JP4833635B2 - Torque sensor and electric power steering device - Google Patents

Torque sensor and electric power steering device Download PDF

Info

Publication number
JP4833635B2
JP4833635B2 JP2005315290A JP2005315290A JP4833635B2 JP 4833635 B2 JP4833635 B2 JP 4833635B2 JP 2005315290 A JP2005315290 A JP 2005315290A JP 2005315290 A JP2005315290 A JP 2005315290A JP 4833635 B2 JP4833635 B2 JP 4833635B2
Authority
JP
Japan
Prior art keywords
temperature compensation
bobbin
torque
torque sensor
compensation coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005315290A
Other languages
Japanese (ja)
Other versions
JP2007121161A (en
Inventor
真一 戸倉
康弘 戝家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Corp
Original Assignee
Showa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Corp filed Critical Showa Corp
Priority to JP2005315290A priority Critical patent/JP4833635B2/en
Publication of JP2007121161A publication Critical patent/JP2007121161A/en
Application granted granted Critical
Publication of JP4833635B2 publication Critical patent/JP4833635B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Power Steering Mechanism (AREA)

Description

本発明はトルクセンサ及び電動パワーステアリング装置に関する。   The present invention relates to a torque sensor and an electric power steering apparatus.

電動パワーステアリング装置は、ステアリングホイールが結合される入力軸と、出力軸とがトーションバーを介して連結され、ステアリングホイールに加えられた操舵トルクをトルクセンサにより検出し、その検出トルクにより電動モータを駆動し、電動モータの発生トルクを出力軸側に伝え、結果として、電動モータの発生トルクを運転者がステアリングホイールに加える操舵力に対するアシスト力として用いる。   In the electric power steering apparatus, an input shaft to which a steering wheel is coupled and an output shaft are connected via a torsion bar, and a steering torque applied to the steering wheel is detected by a torque sensor, and the electric motor is driven by the detected torque. The generated torque of the electric motor is transmitted to the output shaft side, and as a result, the generated torque of the electric motor is used as an assist force for the steering force applied to the steering wheel by the driver.

従来のトルクセンサは、特許文献1に記載の如く、入力軸と出力軸のそれぞれを入力軸受と出力軸受のそれぞれを介してハウジングに回転可能に支持し、入力軸と出力軸のそれぞれに固定される第1と第2のコアとともに磁気回路を構成するトルク検出コイルをハウジングに設け、入力軸と出力軸とを連結したトーションバーに作用するトルクを検出する。   As described in Patent Document 1, a conventional torque sensor supports an input shaft and an output shaft rotatably on a housing via an input bearing and an output bearing, and is fixed to each of the input shaft and the output shaft. A torque detection coil that constitutes a magnetic circuit together with the first and second cores is provided in the housing to detect the torque acting on the torsion bar connecting the input shaft and the output shaft.

また、特許文献1のトルクセンサでは、磁性材料からなる入力軸の外周円筒部とともに磁気回路を構成する温度補償コイルをハウジングに設け、トルク検出コイルと温度補償コイルの誘起電圧の差を求めることにより、周囲温度変化による誘起電圧相等分を相殺し、トルクセンサの検出精度を向上する。
特開2005-3462
Moreover, in the torque sensor of patent document 1, the temperature compensation coil which comprises a magnetic circuit with the outer peripheral cylindrical part of the input shaft which consists of magnetic materials is provided in a housing, and the difference of the induced voltage of a torque detection coil and a temperature compensation coil is calculated | required. In addition, the induced voltage phase due to the ambient temperature change is offset and the detection accuracy of the torque sensor is improved.
JP2005-3462

特許文献1のトルクセンサでは、ハウジング軸方向で温度補償コイルの直上側傍に入力軸受を設け、温度補償コイルは入力軸の外周円筒部と電磁結合しており、以下の問題点がある。   In the torque sensor of Patent Document 1, an input bearing is provided near the temperature compensation coil in the housing axial direction, and the temperature compensation coil is electromagnetically coupled to the outer peripheral cylindrical portion of the input shaft, and has the following problems.

(1)温度補償コイルの直上に入力軸受を設けており、温度補償コイルの磁気回路に入力軸受が磁気的に干渉して磁気特性を低下させることのないように磁気遮蔽を考慮する必要がある。   (1) An input bearing is provided directly above the temperature compensation coil, and it is necessary to consider magnetic shielding so that the input bearing does not interfere magnetically with the magnetic circuit of the temperature compensation coil to deteriorate the magnetic characteristics. .

(2)入力軸受が、入力軸と出力軸の軸方向において、温度補償コイルを挟んで出力軸受の反対側に位置付けられるから、入力軸受と出力軸受の支持スパンが大きい。このため、入力軸と出力軸の同軸度を向上することに困難を伴ない、両者の回転偏心が大きくなりトルク検出精度を損なうおそれがある。   (2) Since the input bearing is positioned on the opposite side of the output bearing across the temperature compensation coil in the axial direction of the input shaft and the output shaft, the support span of the input bearing and the output bearing is large. For this reason, it is difficult to improve the concentricity of the input shaft and the output shaft, and the rotational eccentricity of the both increases, which may impair the torque detection accuracy.

また、特許文献1のトルクセンサでは、入力軸を支持する入力軸受と、温度補償コイルを別個にハウジング取付けることになり、ハウジングの軸方向寸法が大きくなり部品数が多く、組付工数も多い。   Moreover, in the torque sensor of Patent Document 1, the input bearing that supports the input shaft and the temperature compensation coil are separately mounted on the housing, and the axial dimension of the housing increases, resulting in a large number of parts and a large number of assembly steps.

本発明の課題は、トルクセンサにおいて、ハウジングのコンパクト化及び、部品数と組付工数を少なくし、コスト低減するとともに、温度補償コイルの磁気特性を安定化し、検出精度(感度)を向上することにある。   An object of the present invention is to provide a torque sensor with a compact housing, reduce the number of parts and assembly steps, reduce costs, stabilize the magnetic characteristics of the temperature compensation coil, and improve detection accuracy (sensitivity). It is in.

請求項1の発明は、ハウジングに収容される入力軸と出力軸がトーションバーを介して連結され、トルク検出コイルと温度補償コイルをハウジングに設けてなるトルクセンサにおいて、入力軸を支持する入力軸受を、樹脂製の温度補償コイル用ボビンにインサートモールドし、温度補償コイルを上記入力軸受に電磁結合させるようにしたものである。   According to a first aspect of the present invention, there is provided an input bearing for supporting an input shaft in a torque sensor in which an input shaft and an output shaft accommodated in a housing are connected via a torsion bar and a torque detection coil and a temperature compensation coil are provided in the housing. Is insert-molded into a resin-made temperature compensation coil bobbin, and the temperature compensation coil is electromagnetically coupled to the input bearing.

