JP2009291802A - Low hydrogen covered electrode for welder using dc power source - Google Patents

Low hydrogen covered electrode for welder using dc power source Download PDF

Info

Publication number
JP2009291802A
JP2009291802A JP2008146282A JP2008146282A JP2009291802A JP 2009291802 A JP2009291802 A JP 2009291802A JP 2008146282 A JP2008146282 A JP 2008146282A JP 2008146282 A JP2008146282 A JP 2008146282A JP 2009291802 A JP2009291802 A JP 2009291802A
Authority
JP
Japan
Prior art keywords
mass
welding
welding rod
toughness
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008146282A
Other languages
Japanese (ja)
Other versions
JP5157653B2 (en
Inventor
Ryuichi Honma
竜一 本間
Akihiro Date
昭宏 伊達
Kunio Koyama
邦夫 小山
Masao Umeki
正夫 梅木
Kentaro Iwatate
健太郎 岩立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008146282A priority Critical patent/JP5157653B2/en
Publication of JP2009291802A publication Critical patent/JP2009291802A/en
Application granted granted Critical
Publication of JP5157653B2 publication Critical patent/JP5157653B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low hydrogen covered electrode for a welder using DC power source, capable of obtaining a welded structure whose weld metal is excellent in crack resistance and low temperature toughness when welding high-tensile steel having a 0.2% proof stress of ≥830 MPa. <P>SOLUTION: The electrode includes, by mass% to the total mass of the electrode, 0.05-0.15% C, 0.3-2.5% Si, 0.5-2.5% Mn, 1.0-5.0% Ni, >0.30% and ≤0.80% Ti, 0.002-0.08% Al, 0.02-0.20% Cr, and the balance Fe, an arc stabilizing agent, a slag generating agent, a binder, and inevitable impurities. The slag generating agent includes, by mass% to the total mass of a coating flux, at least 30-60% metal carbonate and 11-23% metal fluoride. The coating ratio that is expressed by the ratio of the mass of the coating flux to the total mass of the electrode is 25-45 mass%. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、0.2%耐力が820MPa以上(引張強さ900MPa以上相当)の高強度と低温靭性の両立が求められる鋼構造物を製造する際に用いられる、直流電源溶接機専用の低水素系被覆アーク溶接棒に関するものである。   The present invention is a low hydrogen dedicated to a DC power source welding machine used when manufacturing a steel structure that requires both high strength with a 0.2% proof stress of 820 MPa or more (equivalent to a tensile strength of 900 MPa or more) and low temperature toughness. The present invention relates to a system coated arc welding rod.

近年、溶接構造物の大型化や使用環境の苛酷化に伴い、溶接部への要求特性が厳しくなっている。そのため高強度鋼用の低水素系被覆アーク溶接棒では、高強度と高靭性の両立や良好な溶接作業性の確保が前提となるだけではなく、拡散性水素の低減、全姿勢溶接性の確保、あるいは継手曲げ特性の確保も必要となる。このため、溶接材料の製造段階において原料の化学成分がばらついたり、溶接材料の保管や溶接条件が不適切だったりすると、設計通りの継手性能を確保できなくなる。このように低強度鋼用の溶接材料に比べて、高強度鋼用の溶接材料は、製造方法や溶接条件を正しく管理しなくてはならない。   In recent years, with the increase in size of welded structures and the harsh use environment, required characteristics for welded parts have become severe. For this reason, low hydrogen coated arc welding rods for high-strength steel not only require both high strength and high toughness and good welding workability, but also reduce diffusible hydrogen and ensure all-position weldability. It is also necessary to ensure the joint bending characteristics. For this reason, if the chemical composition of the raw material varies in the manufacturing stage of the welding material, or if the storage and welding conditions of the welding material are inappropriate, the designed joint performance cannot be ensured. Thus, compared with the welding material for low-strength steel, the welding method for high-strength steel must manage a manufacturing method and welding conditions correctly.

一方、海外で溶接施工を行う場合は、日本国内で主流の交流溶接電源ではなく、直流溶接電源を用いて溶接することが多い。この場合、直流溶接では磁気吹きなどによりアークが不安定化して欠陥やガス成分の巻き込みが生じ易かったり、交流溶接に比べて合金元素の歩留まりが変動しやすいなどの、直流溶接に特有の現象が生じたりする。特に溶接条件の変動に継手特性が影響されやすい高強度用溶接棒において、この直流溶接特有の現象は溶接材料設計上無視できない。そのため直流溶接でも安定して要求特性を確保できる被覆アーク溶接棒の開発が課題となっている。   On the other hand, when welding is performed overseas, welding is often performed using a DC welding power source instead of the mainstream AC welding power source in Japan. In this case, there are phenomena peculiar to DC welding, such as magnetic arc blowing that makes the arc unstable and defects and gas components tend to be involved, and the yield of alloying elements tends to fluctuate compared to AC welding. It occurs. This phenomenon peculiar to direct current welding cannot be ignored in the welding material design particularly in a high-strength welding rod whose joint characteristics are easily affected by fluctuations in welding conditions. Therefore, the development of a coated arc welding rod that can ensure the required characteristics stably even in DC welding has been an issue.

これまで直流溶接電源用に特化した溶接棒はまだ開発されていないが、本発明が課題としている高強度と高靭性を両立する技術として、特許文献1では、引張強さ590MPa級以上の高強度と高靱性を両立した溶接金属を得るために、被覆剤中へのMgの添加あるいはMgの粒度を制限することで靱性を改善する技術が開示されている。また、特許文献2では、引張強さが880〜1180MPaの高張力鋼材用の被覆アーク溶接棒として、鋼材の引張強さと溶着金属中の合金元素との関係を式で規定することにより、溶接金属の耐割れ性と靱性を改善する技術が開示されている。   Until now, a welding rod specialized for DC welding power source has not been developed yet. However, as a technique for achieving both high strength and high toughness, which is a problem of the present invention, Patent Document 1 discloses a high tensile strength of 590 MPa or higher. In order to obtain a weld metal having both strength and high toughness, a technique for improving toughness by adding Mg to the coating material or limiting the particle size of Mg is disclosed. Moreover, in patent document 2, as a coated arc welding rod for high-tensile steel materials having a tensile strength of 880 to 1180 MPa, the relationship between the tensile strength of the steel materials and the alloy elements in the weld metal is defined by a formula, thereby welding metal Techniques for improving the crack resistance and toughness of steel are disclosed.

特許第3026899号公報Japanese Patent No. 3026899 特許第3354460号公報Japanese Patent No. 3354460

しかしながら、上記特許文献1に記載の発明では、直流溶接すると磁気吹きなどによりアークが不安定化し、溶接欠陥や酸素量の増加が生じてしまうため、直流溶接でも要求特性を満足する被覆アーク溶接棒としては不十分である。   However, in the invention described in Patent Document 1, since the arc becomes unstable due to magnetic blowing or the like when DC welding is performed, resulting in an increase in welding defects and oxygen content, the coated arc welding rod that satisfies the required characteristics even in DC welding. Is insufficient.

また、上記特許文献2に記載の発明では、交流溶接用としても高靱性化が不十分である上、直流溶接するとアークが不安定化するため、さらに靭性が劣化し、欠陥が生じる場合がある。   In addition, in the invention described in Patent Document 2, the toughness is insufficient even for AC welding, and the arc becomes unstable when DC welding is performed, so that the toughness is further deteriorated and a defect may occur. .

そこで、本発明は、上記直流溶接特有の課題を有利に解決し、かつ0.2%耐力が830MPa以上の高張力鋼の溶接において、溶接金属の耐割れ性と低温靱性が優れた溶接構造物を得ることのできる、直流電源溶接機用低水素系被覆アーク溶接棒を提供することを目的とするものである。   Therefore, the present invention advantageously solves the above-mentioned problems peculiar to DC welding, and is a welded structure excellent in crack resistance and low-temperature toughness of weld metal in welding of high-tensile steel having a 0.2% proof stress of 830 MPa or more. It is an object of the present invention to provide a low hydrogen-based coated arc welding rod for a DC power source welding machine.

本発明者らは、0.2%耐力が830MPa以上の高張力鋼の溶接において、溶接金属の耐割れ性と低温靱性を高い次元で両立した上で、直流溶接時特有の課題を解決する低水素系被覆アーク溶接棒について鋭意検討した。その結果、適切な量のTiを添加することで直流溶接でもアークが安定化し、欠陥の低減や溶接金属中の酸素量低減が可能となり、それにより溶接作業性が良好で高靭性溶接金属が得られることを知見した。また、Mgの添加量と粒度を調節することにより、溶接金属の靭性改善と拡散性水素量の低減が可能となることも知見した。   In the welding of high-strength steel having a 0.2% proof stress of 830 MPa or more, the present inventors have solved the problems peculiar to direct current welding while achieving both high crack resistance and low temperature toughness of the weld metal. The hydrogen-coated arc welding rod has been studied earnestly. As a result, by adding an appropriate amount of Ti, the arc can be stabilized even in DC welding, and defects can be reduced and the amount of oxygen in the weld metal can be reduced, which results in good weldability and high toughness weld metal. I found out that It was also found that the toughness of the weld metal can be improved and the amount of diffusible hydrogen can be reduced by adjusting the amount of Mg added and the particle size.

本発明は、このような新知見に基づき新たに成されたものであり、その要旨は、以下のとおりである。   The present invention has been newly made based on such new findings, and the gist thereof is as follows.

(1) 被覆アーク溶接棒全質量に対する質量%で、C:0.05〜0.15%、Si:0.3〜2.5%、Mn:0.5〜2.5%、Ni:1.0〜5.0%、Ti:0.30%超〜0.80%以下、Al:0.002〜0.08%、Cr:0.02〜0.20%、P:0.02%以下、S:0.01%以下、N:0.005%以下、O:0.005%以下を含有し、残部がFe、アーク安定剤、スラグ生成剤、粘結剤および不可避的不純物からなり、前記スラグ生成剤には、少なくとも金属炭酸塩および金属弗化物を、被覆剤全質量に対する質量%で、金属炭酸塩:30〜60%、金属弗化物:11〜23%含有し、溶接棒全質量に対する被覆剤質量で表される被覆率が25〜45質量%であることを特徴とする、直流電源溶接機用低水素系被覆アーク溶接棒。   (1) Mass% with respect to the total mass of the coated arc welding rod, C: 0.05 to 0.15%, Si: 0.3 to 2.5%, Mn: 0.5 to 2.5%, Ni: 1 0.0 to 5.0%, Ti: more than 0.30% to 0.80% or less, Al: 0.002 to 0.08%, Cr: 0.02 to 0.20%, P: 0.02% Hereinafter, S: 0.01% or less, N: 0.005% or less, O: 0.005% or less, with the balance being Fe, an arc stabilizer, a slag generator, a binder, and inevitable impurities The slag-forming agent contains at least metal carbonate and metal fluoride in mass% with respect to the total mass of the coating agent, including 30 to 60% metal carbonate and 11 to 23% metal fluoride. Low water for a DC power welding machine, characterized in that the coverage expressed by the coating mass relative to the mass is 25 to 45 mass% System covered electrode.

(2) さらに、被覆アーク溶接棒全質量に対する質量%で、Mo、Nb、Vの1種または2種以上を合計1.0〜3.0%含有することを特徴とする、上記(1)に記載の直流電源溶接機用低水素系被覆アーク溶接棒。   (2) Further, the above-mentioned (1), characterized in that the total content of one or more of Mo, Nb, and V is 1.0 to 3.0% by mass% with respect to the total mass of the coated arc welding rod. A low hydrogen-based coated arc welding rod for a DC power source welding machine as described in 1.

(3) 前記被覆剤中に、平均粒径を120〜250μmに制限したMgを被覆アーク溶接棒全質量に対して0.2〜2.0質量%含有することを特徴とする、上記(1)または(2)に記載の直流電源溶接機用低水素系被覆アーク溶接棒。   (3) The above-mentioned coating agent contains 0.2 to 2.0% by mass of Mg having an average particle size limited to 120 to 250 μm with respect to the total mass of the coated arc welding rod. ) Or a low hydrogen-based coated arc welding rod for a DC power source welding machine according to (2).

以上詳述したように、低水素系被覆アーク溶接棒において、被覆剤および溶接棒全体の組成、被覆率を規制したので、0.2%耐力が830MPa以上の高強度な溶接金属を対象として優れた靭性が得られる。よって、各種鋼構造物に対する溶接継手の信頼性を大幅に向上することができる。   As described above in detail, in the low hydrogen-based coated arc welding rod, the composition and covering ratio of the coating agent and the entire welding rod are regulated, so that it is excellent for high strength weld metal with 0.2% proof stress of 830 MPa or more. Toughness is obtained. Therefore, the reliability of the welded joint for various steel structures can be greatly improved.

本発明は、0.2%耐力が830MPa以上の高張力鋼の溶接において、溶接金属の耐割れ性と低温靱性が優れた溶接構造物を得ることのできる、直流電源溶接機用低水素系被覆アーク溶接棒に係わるものである。
以下に本発明の直流電源溶接機用低水素系被覆アーク溶接棒における成分限定の理由を詳細に説明する。
The present invention provides a low hydrogen-based coating for a DC power source welding machine capable of obtaining a welded structure excellent in crack resistance and low-temperature toughness of weld metal in welding of high-tensile steel having a 0.2% proof stress of 830 MPa or more. It relates to arc welding rods.
The reason for component limitation in the low hydrogen-based coated arc welding rod for DC power supply welding machine of the present invention will be described in detail below.

[溶接棒全体]
本発明では、上記直流電源溶接機用低水素系被覆アーク溶接棒の各成分を溶接棒全体として調整する必要がある。この場合、溶接棒全体の各成分の量は、Tiの場合を例にとると、下記被覆率A(%)を考慮して、次式で表される量である。
〔溶接棒のTi〕(質量%)=〔心線中のTi〕×(100−A)/100
+〔被覆剤中のTi〕×A/100
Tiは、脱酸剤として有効であると同時にアークの安定性に影響を及ぼすため、直流溶接用の溶接棒には最も重要な元素である。
[Welding bar as a whole]
In this invention, it is necessary to adjust each component of the said low hydrogen type | system | group covering arc welding rod for DC power supply welding machines as the whole welding rod. In this case, the amount of each component of the entire welding rod is an amount expressed by the following equation in consideration of the following coverage A (%), taking the case of Ti as an example.
[Ti of welding rod] (mass%) = [Ti in core wire] × (100−A) / 100
+ [Ti in coating] x A / 100
Ti is the most important element in a welding rod for DC welding because it is effective as a deoxidizer and affects the stability of the arc.

図1は、溶接棒全質量に対するTi含有率と溶接ビード1m当たりの欠陥数の関係を示す図である。溶接棒全体におけるTiは、0.30質量%以下だと、図1に示すように直流溶接のビード1m当たりの欠陥数は増加する。Ti含有率が減少するとアーク長が伸びて、アークが磁気の影響を受けやすくなり、窒素を巻き込んだことが欠陥数増加の原因と思われる。また、このような磁気吹きが生じると、窒素だけでなく溶接金属中の酸素含有率が増え、靭性が低下する。一方、図1では0.80質量%を超えても、欠陥数が増加しているが、これはアークの磁気吹きではなく、被覆が乾燥割れしやすくなるためである。このように溶接金属中のTi含有率が増えると、欠陥数が増加する。これらを勘案してTi含有率の範囲を0.30質量%超〜0.80質量%以下とした。さらに、Tiはシャルピー吸収エネルギーに悪影響を及ぼすため、溶接金属の靭性も考慮した場合、より好ましいTi含有率の範囲は0.30質量%超〜0.60質量%以下である。   FIG. 1 is a graph showing the relationship between the Ti content relative to the total mass of the welding rod and the number of defects per 1 m of weld bead. When Ti in the entire welding rod is 0.30 mass% or less, the number of defects per 1 m of beads in DC welding increases as shown in FIG. When the Ti content decreases, the arc length increases and the arc is easily affected by magnetism, and the inclusion of nitrogen seems to cause the increase in the number of defects. Moreover, when such a magnetic blow occurs, not only nitrogen but the oxygen content rate in a weld metal will increase, and toughness will fall. On the other hand, in FIG. 1, even if it exceeds 0.80 mass%, the number of defects increases, but this is not due to magnetic blowing of the arc but because the coating tends to dry crack. Thus, when the Ti content in the weld metal increases, the number of defects increases. Considering these, the range of Ti content is set to be more than 0.30 mass% to 0.80 mass% or less. Furthermore, since Ti adversely affects Charpy absorbed energy, when considering the toughness of the weld metal, a more preferable range of Ti content is more than 0.30 mass% to 0.60 mass% or less.

Cは、0.05質量%以下だと、脱酸不足により溶接金属中に気孔が発生し易くなるとともに、十分な固溶強化が得られず溶接金属の強度が不足する。一方、0.15質量%を超えるとマルテンサイトを生成して靭性が劣化する上、耐割れ性も劣るので、溶接棒のC含有率の範囲を0.05〜0.15質量%とした。   When C is 0.05% by mass or less, pores are easily generated in the weld metal due to insufficient deoxidation, and sufficient solid solution strengthening cannot be obtained, resulting in insufficient strength of the weld metal. On the other hand, if it exceeds 0.15% by mass, martensite is generated to deteriorate toughness and crack resistance is inferior, so the range of the C content of the welding rod is set to 0.05 to 0.15% by mass.

溶接棒のSiは、溶接金属の脱酸を目的とするものであるが、溶接作業性確保の上からも必要である。溶接棒全体における含有率が0.3質量%未満では、脱酸不足によって溶後金属中に気孔が発生し易く、立面姿勢での溶接作業性が劣化する。一方、2.5量%を超えると溶接金属の靭性が低下するので、溶接棒のSi含有率の範囲を0.3〜2.5質量%とした。   The Si of the welding rod is intended for deoxidation of the weld metal, but is also necessary for ensuring welding workability. When the content of the entire welding rod is less than 0.3% by mass, pores are likely to be generated in the metal after melting due to insufficient deoxidation, and the welding workability in an elevational posture is deteriorated. On the other hand, if it exceeds 2.5% by mass, the toughness of the weld metal decreases, so the range of the Si content of the welding rod is set to 0.3 to 2.5% by mass.

Mnは、Siと同様に脱酸剤として重要であり、少なくとも溶接棒全体に0.5質量%含有させなければならないが、2.5質量%を超えると上部ベイナイトとマルテンサイトの混合組織となり、靭性を劣化させるので、溶接棒のMn含有率の範囲を0.5〜2.5質量%とした。さらに、Mn含有率が1.4%以下であれば凝固時の偏析が低減され、靭性改善の効果が得られる。従って、より好ましいMn含有率の範囲は0.5〜1.4質量%である。   Mn is important as a deoxidizer like Si, and at least 0.5% by mass must be contained in the entire welding rod, but if it exceeds 2.5% by mass, it becomes a mixed structure of upper bainite and martensite, Since the toughness is deteriorated, the range of the Mn content of the welding rod is set to 0.5 to 2.5% by mass. Furthermore, if the Mn content is 1.4% or less, segregation during solidification is reduced, and an effect of improving toughness can be obtained. Therefore, the more preferable range of the Mn content is 0.5 to 1.4% by mass.

Niは、対象とする高強度の溶接金属で溶接棒全体におけるNiが1.0質量%未満になると高靭性を得ることが困難となるので、1.0質量%以上とする必要がある。一方、5.0質量%を超えると溶接金属の粒界が脆化して、粒界破壊が生じて靭性が低下するので、溶接棒のNi含有率の範囲を1.0〜5.0質量%とした。   Ni is a target high-strength weld metal, and when Ni in the entire welding rod is less than 1.0% by mass, it is difficult to obtain high toughness. On the other hand, if it exceeds 5.0 mass%, the grain boundary of the weld metal becomes brittle, grain boundary fracture occurs, and the toughness decreases, so the range of Ni content of the welding rod is 1.0 to 5.0 mass%. It was.

Alは、強力な脱酸剤の一部として有効であり、0.002%以上含有させなければならないが、溶接棒全体において0.08質量%を超えると、脱酸生成物中のAlが溶後金属中に多く残存して酸素量が増加することによって、靭性が劣化するので、溶接棒中のAl含有率の範囲を0.002〜0.08質量%以下とした。 Al is effective as a part of a strong deoxidizer and must be contained in an amount of 0.002% or more. However, if it exceeds 0.08% by mass in the entire welding rod, Al 2 O in the deoxidation product. Since 3 remains in the metal after melting and the amount of oxygen increases, the toughness deteriorates, so the range of the Al content in the welding rod is set to 0.002 to 0.08 mass% or less.

Crは、継手の強度確保のために必要な元素であり、溶接棒全体において少なくとも0.02質量%含有させなければならないが、0.20質量%を超えると靭性を劣化させるので、溶接棒のCr含有率の範囲を0.02〜0.20質量%とした。   Cr is an element necessary for ensuring the strength of the joint and must be contained at least 0.02% by mass in the entire welding rod. However, if it exceeds 0.20% by mass, the toughness is deteriorated. The range of Cr content was set to 0.02 to 0.20 mass%.

[不純物元素]
PおよびSは、溶接時に最終凝固部に偏析して靭性が低下する。溶接棒のP、Sは、極力低下することが望ましいが、少なくするほど心線の製造コストが上昇する。このため、溶接金属の低温靭性低下に影響の少ない範囲として、溶接棒のP、Sの量を、それぞれ0.02質量%、0.01質量%以下とした。
[Impurity elements]
P and S are segregated at the final solidified portion during welding and the toughness is lowered. Although it is desirable to reduce the P and S of the welding rod as much as possible, the manufacturing cost of the core increases as the number decreases. For this reason, the amount of P and S of a welding rod was made into 0.02 mass% and 0.01 mass% or less as a range with little influence on the low-temperature toughness fall of a weld metal, respectively.

Nは、溶後棒中の含有率を低減すると、溶接金属の靭性向上に有効である。溶接金属中のNは、溶接中に大気中から混入する他に、溶接棒中のNからも混入する。従って、溶接棒中のNをできるだけ低く抑えることが望ましいが、Nを低く抑えるために原料を厳選する必要があり、その結果製造コストが上昇する。このため、溶接金属の低温靭性に悪影響の少ない範囲として、溶接棒のN含有率を0.005質量%以下とした。   N is effective in improving the toughness of the weld metal if the content in the rod after melting is reduced. N in the weld metal is mixed from N in the welding rod in addition to being mixed from the atmosphere during welding. Therefore, it is desirable to keep N in the welding rod as low as possible, but it is necessary to carefully select raw materials in order to keep N low, and as a result, the manufacturing cost increases. For this reason, N content rate of a welding rod was made into 0.005 mass% or less as a range with few bad influences on the low temperature toughness of a weld metal.

Oは、溶後棒中の含有率が多いと、溶接中に被覆剤中の脱酸剤や合金剤と反応してその歩留まりを低下させ、溶接金属の性能のばらつきの原因となるほか、溶接金属中に介花物を生じ、靭性低下の原因となる。このため、安定した溶接金属成分の得られる範囲として溶接棒のO含有率を0.005質量%以下とした。
また、溶接棒中に含有させるSi、Mn、Ti、Al等の成分は純金属又は合金状態(例えば、Fe-Si、Fe−Mn、Mn-Si、TiC、Al−Mg、等)で含有させても良い。
If the content of O is high in the rod after melting, it reacts with the deoxidizer or alloying agent in the coating during welding to reduce its yield, causing variations in the performance of the weld metal. Interstitial flowers are produced in the metal and cause toughness reduction. For this reason, O content rate of the welding rod was made into 0.005 mass% or less as a range where the stable weld metal component is obtained.
In addition, Si, Mn, Ti, Al, and the like contained in the welding rod are contained in a pure metal or alloy state (for example, Fe—Si, Fe—Mn, Mn—Si, TiC, Al—Mg, etc.). May be.

なお、本発明溶接棒に用いる心線としては、特に規定しないが、JIS G3523に定められた範囲であることが望ましい。   In addition, although it does not prescribe | regulate especially as a core wire used for this invention welding rod, it is desirable that it is the range defined by JISG3523.

本発明溶接棒に含まれる元素の種類および最適添加率は、上記のとおりであり、上記の要件を満足する限り本発明の目的は達成される。   The types and optimum addition rates of elements contained in the welding rod of the present invention are as described above, and the object of the present invention is achieved as long as the above requirements are satisfied.

さらに、必要に応じて、Mo、Nb、Vの1種または2種以上を、合計1.0〜3.0質量%含有することにより、溶接金属の強度を増加させることが可能である。これらの成分は、それぞれ鋼心線中に含有されるか、あるいは被覆剤中に金属粉や他の金属との合金粉の形で添加される。   Furthermore, if necessary, the strength of the weld metal can be increased by containing one or more of Mo, Nb, and V in a total amount of 1.0 to 3.0% by mass. Each of these components is contained in the steel core wire, or added to the coating agent in the form of metal powder or alloy powder with other metals.

[被覆剤]
被覆剤の金属炭酸塩とは、CaCO、MgCO、BaCOなどを指し、アークの熱で分解してガスを発生し、アーク雰囲気を大気から保護する働きがある。それらの1種以上の合計が、被覆剤中に30質量%未満だと、シールドガスが不足して溶接金属に大気中の窒素や水素が多量に溶解し、靭性や耐割れ性の劣化を招く。また、被覆剤中に60質量%を超えるとアークが不安定になりビード形状が悪化し、スラグの剥離性も悪くなるので被覆剤中に30〜60質量%の範囲とした。
[Coating agent]
The metal carbonate of the coating agent refers to CaCO 3 , MgCO 3 , BaCO 3, etc., and has a function of decomposing with arc heat to generate gas and protecting the arc atmosphere from the atmosphere. If the total of one or more of them is less than 30% by mass in the coating agent, the shielding gas is insufficient, and a large amount of nitrogen and hydrogen in the atmosphere dissolves in the weld metal, leading to deterioration of toughness and crack resistance. . Moreover, when it exceeds 60 mass% in a coating material, an arc will become unstable, a bead shape will deteriorate, and the peelability of slag will also deteriorate, Therefore It was set as the range of 30-60 mass% in a coating material.

金属弗化物とは、CaF、MgF、AlFなどを指し、溶融スラグの流動性調整のため添加するが、それらの1種以上の合計が、被覆剤中に11質量%未満では溶融スラグの粘性が不足し、スラグの被包性が悪くなり、ビード形状も劣化する。被覆剤中に23質量%を超えて添加すると、被覆筒の形状が不完全となり、アークの安定性が悪くなるので、被覆剤中に11〜23質量%の範囲とした。 Metal fluoride refers to CaF 2 , MgF 2 , AlF 3, etc., which are added to adjust the fluidity of the molten slag. If the total of one or more of them is less than 11% by mass in the coating agent, the molten slag is added. The viscosity of the slag is insufficient, the encapsulation of the slag is deteriorated, and the bead shape is also deteriorated. If the amount exceeds 23% by mass in the coating agent, the shape of the coated cylinder becomes incomplete and the stability of the arc deteriorates, so the range of 11 to 23% by mass in the coating agent was set.

被覆剤の成分としては、以上の各成分を必須成分とするが、その他の成分は、主として脱酸剤、合金剤、アーク安定剤、スラグ生成剤、粘結剤からなるものである。脱酸剤としてはFe−Si、Fe−Mn、Mnなどの脱酸剤でよい。合金剤はMo、Nb、Vなどを指し、溶接金属の強度増加、耐熱性、耐火性などの向上の目的で、それぞれ必要に応じて添加される。これらはそれぞれの金属粉のほか、鉄および他の金属との合金粉の形で添加される。アーク安定剤、スラグ生成剤とは、鉄分、アルカリ成分、ルチールなどを指す。また粘結剤としては、珪酸カリ、珪酸ソーダなどを指す。   As the components of the coating agent, each of the above components is an essential component, but the other components are mainly composed of a deoxidizer, an alloy agent, an arc stabilizer, a slag generator, and a binder. The deoxidizer may be a deoxidizer such as Fe-Si, Fe-Mn, or Mn. Alloying agents refer to Mo, Nb, V, etc., and are added as necessary for the purpose of increasing the strength of the weld metal, improving heat resistance, fire resistance, and the like. These are added in the form of alloy powders with iron and other metals in addition to the respective metal powders. The arc stabilizer and slag forming agent refer to iron, alkali components, rutile and the like. As the binder, potassium silicate, sodium silicate and the like are indicated.

さらに、溶接金属の低温靭性を一層効果的に高めるためには、平均粒径を120〜250μmに制限したMgを0.2〜2.0質量%含有するのが好ましい。図2はMgの平均粒径と溶接金属の衝撃吸収エネルギーの関係を示す図である。Mgにより溶接金属における拡散性水素量の増加を最小限にしながら酸素量が低減でき、溶接金属の靭性のばらつきが低減できる。平均粒径120μm未満では、本発明が期待する靭性安定化への寄与が少なく、図2のように−40℃におけるシャルピー吸収エネルギーが合格範囲を下回る。これは粒径が小さいほど、拡散性水素量低減のために実施している高温乾燥時にMgが酸化しやすいためであり、Mgが本来の機能を発揮しないからである。平均粒径が250μmを超える場合においては、溶接金属性能は良好で健全な溶接金属を得ることができるが、塗装時におけるフラックスの流動性に問題があり、生産性を阻害することがある。Mg添加量が0.2質量%未満では十分な脱酸効果が得られず、一方、2.0質量%を超えて添加すると溶接時アークが不安定となり、スパッタが増加するとともにスラグの粘性が低下し、スラグの剥離性が劣化するので、Mgの添加範囲を0.2〜2.0質量%とした。   Furthermore, in order to increase the low temperature toughness of the weld metal more effectively, it is preferable to contain 0.2 to 2.0% by mass of Mg having an average particle size limited to 120 to 250 μm. FIG. 2 is a graph showing the relationship between the average particle diameter of Mg and the impact absorption energy of the weld metal. Mg can reduce the amount of oxygen while minimizing an increase in the amount of diffusible hydrogen in the weld metal, and can reduce variations in the toughness of the weld metal. When the average particle size is less than 120 μm, the contribution to stabilization of toughness expected by the present invention is small, and the Charpy absorbed energy at −40 ° C. is below the acceptable range as shown in FIG. This is because the smaller the particle size, the easier it is for Mg to oxidize during high temperature drying, which is carried out to reduce the amount of diffusible hydrogen, and Mg does not perform its original function. When the average particle size exceeds 250 μm, weld metal performance is good and a sound weld metal can be obtained, but there is a problem in flux fluidity at the time of coating, which may hinder productivity. If the amount of Mg added is less than 0.2% by mass, a sufficient deoxidation effect cannot be obtained. On the other hand, if the amount added exceeds 2.0% by mass, the arc during welding becomes unstable, and spatter increases and the viscosity of the slag increases. Since the slag peelability deteriorates, the Mg addition range is set to 0.2 to 2.0 mass%.

[被覆率]
上記組成の被覆剤を、鋼心線の周囲に、溶接棒全質量に対する被覆剤質量で表される被覆率が25〜45質量%となるように被覆する必要がある。被覆率が25質量%未満では保護筒としての機能が不十分になってシールド不足を生じ、溶接金属中のNが増加して靭性が低下したり、スパッタが増加したり、生成スラグ量の不足によってビード外観が悪化するからである。一方、45質量%を超えると、スラグ量が多くなりすぎるためにスラグ巻き込み等の欠陥が発生し易くなると共に、開先幅の狭い溶接継手に適用した場合に運棒が困難になるからである。
[Coverage]
It is necessary to coat | cover the coating material of the said composition around a steel core wire so that the coverage represented by the coating material mass with respect to the welding rod total mass may be 25-45 mass%. If the coverage is less than 25% by mass, the function as a protective cylinder becomes insufficient, resulting in insufficient shielding, N in the weld metal increases, toughness decreases, spatter increases, and the amount of generated slag is insufficient. This is because the bead appearance deteriorates. On the other hand, if it exceeds 45% by mass, the amount of slag increases so that defects such as slag entrainment are likely to occur, and it becomes difficult to carry the rod when applied to a welded joint with a narrow groove width. .

以下に、本発明の実施例を説明する。この実施例においては、表1に示す化学成分(残部はFe及び不可避不純物)を有する心線と、表2に示す化学成分を有する被覆剤を用いて、心線径4.0mmの外周に被覆剤を塗布し被覆アーク溶接棒を作製した。被覆剤の残部はFe、アーク剤、スラグ生成剤、粘結剤および不可避的不純物からなる。なお、溶接棒中に含有させるSi、Mn、Ti、Al等の成分は必要に応じて純金属又はFe-Si、Fe−Mn、Mn-Siなど合金状態で使用した。表2に溶接棒全体に対する成分の含有割合を合わせて記載した。   Examples of the present invention will be described below. In this embodiment, a core wire having the chemical components shown in Table 1 (the balance is Fe and inevitable impurities) and a coating agent having the chemical components shown in Table 2 are used to coat the outer periphery of the core wire diameter of 4.0 mm. The coating agent was applied to produce a coated arc welding rod. The balance of the coating material is composed of Fe, an arc agent, a slag forming agent, a binder and inevitable impurities. In addition, components such as Si, Mn, Ti, and Al contained in the welding rod were used in a pure metal or alloy state such as Fe—Si, Fe—Mn, and Mn—Si as necessary. Table 2 shows the content ratio of the components with respect to the entire welding rod.

得られた各被覆アーク溶接棒を用い、供試母材として厚さ25mmの鋼板にX開先をとりアーク溶接を行った。溶接電源は直流電源を使用し、極性は電極プラス(DCEP)、溶接条件は、溶接電流150A、溶接入熱30kJ/cm、予熱・パス間温度100〜200℃で、立面姿勢で溶接継手を作製し、引張試験及び試験温度−40℃での2mmVノッチ衝撃試験を行った。また、溶接作業性、溶接金属の酸素量を調べた。それらの調査結果を表3に示す。なお、酸素量は0.03質量%未満を○印、0.03質量%以上を×印とした。   Using each of the obtained coated arc welding rods, X welding was performed on a steel plate having a thickness of 25 mm as a test base material, and arc welding was performed. The welding power source uses a DC power source, the polarity is electrode plus (DCEP), the welding conditions are welding current 150A, welding heat input 30kJ / cm, preheating / pass-to-pass temperature 100-200 ° C, and the welded joint is in an upright position. The sample was prepared, and a tensile test and a 2 mmV notch impact test at a test temperature of −40 ° C. were performed. We also investigated welding workability and oxygen content of the weld metal. The survey results are shown in Table 3. In addition, the amount of oxygen made less than 0.03 mass% the (circle) mark, and 0.03 mass% or more made the x mark.

E1〜E15は、いずれも本発明の要件を全て満たしており、強度、靭性ともに良好な値を示し、また、溶接作業性も良好であった。   E1 to E15 all satisfied the requirements of the present invention, showed good values for both strength and toughness, and had good welding workability.

溶接棒E21〜E34は、比較例を示す。溶接棒E21とE22は、溶接棒中のAlとSiがそれぞれ上限を超えるものであり、靭性が低かった。溶接棒E23は、金属炭酸塩と溶接棒中のTiが上限を超えているので、溶接作業性が悪く、かつ強度が高くなりすぎ靭性が低い。溶接棒E24は、金属弗化物および溶接棒中のMnが外れており、溶接作業性が悪く、かつ靭性が低下した。溶接棒E25は、金属炭酸塩が下限を下回っており、溶接作業性が悪かった。溶接棒E26は、金属弗化物が上限を超えているため溶接作業性が悪く、かつ溶接棒中のNiが下限を下回っており、靭性が低かった。溶接棒E27は、被覆剤中のMgが上限を超えているため、溶接作業性が劣った。溶接棒E28とE29は、溶接棒中のCrとNiがそれぞれ上限を超えており、靭性が低かった。溶接棒E30は、Oが上限を超えているため、気孔が多発し、かつ靭性が低かった。溶接棒E31は、被覆率が下限を下回っており、かつNが上限を超えているため、溶接作業性が悪く、溶接金属中の窒素が増加して靭性が低かった。溶接棒E32は、Mo、Nb、Vの合計量が上限を超えているため、靭性が低かった。溶接棒E33は、Cが条件を超えているため、割れが発生し、かつ靭性が低かった。溶接棒E34は、使用した心線のP、Sが上限を超えるものがあり、本発明溶接棒に比べ、著しく低温靭性が低かった。   The welding rods E21 to E34 show comparative examples. In welding rods E21 and E22, Al and Si in the welding rod each exceeded the upper limit, and the toughness was low. In the welding rod E23, since the metal carbonate and Ti in the welding rod exceed the upper limit, the welding workability is poor, the strength is too high, and the toughness is low. In welding rod E24, metal fluoride and Mn in the welding rod were removed, so that welding workability was poor and toughness was lowered. In the welding rod E25, the metal carbonate was below the lower limit, and the welding workability was poor. The welding rod E26 had poor welding workability because the metal fluoride exceeded the upper limit, and Ni in the welding rod was lower than the lower limit, resulting in low toughness. The welding rod E27 was inferior in welding workability because Mg in the coating exceeded the upper limit. In the welding rods E28 and E29, Cr and Ni in the welding rod exceeded the upper limit, respectively, and the toughness was low. The welding rod E30 had many pores and low toughness because O exceeded the upper limit. The welding rod E31 had a covering rate lower than the lower limit and N exceeded the upper limit, so that the welding workability was poor, and nitrogen in the weld metal increased and the toughness was low. Since the total amount of Mo, Nb, and V exceeded the upper limit, the welding rod E32 had low toughness. As for the welding rod E33, since C exceeded the condition, cracks occurred and the toughness was low. Some of the welding rods E34 had P and S of the core wires used exceeding the upper limit, and the low temperature toughness was remarkably low as compared with the welding rods of the present invention.

Figure 2009291802
Figure 2009291802

Figure 2009291802
Figure 2009291802

Figure 2009291802
Figure 2009291802

溶接棒全質量に対するTi含有率と溶接ビード1m当たりの欠陥数の関係を示す図である。It is a figure which shows the relationship between Ti content rate with respect to the welding rod total mass, and the number of defects per 1 m of welding beads. Mgの平均粒径と溶接金属の衝撃吸収エネルギーの関係を示す図である。It is a figure which shows the relationship between the average particle diameter of Mg, and the impact absorption energy of a weld metal.

Claims (3)

被覆アーク溶接棒全質量に対する質量%で、
C :0.05〜0.15%、
Si:0.3〜2.5%、
Mn:0.5〜2.5%、
Ni:1.0〜5.0%、
Ti:0.30%超〜0.80%以下、
Al:0.002〜0.08%、
Cr:0.02〜0.20%、
P :0.02%以下、
S :0.01%以下、
N :0.005%以下、
O :0.005%以下
を含有し、残部がFe、アーク安定剤、スラグ生成剤、粘結剤および不可避的不純物からなり、前記スラグ生成剤には、少なくとも金属炭酸塩および金属弗化物を、被覆剤全質量に対する質量%で、
金属炭酸塩:30〜60%、
金属弗化物:11〜23%
含有し、溶接棒全質量に対する被覆剤質量で表される被覆率が25〜45質量%であることを特徴とする、直流電源溶接機用低水素系被覆アーク溶接棒。
In mass% with respect to the total mass of the coated arc welding rod,
C: 0.05 to 0.15%,
Si: 0.3 to 2.5%,
Mn: 0.5 to 2.5%
Ni: 1.0-5.0%,
Ti: more than 0.30% to 0.80% or less,
Al: 0.002 to 0.08%,
Cr: 0.02 to 0.20%,
P: 0.02% or less,
S: 0.01% or less,
N: 0.005% or less,
O 2: 0.005% or less, the balance consisting of Fe, an arc stabilizer, a slag generator, a binder and inevitable impurities, and the slag generator contains at least a metal carbonate and a metal fluoride, In mass% of the total mass of the coating
Metal carbonate: 30-60%
Metal fluoride: 11-23%
A low hydrogen-based coated arc welding rod for a DC power supply welding machine, characterized in that the coating ratio is 25 to 45% by mass with respect to the total mass of the welding rod.
さらに、被覆アーク溶接棒全質量に対する質量%で、Mo、Nb、Vの1種または2種以上を合計1.0〜3.0%含有することを特徴とする、請求項1に記載の直流電源溶接機用低水素系被覆アーク溶接棒。   The direct current according to claim 1, further comprising one or more of Mo, Nb, and V in a total mass of 1.0 to 3.0% by mass% with respect to the total mass of the coated arc welding rod. Low hydrogen coated arc welding rod for power welding machines. 前記被覆剤中に、平均粒径を120〜250μmに制限したMgを被覆アーク溶接棒全質量に対して0.2〜2.0質量%含有することを特徴とする、請求項1または2に記載の直流電源溶接機用低水素系被覆アーク溶接棒。   In the said coating agent, 0.2-2.0 mass% of Mg with which the average particle diameter was restrict | limited to 120-250 micrometers was contained with respect to the covering arc welding rod total mass, It is characterized by the above-mentioned. A low hydrogen-based coated arc welding rod for a DC power source welding machine as described.
JP2008146282A 2008-06-03 2008-06-03 Low hydrogen type coated arc welding rod for DC power welding machine Expired - Fee Related JP5157653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008146282A JP5157653B2 (en) 2008-06-03 2008-06-03 Low hydrogen type coated arc welding rod for DC power welding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008146282A JP5157653B2 (en) 2008-06-03 2008-06-03 Low hydrogen type coated arc welding rod for DC power welding machine

Publications (2)

Publication Number Publication Date
JP2009291802A true JP2009291802A (en) 2009-12-17
JP5157653B2 JP5157653B2 (en) 2013-03-06

Family

ID=41540473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008146282A Expired - Fee Related JP5157653B2 (en) 2008-06-03 2008-06-03 Low hydrogen type coated arc welding rod for DC power welding machine

Country Status (1)

Country Link
JP (1) JP5157653B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015196183A (en) * 2014-04-02 2015-11-09 日鐵住金溶接工業株式会社 Low hydrogen type coated electrode
JP2019048320A (en) * 2017-09-11 2019-03-28 株式会社神戸製鋼所 Covered arc-welding method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6420725B2 (en) * 2015-06-09 2018-11-07 株式会社神戸製鋼所 Low hydrogen coated arc welding rod

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5592290A (en) * 1978-12-30 1980-07-12 Nippon Steel Corp Low hydrogen base coated electrode
JPS62161496A (en) * 1986-01-09 1987-07-17 Kawasaki Steel Corp Covered electrode for cr-mo high temperature steel
JPS63207496A (en) * 1987-02-23 1988-08-26 Nippon Steel Corp Low hydrogen type coated electrode
JPH01262094A (en) * 1988-04-14 1989-10-18 Nippon Steel Corp Low hydrogen type coated electrode
JPH0796394A (en) * 1993-09-29 1995-04-11 Kobe Steel Ltd Low hydrogen type coated electrode
JPH08257791A (en) * 1995-03-22 1996-10-08 Nippon Steel Corp Low hydrogen covered electrode
JPH09168891A (en) * 1995-10-18 1997-06-30 Kobe Steel Ltd Low hydrogen covered electrode for high strength cr-mo steel
JPH10263883A (en) * 1997-03-25 1998-10-06 Kobe Steel Ltd Low hydrogen type coated electrode

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5592290A (en) * 1978-12-30 1980-07-12 Nippon Steel Corp Low hydrogen base coated electrode
JPS62161496A (en) * 1986-01-09 1987-07-17 Kawasaki Steel Corp Covered electrode for cr-mo high temperature steel
JPS63207496A (en) * 1987-02-23 1988-08-26 Nippon Steel Corp Low hydrogen type coated electrode
JPH01262094A (en) * 1988-04-14 1989-10-18 Nippon Steel Corp Low hydrogen type coated electrode
JPH0796394A (en) * 1993-09-29 1995-04-11 Kobe Steel Ltd Low hydrogen type coated electrode
JPH08257791A (en) * 1995-03-22 1996-10-08 Nippon Steel Corp Low hydrogen covered electrode
JPH09168891A (en) * 1995-10-18 1997-06-30 Kobe Steel Ltd Low hydrogen covered electrode for high strength cr-mo steel
JPH10263883A (en) * 1997-03-25 1998-10-06 Kobe Steel Ltd Low hydrogen type coated electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015196183A (en) * 2014-04-02 2015-11-09 日鐵住金溶接工業株式会社 Low hydrogen type coated electrode
JP2019048320A (en) * 2017-09-11 2019-03-28 株式会社神戸製鋼所 Covered arc-welding method

Also Published As

Publication number Publication date
JP5157653B2 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
JP5138242B2 (en) Flux-cored wire for duplex stainless steel welding
JP4566899B2 (en) High strength stainless steel welding flux cored wire
JP2010110817A (en) Low-hydrogen coated electrode
KR101148277B1 (en) Flux cored wire
JPWO2005070612A1 (en) Ni-based high-Cr alloy filler and welding rod for covered arc welding
KR101153572B1 (en) Flux cored wire
JP2017131900A (en) Stainless steel flux-cored wire
JP6177177B2 (en) Low hydrogen coated arc welding rod
JP2006289404A (en) Flux cored wire for gas shielded arc welding
JP6437471B2 (en) Low hydrogen coated arc welding rod
JP6434387B2 (en) Low hydrogen coated arc welding rod
JP2008221231A (en) Flux cored wire for gas-shielded arc welding
JP2009248137A (en) Flux cored wire for gas-shielded arc welding
JP6434381B2 (en) Stainless steel flux cored wire
JP2012223816A (en) Coated electrode for duplex stainless steel
JP6017406B2 (en) Stainless steel flux cored wire for self shielded arc welding
KR101171445B1 (en) Flux cored wire
JP6051086B2 (en) Low hydrogen coated arc welding rod
JP2018144045A (en) FLUX-CORED WIRE FOR 9% Ni STEEL WELDING
JP5157653B2 (en) Low hydrogen type coated arc welding rod for DC power welding machine
JP5409459B2 (en) Flux-cored wire for welding austenitic stainless steel
JP6661516B2 (en) Non-consumable nozzle type electroslag welding method and method for manufacturing electroslag welding joint
JP2010064087A (en) Flux cored wire for gas-shielded arc welding
JPH06285683A (en) Low hydrogen coated electrode
JPH11347790A (en) Coated electrode for ni group high cr alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

R151 Written notification of patent or utility model registration

Ref document number: 5157653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees