組織粗さの比を黒丸で示し、平均Md値を白丸で示すとともに、二相ステンレス鋼における金属間化合物(σ相)の発生臨界値として報告されている平均Md値(=0.97)を破線で示した。本発明では、平均Md値は0.97以下とする。これにより、本発明においては金属間化合物であるσ相は殆ど発生することがなく、σ相が原因となる加工時の割れが防止できる。 FIG. 2 is a graph showing the relationship between the Bi concentration and the solidified structure roughness ratio, and the average Md value, which is an index of generation of intermetallic compounds. In FIG. 2, the main axis of the vertical axis shows the ratio d / d 0 of the solidified structure roughness d to the solidified structure roughness d 0 of the ingot containing Bi, and the second axis shows the average Md value. In FIG. 2, the ratio of solidified structure roughness is indicated by black circles, the average Md value is indicated by white circles, and the average Md reported as the critical value of occurrence of intermetallic compounds (σ phase) in duplex stainless steel. The value (= 0.97) is indicated by a broken line. In the present invention, the average Md value is 0.97 or less. Thereby, in the present invention, the σ phase that is an intermetallic compound is hardly generated, and cracking during processing caused by the σ phase can be prevented.

図2から、Bi濃度が高いほど二相ステンレス鋼の凝固組織粗さの比が小さくなり、凝固組織が微細となることが分かる。これは、Biが二相ステンレス鋼の固液界面エネルギーを下げる効果を有する元素であり、その含有量が微量でも初晶であるフェライトの微細化に効果を示し、第二相であるオーステナイトも合わせて微細化したことによるものと考えられる。   FIG. 2 shows that the higher the Bi concentration, the smaller the ratio of solidified structure roughness of the duplex stainless steel, and the finer the solidified structure. This is an element that Bi has the effect of lowering the solid-liquid interface energy of duplex stainless steel, and even if its content is very small, it has an effect on refining primary ferrite, and the second phase austenite is also combined. This is thought to be due to the miniaturization.

さらに、図2よりBiを含有しない試料では、二相ステンレス鋼における金属間化合物(σ相)の発生臨界値を超えるのに対し、Biを含有した試料の平均Md値は発生臨界値未満であり、Biの添加は金属間化合物の析出抑制に効果があるといえる。   Furthermore, the sample containing Bi does not exceed the critical value for the generation of intermetallic compounds (σ phase) in the duplex stainless steel, whereas the average Md value for the sample containing Bi is less than the critical value for generation, as shown in FIG. It can be said that addition of Bi is effective in suppressing precipitation of intermetallic compounds.

図2において、平均Md値とBi濃度の間には線形の関係が認められ、平均Md値とBi濃度の関係を求めると、下記(2)式を得た。
Md値=[Bi%]×(-0.0019)+0.9847 …(2)
これを後述の連続鋳造試験に利用した。
In FIG. 2, a linear relationship is recognized between the average Md value and the Bi concentration. When the relationship between the average Md value and the Bi concentration is obtained, the following equation (2) is obtained.
Md value = [Bi%] x (-0.0019) + 0.9847 (2)
This was used for the continuous casting test described later.

さらに、後述するが、本発明で対象とする二相ステンレス鋼においては、上記の方法によって求めた平均Md値と面積率比I /I0は、図4に示すような関係を示す。二相ステンレス鋼においては、面積率比I /I0が0.7 以下であれば顕著な熱間加工性の改善ができる。従って、本発明においては、図4に示すような面積率比I /I0と平均Md値との関係を求め、これを基に面積率比I /I0が0.7 以下となるような平均Md値を求め、さらに、上記(2) 式を基に、そのような平均Md値となるようなBi濃度を求め、そのようなBi濃度となるようにBiを添加する。 Further, as will be described later, in the duplex stainless steel targeted by the present invention, the average Md value and the area ratio I / I 0 obtained by the above method show the relationship shown in FIG. In the duplex stainless steel, the hot workability can be remarkably improved if the area ratio I 1 / I 0 is 0.7 or less. Accordingly, in the present invention, the relationship between the area ratio ratio I / I 0 and the average Md value as shown in FIG. 4 is obtained, and based on this, the average Md is such that the area ratio ratio I / I 0 is 0.7 or less. A value is obtained, and further, based on the above equation (2), a Bi concentration such that such an average Md value is obtained is obtained, and Bi is added so as to obtain such a Bi concentration.

このようにすることで、ロスコストを招く過剰なBi添加をすることなく所望の面積率比I /I0の鋳片を得ることができる。 In this way, it is possible to obtain a desired cast piece area ratio I / I 0 without excessive addition of Bi leading to loss cost.

なお、上記(2) 式は電磁攪拌を作用させない場合の式であり、電磁攪拌を作用させる場合には、Md値と[Bi%]の関係が変わるので、これを考慮した関係式を求め、この関係式の基いてBi濃度を決定すればよい。   The above equation (2) is an equation when electromagnetic stirring is not applied, and when electromagnetic stirring is applied, the relationship between the Md value and [Bi%] changes. The Bi concentration may be determined based on this relational expression.

本発明の鋼管用鋳片の連続鋳造方法の効果を確認するため、下記鋳造条件により二相ステンレス鋼の連続鋳造試験を実施して、その結果を評価した。   In order to confirm the effect of the continuous casting method for steel pipe slab of the present invention, a continuous casting test of duplex stainless steel was carried out under the following casting conditions, and the result was evaluated.

(鋳造条件)
鋳造速度:0.4 m/分
鋳型サイズ:幅600 mm×厚み280 mm
添加したBi合金:NiBi(75%Bi−Niの外径がφ10mmのワイヤーを使用)
Bi合金の添加位置:タンディッシュ内
(Casting conditions)
Casting speed: 0.4 m / min Mold size: width 600 mm x thickness 280 mm
Added Bi alloy: NiBi (use 75% Bi-Ni outer diameter φ10mm wire)
Bi alloy addition position: in tundish

下記表1に、本発明で規定する条件で連続鋳造した実施例1〜8と、本発明で規定する条件を外れた比較例1の鋼の成分組成を示した。実施例1〜5及び比較例1は鋳型内の溶鋼および二次冷却帯における未凝固溶鋼に電磁攪拌を作用させない例、実施例6は鋳型内の溶鋼にのみ電磁攪拌を作用させた例、実施例7は二次冷却帯における未凝固溶鋼にのみ電磁攪拌を作用させた例、実施例8は鋳型内の溶鋼および二次冷却帯における未凝固溶鋼に電磁攪拌を作用させた例である。なお、鋳型内の溶鋼や二次冷却帯における未凝固溶鋼に作用させた電磁攪拌の条件は、先に説明したものである。   Table 1 below shows the component compositions of the steels of Examples 1 to 8 that were continuously cast under the conditions specified in the present invention and Comparative Example 1 that deviated from the conditions specified in the present invention. Examples 1 to 5 and Comparative Example 1 are examples in which electromagnetic stirring is not applied to the molten steel in the mold and unsolidified molten steel in the secondary cooling zone. Example 6 is an example in which electromagnetic stirring is applied only to the molten steel in the mold. Example 7 is an example in which electromagnetic stirring is applied only to unsolidified molten steel in the secondary cooling zone, and Example 8 is an example in which electromagnetic stirring is applied to molten steel in the mold and unsolidified molten steel in the secondary cooling zone. The conditions of electromagnetic stirring applied to the molten steel in the mold and the unsolidified molten steel in the secondary cooling zone are as described above.

また、下記表2に連続鋳造後の鋳片中のBi濃度、凝固組織粗さの比d /d0、金属間化合物の面積率比I /I0、平均Md値を示す。さらに、鋳片中心部近傍より外径が8mmの引張試験片を採取し、1300℃で引張試験を行った結果(絞り比)を併せて示す。 Table 2 below shows the Bi concentration in the slab after continuous casting, the ratio d / d 0 of the solidified structure roughness, the area ratio I / I 0 of the intermetallic compound, and the average Md value. Furthermore, the results (drawing ratio) of a tensile test piece having an outer diameter of 8 mm taken from the vicinity of the center part of the slab and subjected to a tensile test at 1300 ° C. are also shown.

Figure 2017080765
Figure 2017080765

Figure 2017080765
Figure 2017080765

表2における凝固組織粗さの比d /d0は、鋳片の横断面中心から外形表層側に50mmの位置を鋳込み方向に垂直な面より採取した試験片を用いて、以下のようにして求めた。前記試験片に上述のエッチングを行った後、凝固組織粗さを測定した。そして、測定値を用いて算術平均した値を鋳片の凝固組織粗さd とし、Biを添加しない鋼(比較例1)の凝固組織粗さd0との比d /d0(低減率)を算出した。 The ratio d / d 0 of the solidified structure roughness in Table 2 is as follows using a test piece taken from a surface perpendicular to the casting direction at a position of 50 mm from the center of the cross section of the slab to the outer surface layer side. Asked. After the above-mentioned etching was performed on the test piece, the solidified structure roughness was measured. Then, the solidification structure roughness d of the slab the arithmetic mean value with the measured values, the ratio d / d 0 (reduction ratio) between the solidification structure roughness d 0 of the steel without the addition of Bi (Comparative Example 1) Was calculated.

また、本発明では、図1に示す最終凝固部1の中で、代表値として鋳片の横断面の幅及び厚みの各1 /2 の位置周辺である中心部断面より試験片を採取し、1300℃で2 時間保持した後、製管試験を模擬し、熱間鍛造して得られた試料に対し、1110℃で30分の溶体化処理を実施した。   Further, in the present invention, in the final solidified portion 1 shown in FIG. 1, a test piece is collected from a central cross section around the position of each 1/2 of the width and thickness of the cross section of the slab as a representative value. After holding at 1300 ° C. for 2 hours, a pipe-forming test was simulated, and a solution obtained by hot forging was subjected to a solution treatment at 1110 ° C. for 30 minutes.

本試験片に対し、金属間化合物を着色する目的で村上試薬(10%KOH+10%K3[Fe(CN)6]+残部H2O)によりエッチングを施した鋳片断面の金属組織観察を実施した。Biを添加しない鋼(比較例1)の金属間化合物(Χ相およびσ相)の面積率I0を基準とし、Biを添加した鋼の金属間化合物(Χ相およびσ相)の面積率Iの比を取った金属間化合物の発生指数を面積率比I /I0(低減率)として評価した。この際、画像解析装置で1視野あたり0.64mm×0.46mmの被顕面積の画像を30視野観察し、金属間化合物(Χ相およびσ相)の平均面積率を各試験条件の代表面積率とした。 Observation of the metal structure of the cross section of the slab etched with Murakami's reagent (10% KOH + 10% K 3 [Fe (CN) 6 ] + balance H 2 O) for the purpose of coloring the intermetallic compound. Carried out. Based on the area ratio I 0 of the intermetallic compound (sintered phase and σ phase) of the steel not added with Bi (Comparative Example 1), the area ratio I of the intermetallic compound (sintered phase and σ phase) of the steel added with Bi The generation index of the intermetallic compound taking the ratio of was evaluated as the area ratio I 1 / I 0 (reduction rate). At this time, 30 images of an image with an area of 0.64 mm x 0.46 mm per field of view were observed with an image analyzer, and the average area ratio of intermetallic compounds (solid phase and σ phase) was determined as the representative area ratio of each test condition. did.

また、熱間絞り試験では、製管温度である1300℃の引張試験において、試験前の外径と試験後の破断面の径から絞り値を算出し、Biを添加しない鋼(比較例1)の絞り値Ra0を基準とし、Biを添加した鋼の絞り値Raの比Ra/Ra0(変化率)として評価した。 Also, in the hot drawing test, the drawing value is calculated from the outer diameter before the test and the diameter of the fracture surface after the test in the tensile test at 1300 ° C, which is the pipe making temperature, and steel without adding Bi (Comparative Example 1) The ratio Ra / Ra 0 (rate of change) of the drawing value Ra of the steel to which Bi was added was evaluated based on the drawing value Ra 0 of the steel.

また、鋳片中のBi濃度は、連続鋳造試験で得た鋳片より作成した切粉よりガス分析を実施し、鋳片に含有されるBi濃度を調査した結果得られた値である。   Further, the Bi concentration in the slab is a value obtained as a result of conducting a gas analysis from the chips prepared from the slab obtained in the continuous casting test and investigating the Bi concentration contained in the slab.

また、平均Md値は、上記(2)式で連続鋳造試験のBi濃度に対するMd値を求めた値である。   The average Md value is a value obtained by obtaining the Md value with respect to the Bi concentration in the continuous casting test by the above equation (2).

表2より、本発明の実施例1〜5では、比較例1に比べて、凝固組織粗さの比、金属間化合物の面積率の低減が確認でき、熱間絞り試験の値からも加工性改善効果が得られた。加えて、電磁攪拌を付与した実施例6〜8では、Bi濃度が微量であっても、非常に低い平均Md値を得られることが分かった。   From Table 2, in Examples 1-5 of this invention, compared with the comparative example 1, the reduction | decrease of the ratio of a solidification structure roughness and the area ratio of an intermetallic compound can be confirmed, and it is workability also from the value of a hot drawing test. Improvement effect was obtained. In addition, in Examples 6 to 8 to which electromagnetic stirring was applied, it was found that a very low average Md value can be obtained even if the Bi concentration is very small.

これは、電磁攪拌を付与することで、初期凝固組織であるフェライトのデンドライトの組織が分断され、非常に微細な核の個数密度が増加したことにより、等軸晶率が増大し、より等方的な組織になったためであると考えられる。本結果は、本発明の条件に電磁攪拌を付与することで、Bi添加量を低減することが可能であることを示唆するものでる。   This is because by applying electromagnetic stirring, the structure of the ferrite dendrite, which is the initial solidification structure, is divided, and the number density of very fine nuclei is increased. This is thought to be due to the fact that it has become an organization. This result suggests that Bi addition amount can be reduced by applying electromagnetic stirring to the conditions of the present invention.

さらに、表2の平均Md値と金属間化合物の面積率比I /I0との関係をプロットした結果を図4に示す。 Furthermore, the result of plotting the relationship between the average Md value in Table 2 and the area ratio ratio I / I 0 of the intermetallic compound is shown in FIG.

図4に示すように、金属間化合物の発生臨界値として報告されている平均Md値が0.97の場合、金属間化合物の面積率比I /I0が0.66となって、それなりの金属間化合物の低減効果あった。金属間化合物であるσ相の析出は、僅か数%の析出であっても衝撃値が著しく低下し、靱性が極めて低くなることが知られており、析出量が30%以上低減されれば、言い換えれば、金属間化合物の面積率比I /I0が0.7以下であれば顕著な熱間加工性の改善が期待できる。 As shown in FIG. 4, when the average Md value reported as the generation critical value of the intermetallic compound is 0.97, the area ratio I / I 0 of the intermetallic compound is 0.66, There was a reduction effect. Precipitation of the σ phase, which is an intermetallic compound, is known to have a significantly reduced impact value and extremely low toughness even with only a few percent of precipitation, and if the precipitation amount is reduced by 30% or more, In other words, if the area ratio I / I 0 of the intermetallic compound is 0.7 or less, significant improvement in hot workability can be expected.

さらに、発明者らは、金属間化合物の面積率比I /I0が0.33以下、すなわち、金属間化合物を比較例の1 /3 以下に大幅に低減できる値として、平均Md値を0.85以下とするような60ppm以上のBi添加量が望ましいことを見出した(図3参照)。但し、前述したように、Bi添加量の上限は鋳片の熱間加工での脆化の問題で300ppmが望ましい。 Furthermore, the inventors set the average Md value as 0.85 or less, assuming that the area ratio I / I 0 of the intermetallic compound is 0.33 or less, that is, the value that can significantly reduce the intermetallic compound to 1/3 or less of the comparative example. It was found that a Bi addition amount of 60 ppm or more is desirable (see FIG. 3). However, as described above, the upper limit of the Bi addition amount is preferably 300 ppm because of the problem of embrittlement during hot working of the slab.

Claims (3)

質量%で、C :0.03%以下、Si:0.4 %以下、Mn:3.0 %以下、P :0.04%以下、S :0.008%以下、Cu:0.2〜2.0%、Ni:5.0〜7.0%、Cr:23〜30%、Mo:2.5 〜5.0%、W :1.5〜4.0%、N :0.24〜0.40%、Al:0.030%以下に加えて、さらにBiを10〜300質量ppm含有し、残部がFeおよび不純物からなる合金を連続鋳造して鋼管製造用の素材となる鋳片を製造する方法において、
前記合金中にBiを含有させない場合の連続鋳造鋳片の横断面中心における金属間化合物の析出量I0と、Biを含有させた前記合金の連続鋳造鋳片の横断面中心における金属間化合物の析出量I との比I /I0と下記式で定義される前記合金の平均Md値との関係、並びに、前記合金の平均Md値と含有Bi量の関係を求め、この関係に基づき、前記合金の平均Md値が0.97以下で、前記の比I /I0が0.70以下となるBi含有量とすることを特徴とした鋼管用鋳片の連続鋳造方法。
平均Md値=ΣΧi・(Md)i [eV]
ここで、Χi:合金成分iの原子分率 [-]
(Md)i:合金成分iのMd値 [eV]
In mass%, C: 0.03% or less, Si: 0.4% or less, Mn: 3.0% or less, P: 0.04% or less, S: 0.008% or less, Cu: 0.2-2.0%, Ni: 5.0-7.0%, Cr: In addition to 23 to 30%, Mo: 2.5 to 5.0%, W: 1.5 to 4.0%, N: 0.24 to 0.40%, Al: 0.030% or less, Bi is further contained in 10 to 300 ppm by mass, the balance being Fe and In the method of continuously casting an alloy made of impurities to produce a slab that is a material for steel pipe production,
The amount of intermetallic compound precipitation I 0 at the center of the cross-section of the continuous cast slab when Bi is not contained in the alloy, and the amount of intermetallic compound at the center of the cross-section of the continuous cast slab of the alloy containing Bi The relationship between the ratio I 1 / I 0 of the precipitation amount I and the average Md value of the alloy defined by the following formula, and the relationship between the average Md value of the alloy and the Bi content, and based on this relationship, A continuous casting method for a steel pipe slab, characterized in that the average Md value of the alloy is 0.97 or less and the Bi content is such that the ratio I / I 0 is 0.70 or less.
Average Md value = ΣΧ i・ (Md) i [eV]
Where Χ i : atomic fraction of alloy component i [-]
(Md) i : Md value of alloy component i [eV]
前記Biは、鋳造時に、Biを合金化させたワイヤーをタンディッシュ内の溶鋼に挿入することで添加することを特徴とする請求項1に記載の鋼管用鋳片の連続鋳造方法。   The said Bi is added by inserting the wire which alloyed Bi into the molten steel in a tundish at the time of casting, The continuous casting method of the slab for steel pipes of Claim 1 characterized by the above-mentioned. 鋳型内の溶鋼、二次冷却帯における未凝固溶鋼の少なくとも一方に電磁攪拌力を作用させることを特徴とする請求項1又は2に記載の鋼管用鋳片の連続鋳造方法。   3. The continuous casting method for a steel pipe slab according to claim 1, wherein an electromagnetic stirring force is applied to at least one of the molten steel in the mold and the unsolidified molten steel in the secondary cooling zone.
JP2015210819A 2015-10-27 2015-10-27 Continuous casting method for steel pipe slab Active JP6528644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015210819A JP6528644B2 (en) 2015-10-27 2015-10-27 Continuous casting method for steel pipe slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015210819A JP6528644B2 (en) 2015-10-27 2015-10-27 Continuous casting method for steel pipe slab

Publications (2)

Publication Number Publication Date
JP2017080765A true JP2017080765A (en) 2017-05-18
JP6528644B2 JP6528644B2 (en) 2019-06-12

Family

ID=58710255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015210819A Active JP6528644B2 (en) 2015-10-27 2015-10-27 Continuous casting method for steel pipe slab

Country Status (1)

Country Link
JP (1) JP6528644B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022196498A1 (en) 2021-03-15 2022-09-22 日鉄ステンレス株式会社 Duplex stainless steel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015196183A (en) * 2014-04-02 2015-11-09 日鐵住金溶接工業株式会社 Low hydrogen type coated electrode
JP2015196193A (en) * 2014-04-03 2015-11-09 新日鐵住金株式会社 Continuous casting method of casting piece for steel pipe excellent in toughness and corrosion resistance
JP2015196192A (en) * 2014-04-03 2015-11-09 新日鐵住金株式会社 Continuous casting method of casting piece for steel pipe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015196183A (en) * 2014-04-02 2015-11-09 日鐵住金溶接工業株式会社 Low hydrogen type coated electrode
JP2015196193A (en) * 2014-04-03 2015-11-09 新日鐵住金株式会社 Continuous casting method of casting piece for steel pipe excellent in toughness and corrosion resistance
JP2015196192A (en) * 2014-04-03 2015-11-09 新日鐵住金株式会社 Continuous casting method of casting piece for steel pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022196498A1 (en) 2021-03-15 2022-09-22 日鉄ステンレス株式会社 Duplex stainless steel

Also Published As

Publication number Publication date
JP6528644B2 (en) 2019-06-12

Similar Documents

Publication Publication Date Title
KR102090201B1 (en) Austenitic heat-resistant alloy and its manufacturing method
JP4834292B2 (en) Super duplex stainless steel with excellent corrosion resistance, embrittlement resistance, castability and hot workability with reduced formation of intermetallic compounds
JP5072285B2 (en) Duplex stainless steel
CA3148069C (en) Duplex stainless steel material
JP7052807B2 (en) Manufacturing method of Ni-based alloy and Ni-based alloy
JP6675846B2 (en) Fe-Cr-Ni alloy with excellent high-temperature strength
JP6787238B2 (en) Manufacturing method of steel for machine structure
JP5102739B2 (en) Steel and continuous cast slab with dispersed microsegregation of phosphorus
KR101821170B1 (en) Cost-effective ferritic stainless steel
JP5329632B2 (en) Duplex stainless steel, duplex stainless steel cast, and duplex stainless steel
JP6520617B2 (en) Austenitic stainless steel
JP6528644B2 (en) Continuous casting method for steel pipe slab
JP6299349B2 (en) Continuous casting method for slabs for oil well pipes with excellent toughness and pitting resistance
WO2022196498A1 (en) Duplex stainless steel
JP6303737B2 (en) Continuous casting method for steel pipe slabs
JP6551631B1 (en) Low alloy high strength seamless steel pipe for oil well
JP6942085B2 (en) Ferritic stainless steel for plating bath
KR20010017111A (en) Austenitic stainless steel having excellent machinability and corrosion resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190429

R151 Written notification of patent or utility model registration

Ref document number: 6528644

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151