請求項2の発明は、請求項1の発明において更に、前記温度補償コイル用ボビンにトルク検出コイル用ボビンを一体に樹脂成形してなるようにしたものである。   According to a second aspect of the present invention, in addition to the first aspect of the present invention, the temperature compensation coil bobbin is integrally molded with a torque detection coil bobbin.

請求項3の発明は、請求項2の発明において更に、前記一体に樹脂成形してなる、温度補償コイル用ボビン及びトルク検出コイル用ボビンと、これらボビンにそれぞれ巻装したトルク検出コイル及び温度補償コイルを、磁性金属粉を混合した樹脂製ヨークにインサートモールドするようにしたものである。 According to a third aspect of the present invention , the temperature compensation coil bobbin and the torque detection coil bobbin, which are integrally molded with the resin in the second aspect of the invention, and the torque detection coil and the temperature compensation wound around the bobbin, respectively. The coil is insert-molded into a resin yoke mixed with magnetic metal powder.

請求項4の発明は、請求項3の発明において更に、前記ヨークを、樹脂製ハウジングにインサートモールドするようにしたものである。   According to a fourth aspect of the present invention, in the third aspect of the present invention, the yoke is insert-molded in a resin housing.

請求項5の発明は、ステアリングホイールが結合される入力軸と、電動モータ側に連動する出力軸とを有し、請求項1〜4のいずれかに記載のトルクセンサの検出トルク信号により電動モータを駆動することを特徴とする電動パワーステアリング装置である。   The invention according to claim 5 has an input shaft to which the steering wheel is coupled, and an output shaft linked to the electric motor side, and the electric motor is detected by a torque signal detected by the torque sensor according to any one of claims 1 to 4. It is an electric power steering device characterized by driving.

(請求項1)
(a)入力軸を支持する入力軸受を温度補償コイルのボビンにインサートモールドし、温度補償コイルを入力軸受に電磁結合させたから、入力軸受が直接温度補償コイルの磁気回路を構成しているので、入力軸受の該磁気回路への干渉を考慮する必要がない。従って、温度補償コイルの磁気遮蔽部材等を設けることなく磁気特性を簡易に安定化できる。
(Claim 1)
(a) Since the input bearing supporting the input shaft is insert-molded on the bobbin of the temperature compensation coil and the temperature compensation coil is electromagnetically coupled to the input bearing, the input bearing directly constitutes the magnetic circuit of the temperature compensation coil. There is no need to consider interference of the input bearing with the magnetic circuit. Therefore, the magnetic characteristics can be easily stabilized without providing a magnetic shielding member for the temperature compensation coil.

(b)入力軸受が、入力軸と出力軸の軸方向において、温度補償コイルを挟んで出力軸受の反対側に位置するものでなく、温度補償コイルと軸方向の略同位置に配置されるから、入力軸受と出力軸受間の支持スパンを短縮できる。このため、入力軸と出力軸の同軸度が向上し、両者の回転偏心を抑えてトルク検出精度を向上できる。   (b) The input bearing is not located on the opposite side of the output bearing across the temperature compensation coil in the axial direction of the input shaft and the output shaft, but is disposed at substantially the same position in the axial direction as the temperature compensation coil. The support span between the input bearing and the output bearing can be shortened. For this reason, the coaxiality of the input shaft and the output shaft is improved, and the torque eccentricity can be suppressed by suppressing the rotational eccentricity of both.

(c)入力軸受を温度補償コイルのボビンに一体にしたから、部品数と組付工数を少なくし、コスト低減できる。また、入力軸を安定して支持できる。   (c) Since the input bearing is integrated with the bobbin of the temperature compensation coil, the number of parts and assembly steps can be reduced, and the cost can be reduced. In addition, the input shaft can be supported stably.

(請求項2)
(d)トルク検出コイルと温度補償コイルをハウジングに設けるに際し、トルク検出コイル用のボビンと温度補償コイル用のボビンを一体のボビンに樹脂成形して単一化したから、トルクセンサの部品数と組付性及び組付寸法誤差をなくし、コスト低減できる。
(Claim 2)
(d) When the torque detection coil and the temperature compensation coil are provided in the housing, the torque detection coil bobbin and the temperature compensation coil bobbin are molded into a single bobbin and integrated into a single unit. Assembling property and assembling dimensional error can be eliminated and cost can be reduced.

(請求項3)
(e)上述(d)のボビンと、該ボビンに巻装したトルク検出コイル及び温度補償コイルを、磁性金属粉を混合した樹脂製ヨークにインサートモールドしたから、トルクセンサの部品数と組付工数を一層少なくできる上に、ヨークがボビンとコイルとの間に形成するエアギャップを可及的に低減し、トルクセンサの検出精度を向上する。
(Claim 3)
(e) Since the above-described bobbin (d), the torque detection coil and the temperature compensation coil wound around the bobbin are insert-molded in a resin yoke mixed with magnetic metal powder, the number of torque sensor components and assembly man-hours In addition, the air gap formed by the yoke between the bobbin and the coil can be reduced as much as possible to improve the detection accuracy of the torque sensor.

(請求項4)
(f)上述(e)のヨークを樹脂製ハウジングにインサートモールドしたから、トルクセンサの部品数と組付工数を一層少なくできる。
(Claim 4)
(f) Since the yoke described in (e) above is insert-molded in the resin housing, the number of torque sensor components and assembly man-hours can be further reduced.

(請求項5)
(g)電動パワーステアリング装置のトルクセンサにおいて、上述(a)〜(f)を実現できる。これにより、ステアリングホイールに加えた操舵トルクの検出精度を向上させ、電動モータによるアシスト性能を向上できる。
(Claim 5)
(g) In the torque sensor of the electric power steering apparatus, the above (a) to (f) can be realized. Thereby, the detection accuracy of the steering torque applied to the steering wheel can be improved, and the assist performance by the electric motor can be improved.

図1は電動パワーステアリング装置の要部を示す断面図、図2はトルクセンサを拡大して示す断面図、図3はヨークへのボビンのインサートモールド成形体を示す断面図、図4は第1のコアと第2のコアを拡大して示す断面図、図5はトルクセンサの模式図である。   1 is a cross-sectional view showing the main part of the electric power steering apparatus, FIG. 2 is an enlarged cross-sectional view showing a torque sensor, FIG. 3 is a cross-sectional view showing an insert-molded body of a bobbin to a yoke, and FIG. Sectional drawing which expands and shows the core and the 2nd core, FIG. 5 is a schematic diagram of a torque sensor.

電動パワーステアリング装置10は、図1に示す如く、車体フレーム等に固定される第1ハウジング11に第2ハウジング12をボルト結合する。そして、ステアリングホイールが結合される入力軸14と、出力軸15をトーションバー16を介して同軸結合し、入力軸14は入力軸受17を介して第2ハウジング12に支持し、出力軸15は出力軸受18(不図示)を介して第1ハウジング11側に支持する。   As shown in FIG. 1, the electric power steering apparatus 10 bolts a second housing 12 to a first housing 11 fixed to a vehicle body frame or the like. The input shaft 14 to which the steering wheel is coupled and the output shaft 15 are coaxially coupled via a torsion bar 16. The input shaft 14 is supported by the second housing 12 via an input bearing 17, and the output shaft 15 is an output. It supports to the 1st housing 11 side via the bearing 18 (not shown).

電動パワーステアリング装置10は、出力軸15にピニオン軸を連結し、ピニオン軸のピニオンに噛み合うラックを備えたラック軸をハウジングに左右動可能に支持する。出力軸15の回転運動をピニオン軸を介してラック軸の直線運動に変換し、車輪を操舵する。   The electric power steering device 10 connects a pinion shaft to the output shaft 15 and supports a rack shaft including a rack that meshes with the pinion of the pinion shaft so that the rack shaft can move left and right. The rotary motion of the output shaft 15 is converted into the linear motion of the rack shaft via the pinion shaft, and the wheels are steered.

電動パワーステアリング装置10は、第1ハウジング11に電動モータ(不図示)を支持し、電動モータの出力軸にはウォームギヤ21が結合され、ウォームギヤ21に噛み合うウォームホイール22を第1ハウジング11と第2ハウジング12の中で出力軸15に固定してある。   The electric power steering device 10 supports an electric motor (not shown) on a first housing 11, a worm gear 21 is coupled to an output shaft of the electric motor, and a worm wheel 22 meshing with the worm gear 21 is connected to the first housing 11 and the second housing 11. The housing 12 is fixed to the output shaft 15.

電動パワーステアリング装置10は、入力軸14と出力軸15の間にトルクセンサ30を設けている。ステアリングホイールに加えられた操舵トルクをトルクセンサ30により検出し、その検出トルクにより電動モータを駆動し、電動モータの発生トルクをウォームギヤ21、ウォームホイール22を介して出力軸15に伝える。これにより、電動モータの発生トルクを運転者がステアリングホイールに加える操舵力に対するアシスト力として用いる。   The electric power steering apparatus 10 is provided with a torque sensor 30 between the input shaft 14 and the output shaft 15. The steering torque applied to the steering wheel is detected by the torque sensor 30, the electric motor is driven by the detected torque, and the generated torque of the electric motor is transmitted to the output shaft 15 via the worm gear 21 and the worm wheel 22. Thereby, the torque generated by the electric motor is used as an assist force for the steering force applied by the driver to the steering wheel.

しかるに、トルクセンサ30は以下の如くに構成される(図2)。
入力軸14は、磁性材料からなり、ハウジング12の内部に位置して出力軸15に同軸的に結合されている部分の側傍に、磁性材料からなる大径カラーAを圧入等により同軸固定的に取付けている。大径カラーAには第1のコア40を圧入等により同軸固定的に取付け、第1のコア40の下端端面には周方向に等ピッチで形成された平面視矩形の多数の磁路形成部40Aを備える。
However, the torque sensor 30 is configured as follows (FIG. 2).
The input shaft 14 is made of a magnetic material and is coaxially fixed by press-fitting a large-diameter collar A made of a magnetic material on the side of a portion located inside the housing 12 and coaxially coupled to the output shaft 15. Installed on. The first core 40 is coaxially fixed to the large-diameter collar A by press-fitting or the like, and a plurality of rectangular magnetic path forming portions having a rectangular shape in plan view formed at equal pitches in the circumferential direction on the lower end surface of the first core 40 40A is provided.

出力軸15は、ハウジング12の内部に位置して入力軸14に同軸的に結合されている部分の外周に円筒状の第2のコア50を圧入固定的に取付けている。第2のコア50の上端部端面には、第1のコア40の磁路形成部40Aに対向する、周方向に等ピッチで形成された平面視矩形の多数の磁路形成部50Aを備える。   The output shaft 15 has a cylindrical second core 50 attached to the outer periphery of a portion located inside the housing 12 and coaxially coupled to the input shaft 14 in a press-fit manner. On the end surface of the upper end portion of the second core 50, a large number of magnetic path forming portions 50 </ b> A having a rectangular shape in plan view and formed at an equal pitch in the circumferential direction facing the magnetic path forming portions 40 </ b> A of the first core 40 are provided.

ハウジング12の内周には、トルク検出コイル60と温度補償コイル70を巻装したボビン80、ボビン80を被包するヨーク90が以下の如くに装填されている(図2、図3)。   A bobbin 80 around which the torque detection coil 60 and the temperature compensation coil 70 are wound and a yoke 90 that encloses the bobbin 80 are loaded on the inner periphery of the housing 12 as follows (FIGS. 2 and 3).

(1)トルク検出コイル60用のボビンと温度補償コイル70用のボビンが合成樹脂により一体成形され、ボビン80を構成する。   (1) A bobbin for the torque detection coil 60 and a bobbin for the temperature compensation coil 70 are integrally formed of synthetic resin to constitute a bobbin 80.

このとき、入力軸14を支持する入力軸受17を金型内に組込んだ状態で、合成樹脂からなるボビン80を入力軸受17の外周側に射出成形し、入力軸受17をボビン80、特にボビン80における温度補償コイル70のためのコイル巻回部82の内周部にインサートモールドする。これにより、温度補償コイル70は後述する如くに入力軸受17に電磁結合するものになる。ボビン80は、コイル巻回部82の内周部の下端側(ボビン80の軸方向でコイル巻回部82の内周部寄り)に半径方向内方に張り出るつば状の軸受内端係止部80Aを備え、入力軸受17の外輪17Aの内端面に軸受内端係止部80Aを密着させる。尚、別途ボビン80をモールド形成しておき、入力軸受17をボビン80の軸受内端係止部80Aに嵌挿し位置決めしても良い。   At this time, with the input bearing 17 that supports the input shaft 14 incorporated in the mold, a bobbin 80 made of synthetic resin is injection-molded on the outer peripheral side of the input bearing 17, and the input bearing 17 is made into the bobbin 80, particularly the bobbin. Insert molding is performed on the inner peripheral portion of the coil winding portion 82 for the temperature compensation coil 70 at 80. As a result, the temperature compensation coil 70 is electromagnetically coupled to the input bearing 17 as will be described later. The bobbin 80 is a flange-shaped bearing inner end locking projecting radially inward toward the lower end side of the inner peripheral part of the coil winding part 82 (close to the inner peripheral part of the coil winding part 82 in the axial direction of the bobbin 80). 80A is provided, and the bearing inner end locking portion 80A is brought into close contact with the inner end surface of the outer ring 17A of the input bearing 17. Alternatively, the bobbin 80 may be separately molded, and the input bearing 17 may be inserted into the bearing inner end locking portion 80A of the bobbin 80 and positioned.

(2)上述(1)のボビン80の外周の上下2箇所のそれぞれに設けたコイル巻回部81とコイル巻回部82のそれぞれに、トルク検出コイル60と温度補償コイル70のそれぞれを巻回する。   (2) Each of the torque detection coil 60 and the temperature compensation coil 70 is wound around the coil winding portion 81 and the coil winding portion 82 provided respectively at the upper and lower portions of the outer periphery of the bobbin 80 described in (1) above. To do.

(3)上述(2)のボビン80と、ボビン80に巻装したトルク検出コイル60及び温度補償コイル70を金型内に組込んだ状態で、鉄粉等の磁性金属粉を混合した合成樹脂からなるヨーク90をボビン80並びにトルク検出コイル60及び温度補償コイル70の外周側に射出成形し、それらボビン80並びにトルク検出コイル60及び温度補償コイル70をヨーク90でインサートモールドする。   (3) Synthetic resin in which the magnetic metal powder such as iron powder is mixed with the bobbin 80 of the above (2), the torque detection coil 60 and the temperature compensation coil 70 wound around the bobbin 80 incorporated in the mold. The yoke 90 is formed by injection molding on the outer periphery side of the bobbin 80, the torque detection coil 60, and the temperature compensation coil 70, and the bobbin 80, the torque detection coil 60, and the temperature compensation coil 70 are insert-molded by the yoke 90.

(4)上述(3)のヨーク90を金型内に組込んだ状態で、合成樹脂からなるハウジング12をヨーク90の外周側に射出成形し、ヨーク90とともにハウジング12でインサートモールドする。ハウジング12は、ヨーク90の上端部からヨーク90の内周部及びボビン80の内周部に回り込み、その回り込み端を軸受外端係止部90Aとし、ボビン80にインサートモールド済の入力軸受17の外輪17Aの外端面に軸受外端係止部90Aを密着させる。同時に、ハウジング12は、ヨーク90の下端部からヨーク90の下端面に回り込み、その回り込み端をヨーク下端係止部90Bとし、ヨーク90の下端面にヨーク下端係止部90Bを密着させる。   (4) With the yoke 90 of (3) described above incorporated in the mold, the housing 12 made of synthetic resin is injection-molded on the outer periphery side of the yoke 90 and insert molded with the housing 90 together with the yoke 90. The housing 12 wraps around from the upper end of the yoke 90 to the inner periphery of the yoke 90 and the inner periphery of the bobbin 80, and the wrap-around ends serve as bearing outer end locking portions 90A. The bearing outer end locking portion 90A is brought into close contact with the outer end surface of the outer ring 17A. At the same time, the housing 12 turns from the lower end portion of the yoke 90 to the lower end surface of the yoke 90, and the wraparound end serves as the yoke lower end locking portion 90 </ b> B.

上述(4)の第2ハウジング12に第1ハウジング11をボルト結合し、第2ハウジング12の入力軸受17に入力軸14を支持し、第1ハウジング11の出力軸受18に出力軸15を支持した状態で、トルク検出コイル60は入力軸14の大径カラーAと出力軸15のそれぞれに取付けている第1のコア40と第2のコア50の対向部分に跨り、トルク検出コイル60の外周のヨーク90は第1のコア40、第2のコア50と磁気回路aを構成し、この磁気回路aはヨーク90と第1のコア40の表面とのエアギャップa1、第2のコア50の表面とのエアギャップa2、及び第1のコア40と第2のコア50の対向端面間のエアギャップa3を経るように形成される。トルク検出コイル60は第1のコア40、第2のコア50と電磁結合し、電磁結合状態に相応する電圧を誘起する。   The first housing 11 is bolted to the second housing 12 described in (4) above, the input shaft 14 is supported by the input bearing 17 of the second housing 12, and the output shaft 15 is supported by the output bearing 18 of the first housing 11. In this state, the torque detection coil 60 straddles the opposing portions of the first core 40 and the second core 50 attached to the large-diameter collar A of the input shaft 14 and the output shaft 15, respectively. The yoke 90 constitutes the first core 40 and the second core 50 and the magnetic circuit a. The magnetic circuit a is an air gap a 1 between the yoke 90 and the surface of the first core 40, and the surface of the second core 50. And an air gap a3 between the opposing end surfaces of the first core 40 and the second core 50. The torque detection coil 60 is electromagnetically coupled to the first core 40 and the second core 50 and induces a voltage corresponding to the electromagnetic coupling state.

ここで、トルクセンサ30は、温度補償コイル70を巻回したボビン80(コイル巻回部82)と入力軸14との間に磁性材料からなる前述の入力軸受17を設けている。入力軸受17は、外輪17Aをボビン80のコイル巻回部82の内周部に隙間なくインサートモールドされ、内輪17Bを入力軸14の外周に嵌着し、入力軸14を回転自在に支持する。温度補償コイル70は入力軸受17(外輪17A)と磁気回路bを構成し、この磁気回路bはヨーク90と入力軸受17(外輪17A)の表面とのエアギャップb1、b2を経るように形成される。温度補償コイル70は入力軸受17(外輪17A)と電磁結合し、温度補償のための電磁結合状態に相応する電圧を誘起する。   Here, the torque sensor 30 is provided with the above-described input bearing 17 made of a magnetic material between the bobbin 80 (coil winding portion 82) around which the temperature compensation coil 70 is wound and the input shaft 14. In the input bearing 17, the outer ring 17 </ b> A is insert-molded on the inner peripheral portion of the coil winding portion 82 of the bobbin 80 without a gap, the inner ring 17 </ b> B is fitted on the outer periphery of the input shaft 14, and the input shaft 14 is rotatably supported. The temperature compensation coil 70 constitutes an input bearing 17 (outer ring 17A) and a magnetic circuit b. The magnetic circuit b is formed so as to pass through air gaps b1 and b2 between the yoke 90 and the surface of the input bearing 17 (outer ring 17A). The The temperature compensation coil 70 is electromagnetically coupled to the input bearing 17 (outer ring 17A) and induces a voltage corresponding to the electromagnetic coupling state for temperature compensation.

トーションバー16にトルクが作用していない場合には、トルク検出コイル60と温度補償コイル70の誘起電圧が略等しくなるように、第1のコア40、第2のコア50、入力軸受17の電磁結合状態を求め、第1のコア40、第2のコア50をそれぞれ位置決めする。入力軸受17の外径は、磁気回路b中のエアギャップb1、b2のそれぞれが磁界に与える影響、即ちそれぞれの磁気抵抗gb1、gb2の和が、磁気回路a中のエアギャップa1、a2、a3のそれぞれが磁界に与える影響、即ちそれぞれの磁気抵抗ga1、ga2、ga3の和と等しくなるように設定される。   When no torque is applied to the torsion bar 16, the electromagnetic waves of the first core 40, the second core 50, and the input bearing 17 are set so that the induced voltages of the torque detection coil 60 and the temperature compensation coil 70 are substantially equal. The coupling state is obtained, and the first core 40 and the second core 50 are positioned. The outer diameter of the input bearing 17 depends on the influence of the air gaps b1, b2 in the magnetic circuit b on the magnetic field, that is, the sum of the respective magnetic resistances gb1, gb2 is the air gaps a1, a2, a3 in the magnetic circuit a. Are set to be equal to the influence of the magnetic resistances on the magnetic field, that is, the sum of the respective magnetic resistances ga1, ga2, and ga3.

従って、トルクセンサ30にあっては、トルク検出コイル60と温度補償コイル70の誘起電圧の差を求めることにより、周囲温度変化による誘起電圧を相殺し、第1のコア40と第2のコア50の相対回転量に相応した電磁結合状態を検出し、トーションバー16に作用したトルク、換言すればステアリングホイールに加えられた操舵トルクのみを検出可能にする。   Therefore, in the torque sensor 30, the difference between the induced voltages of the torque detection coil 60 and the temperature compensation coil 70 is obtained to cancel the induced voltage due to the ambient temperature change, and the first core 40 and the second core 50. The electromagnetic coupling state corresponding to the relative rotation amount is detected, and only the torque acting on the torsion bar 16, in other words, the steering torque applied to the steering wheel can be detected.

以下、第1のコア40と第2のコア50の構成について説明する(図4)。
第1のコア40は、ステンレス鋼、アルミニウム、銅、樹脂等の非磁性材料からなる遮蔽材42を金型にセットし、この遮蔽材42の周囲に、樹脂に鉄粉等の磁性材金属粉を混合した磁性材41を鋳込んでインサートモールドしてなるものである。具体的には、遮蔽材42は円筒状(円筒本体42A)をなし、下端部の周方向複数位置に歯42Bを設け、相隣る歯42Bの間の谷部42Cに磁性材41をモールドする。磁性材41は遮蔽材42の円筒本体42Aの内周にモールドされる円筒本体41Aと、円筒本体41Aの下端部の周方向複数か所からL形をなして径方向外方に突出する装填部分41Bを形成し、装填部分41Bの下向き端面である平面視矩形端面を歯42Bの山部の下向き端面そのものに合致させて入力軸14の中心軸に直交する平面に形成する。
Hereinafter, the configuration of the first core 40 and the second core 50 will be described (FIG. 4).
The first core 40 has a shielding material 42 made of a non-magnetic material such as stainless steel, aluminum, copper, resin, etc. set in a mold, and a magnetic metal powder such as iron powder or the like around the shielding material 42. The magnetic material 41 mixed with is cast and insert molded. Specifically, the shielding material 42 has a cylindrical shape (cylindrical body 42A), teeth 42B are provided at a plurality of positions in the circumferential direction of the lower end, and the magnetic material 41 is molded in a valley 42C between adjacent teeth 42B. . The magnetic material 41 includes a cylindrical main body 41A molded on the inner periphery of the cylindrical main body 42A of the shielding material 42, and a loading portion that protrudes radially outward in a L shape from a plurality of circumferential positions at the lower end of the cylindrical main body 41A. 41B is formed, and the rectangular end surface in plan view, which is the downward end surface of the loading portion 41B, is formed in a plane perpendicular to the central axis of the input shaft 14 by matching the downward end surface itself of the crest of the tooth 42B.

そして、第1のコア40は、遮弊材42の歯42Bを磁性材41に対する磁気的遮蔽部40Bとする。第1のコア40は、下端面の周方向で遮蔽材42の遮蔽部40B(歯42B)が遮蔽する部分の側傍(相隣る遮蔽部40B、40Bに挟まれる平面視矩形部分)の磁性材41の非遮蔽部(装填部分41B)を、歯42Bの山部の下向き端面そのものに合致させ、この非遮蔽部を前述の磁路形成部40Aとする。   The first core 40 uses the teeth 42 </ b> B of the shielding material 42 as a magnetic shielding part 40 </ b> B for the magnetic material 41. The first core 40 is magnetized on the side of the portion shielded by the shielding portion 40B (teeth 42B) of the shielding material 42 in the circumferential direction of the lower end surface (rectangular portion in plan view sandwiched between the adjacent shielding portions 40B and 40B). The non-shielding portion (loading portion 41B) of the material 41 is matched with the downward end surface of the crest of the tooth 42B, and this non-shielding portion is used as the above-described magnetic path forming portion 40A.

このとき、第1のコア40は、磁性材41を遮蔽材42の円筒本体42Aの下端部〜中間部にモールドし、中間部〜上端部にはモールドしない。第1のコア40は、この遮蔽材42の円筒本体42Aを入力軸14の大径カラーAに圧入する。   At this time, the first core 40 molds the magnetic material 41 from the lower end portion to the intermediate portion of the cylindrical main body 42A of the shielding material 42 and does not mold it from the intermediate portion to the upper end portion. The first core 40 press-fits the cylindrical body 42 </ b> A of the shielding material 42 into the large-diameter collar A of the input shaft 14.

第2のコア50は、ステンレス鋼、アルミニウム、銅、樹脂等の非磁性材料からなる遮蔽材52を金型にセットし、この遮蔽材52の周囲に、樹脂に鉄粉等の磁性材金属粉を混合した磁性材51を鋳込でインサートモールドしてなるものである。具体的には、遮蔽材52は円筒状(円筒本体52A)をなし、上端部の周方向複数位置に歯52Bを設け、相隣る歯52Bの間の谷部52Cに磁性材51をモールドする。磁性材51は遮蔽材52の円筒本体52Aの内周にモールドされる円筒本体51Aと、円筒本体51Aの上端部の周方向複数か所からL形をなして径方向外方に突出する装填部分51Bを形成し、装填部分51Bの上向き端面である平面視矩形端面を歯52Bの山部の上向き端面そのものに合致させて出力軸15の中心軸に直交する平面に形成する。   In the second core 50, a shielding material 52 made of a nonmagnetic material such as stainless steel, aluminum, copper, or resin is set in a mold. Around the shielding material 52, a magnetic material metal powder such as iron powder is applied to the resin. The magnetic material 51 mixed with is cast and insert molded. Specifically, the shielding material 52 has a cylindrical shape (cylindrical main body 52A), teeth 52B are provided at a plurality of positions in the circumferential direction of the upper end portion, and the magnetic material 51 is molded in the valley portions 52C between the adjacent teeth 52B. . The magnetic material 51 includes a cylindrical main body 51A molded on the inner periphery of the cylindrical main body 52A of the shielding material 52, and a loading portion that protrudes radially outward in an L shape from a plurality of circumferential positions at the upper end of the cylindrical main body 51A. 51B is formed, and the rectangular end surface in plan view, which is the upward end surface of the loading portion 51B, is formed in a plane perpendicular to the central axis of the output shaft 15 by matching the upward end surface of the tooth 52B.

そして、第2のコア50は、遮弊材52の歯52Bを磁性材51に対する磁気的遮蔽部50Bとする。第2のコア50は、上端面の周方向で遮蔽材52の遮蔽部50B(歯52B)が遮蔽する部分の側傍(相隣る遮蔽部50B、50Bに挟まれる平面視矩形部分)の磁性材51の非遮蔽部(装填部分51B)を、歯52Bの山部の上向き端面そのものに合致させ、この非遮蔽部を前述の磁路形成部50Aとする。   The second core 50 uses the teeth 52 </ b> B of the shielding material 52 as a magnetic shielding part 50 </ b> B for the magnetic material 51. The second core 50 is magnetic on the side of the portion shielded by the shielding portion 50B (teeth 52B) of the shielding material 52 in the circumferential direction of the upper end surface (rectangular portion in plan view sandwiched between adjacent shielding portions 50B and 50B). The non-shielding part (loading part 51B) of the material 51 is matched with the upward end surface itself of the crest of the tooth 52B, and this non-shielding part is used as the magnetic path forming part 50A.

このとき、第2のコア50は、磁性材51を遮蔽材52の円筒本体52Aの上端部〜中間部にモールドし、中間部〜下端部にはモールドしない。第2のコア50は、この遮蔽材52の円筒本体52Aを出力軸15に圧入する。   At this time, the second core 50 molds the magnetic material 51 on the upper end portion to the intermediate portion of the cylindrical main body 52A of the shielding material 52 and does not mold it on the intermediate portion to the lower end portion. The second core 50 press-fits the cylindrical body 52 </ b> A of the shielding material 52 into the output shaft 15.

第1のコア40の磁路形成部40Aと第2のコア50の磁路形成部50Aは適宜長離隔された対向関係をなす。本実施例において、第1のコア40(磁性材41、遮蔽材42)と第2のコア50(磁性材51、遮蔽材52)は内外径寸法、軸長寸法を同一とする同一形状とされている。   The magnetic path forming part 40A of the first core 40 and the magnetic path forming part 50A of the second core 50 have a facing relationship that is appropriately spaced apart. In the present embodiment, the first core 40 (magnetic material 41, shielding material 42) and the second core 50 (magnetic material 51, shielding material 52) have the same shape with the same inner and outer diameter dimensions and axial length dimensions. ing.

本実施例によれば以下の作用効果を奏する。
(a)入力軸14を支持する入力軸受17を温度補償コイル70のボビン80にインサートモールドし、温度補償コイル70を入力軸受17に電磁結合させたから、入力軸受17が温度補償コイル70の磁気回路を構成しているので、入力軸受17の該磁気回路への干渉を考慮する必要がない。従って、温度補償コイル70の磁気特性を簡易に安定化できる。
According to the present embodiment, the following operational effects can be obtained.
(a) Since the input bearing 17 supporting the input shaft 14 is insert-molded on the bobbin 80 of the temperature compensation coil 70 and the temperature compensation coil 70 is electromagnetically coupled to the input bearing 17, the input bearing 17 is a magnetic circuit of the temperature compensation coil 70. Therefore, it is not necessary to consider interference of the input bearing 17 with the magnetic circuit. Accordingly, the magnetic characteristics of the temperature compensation coil 70 can be easily stabilized.

(b)入力軸受17が、入力軸14と出力軸15の軸方向において、温度補償コイル70を挟んで出力軸受18の反対側に位置するものでなく、温度補償コイル70と同位置に位置付けられるから、入力軸受17と出力軸受18間の支持スパンを小さくできる。このため、入力軸14と出力軸15の同軸度が向上し、両者の回転偏心を抑えてトルク検出精度を向上できる。   (b) The input bearing 17 is not located on the opposite side of the output bearing 18 across the temperature compensation coil 70 in the axial direction of the input shaft 14 and the output shaft 15 but is located at the same position as the temperature compensation coil 70. Therefore, the support span between the input bearing 17 and the output bearing 18 can be reduced. For this reason, the coaxiality of the input shaft 14 and the output shaft 15 is improved, and the rotational eccentricity of both is suppressed, and the torque detection accuracy can be improved.

(c)入力軸受17を温度補償コイル70のボビン80に一体にしたから、部品数と組付工数を少なくし、コスト低減できる。また、入力軸14を安定的に支持できる。   (c) Since the input bearing 17 is integrated with the bobbin 80 of the temperature compensation coil 70, the number of parts and the number of assembling steps can be reduced, and the cost can be reduced. Further, the input shaft 14 can be stably supported.

(d)トルク検出コイル60と温度補償コイル70をハウジング12に設けるに際し、トルク検出コイル60用のボビン80と温度補償コイル70用のボビン80を一体のボビン80に樹脂成形して単一化したから、トルクセンサ30の部品数と組付工数し少なくし、コスト低減できる。   (d) When the torque detection coil 60 and the temperature compensation coil 70 are provided in the housing 12, the bobbin 80 for the torque detection coil 60 and the bobbin 80 for the temperature compensation coil 70 are resin-molded into a single bobbin 80 and unified. Therefore, the number of parts of the torque sensor 30 and the number of assembling steps can be reduced, thereby reducing the cost.

(e)上述(d)のボビン80と、該ボビン80に巻装したトルク検出コイル60及び温度補償コイル70を、磁性金属粉を混合した樹脂製ヨーク90でインサートモールドしたから、トルクセンサ30の部品数と組付工数を一層少なくできる上に、ヨーク90がボビン80とコイルとの間に形成するエアギャップを可及的に低減し、トルクセンサ30の検出精度を向上する。   (e) Since the bobbin 80 of the above (d) and the torque detection coil 60 and the temperature compensation coil 70 wound around the bobbin 80 are insert-molded by the resin yoke 90 mixed with magnetic metal powder, the torque sensor 30 In addition to reducing the number of parts and the number of assembly steps, the air gap formed between the bobbin 80 and the coil by the yoke 90 is reduced as much as possible, and the detection accuracy of the torque sensor 30 is improved.

(f)上述(e)のヨーク90を樹脂製ハウジング12でインサートモールドしたから、トルクセンサ30の部品数と組付工数を一層少なくできる。   (f) Since the yoke 90 of the above (e) is insert-molded with the resin housing 12, the number of parts and the number of assembling steps of the torque sensor 30 can be further reduced.

(g)電動パワーステアリング装置10のトルクセンサ30において、上述(a)〜(f)を実現できる。これにより、ステアリングホイールに加えた操舵トルクの検出精度を向上させ、電動モータによるアシスト性能を向上できる。   (g) In the torque sensor 30 of the electric power steering apparatus 10, the above-described (a) to (f) can be realized. Thereby, the detection accuracy of the steering torque applied to the steering wheel can be improved, and the assist performance by the electric motor can be improved.

尚、本実施例によれば以下の作用効果も奏する。
(a)第1と第2のコア40、50の端面に非磁性材料からなる遮蔽材42、52を設け、遮蔽材42、52の遮蔽部40B、50Bの側傍の磁性材の非遮蔽部を磁路形成部40A、50Aとした。第1のコア40の磁路形成部40Aと第2のコア50の磁路形成部50Aの間で生ずる磁束の通路は、図5(B)の実線矢印で示す如くに、第1のコア40において相隣る遮蔽材42の遮蔽部40Bと遮蔽部40Bに挟まれる範囲の磁路形成部40A、第2のコア50において相隣る遮蔽材52の遮蔽部50Bと遮蔽部50Bに挟まれる範囲の磁路形成部50Aに限定され、図5(B)の破線矢印で示す如くの遮蔽部40B、50Bの側に回り込むことを抑制される。このため、入力軸14と出力軸15の間のトーションバー16のねじれに伴なう、第1のコア40の磁路形成部40Aと第2のコア50の磁路形成部50Aの重なり面積(磁束通過面積)の変化のみに応じた透磁率の変化量となり、トルク検出コイル60の検出出力幅を増大でき、ひいては検出精度及び感度を向上できる。
In addition, according to a present Example, there exist the following effects.
(a) The shielding members 42 and 52 made of a non-magnetic material are provided on the end surfaces of the first and second cores 40 and 50, and the non-shielding portion of the magnetic material beside the shielding portions 40B and 50B of the shielding materials 42 and 52. Were defined as magnetic path forming portions 40A and 50A. The path of the magnetic flux generated between the magnetic path forming portion 40A of the first core 40 and the magnetic path forming portion 50A of the second core 50 is the first core 40 as shown by the solid line arrow in FIG. The adjacent shield member 42 has a shield part 40B and a magnetic path forming part 40A in the range sandwiched between the shield parts 40B, and the second core 50 has a shield part 52B and the shield part 50B and the shield part 50B. It is limited to the magnetic path forming portion 50A, and it is possible to suppress the shield portions 40B and 50B from going around as shown by the broken line arrows in FIG. For this reason, the overlapping area of the magnetic path forming portion 40A of the first core 40 and the magnetic path forming portion 50A of the second core 50 accompanying the twist of the torsion bar 16 between the input shaft 14 and the output shaft 15 ( The amount of change in the magnetic permeability according to only the change in the magnetic flux passage area) can be increased, the detection output width of the torque detection coil 60 can be increased, and the detection accuracy and sensitivity can be improved.

(b)各コア40、50が、非磁性材料からなる遮蔽材42、52を、樹脂に磁性材金属粉を混合した磁性材41、51でインサートモールドしてなることにより、磁性材41、51と遮蔽材42、52のエアギャップをなくし、トルクセンサ30の検出感度を向上できる。   (b) The cores 40 and 50 are formed by insert-molding the shielding materials 42 and 52 made of a non-magnetic material with the magnetic materials 41 and 51 in which the magnetic material metal powder is mixed with the resin. The air gap between the shielding members 42 and 52 can be eliminated, and the detection sensitivity of the torque sensor 30 can be improved.

(c)各コア40、50は、磁性材41、51と遮蔽材42、52の両部品の組立てのための寸法公差の管理の如くを不要とし、組立性を向上する。   (c) The cores 40 and 50 do not require management of dimensional tolerances for assembling both the magnetic members 41 and 51 and the shielding members 42 and 52, and improve the assemblability.

(d)磁性材41、51は、磁性材金属粉を樹脂に混合したものを、金型にセットされた遮蔽材42、52の周囲にモールドするだけで成形され、低コストになる。   (d) The magnetic materials 41 and 51 are formed simply by molding a mixture of magnetic material metal powder in a resin around the shielding materials 42 and 52 set in a mold, thereby reducing the cost.

(e)第1のコア40の遮蔽材42を入力軸の側に圧入し、第2のコア50の遮弊材52を出力軸の側に圧入するものであり、各コア40、50の組付性を簡易にできる。   (e) The shielding material 42 of the first core 40 is press-fitted to the input shaft side, and the shielding material 52 of the second core 50 is press-fitted to the output shaft side. Adhesiveness can be simplified.

(f)各コア40、50は、金型にセットされた遮蔽材42、52の相隣る歯42B、52Bの間の谷部42C、52Cに磁性材41、51をモールドすることで、組立性を向上できる。   (f) The cores 40 and 50 are assembled by molding the magnetic materials 41 and 51 in the valley portions 42C and 52C between the adjacent teeth 42B and 52B of the shielding materials 42 and 52 set in the mold. Can be improved.

(g)各コア40、50が、磁性材41、51を遮蔽材42、52の円筒本体42A、52Aの外周及び谷部42C、52Cの中にモールドしてなるから、磁性材41、51と遮蔽材42、52の結合強度を軸方向及び周方向で強化できる。   (g) Since each of the cores 40 and 50 is formed by molding the magnetic materials 41 and 51 into the outer periphery of the cylindrical main bodies 42A and 52A and the valley portions 42C and 52C of the shielding materials 42 and 52, the magnetic materials 41 and 51 The coupling strength of the shielding materials 42 and 52 can be enhanced in the axial direction and the circumferential direction.

(h)各コア40、50は、磁性材41、51を遮蔽材42、52の円筒本体の一端部〜中間部のみにモールドし、中間部〜他端部にモールドしないから、金型にセットされた遮蔽材42、52のインサートモールド時の放熱性をその中間部〜他端部で良好にし、結果として遮弊材42、52のこの部分での熱ひずみを極小にし、入力軸又は出力軸への圧入寸法精度を向上し、各コア40、50の組付性を向上する。   (h) The cores 40 and 50 are set in the mold because the magnetic materials 41 and 51 are molded only at one end to the middle portion of the cylindrical body of the shielding materials 42 and 52 and not from the middle to the other end. The heat shielding performance of the formed shielding materials 42 and 52 at the time of insert molding is improved at the intermediate portion to the other end portion, and as a result, the thermal strain at this portion of the shielding materials 42 and 52 is minimized, and the input shaft or the output shaft The press-fitting dimensional accuracy into the core is improved, and the assemblability of the cores 40 and 50 is improved.

(i)各コア40、50が互いに同一形状をなすことにより、各コア40、50を共通部品化できる。   (i) Since the cores 40 and 50 have the same shape, the cores 40 and 50 can be made into common parts.

(j)電動パワーステアリング装置10のトルクセンサ30において、上述(a)〜(i)を実現できる。これにより、ステアリングホイールに加えた操舵トルクの検出精度を向上し、電動モータによるアシスト性能を向上できる。   (j) In the torque sensor 30 of the electric power steering apparatus 10, the above (a) to (i) can be realized. Thereby, the detection accuracy of the steering torque applied to the steering wheel can be improved, and the assist performance by the electric motor can be improved.

以上、本発明の実施例を図面により詳述したが、本発明の具体的な構成はこの実施例に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。例えば、本発明において、温度補償コイル用ボビンとトルク検出コイル用ボビンは別体であっても良い。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration of the present invention is not limited to this embodiment, and even if there is a design change or the like without departing from the gist of the present invention. It is included in the present invention. For example, in the present invention, the temperature compensation coil bobbin and the torque detection coil bobbin may be separate.

図1は電動パワーステアリング装置の要部を示す断面図である。FIG. 1 is a cross-sectional view showing a main part of the electric power steering apparatus. 図2はトルクセンサを拡大して示す断面図である。FIG. 2 is an enlarged sectional view showing the torque sensor. 図3はヨークへのボビンのインサートモールド成形体を示す断面図である。FIG. 3 is a cross-sectional view showing an insert molding of a bobbin to a yoke. 図4は第1のコアと第2のコアを拡大して示す断面図である。FIG. 4 is an enlarged cross-sectional view of the first core and the second core. 図5はトルクセンサの模式図である。FIG. 5 is a schematic diagram of a torque sensor.

符号の説明Explanation of symbols

10 電動パワーステアリング装置
11、12 ハウジング
14 入力軸
15 出力軸
16 トーションバー
17 入力軸受
30 トルクセンサ
60 トルク検出コイル
70 温度補償コイル
80 ボビン
90 ヨーク
DESCRIPTION OF SYMBOLS 10 Electric power steering apparatus 11, 12 Housing 14 Input shaft 15 Output shaft 16 Torsion bar 17 Input bearing 30 Torque sensor 60 Torque detection coil 70 Temperature compensation coil 80 Bobbin 90 Yoke

Claims (5)

ハウジングに収容される入力軸と出力軸がトーションバーを介して連結され、
トルク検出コイルと温度補償コイルをハウジングに設けてなるトルクセンサにおいて、
入力軸を支持する入力軸受を、樹脂製の温度補償コイル用ボビンにインサートモールドし、
温度補償コイルを上記入力軸受に電磁結合させることを特徴とするトルクセンサ。
The input shaft and output shaft housed in the housing are connected via a torsion bar,
In a torque sensor in which a torque detection coil and a temperature compensation coil are provided in a housing,
The input bearing that supports the input shaft is insert molded into a resin temperature compensation coil bobbin,
A torque sensor, wherein a temperature compensation coil is electromagnetically coupled to the input bearing.
前記温度補償コイル用ボビンにトルク検出コイル用ボビンを一体に樹脂成形してなる請求項1に記載のトルクセンサ。   The torque sensor according to claim 1, wherein a torque detection coil bobbin is integrally molded with the temperature compensation coil bobbin. 前記一体に樹脂成形してなる、温度補償コイル用ボビン及びトルク検出コイル用ボビンと、これらボビンにそれぞれ巻装したトルク検出コイル及び温度補償コイルを、磁性金属粉を混合した樹脂製ヨークにインサートモールドする請求項2に記載のトルクセンサ。 The temperature compensation coil bobbin and the torque detection coil bobbin formed integrally with the resin, and the torque detection coil and the temperature compensation coil wound around the bobbin, respectively, are insert-molded into a resin yoke mixed with magnetic metal powder. The torque sensor according to claim 2. 前記ヨークを、樹脂製ハウジングにインサートモールドする請求項3に記載のトルクセンサ。   The torque sensor according to claim 3, wherein the yoke is insert-molded in a resin housing. ステアリングホイールが結合される入力軸と、電動モータに連動する出力軸とを有し、請求項1〜4のいずれかに記載のトルクセンサの検出トルク信号により電動モータを駆動制御することを特徴とする電動パワーステアリング装置。   An input shaft to which a steering wheel is coupled and an output shaft interlocked with the electric motor are provided, and the electric motor is driven and controlled by a torque signal detected by the torque sensor according to any one of claims 1 to 4. Electric power steering device.
JP2005315290A 2005-10-28 2005-10-28 Torque sensor and electric power steering device Expired - Fee Related JP4833635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005315290A JP4833635B2 (en) 2005-10-28 2005-10-28 Torque sensor and electric power steering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005315290A JP4833635B2 (en) 2005-10-28 2005-10-28 Torque sensor and electric power steering device

Publications (2)

Publication Number Publication Date
JP2007121161A JP2007121161A (en) 2007-05-17
JP4833635B2 true JP4833635B2 (en) 2011-12-07

Family

ID=38145162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005315290A Expired - Fee Related JP4833635B2 (en) 2005-10-28 2005-10-28 Torque sensor and electric power steering device

Country Status (1)

Country Link
JP (1) JP4833635B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04191630A (en) * 1990-11-26 1992-07-09 Japan Electron Control Syst Co Ltd Magnetostriction type torque sensor
JPH09196778A (en) * 1996-01-17 1997-07-31 Mitsubishi Materials Corp Magnetostrictive torque sensor
JP2001033322A (en) * 1999-07-19 2001-02-09 Ntn Corp Bearing with torque detecting function
JP2005172434A (en) * 2003-12-05 2005-06-30 Showa Corp Torque sensor
JP4671605B2 (en) * 2004-01-13 2011-04-20 株式会社ジェイテクト Torque detection device

Also Published As

Publication number Publication date
JP2007121161A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
US7183681B2 (en) Electric power steering apparatus
CN105092128B (en) Torque sensor and electric power steering device
US20100071481A1 (en) Torque detector
JP2008017549A (en) Steering device for vehicle
EP3671157B1 (en) Torque sensor and steering device
US11300464B2 (en) Sensor device
JP2018072086A (en) Rotation angle detection device
US7086295B2 (en) Torque detecting apparatus
JP4833635B2 (en) Torque sensor and electric power steering device
JP2004117328A (en) Torque sensor
JP4718955B2 (en) Torque sensor and electric power steering device
JP5508826B2 (en) Torque sensor
JP4883972B2 (en) Torque sensor and electric power steering device
JP2007121162A (en) Torque sensor and electric power steering device
JP2008283761A (en) Electric motor
JP7447714B2 (en) Torque sensor and steering device
JP3734397B2 (en) Torque sensor
JP7463940B2 (en) Manufacturing method of torque sensor and magnet assembly
JP4275998B2 (en) Torque sensor and electric power steering device
JP3645143B2 (en) Torque sensor
JP2005003461A (en) Torque sensor and electric power steering apparatus
JP2005037176A (en) Torque sensor
JP2005003459A (en) Torque sensor and electric power steering device
JP2004217136A (en) Electric power steering device
KR20000025986A (en) Torque sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110922

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees