JP2015196183A - Low hydrogen type coated electrode - Google Patents

Low hydrogen type coated electrode Download PDF

Info

Publication number
JP2015196183A
JP2015196183A JP2014076022A JP2014076022A JP2015196183A JP 2015196183 A JP2015196183 A JP 2015196183A JP 2014076022 A JP2014076022 A JP 2014076022A JP 2014076022 A JP2014076022 A JP 2014076022A JP 2015196183 A JP2015196183 A JP 2015196183A
Authority
JP
Japan
Prior art keywords
total
mass
welding
welding rod
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014076022A
Other languages
Japanese (ja)
Other versions
JP6177177B2 (en
Inventor
佑介 齋藤
Yusuke Saito
佑介 齋藤
水本 学
Manabu Mizumoto
学 水本
高橋 将
Susumu Takahashi
将 高橋
真吾 大泉
Shingo Oizumi
真吾 大泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel and Sumikin Welding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Welding Co Ltd filed Critical Nippon Steel and Sumikin Welding Co Ltd
Priority to JP2014076022A priority Critical patent/JP6177177B2/en
Publication of JP2015196183A publication Critical patent/JP2015196183A/en
Application granted granted Critical
Publication of JP6177177B2 publication Critical patent/JP6177177B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low hydrogen type coated electrode which is excellent in arc stability, by which a highly strong weld metal is obtained and which is excellent in low temperature toughness when multi-layer welding such as the circumferential welding of a steel pipe and the like using a DC power supply is performed.SOLUTION: A coating agent containing, in mass% to the total mass of the coating agent, 25-45% of the total of metal carbonate, 5-15% of the total of metal fluoride, 2-7% of rutile, 0.2-2.0% of alumina, 0.3-1.5% of zircon sand, 1.5-5.5% of Si, 2.0-6.5% of Mn, 0.8-2.0% of Ni, 0.1-0.6% of Mo, 0.5-3.5% of Ti, 0.03-0.15% of the total of a B conversion value and 15-35% of iron powder is coated on a soft steel core line at a coverage of 45-70% to the total mass of a coated electrode.

Description

本発明は、低水素系被覆アーク溶接棒に関し、特に直流電源を用いて550MPa級以上の鋼管円周の多層盛溶接において、アークの安定性に優れ、溶接金属の強度及び低温での靱性が優れる低水素系被覆アーク溶接棒に関するものである。   The present invention relates to a low hydrogen-based coated arc welding rod, and in particular, in a multi-layer welding of a steel pipe circumference of 550 MPa class or higher using a DC power source, it has excellent arc stability, excellent weld metal strength and low temperature toughness. The present invention relates to a low hydrogen-based coated arc welding rod.

金属炭酸塩及び金属弗化物を主成分とする低水素系被覆アーク溶接棒は、イルミナイト系やライムチタニヤ系被覆アーク溶接棒に比べて全姿勢における溶接が容易でかつ機械的性質が優れている。また、低水素系被覆アーク溶接棒は、立向下進溶接が可能な高セルロース系被覆アーク溶接棒に比べて拡散性水素量が少なく耐割れ性に優れることから鋼管の円周溶接などの溶接にも多く用いられている。   Low hydrogen-based coated arc welding rods composed mainly of metal carbonate and metal fluoride are easier to weld in all positions and have better mechanical properties than illuminite-based and lime-titania coated arc welding rods. In addition, low hydrogen-based coated arc welding rods have less diffusible hydrogen and superior crack resistance compared to high-cellulosic-coated arc welding rods capable of vertical downward welding. Is also used in many cases.

しかし、低水素系被覆アーク溶接棒は、一般的に交流電源を用いて溶接するように設計してあることが多いが、鋼管を屋外で円周溶接する場合には、直流電源が用いられることが多い。この直流電源を用いて低水素系被覆アーク溶接棒により溶接した場合は、磁気吹きや被覆剤の片溶けが生じてアークが不安定となり、健全なビードが得られないという問題がある。このため、直流電源を使用した場合においても、アークの安定性に優れ、溶接金属の機械的性能の良好な低水素系被覆アーク溶接棒の開発要望が高い。   However, low hydrogen-based coated arc welding rods are generally designed to be welded using an AC power supply. However, when steel pipes are circumferentially welded outdoors, a DC power supply must be used. There are many. When this DC power source is used for welding with a low hydrogen-based coated arc welding rod, there is a problem that magnetic blowing or partial melting of the coating material occurs, the arc becomes unstable, and a sound bead cannot be obtained. For this reason, even when a DC power source is used, there is a high demand for developing a low hydrogen-based coated arc welding rod that has excellent arc stability and good mechanical performance of the weld metal.

鋼管の円周溶接などに用いられる被覆アーク溶接棒は、例えば特許文献1に、被覆剤中のチタン酸カリウムの平均粒径を限定してアーク切れを少なくして溶接ビードを連続して均一に得るとともに一般的な溶接作業性も良好にする技術が開示されている。   A coated arc welding rod used for circumferential welding of steel pipes, for example, in Patent Document 1, the average particle size of potassium titanate in the coating is limited to reduce arc breakage and make the weld bead continuously uniform. A technique for obtaining general welding workability as well as obtaining the same is disclosed.

また、特許文献2には、被覆剤中のカリ長石、ルチール及びアルミナの含有量を調整することによって、裏波溶接から最終層の溶接までの全層を効率よく溶接することができ、良好なアーク安定性及びビード形状を得ることができるという技術の開示がある。   Further, in Patent Document 2, by adjusting the content of potassium feldspar, rutile and alumina in the coating material, all layers from back wave welding to final layer welding can be efficiently welded. There is a technical disclosure that arc stability and bead shape can be obtained.

しかし、特許文献1及び特許文献2に記載の技術は、何れも交流電源を用いた場合に有効であるが、これらの低水素系被覆アーク溶接棒により直流電源を用いて溶接した場合に、磁気吹きやアーク切れが生じてアークが不安定となり健全なビードが得られない問題があった。   However, the techniques described in Patent Document 1 and Patent Document 2 are both effective when an AC power source is used. However, when welding is performed using a DC power source with these low hydrogen-based coated arc welding rods, There was a problem that a blow or arc break occurred, the arc became unstable, and a healthy bead could not be obtained.

一方、特許文献3には、直流電源用の低水素系被覆アーク溶接棒に関する技術の開示がある。即ち、この特許文献3の開示技術では、直流電源用溶接棒として使用する鋼心線の炭素量が溶接金属の酸素量に大きく影響する点に着目し、その炭素量の適正化を図ったものである。しかし、特許文献3に記載の技術では、直流電源を用いて下向姿勢で溶接した溶接金属の低温破壊靭性値が得られるというものであって、鋼管の円周溶接などに適用した場合の多層盛溶接においては、良好なビードが得られるものではないという問題があった。   On the other hand, Patent Document 3 discloses a technique relating to a low hydrogen-based coated arc welding rod for a DC power source. That is, in the disclosed technique of Patent Document 3, the carbon amount of the steel core wire used as a welding rod for a DC power source has a great influence on the oxygen amount of the weld metal, and the carbon amount is optimized. It is. However, in the technique described in Patent Document 3, a low temperature fracture toughness value of a weld metal welded in a downward posture using a DC power source can be obtained, and the multilayer when applied to circumferential welding of a steel pipe or the like is obtained. In prime welding, there was a problem that good beads could not be obtained.

特開2012−143810号公報JP2012-143810A 特開2000−117487号公報JP 2000-117487 A 特開2010−227968号公報JP 2010-227968 A

そこで本発明は、上述した問題点に鑑みて案出されたものであり、直流電源を用いて550MPa級以上の鋼管の円周溶接などの多層盛溶接を行う場合において、アークの安定性に優れて、高強度な溶接金属が得られるとともに低温靱性が優れる低水素系被覆アーク溶接棒を提供することを目的とする。   Therefore, the present invention has been devised in view of the above-described problems, and is excellent in arc stability when performing multi-layer welding such as circumferential welding of a steel pipe of 550 MPa class or higher using a DC power source. An object of the present invention is to provide a low hydrogen-coated arc welding rod that can obtain a high-strength weld metal and is excellent in low-temperature toughness.

本発明の要旨は、軟鋼心線の外周に被覆剤を塗布した低水素系被覆アーク溶接棒において、上記被覆剤の被覆率が当該低水素系被覆アーク溶接棒全質量に対する質量%で45〜70%であり、上記被覆剤は、当該被覆剤全質量に対する質量%で、金属炭酸塩の1種または2種以上の合計:25〜45%、金属弗化物の1種または2種以上の合計:5〜15%、ルチール:2〜7%、アルミナ:0.2〜2.0%、ジルコンサンド:0.3〜1.5%、Si:1.5〜5.5%、Mn:2.0〜6.5%、Ni:0.8〜2.0%、Mo:0.1〜0.6%、Ti:0.5〜3.5%、B合金及びB化合物のB換算値の1種または2種以上の合計:0.03〜0.15%、鉄粉:15〜35%を含有し、残部がスラグ生成剤、脱酸剤、塗装剤、水ガラスの固質分および不可避的不純物からなることを特徴とする。   The gist of the present invention is that, in a low hydrogen-based coated arc welding rod in which a coating agent is applied to the outer periphery of a mild steel core wire, the coating ratio of the coating agent is 45 to 70% by mass with respect to the total mass of the low-hydrogen coated arc welding rod. The coating agent is a mass% based on the total mass of the coating agent, and the total of one or more metal carbonates: 25 to 45%, the total of one or more metal fluorides: 5-15%, rutile: 2-7%, alumina: 0.2-2.0%, zircon sand: 0.3-1.5%, Si: 1.5-5.5%, Mn: 2. 0 to 6.5%, Ni: 0.8 to 2.0%, Mo: 0.1 to 0.6%, Ti: 0.5 to 3.5%, B conversion value of B alloy and B compound 1 type or 2 or more types total: 0.03-0.15%, iron powder: 15-35% is contained, the remainder is a slag production | generation agent, a deoxidizer, a coating agent, Characterized by comprising the solid electrolyte component and inevitable impurities of the glass.

また、上記被覆剤は、被覆剤全質量に対する質量%で、酸化マグネシウム:0.1〜1.0%をさらに含有することも特徴とする低水素系被覆アーク溶接棒にある。   Moreover, the said coating agent exists in the low hydrogen type | system | group covering arc welding rod characterized by further containing magnesium oxide: 0.1-1.0% by the mass% with respect to the coating material total mass.

本発明を適用した低水素系被覆アーク溶接棒によれば、直流電源を用いて550MPa級以上の鋼管の円周溶接の多層盛溶接などを行う場合において、磁気吹きや被覆剤の片溶けが生じず、アークの安定性に優れて良好なビード形状が得られ、一般的な溶接作業性も良好であるので溶接能率が大幅に改善できるとともに、溶接金属の機械的性能も良好であるので高品質な溶接部が得られる。   According to the low hydrogen-based coated arc welding rod to which the present invention is applied, when performing multi-layer welding such as circumferential welding of a steel pipe of 550 MPa class or higher using a DC power source, magnetic blowing or partial melting of the coating occurs. Excellent arc stability, good bead shape is obtained, general welding workability is also good, so welding efficiency can be greatly improved, and weld metal mechanical performance is also good, so high quality A good weld can be obtained.

低水素系被覆アーク溶接棒を用いて交流電源と直流電源を用いて溶接した場合の差異を詳細に調査した結果、直流電源を用いて溶接した場合は、交流電源を用いて溶接した場合に比べて、アーク長が長くなり被覆剤が脆くなることに起因して磁気吹きや被覆剤の片溶けが生じ、アークが不安定で健全なビードが得られないことが判明した。   As a result of investigating in detail the difference between welding using an AC power supply and a DC power supply using a low hydrogen-based coated arc welding rod, welding using a DC power supply is more difficult than welding using an AC power supply. As a result, it was found that the arc length becomes longer and the coating material becomes brittle, resulting in magnetic blowing and partial melting of the coating material, and the arc is unstable and a healthy bead cannot be obtained.

そこで、直流電源で低水素系被覆アーク溶接棒を用いて鋼管の円周溶接を行った場合においても磁気吹きや被覆剤の片溶けが生じず、かつ良好なビード形状を得るために、被覆剤成分について種々試作をして検討した。   Therefore, in order to obtain a good bead shape without magnetic blowing or partial melting of the coating material even when the steel pipe is circumferentially welded using a low hydrogen-based coated arc welding rod with a DC power source, Various trials were made for the components.

その結果、適量の鉄粉の添加と被覆率にすることで、直流電源で多層盛溶接した場合でも磁気吹きや被覆剤の片溶けがなくなり、金属炭酸塩及びルチールの各含有量を適量とすることによってアークが安定化して良好なビード形状が得られ、金属弗化物の含有量を適量とすることによってビード形状及びスラグ剥離性が良好になることを知見した。また、ジルコンサンドの含有量を調整することにより、さらに被覆剤の片溶け防止に効果があることを見出した。   As a result, by adding an appropriate amount of iron powder and making the coverage ratio, even when multi-layer welding is performed with a DC power source, magnetic blowing and partial melting of the coating agent are eliminated, and each content of metal carbonate and rutile is made appropriate. As a result, it was found that the arc was stabilized and a good bead shape was obtained, and that the bead shape and slag peelability were improved by adjusting the content of metal fluoride to an appropriate amount. Further, it has been found that adjusting the content of zircon sand is further effective in preventing partial melting of the coating agent.

溶接金属の低温靭性を確保するためには、被覆剤成分のSi、Mn、Ni、Ti及びBの各含有量を適量とし、溶接金属の強度の確保は、Mn、Ni及びMoの各含有量を適量とすることで実現できることを知見した。   In order to ensure the low temperature toughness of the weld metal, each content of Si, Mn, Ni, Ti and B of the coating agent component is made appropriate, and the strength of the weld metal is ensured by each content of Mn, Ni and Mo. It has been found that it can be realized by making the amount of the appropriate amount.

本発明を適用した低水素系被覆アーク溶接棒は、軟鋼心線の外周に被覆剤を塗布した低水素系被覆アーク溶接棒であって、被覆剤の被覆率が当該低水素系被覆アーク溶接棒全質量に対する質量%で45〜70%とされている。軟鋼心線への被覆率(低水素系被覆アーク溶接棒全質量に対する被覆率の質量%)は、被覆剤の片溶けや、スラグ状態に大きく影響する。被覆率が45%未満では、その効果がなく被覆が脆くなり片焼けが発生する。一方、被覆率が70%を超えると、スラグ量が多くなり立向上進や上向姿勢での溶接ができなくなる。   A low hydrogen-based coated arc welding rod to which the present invention is applied is a low-hydrogen coated arc welding rod in which a coating agent is applied to the outer periphery of a mild steel core wire, and the coating rate of the coating agent is the low-hydrogen coated arc welding rod It is set as 45 to 70% in the mass% with respect to the total mass. The coverage of the mild steel core wire (mass% of the coverage relative to the total mass of the low hydrogen-based coated arc welding rod) greatly affects the partial melting of the coating agent and the slag state. If the coverage is less than 45%, the effect is not obtained and the coating becomes brittle and scorch occurs. On the other hand, if the coverage exceeds 70%, the amount of slag increases, and it becomes impossible to perform the vertical improvement and the welding in the upward posture.

次に、軟鋼心線の外周に塗布する被覆剤の各成分組成の含有量の限定理由について詳細に説明する。以下、被覆剤の各成分組成における含有量は、被覆剤全質量に対する質量%で、単に%と記載する。   Next, the reason for limiting the content of each component composition of the coating applied to the outer periphery of the mild steel core wire will be described in detail. Hereinafter, the content in each component composition of the coating agent is expressed by mass% with respect to the total mass of the coating agent, and simply described as%.

[金属炭酸塩の1種または2種以上の合計:25〜45%]
金属炭酸塩は、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、炭酸マンガンなどを指し、アーク中で分解してCO2ガスを発生させて溶着金属を大気から遮蔽し保護する働きがある。金属炭酸塩の1種または2種以上の合計が25%未満であると、シールド効果が不足してブローホールが発生しやすくなる。一方、金属炭酸塩の1種または2種以上の合計が45%を超えると、アークが不安定でビード形状が凸状となり、スラグ剥離性も悪くなる。したがって、金属炭酸塩の1種または2種以上の合計は25〜45%とする。
[Total of one or more metal carbonates: 25 to 45%]
Metal carbonate refers to calcium carbonate, magnesium carbonate, barium carbonate, manganese carbonate, etc., and has the function of shielding and protecting the deposited metal from the atmosphere by being decomposed in an arc to generate CO 2 gas. If the total of one or more of the metal carbonates is less than 25%, the shielding effect is insufficient and blow holes are likely to occur. On the other hand, if the total of one or more of the metal carbonates exceeds 45%, the arc becomes unstable, the bead shape becomes convex, and the slag removability also deteriorates. Therefore, the total of one or more metal carbonates is 25 to 45%.

[金属弗化物の1種または2種以上の合計:5〜15%]
金属弗化物は蛍石、弗化バリウム、弗化マグネシウム、弗化アルミニウムなどを指し、いずれも溶融スラグの粘性を下げて流動性のよいスラグを作り、優れたビード形状とする。また、金属弗化物は、アーク雰囲気中の水素分圧を下げて耐割れ性を向上させる。金属弗化物の1種または2種以上の合計が5%未満であると、適正な溶融スラグの粘性が得られずビードの形状が劣下する。一方、金属弗化物の1種または2種以上の合計が15%を超えると、スラグ剥離性が劣化する。したがって、金属弗化物の1種または2種以上の合計は5〜15%とする。
[Total of one or more metal fluorides: 5 to 15%]
Metal fluoride refers to fluorite, barium fluoride, magnesium fluoride, aluminum fluoride, etc., all of which reduce the viscosity of molten slag to make slag with good fluidity and make an excellent bead shape. In addition, the metal fluoride improves the crack resistance by lowering the hydrogen partial pressure in the arc atmosphere. If the total of one or more of the metal fluorides is less than 5%, an appropriate molten slag viscosity cannot be obtained and the bead shape is deteriorated. On the other hand, when the total of one or more metal fluorides exceeds 15%, the slag removability deteriorates. Therefore, the total of one or more metal fluorides is 5 to 15%.

[ルチール:2〜7%]
ルチールはアーク安定剤として作用するとともにスラグの粘性を調整する。ルチールが2%未満であると、アークが不安定となり良好なビードを得ることが困難となる。一方、ルチールが7%を超えると、立向姿勢及び上向姿勢の溶接時に溶融スラグの粘性が高くなりスラグの流れが低下するので、ビードの形状が凸状となる。したがって、ルチールは2〜7%とする。
[Lucille: 2-7%]
Lucille acts as an arc stabilizer and adjusts the viscosity of the slag. If the rutile is less than 2%, the arc becomes unstable and it becomes difficult to obtain a good bead. On the other hand, when the rutile exceeds 7%, the viscosity of the molten slag increases during welding in the vertical posture and the upward posture, and the flow of the slag decreases, so that the shape of the bead becomes convex. Therefore, rutile is 2 to 7%.

[アルミナ:0.2〜2.0%]
アルミナは、アークを安定させるとともにスラグの粘性を調整する。アルミナが0.2%未満であると、アークが不安定でビード形状が不良となる。一方、アルミナが2.0%を超えると、スラグがガラス状となりスラグ剥離が劣化する。したがって、アルミナは0.2〜2.0%とする。
[Alumina: 0.2-2.0%]
Alumina stabilizes the arc and adjusts the viscosity of the slag. If alumina is less than 0.2%, the arc is unstable and the bead shape is poor. On the other hand, when alumina exceeds 2.0%, slag becomes glassy and slag peeling deteriorates. Therefore, alumina is 0.2 to 2.0%.

[ジルコンサンド:0.3〜1.5%]
ジルコンサンドは、スラグの粘性を使用する他に融点が2700℃と高く、被覆剤及び心線が過熱した際も安定した耐火性を有し、被覆剤の片溶けを抑制する上で有効である。
[Zircon sand: 0.3-1.5%]
Zircon sand has a high melting point of 2700 ° C in addition to using the viscosity of slag, has stable fire resistance even when the coating material and the core wire are overheated, and is effective in suppressing partial melting of the coating material. .

さらにジルコンサンドは、他の酸化物よりも機械的強度に優れ、物理的な衝撃を受けても被覆剤の剥離が生じにくく、溶接中に開先に接触しても被覆欠けが生じにくいので上向などの不安定な溶接姿勢においても、被覆剤の保護筒の脱落が生じにくいので安定した溶接が可能となる。ジルコンサンドが0.3%未満では、被覆剤の片溶けが発生しやすくなる。一方、ジルコンサンドが1.5%を超えると、立向姿勢及び上向姿勢の溶接時に溶融スラグの粘性が高くなりスラグの流れが低下するので、ビード形状が凸状となる。したがって、ジルコンサンドは0.3〜1.5%とする。   In addition, zircon sand is superior in mechanical strength to other oxides, and it is difficult for the coating material to peel off even when subjected to physical impact. Even in an unstable welding posture such as the orientation, the protective cylinder of the coating agent is unlikely to drop off, so that stable welding is possible. If the zircon sand is less than 0.3%, partial melting of the coating tends to occur. On the other hand, if the zircon sand exceeds 1.5%, the viscosity of the molten slag increases during welding in the upright position and the upward position, and the flow of the slag decreases, so that the bead shape becomes convex. Therefore, the zircon sand is 0.3 to 1.5%.

[Si:1.5〜5.5%]
Siは、金属Si、Fe−Si、Fe−Si−Mn等のSi合金から添加され、溶接金属の脱酸を目的として使用されるが、溶接作業性確保の上からも必要である。Siが1.5%未満では、脱酸不足で溶接金属中にブローホールが発生し易く、アークが不安定で立向姿勢及び上向姿勢での溶接の継続が困難となる。一方、Siが5.5%を超えると、粒界に低融点酸化物を析出させ靱性が低下する。したがって、Siは1.5〜5.5%とする。
[Si: 1.5 to 5.5%]
Si is added from a Si alloy such as metal Si, Fe—Si, Fe—Si—Mn, and is used for the purpose of deoxidation of the weld metal, but is also necessary for ensuring welding workability. If Si is less than 1.5%, blow holes are likely to occur in the weld metal due to insufficient deoxidation, the arc is unstable, and it is difficult to continue welding in the vertical and upward postures. On the other hand, when Si exceeds 5.5%, a low melting point oxide is precipitated at the grain boundary and the toughness is lowered. Therefore, Si is 1.5 to 5.5%.

[Mn:2.0〜6.5%]
Mnは、金属Mn、Fe−Mn、Fe−Si−Mn等のMn合金から添加され、Siと同様に脱酸剤として添加する他、溶接金属の強度向上に有効である。Mnが2.0%未満では、溶接金属の強度が低下する。一方、Mnが6.5%を超えると、溶接金属の強度が高くなり靭性が低くなる。したがって、Mnは2.0〜6.5%とする。
[Mn: 2.0 to 6.5%]
Mn is added from a Mn alloy such as metal Mn, Fe-Mn, Fe-Si-Mn, etc., and is added as a deoxidizer in the same manner as Si, and is effective in improving the strength of the weld metal. If Mn is less than 2.0%, the strength of the weld metal decreases. On the other hand, if Mn exceeds 6.5%, the strength of the weld metal increases and the toughness decreases. Therefore, Mn is set to 2.0 to 6.5%.

[Ni:0.8〜2.0%]
Niは、金属Niから添加され、溶接金属の強度及び低温における靭性を高める元素である。Niが0.8%未満では、低温での靭性を確保することができない。一方、Niが2.0%を超えると、溶接金属の強度が高くなりすぎて、靭性が低下する。したがって、Niは0.8〜2.0%とする。
[Ni: 0.8 to 2.0%]
Ni is an element which is added from the metal Ni and increases the strength of the weld metal and the toughness at low temperatures. If Ni is less than 0.8%, toughness at low temperatures cannot be ensured. On the other hand, if Ni exceeds 2.0%, the strength of the weld metal becomes too high, and the toughness decreases. Therefore, Ni is set to 0.8 to 2.0%.

[Mo:0.1〜0.6%]
Moは、金属Mo、Fe−Mo等から添加され、溶接金属の焼入れ性増大元素として重要な成分である。Moが0.1%未満では、溶接金属の強度が低くなり靭性向上にも効果がない。一方、Moが0.6%を超えると、溶接金属の焼入れ性が過剰となって靭性が低下する。したがって、Moは0.1〜0.6%とする。
[Mo: 0.1 to 0.6%]
Mo is added from metal Mo, Fe-Mo, etc., and is an important component as an element for increasing the hardenability of weld metal. If Mo is less than 0.1%, the strength of the weld metal is lowered and there is no effect in improving toughness. On the other hand, if Mo exceeds 0.6%, the hardenability of the weld metal becomes excessive and the toughness decreases. Therefore, Mo is 0.1 to 0.6%.

[Ti:0.5〜3.5%]
Tiは、金属Ti、Fe−Ti等から添加され、脱酸剤として有効であると同時にアークの電位傾度を低下させてアークを安定化させる作用もある。Tiが0.5%未満では、アークが不安定でアーク長が伸びて被覆剤の片溶けが発生する。一方、Tiが3.5%を超えると、溶接金属中のTi酸化物の析出が増加して靱性が低下する。したがって、Tiは0.5〜3.5%とする。
[Ti: 0.5 to 3.5%]
Ti is added from metal Ti, Fe—Ti, and the like, and is effective as a deoxidizer, and also has an action of stabilizing the arc by reducing the potential gradient of the arc. If Ti is less than 0.5%, the arc is unstable, the arc length is extended, and a piece of the coating melts. On the other hand, when Ti exceeds 3.5%, precipitation of Ti oxide in the weld metal increases and toughness decreases. Therefore, Ti is 0.5 to 3.5%.

[B合金及びB化合物のB換算値の1種または2種以上の合計:0.03〜0.15%]
Bは、Fe−B、Fe−Mn−Bや硼砂、硼酸ナトリウム、硼酸カルシウム等のB合金、B化合物から添加され、溶接金属の焼き入れ性を高くし、粒界フェライトの生成抑制に有効な元素で、低温における靭性の向上に有効な成分ある。B合金及びB化合物のB換算値の1種または2種以上の合計が0.03%未満では、Bによる粒界フェライトの抑制効果が働かず、フェライト粒が粗大になりやすく、溶接金属の金属組織が粗くなって靭性にばらつきが生じる。一方、B合金及びB化合物のB換算値の1種または2種以上の合計が0.15%を超えると、溶接金属が粗大なラス状組織になり靭性が低下する。したがって、B合金及びB化合物のB換算値の1種または2種以上の合計は0.03〜0.15%とする。
[Total of one or two or more B conversion values of B alloy and B compound: 0.03 to 0.15%]
B is added from B alloys such as Fe-B, Fe-Mn-B, borax, sodium borate, calcium borate, and B compounds, and enhances the hardenability of the weld metal and is effective in suppressing the formation of intergranular ferrite. It is an element and is an effective component for improving toughness at low temperatures. If the total of one or two or more B conversion values of the B alloy and B compound is less than 0.03%, the effect of suppressing grain boundary ferrite by B does not work, and the ferrite grains tend to become coarse, and the metal of the weld metal The structure becomes rough and the toughness varies. On the other hand, if the total of one or more of the B-converted values of the B alloy and the B compound exceeds 0.15%, the weld metal becomes a coarse lath structure and the toughness decreases. Accordingly, the total of one or more of the B converted values of the B alloy and the B compound is 0.03 to 0.15%.

[鉄粉:15〜35%]
鉄粉はアークの電位傾度を低下させてアーク長を短くさせて、被覆剤の片溶けを防止させる作用があるため、直流電源を用いた溶接において最も重要な原料である。鉄粉が15%未満では、アーク長が長くなり被覆剤の片溶けが発生する。一方、鉄粉が35%を超えると、溶接時後半において溶接棒が赤熱(以下、棒焼けという。)し、最後まで溶接することが困難となる。したがって、鉄粉は15〜35%とする。
[Iron powder: 15-35%]
Iron powder is the most important raw material in welding using a direct current power source because it has the effect of reducing the potential gradient of the arc and shortening the arc length to prevent partial melting of the coating material. If the iron powder is less than 15%, the arc length becomes long and the coating material is partially melted. On the other hand, if the iron powder exceeds 35%, the welding rod becomes red hot (hereinafter referred to as “bar burning”) in the latter half of the welding, making it difficult to weld to the end. Therefore, the iron powder is 15 to 35%.

[酸化マグネシウム:0.1〜1.0%]
酸化マグネシウムは、耐熱性に優れているため、被覆剤の片溶けをさらに抑制する。酸化マグネシウムが0.1%未満では、被覆剤の片溶けが発生しやすくなる。一方、酸化マグネシウムが1.0%を超えると、立向姿勢及び上向姿勢の溶接時に溶融スラグの粘性が高くなりスラグの流れが低下するので、ビード形状が凸状となる。したがって、酸化マグネシウムは0.1〜1.0%とする。なお、この酸化マグネシウムは、必須の成分ではなく、被覆剤においてこれを含まないものであっても、同様の効果を奏するものである。
[Magnesium oxide: 0.1 to 1.0%]
Since magnesium oxide is excellent in heat resistance, it further suppresses partial melting of the coating agent. If the magnesium oxide is less than 0.1%, partial dissolution of the coating tends to occur. On the other hand, if the magnesium oxide exceeds 1.0%, the viscosity of the molten slag increases during welding in the upright posture and the upward posture, and the flow of the slag decreases, so that the bead shape becomes convex. Therefore, the magnesium oxide is 0.1 to 1.0%. Note that this magnesium oxide is not an essential component, and has the same effect even if it is not contained in the coating agent.

なお、上述した被覆剤の成分組成以外の残部は、スラグ生成剤、脱酸剤、塗装剤、水ガラスの固質分および不可避的不純物からなる。かかる場合には、スラグ形成剤として珪砂、水ガラスからの珪酸ソーダ及び珪酸カリウムの固質成分等の1種以上を合計で15%以下、脱酸剤としてマグネシウム、アルミニウム、アルミマグネシウム等の1種以上を合計で3%以下、塗装剤としてアルギン酸ソーダ、マイカ等の1種以上を合計で4%以下を含むようにしてもよい。   In addition, the remainder other than the component composition of the coating agent described above consists of a slag generator, a deoxidizer, a coating agent, a solid content of water glass, and unavoidable impurities. In such a case, a total of 15% or less of one or more solid components such as silica sand, sodium silicate and potassium silicate from water glass as a slag forming agent, and one type of magnesium, aluminum, aluminum magnesium, etc. as a deoxidizer The above may be 3% or less in total, and one or more of sodium alginate, mica, etc. may be included as a coating agent in a total of 4% or less.

また、使用する軟鋼心線は、JIS G3523 SWY11を用いることが好ましい。以下、軟鋼心線の各成分組成における含有量は、質量%で、単に%と記載する。   Moreover, it is preferable to use JIS G3523 SWY11 for the soft steel core wire to be used. Hereinafter, the content in each component composition of the mild steel core wire is expressed by mass% and is simply described as%.

Cは、軟鋼心線全質量に対し0.05〜0.08%が好ましく、強度を調整するために被覆剤からもCを適正に調整できる。但し、このCは、軟鋼心線と被覆剤の合計の全質量に対して、0.06〜0.20%であることが好ましい。また軟鋼心線全質量に対し、軟鋼心線のPは靭性を劣化するので0.010%以下、Sはスラグの流動性を悪化させるので0.010%以下、NはBとの結合力が強く焼き入れ性を劣化させるので0.005%以下であることが好ましい。   C is preferably 0.05 to 0.08% with respect to the total mass of the mild steel core wire, and C can be appropriately adjusted from the coating agent in order to adjust the strength. However, this C is preferably 0.06 to 0.20% with respect to the total mass of the total of the mild steel core wire and the coating agent. Further, P of the soft steel core wire is less than 0.010% because P deteriorates the toughness with respect to the total mass of the soft steel core wire, and 0.010% or less because S deteriorates the fluidity of the slag. It is preferably 0.005% or less because it strongly deteriorates the hardenability.

本発明を適用した低水素系被覆アーク溶接棒の実施例について具体的に説明する。各種成分組成の被覆剤との組合せにより直径4.0mm、長さ400mmのJIS G3523 SWY11の軟鋼心線(C:0.06質量%、Si:0.01質量%、Mn:0.48質量%、P:0.009質量%、S:0.005質量%、N:0.0023質量%)に被覆剤を塗装後乾燥させて表1に示す各種低水素系被覆アーク溶接棒を試作した。   Examples of the low hydrogen-based coated arc welding rod to which the present invention is applied will be specifically described. JIS G3523 SWY11 mild steel core wire (C: 0.06 mass%, Si: 0.01 mass%, Mn: 0.48 mass%) having a diameter of 4.0 mm and a length of 400 mm by combining with coating materials having various component compositions , P: 0.009 mass%, S: 0.005 mass%, N: 0.0023 mass%), and coating and drying the various low hydrogen-based coated arc welding rods shown in Table 1.

Figure 2015196183
Figure 2015196183

表1に示す各種溶接棒を用い、490MPa級鋼管(板厚;9mm、内径;150mm、開先角度;60°、ギャップ;1.0mm、ルートフェイス;1.0mm)を水平固定管とし、直流溶接機を用い、溶接電流123Aで各試作溶接棒6本を使用して上向姿勢から順次全姿勢の溶接を実施し、ビード形状及びアークの安定性、スラグ剥離性等の溶接作業性を調査した後、JIS Z 3104に準じてX線透過試験を行った。   Using various welding rods shown in Table 1, a 490 MPa steel pipe (plate thickness: 9 mm, inner diameter: 150 mm, groove angle: 60 °, gap: 1.0 mm, route face: 1.0 mm) was used as a horizontal fixed pipe, and direct current Using a welding machine, welding is performed in all positions in sequence from an upward position using six prototype welding rods with a welding current of 123A, and the welding workability such as bead shape, arc stability, and slag peelability is investigated. After that, an X-ray transmission test was performed according to JIS Z 3104.

さらに、490MPa級鋼(板厚20mm)を用いて、JIZ Z3111に準じて直流溶接機で溶着金属を行い、引張試験片(A0号)と衝撃試験片(Vノッチ試験片)を採取して機械的性能を調査した。   Furthermore, using 490MPa class steel (plate thickness 20mm), weld metal was applied with DC welding machine according to JIZ Z3111, and tensile test piece (A0) and impact test piece (V notch test piece) were collected. The performance was investigated.

引張試験の引張強さは550〜700MPaを良好、衝撃試験は試験温度−40℃で繰り返し5本シャルピー衝撃試験を行い、吸収エネルギーの最低値が90J以上を良好とした。これらの試験結果を表2にまとめて示す。   Tensile strength of the tensile test was good at 550 to 700 MPa, and the impact test was repeated at a test temperature of −40 ° C., and a five Charpy impact test was conducted. These test results are summarized in Table 2.

Figure 2015196183
Figure 2015196183

表1、表2中の溶接棒No.1〜11が本発明例、溶接棒No.12〜22は比較例である。   In Tables 1 and 2, the welding rod No. 1 to 11 are examples of the present invention, welding rod Nos. 12 to 22 are comparative examples.

本発明例である溶接棒記号No.1〜No.11は、被覆剤の金属炭酸塩の1種または2種以上の合計、金属弗化物の1種または2種以上の合計、ルチール、アルミナ、ジルコンサンド、Si、Mn、Ni、Mo、Ti、B合金及びB化合物のB換算値の1種または2種以上の合計及び鉄粉が適量で、被覆率も適正であるので、アークが安定して被覆剤の片溶けや棒焼けがなく、ビード形状及びスラグ剥離性も良好で、ブローホール等の溶接欠陥もないなど極めて満足な結果であった。また、溶着金属の引張強さ及び吸収エネルギーも良好な値であった。   The welding rod symbol No. which is an example of the present invention. 1-No. 11 is a total of one or more metal carbonates of the coating agent, a total of one or more metal fluorides, rutile, alumina, zircon sand, Si, Mn, Ni, Mo, Ti, B The total amount of one or more of the B-converted values of the alloy and B compound and the iron powder is an appropriate amount, and the coverage is also appropriate, so that the arc is stable and there is no melting of the coating material or bar burning, and the bead shape In addition, the slag peelability was good, and there were no weld defects such as blow holes. The tensile strength and absorbed energy of the weld metal were also good values.

なお、酸化マグネシウムを適量含む溶接棒No.2、3、6、10及び溶接棒No.11は、被覆剤の片溶け抑制に非常に効果を発揮した。   In addition, welding rod No. containing an appropriate amount of magnesium oxide. 2, 3, 6, 10 and welding rod no. No. 11 was very effective in suppressing the melting of the coating material.

溶接棒No.12は、金属炭酸塩の合計が少ないのでブローホールが発生した。また、アルミナが多いのでスラグ剥離性が不良であった。さらに、Moが多ので、溶着金属の引張強さが高く吸収エネルギーの最低値が低かった。   Welding rod no. No. 12 had blowholes because the total amount of metal carbonate was small. Moreover, since there is much alumina, the slag peelability was poor. Furthermore, since there is much Mo, the tensile strength of the weld metal was high and the minimum value of absorbed energy was low.

溶接棒No.13は、金属炭酸塩の合計が多いのでアーク不安定で凸ビードとなりスラグ剥離性も不良であった。また、Siが多いので溶着金属の吸収エネルギーの最低値が低かった。   Welding rod no. No. 13 had a large total of metal carbonates, so that the arc was unstable and a convex bead was formed, and the slag peelability was poor. Further, since the amount of Si is large, the minimum value of the absorbed energy of the weld metal is low.

溶接棒No.14は、金属弗化物の合計が少ないのでビードの形状が不良であった。また、Mnが少ないので溶着金属の引張強さが低かった。   Welding rod no. No. 14 had a poor bead shape because the total amount of metal fluoride was small. In addition, the tensile strength of the deposited metal was low because Mn was small.

溶接棒No.15は、金属弗化物の合計が多いのでスラグ剥離性が不良であった。また、Mnが多いので溶着金属の引張強さが高く吸収エネルギーの最低値が低かった。さらに、酸化マグネシウムが多いので凸ビードとなった。   Welding rod no. No. 15 had poor slag removability because of the large amount of metal fluoride. Moreover, since there was much Mn, the tensile strength of the weld metal was high and the minimum value of absorbed energy was low. Furthermore, since there was much magnesium oxide, it became a convex bead.

溶接棒No.16は、ルチールが少ないのでアークが不安定でビードが不良であった。また、Niが少ないので溶着金属の吸収エネルギーの最低値が低かった。さらに、被覆率が低いので被覆剤の片溶けが発生した。   Welding rod no. No. 16 had less rutile, so the arc was unstable and the bead was poor. Further, since the amount of Ni is small, the minimum value of the absorbed energy of the weld metal is low. Furthermore, since the coating rate was low, partial melting of the coating agent occurred.

溶接棒No.17は、ルチールが多いので凸ビードとなった。また、Niが多いので溶着金属の引張強さが高く吸収エネルギーの最低値が低かった。さらに、鉄粉が多いので棒焼けが生じた。   Welding rod no. No. 17 became a convex bead due to the large amount of rutile. In addition, since the amount of Ni was large, the tensile strength of the deposited metal was high and the minimum value of absorbed energy was low. Furthermore, there was a lot of iron powder, which resulted in stick burning.

溶接棒No.18は、アルミナが少ないのでアークが不安定でビードが不良であった。また、Tiが多いので溶着金属の吸収エネルギーの最低値が低かった。   Welding rod no. In No. 18, since the amount of alumina was small, the arc was unstable and the bead was poor. Moreover, since the amount of Ti is large, the minimum value of the absorbed energy of the deposited metal was low.

溶接棒No.19は、Siが少ないのでアークが不安定になりビード形状が不良でブローホールも生じた。また、溶接持続が困難になったので鋼管の一部のみ溶接し溶着金属試験は中止した。   Welding rod no. In No. 19, since the amount of Si was small, the arc became unstable, the bead shape was poor, and blow holes were also generated. Also, because it became difficult to continue welding, only a part of the steel pipe was welded and the weld metal test was stopped.

溶接棒No.20は、B換算値の合計が少ないので溶着金属の吸収エネルギーの最低値が低かった。また、ジルコンサンドが少ないので被覆剤の片溶けが生じた。なお、酸化マグネシウムが少ないので被覆剤の片溶けを防止する効果は得られなかった。   Welding rod no. No. 20 had a low total value of absorbed energy of the deposited metal because the total of B conversion values was small. Further, since the zircon sand was small, the coating material was partially melted. In addition, since there was little magnesium oxide, the effect which prevents the partial melting of a coating agent was not acquired.

溶接棒No.21は、ジルコンサンドが多いので凸ビードとなった。また、B換算値の合計が多いので溶着金属の吸収エネルギーの最低値が低かった。更に鉄粉の含有量が多いため、被覆剤の片溶けが発生していた。   Welding rod no. No. 21 was a convex bead due to the large amount of zircon sand. Moreover, since the total of B conversion values was large, the minimum value of the absorbed energy of the weld metal was low. Furthermore, since the content of the iron powder was large, the coating material was partially melted.

溶接棒No.22は、Tiが少ないのでアークが不安定になりビード形状が不良となり、被覆剤の片溶けも発生した。また、被覆率が高いのでスラグ生成量が多くなり立向及び上向溶接が困難であった。さらに、Moが少ないので溶着金属の引張強さが低く吸収エネルギーの最低値が低かった。   Welding rod no. In No. 22, since the Ti content was small, the arc became unstable, the bead shape was poor, and the coating material was partially melted. Moreover, since the coverage was high, the amount of slag generation was large, and vertical and upward welding were difficult. Furthermore, since there is little Mo, the tensile strength of the weld metal was low and the minimum value of absorbed energy was low.

Claims (2)

軟鋼心線の外周に被覆剤を塗布した低水素系被覆アーク溶接棒において、
上記被覆剤の被覆率が当該低水素系被覆アーク溶接棒全質量に対する質量%で45〜70%であり、
上記被覆剤は、当該被覆剤全質量に対する質量%で、
金属炭酸塩の1種または2種以上の合計:25〜45%、
金属弗化物の1種または2種以上の合計:5〜15%、
ルチール:2〜7%、
アルミナ:0.2〜2.0%、
ジルコンサンド:0.3〜1.5%、
Si:1.5〜5.5%、
Mn:2.0〜6.5%、
Ni:0.8〜2.0%、
Mo:0.1〜0.6%、
Ti:0.5〜3.5%、
B合金及びB化合物のB換算値の1種または2種以上の合計:0.03〜0.15%、
鉄粉:15〜35%を含有し、
残部がスラグ生成剤、脱酸剤、塗装剤、水ガラスの固質分および不可避的不純物からなること
を特徴とする低水素系被覆アーク溶接棒。
In a low hydrogen-based arc welding rod with a coating applied to the outer periphery of a mild steel core wire,
The coating rate of the coating agent is 45 to 70% by mass% with respect to the total mass of the low hydrogen-based coated arc welding rod,
The coating agent is a mass% based on the total mass of the coating agent,
Total of one or more metal carbonates: 25 to 45%,
Total of one or more metal fluorides: 5 to 15%,
Lucille: 2-7%,
Alumina: 0.2-2.0%
Zircon sand: 0.3-1.5%
Si: 1.5 to 5.5%,
Mn: 2.0 to 6.5%,
Ni: 0.8 to 2.0%,
Mo: 0.1 to 0.6%,
Ti: 0.5 to 3.5%
Total of one or more of B conversion values of B alloy and B compound: 0.03 to 0.15%,
Containing iron powder: 15-35%,
A low hydrogen based arc welding rod characterized in that the remainder consists of a slag generator, deoxidizer, paint, water glass solids and unavoidable impurities.
上記被覆剤は、当該被覆剤全質量に対する質量%で、酸化マグネシウム:0.1〜1.0%をさらに含有すること
を特徴とする請求項1に記載の低水素系被覆アーク溶接棒。
2. The low hydrogen-based coated arc welding rod according to claim 1, wherein the coating material further contains magnesium oxide: 0.1 to 1.0% by mass% with respect to the total mass of the coating material.
JP2014076022A 2014-04-02 2014-04-02 Low hydrogen coated arc welding rod Active JP6177177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014076022A JP6177177B2 (en) 2014-04-02 2014-04-02 Low hydrogen coated arc welding rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014076022A JP6177177B2 (en) 2014-04-02 2014-04-02 Low hydrogen coated arc welding rod

Publications (2)

Publication Number Publication Date
JP2015196183A true JP2015196183A (en) 2015-11-09
JP6177177B2 JP6177177B2 (en) 2017-08-09

Family

ID=54546251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014076022A Active JP6177177B2 (en) 2014-04-02 2014-04-02 Low hydrogen coated arc welding rod

Country Status (1)

Country Link
JP (1) JP6177177B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017080765A (en) * 2015-10-27 2017-05-18 新日鐵住金株式会社 Continuous casting method for casting piece for steel pipe
CN107126832A (en) * 2017-06-20 2017-09-05 柳州豪祥特科技有限公司 Manganese systems composite gas deoxidier
CN107174945A (en) * 2017-06-20 2017-09-19 柳州豪祥特科技有限公司 Support type efficient gas deoxidier and preparation method thereof
JP2021049576A (en) * 2019-09-26 2021-04-01 日鉄溶接工業株式会社 Iron powder low-hydrogen type coated electrode
JP2021058905A (en) * 2019-10-04 2021-04-15 日鉄溶接工業株式会社 Iron powder low-hydrogen type coated electrode
JP2021109200A (en) * 2020-01-09 2021-08-02 日鉄溶接工業株式会社 Iron powder low hydrogen type coated arc welding electrode
CN113458648A (en) * 2021-07-09 2021-10-01 昆山京群焊材科技有限公司 Welding rod for 07MnNiMoDR steel spherical tank and preparation method thereof
JP7506017B2 (en) 2021-03-31 2024-06-25 日鉄溶接工業株式会社 Low hydrogen iron powder covered metal arc welding rod

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49130847A (en) * 1973-04-24 1974-12-14
JP2009291802A (en) * 2008-06-03 2009-12-17 Nippon Steel Corp Low hydrogen covered electrode for welder using dc power source
JP2010110817A (en) * 2008-10-11 2010-05-20 Kobe Steel Ltd Low-hydrogen coated electrode
JP2014028390A (en) * 2012-07-31 2014-02-13 Kobe Steel Ltd Coated arc-welding bar

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49130847A (en) * 1973-04-24 1974-12-14
JP2009291802A (en) * 2008-06-03 2009-12-17 Nippon Steel Corp Low hydrogen covered electrode for welder using dc power source
JP2010110817A (en) * 2008-10-11 2010-05-20 Kobe Steel Ltd Low-hydrogen coated electrode
JP2014028390A (en) * 2012-07-31 2014-02-13 Kobe Steel Ltd Coated arc-welding bar

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017080765A (en) * 2015-10-27 2017-05-18 新日鐵住金株式会社 Continuous casting method for casting piece for steel pipe
CN107126832A (en) * 2017-06-20 2017-09-05 柳州豪祥特科技有限公司 Manganese systems composite gas deoxidier
CN107174945A (en) * 2017-06-20 2017-09-19 柳州豪祥特科技有限公司 Support type efficient gas deoxidier and preparation method thereof
JP2021049576A (en) * 2019-09-26 2021-04-01 日鉄溶接工業株式会社 Iron powder low-hydrogen type coated electrode
JP7210410B2 (en) 2019-09-26 2023-01-23 日鉄溶接工業株式会社 Iron Powder Low Hydrogen Type Coated Arc Welding Rod
JP2021058905A (en) * 2019-10-04 2021-04-15 日鉄溶接工業株式会社 Iron powder low-hydrogen type coated electrode
JP7239437B2 (en) 2019-10-04 2023-03-14 日鉄溶接工業株式会社 Iron Powder Low Hydrogen Type Coated Arc Welding Rod
JP2021109200A (en) * 2020-01-09 2021-08-02 日鉄溶接工業株式会社 Iron powder low hydrogen type coated arc welding electrode
JP7387450B2 (en) 2020-01-09 2023-11-28 日鉄溶接工業株式会社 Iron powder low hydrogen coated arc welding rod
JP7506017B2 (en) 2021-03-31 2024-06-25 日鉄溶接工業株式会社 Low hydrogen iron powder covered metal arc welding rod
CN113458648A (en) * 2021-07-09 2021-10-01 昆山京群焊材科技有限公司 Welding rod for 07MnNiMoDR steel spherical tank and preparation method thereof
CN113458648B (en) * 2021-07-09 2022-10-21 昆山京群焊材科技有限公司 Welding rod for 07MnNiMoDR steel spherical tank and preparation method thereof

Also Published As

Publication number Publication date
JP6177177B2 (en) 2017-08-09

Similar Documents

Publication Publication Date Title
JP6177177B2 (en) Low hydrogen coated arc welding rod
JP6437471B2 (en) Low hydrogen coated arc welding rod
JP6434387B2 (en) Low hydrogen coated arc welding rod
JP5890280B2 (en) Low hydrogen coated arc welding rod
JP5400472B2 (en) Flux cored wire
JP2015217393A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP2008221231A (en) Flux cored wire for gas-shielded arc welding
JP2012121051A (en) Flux-cored wire for gas shielded arc welding
JP2013158777A (en) Flux-cored wire for gas shield arc welding
KR101311794B1 (en) Covered electrode for nickel based high chromium alloy welding
JP2011025298A (en) Gas shielded arc welding method
JP2010253494A (en) Flux-cored wire
JP6437419B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP6051086B2 (en) Low hydrogen coated arc welding rod
JP6110800B2 (en) Stainless steel flux cored wire
JP2017185521A (en) Gas shield arc welding flux-cored wire
JP6688163B2 (en) Low-hydrogen coated arc welding rod
JP6046022B2 (en) Low hydrogen coated arc welding rod
JP6084948B2 (en) Flux-cored wire for gas shielded arc welding
JP2016120519A (en) Low-hydrogen coated electrode
JP5157653B2 (en) Low hydrogen type coated arc welding rod for DC power welding machine
JP7210410B2 (en) Iron Powder Low Hydrogen Type Coated Arc Welding Rod
JP2017170515A (en) Flux-cored wire for gas shield arc welding
JP6786431B2 (en) Carbon-based flux-cored wire for carbon dioxide shield arc welding
JP5348937B2 (en) Low hydrogen coated arc welding rod

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170711

R150 Certificate of patent or registration of utility model

Ref document number: 6177177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250