JP4718955B2 - Torque sensor and electric power steering device - Google Patents

Torque sensor and electric power steering device Download PDF

Info

Publication number
JP4718955B2
JP4718955B2 JP2005283078A JP2005283078A JP4718955B2 JP 4718955 B2 JP4718955 B2 JP 4718955B2 JP 2005283078 A JP2005283078 A JP 2005283078A JP 2005283078 A JP2005283078 A JP 2005283078A JP 4718955 B2 JP4718955 B2 JP 4718955B2
Authority
JP
Japan
Prior art keywords
input
core
temperature compensation
magnetic
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005283078A
Other languages
Japanese (ja)
Other versions
JP2007093381A (en
Inventor
真一 戸倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Corp
Original Assignee
Showa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Corp filed Critical Showa Corp
Priority to JP2005283078A priority Critical patent/JP4718955B2/en
Publication of JP2007093381A publication Critical patent/JP2007093381A/en
Application granted granted Critical
Publication of JP4718955B2 publication Critical patent/JP4718955B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Power Steering Mechanism (AREA)

Description

本発明はトルクセンサ及び電動パワーステアリング装置に関する。   The present invention relates to a torque sensor and an electric power steering apparatus.

電動パワーステアリング装置は、ステアリングホイールが結合される入力軸と、出力軸とがトーションバーを介して連結され、ステアリングホイールに加えられた操舵トルクをトルクセンサにより検出し、その検出トルクにより電動モータを駆動し、電動モータの発生トルクを出力軸に伝え、結果として、電動モータの発生トルクを運転者がステアリングホイールに加える操舵力に対するアシスト力として用いる。   In the electric power steering apparatus, an input shaft to which a steering wheel is coupled and an output shaft are connected via a torsion bar, and a steering torque applied to the steering wheel is detected by a torque sensor, and the electric motor is driven by the detected torque. The generated torque of the electric motor is transmitted to the output shaft, and as a result, the generated torque of the electric motor is used as an assist force for the steering force applied by the driver to the steering wheel.

従来のトルクセンサは、特許文献1に記載の如く、入力軸と出力軸のそれぞれを入力軸受と出力軸受のそれぞれを介してハウジングに支持し、入力軸と出力軸のそれぞれに固定される第1と第2のコアとともに磁気回路を構成するトルク検出コイルをハウジングに設け、入力軸と出力軸とを連結したトーションバーに作用するトルクを検出する。   As described in Patent Document 1, the conventional torque sensor is a first type in which each of the input shaft and the output shaft is supported on the housing via the input bearing and the output bearing, and is fixed to each of the input shaft and the output shaft. A torque detection coil that constitutes a magnetic circuit together with the second core is provided in the housing, and a torque acting on a torsion bar connecting the input shaft and the output shaft is detected.

また、特許文献1のトルクセンサでは、磁性材料からなる入力軸の外周円筒部とともに磁気回路を構成する温度補償コイルをハウジングに設け、トルク検出コイルと温度補償コイルの誘起電圧の差を求めることにより、周囲温度変化による誘起電圧を相殺し、トルクセンサの検出精度を向上する。
特開2005-3462
Moreover, in the torque sensor of patent document 1, the temperature compensation coil which comprises a magnetic circuit with the outer peripheral cylindrical part of the input shaft which consists of magnetic materials is provided in a housing, and the difference of the induced voltage of a torque detection coil and a temperature compensation coil is calculated | required. This cancels the induced voltage due to ambient temperature changes and improves the detection accuracy of the torque sensor.
JP2005-3462

特許文献1のトルクセンサでは、ハウジング軸方向で温度補償コイルの直上側傍に入力軸受を設け、温度補償コイルは入力軸の外周円筒部に電磁結合しており、以下の問題点がある。   In the torque sensor of Patent Document 1, an input bearing is provided near the temperature compensation coil in the housing axial direction, and the temperature compensation coil is electromagnetically coupled to the outer peripheral cylindrical portion of the input shaft, and has the following problems.

(1)温度補償コイルの直上に入力軸受を設けており、温度補償コイルの磁気回路に入力軸受が磁気的に干渉して磁気特性を低下させることのないように磁気遮蔽を考慮する必要がある。   (1) An input bearing is provided directly above the temperature compensation coil, and it is necessary to consider magnetic shielding so that the input bearing does not interfere magnetically with the magnetic circuit of the temperature compensation coil to deteriorate the magnetic characteristics. .

(2)入力軸受が、入力軸と出力軸の軸方向において、温度補償コイルを挟んで出力軸受の反対側に位置付けられるから、入力軸受と出力軸受の支持スパンが大きい。このため、入力軸と出力軸の同軸度を向上することに困難を伴ない、両者の回転偏心によりトルク検出精度を損なうおそれがある。   (2) Since the input bearing is positioned on the opposite side of the output bearing across the temperature compensation coil in the axial direction of the input shaft and the output shaft, the support span of the input bearing and the output bearing is large. For this reason, there is a difficulty in improving the coaxiality of the input shaft and the output shaft, and there is a possibility that the torque detection accuracy may be impaired due to the rotational eccentricity of both.

本発明の課題は、温度補償コイルの磁気特性を安定化し、トルクセンサの検出精度を向上することにある。   An object of the present invention is to stabilize the magnetic characteristics of a temperature compensation coil and improve the detection accuracy of a torque sensor.

本発明の他の課題は、電動パワーステアリング装置において、ステアリングホイールに加えた操舵トルクの検出精度を向上し、電動モータによるアシスト精度を向上することにある。   Another object of the present invention is to improve detection accuracy of steering torque applied to a steering wheel and improve assist accuracy by an electric motor in an electric power steering apparatus.

請求項1の発明は、入力軸と出力軸のそれぞれを入力軸受と出力軸受のそれぞれを介してハウジングに支持し、入力軸と出力軸のそれぞれに固定される第1と第2のコアとともに磁気回路を構成するトルク検出コイルをハウジングに設け、入力軸と出力軸とを連結したトーションバーに作用するトルクを検出するトルクセンサにおいて、温度補償コイルをハウジングに設け、該温度補償コイルと入力軸の間に前記入力軸受を設け、該温度補償コイルを該入力軸受に電磁結合してなるようにしたものである。   According to the first aspect of the present invention, the input shaft and the output shaft are supported by the housing via the input bearing and the output bearing, respectively, and the first and second cores fixed to the input shaft and the output shaft are magnetized together. In a torque sensor that detects torque acting on a torsion bar that connects an input shaft and an output shaft, a torque detection coil that constitutes a circuit is provided in the housing, and the temperature compensation coil is connected to the input shaft. The input bearing is provided between them, and the temperature compensation coil is electromagnetically coupled to the input bearing.

請求項2の発明は、請求項1の発明において更に、前記入力軸受が温度補償コイルのコイルボビンと入力軸の間に設けられるようにしたものである。   According to a second aspect of the present invention, in the first aspect of the present invention, the input bearing is provided between a coil bobbin of the temperature compensation coil and the input shaft.

請求項3の発明は、ステアリングホイールが結合される入力軸と、電動モータに連動する出力軸とを有し、請求項1又は2に記載のトルクセンサの検出トルクにより電動モータを駆動する電動パワーステアリング装置である。   According to a third aspect of the present invention, there is provided an electric power having an input shaft to which the steering wheel is coupled and an output shaft interlocked with the electric motor, and driving the electric motor by the torque detected by the torque sensor according to the first or second aspect. It is a steering device.

(請求項1)
(a)ハウジングに設けた温度補償コイルと入力軸の間に入力軸受を設け、温度補償コイルを入力軸受と直接電磁結合したから、入力軸受が温度補償コイルの磁気回路を構成しているので、入力軸受の該磁気回路への干渉を考慮する必要がない。従って、温度補償コイルの磁気特性を簡易に安定化できる。
(Claim 1)
(a) Since an input bearing is provided between the temperature compensation coil provided in the housing and the input shaft, and the temperature compensation coil is directly electromagnetically coupled to the input bearing, the input bearing constitutes the magnetic circuit of the temperature compensation coil. There is no need to consider interference of the input bearing with the magnetic circuit. Accordingly, the magnetic characteristics of the temperature compensation coil can be easily stabilized.

(b)入力軸受が、入力軸と出力軸の軸方向において、温度補償コイルを挟んで出力軸受の反対側に位置するものでなく、温度補償コイルと同位置に位置付けられるから、入力軸受と出力軸受間の支持スパンを小さくできる。このため、入力軸と出力軸の同軸度が向上し、両者の回転偏心を抑えてトルク検出精度を向上できる。   (b) Since the input bearing is not located on the opposite side of the output bearing across the temperature compensation coil in the axial direction of the input shaft and the output shaft, it is located at the same position as the temperature compensation coil. Support span between bearings can be reduced. For this reason, the coaxiality of the input shaft and the output shaft is improved, and the torque eccentricity can be suppressed by suppressing the rotational eccentricity of both.

(請求項2)
(c)入力軸受を温度補償コイルのコイルボビンに保持し、入力軸を安定的に支持できる。
(Claim 2)
(c) The input bearing can be held on the coil bobbin of the temperature compensation coil to stably support the input shaft.

(請求項3)
(d)電動パワーステアリング装置のトルクセンサにおいて、上述(a)〜(c)を実現できる。これにより、ステアリングホイールに加えた操舵トルクの検出精度を向上し、電動モータによるアシスト精度を向上できる。
(Claim 3)
(d) In the torque sensor of the electric power steering device, the above (a) to (c) can be realized. Thereby, the detection accuracy of the steering torque applied to the steering wheel can be improved, and the assist accuracy by the electric motor can be improved.

図1は電動パワーステアリング装置の要部を示す断面図、図2はトルクセンサを拡大して示す断面図、図3はトルクセンサの模式図である。   FIG. 1 is a cross-sectional view showing a main part of the electric power steering apparatus, FIG. 2 is an enlarged cross-sectional view showing a torque sensor, and FIG. 3 is a schematic view of the torque sensor.

電動パワーステアリング装置10は、図1に示す如く、車体フレーム等に固定される第1ハウジング11に第2ハウジング12をボルト結合する。そして、ステアリングホイールが結合される入力軸14と、出力軸15をトーションバー16を介して同軸結合し、入力軸14は入力軸受17を介して第2ハウジング12に支持し、出力軸15は出力軸受18を介して第1ハウジング11に支持する。   As shown in FIG. 1, the electric power steering apparatus 10 bolts a second housing 12 to a first housing 11 fixed to a vehicle body frame or the like. The input shaft 14 to which the steering wheel is coupled and the output shaft 15 are coaxially coupled via a torsion bar 16. The input shaft 14 is supported by the second housing 12 via an input bearing 17, and the output shaft 15 is an output. The first housing 11 is supported via a bearing 18.

電動パワーステアリング装置10は、出力軸15にピニオン軸を連結し、ピニオン軸のピニオンに噛み合うラックを備えたラック軸をハウジングに左右動可能に支持する。出力軸15の回転運動をピニオン軸を介してラック軸の直線運動に変換し、車輪を操舵する。   The electric power steering device 10 connects a pinion shaft to the output shaft 15 and supports a rack shaft including a rack that meshes with the pinion of the pinion shaft so that the rack shaft can move left and right. The rotary motion of the output shaft 15 is converted into the linear motion of the rack shaft via the pinion shaft, and the wheels are steered.

電動パワーステアリング装置10は、第1ハウジング11に電動モータ(不図示)を支持し、電動モータの出力軸にはウォームギヤ21が結合され、ウォームギヤ21に噛み合うウォームホイール22を第1ハウジング11と第2ハウジング12の中で出力軸15に固定してある。   The electric power steering apparatus 10 supports an electric motor (not shown) on a first housing 11, a worm gear 21 is coupled to an output shaft of the electric motor, and a worm wheel 22 meshing with the worm gear 21 is connected to the first housing 11 and the second housing 11. The housing 12 is fixed to the output shaft 15.

電動パワーステアリング装置10は、入力軸14と出力軸15の間にトルクセンサ30を設けている。ステアリングホイールに加えられた操舵トルクをトルクセンサ30により検出し、その検出トルクにより電動モータを駆動し、電動モータの発生トルクをウォームギヤ21、ウォームホイール22を介して出力軸15に伝える。これにより、電動モータの発生トルクを運転者がステアリングホイールに加える操舵力に対するアシスト力として用いる。   The electric power steering apparatus 10 is provided with a torque sensor 30 between the input shaft 14 and the output shaft 15. The steering torque applied to the steering wheel is detected by the torque sensor 30, the electric motor is driven by the detected torque, and the generated torque of the electric motor is transmitted to the output shaft 15 via the worm gear 21 and the worm wheel 22. Thereby, the torque generated by the electric motor is used as an assist force for the steering force applied by the driver to the steering wheel.

しかるに、トルクセンサ30は以下の如くに構成される(図2)。
入力軸14は、磁性材料からなり、ハウジング12の内部に位置して出力軸15に同軸的に結合されている部分の側傍に、直径部A、直径部Bを備え、直径部Aの外周を円筒部14Aとし、直径部Bに円筒状の第1のコア40を圧入固定的に取付けている。第1のコア40の下端端面には周方向に等ピッチで形成された平面視矩形の多数の磁路形成部40Aを備える。
However, the torque sensor 30 is configured as follows (FIG. 2).
The input shaft 14 is made of a magnetic material, and has a diameter portion A and a diameter portion B on the side of a portion located inside the housing 12 and coaxially coupled to the output shaft 15. Is a cylindrical portion 14A, and a cylindrical first core 40 is press-fitted and fixed to the diameter portion B. The lower end face of the first core 40 is provided with a large number of magnetic path forming portions 40 </ b> A having a rectangular shape in plan view and formed at an equal pitch in the circumferential direction.

出力軸15は、ハウジング12の内部に位置して入力軸14に同軸的に結合されている部分の外周に円筒状の第2のコア50を圧入固定的に取付けている。第2のコア50の上端部端面には、第1のコア40の磁路形成部40Aに対向する、周方向に等ピッチで形成された平面視矩形の多数の磁路形成部50Aを備える。   The output shaft 15 has a cylindrical second core 50 attached to the outer periphery of a portion located inside the housing 12 and coaxially coupled to the input shaft 14 in a press-fit manner. On the end surface of the upper end portion of the second core 50, a large number of magnetic path forming portions 50 </ b> A having a rectangular shape in plan view and formed at an equal pitch in the circumferential direction are provided opposite to the magnetic path forming portions 40 </ b> A of the first core 40.

ハウジング12の内周には、磁性材料である焼結合金又は、プレス等からなる断面コ字形の第1の筒体60と第2の筒体70が挿入されている。   A first cylinder 60 and a second cylinder 70 having a U-shaped cross section made of a sintered alloy, which is a magnetic material, or a press, are inserted into the inner periphery of the housing 12.

第1の筒体60は、第1のコア40と第2のコア50の対向部分に跨るように、それらを囲んでハウジング12に内嵌され、トルク検出コイル61を収納する。62はトルク検出コイル61に接続された検出接続線である。   The first cylindrical body 60 is fitted in the housing 12 so as to straddle the opposing portions of the first core 40 and the second core 50 and accommodates the torque detection coil 61. Reference numeral 62 denotes a detection connection line connected to the torque detection coil 61.

第1の筒体60は第1のコア40、第2のコア50と磁気回路aを構成し、この磁気回路aは、第1の筒体60と第1のコア40の表面とのエアギャップa1、第2のコア50の表面とのエアギャップa2、及び第1のコア40と第2のコア50の対向端面間のエアギャップa3を経るように形成される。トルク検出コイル61は第1のコア40、第2のコア50と電磁結合し、電磁結合状態に相応する電圧を誘致する。   The first cylinder 60 constitutes the first core 40 and the second core 50 and the magnetic circuit a. The magnetic circuit a is an air gap between the first cylinder 60 and the surface of the first core 40. a1, an air gap a2 with the surface of the second core 50, and an air gap a3 between the opposed surfaces of the first core 40 and the second core 50 are formed. The torque detection coil 61 is electromagnetically coupled to the first core 40 and the second core 50 and attracts a voltage corresponding to the electromagnetic coupling state.

第2の筒体70は、入力軸14の直径部Aを囲んでハウジング12に内嵌され、温度補償コイル71を収納する。72は温度補償コイル71に接続された検出接続線である。   The second cylindrical body 70 surrounds the diameter portion A of the input shaft 14 and is fitted into the housing 12 to accommodate the temperature compensation coil 71. Reference numeral 72 denotes a detection connection line connected to the temperature compensation coil 71.

ここで、トルクセンサ30は、温度補償コイル71と入力軸14の直径部Aの間に磁性材料からなる前述の入力軸受17を設けている。入力軸受17は、外輪17Aを温度補償コイル71の樹脂製コイルボビン71Aの内周段差面に嵌合保持し、内輪17Bを入力軸14の直径部Aの外周段差面に嵌着し、入力軸14を回転自在に支持する。第2の筒体70は入力軸受17(外輪17A)と磁気回路bを構成し、この磁気回路bは、第2の筒体70と入力軸受17(外輪17A)の表面とのエアギャップb1、b2を経るように形成される。温度補償コイル71と第2の筒体70とは入力軸受17(外輪17A)と電磁結合し、電磁結合状態に相応する電圧を誘起する。   Here, the torque sensor 30 is provided with the aforementioned input bearing 17 made of a magnetic material between the temperature compensation coil 71 and the diameter portion A of the input shaft 14. The input bearing 17 fits and holds the outer ring 17 </ b> A on the inner circumferential step surface of the resin coil bobbin 71 </ b> A of the temperature compensation coil 71, and the inner ring 17 </ b> B is fitted on the outer circumferential step surface of the diameter portion A of the input shaft 14. Is supported rotatably. The second cylindrical body 70 constitutes an input bearing 17 (outer ring 17A) and a magnetic circuit b. The magnetic circuit b is an air gap b1 between the second cylindrical body 70 and the surface of the input bearing 17 (outer ring 17A), It is formed so as to pass through b2. The temperature compensation coil 71 and the second cylindrical body 70 are electromagnetically coupled to the input bearing 17 (outer ring 17A) and induce a voltage corresponding to the electromagnetic coupling state.

トーションバー16にトルクが作用していない場合には、トルク検出コイル61と温度補償コイル71の誘起電圧が等しくなるように、第1のコア40、第2のコア50、入力軸受17の電磁結合状態を求め、第1のコア40、第2のコア50をそれぞれ位置決めする。入力軸受17のサイズは、磁気回路b中のエアギャップb1、b2のそれぞれが磁界に与える影響、即ちそれぞれの磁気抵抗gb1、gb2の和が、磁気回路a中のエアギャップa1、a2、a3のそれぞれが磁界に与える影響、即ちそれぞれの磁気抵抗ga1、ga2、ga3の和と等しくなるように設定される。   When no torque acts on the torsion bar 16, the first core 40, the second core 50, and the input bearing 17 are electromagnetically coupled so that the induced voltages of the torque detection coil 61 and the temperature compensation coil 71 are equal. The state is obtained, and the first core 40 and the second core 50 are respectively positioned. The size of the input bearing 17 depends on the influence of the air gaps b1 and b2 in the magnetic circuit b on the magnetic field, that is, the sum of the respective magnetic resistances gb1 and gb2 Each is set to be equal to the influence of the magnetic field, that is, the sum of the respective magnetic resistances ga1, ga2, and ga3.

従って、トルクセンサ30にあっては、トルク検出コイル61と温度補償コイル71の誘起電圧の差を求めることにより、周囲温度変化による誘起電圧を相殺し、第1のコア40と第2のコア50の相対回転量に相応した電磁結合状態を検出し、トーションバー16に作用したトルク、換言すればステアリングホイールに加えられた操舵トルクのみを検出可能にする。   Therefore, in the torque sensor 30, the difference between the induced voltages of the torque detection coil 61 and the temperature compensation coil 71 is obtained to cancel the induced voltage due to the ambient temperature change, and the first core 40 and the second core 50. The electromagnetic coupling state corresponding to the relative rotation amount is detected, and only the torque acting on the torsion bar 16, in other words, the steering torque applied to the steering wheel can be detected.

本実施例によれば以下の作用効果を奏する。
(a)ハウジング12に設けた温度補償コイル71と入力軸14の間に入力軸受17を設け、温度補償コイル71を入力軸受17と直接電磁結合したから、入力軸受17が温度補償コイル71の磁気回路の一部を構成し、該磁気回路に干渉することがない。従って、温度補償コイル71の磁気特性を簡易に安定化できる。
According to the present embodiment, the following operational effects can be obtained.
(a) Since the input bearing 17 is provided between the temperature compensation coil 71 provided in the housing 12 and the input shaft 14 and the temperature compensation coil 71 is directly electromagnetically coupled to the input bearing 17, the input bearing 17 is magnetically coupled to the temperature compensation coil 71. It forms part of the circuit and does not interfere with the magnetic circuit. Therefore, the magnetic characteristics of the temperature compensation coil 71 can be easily stabilized.

(b)入力軸受17が、入力軸14と出力軸15の軸方向において、温度補償コイル71を挟んで出力軸受の反対側に位置するものでなく、温度補償コイル71と同位置に位置付けられるから、入力軸受17と出力軸受18間の支持スパンを小さくできる。このため、入力軸14と出力軸15の同軸度が向上し、両者の回転偏心を抑えてトルク検出精度を向上できる。   (b) Since the input bearing 17 is not located on the opposite side of the output bearing across the temperature compensation coil 71 in the axial direction of the input shaft 14 and the output shaft 15, it is located at the same position as the temperature compensation coil 71. The support span between the input bearing 17 and the output bearing 18 can be reduced. For this reason, the coaxiality of the input shaft 14 and the output shaft 15 is improved, and the rotational eccentricity of both is suppressed and the torque detection accuracy can be improved.

(c)入力軸受17を温度補償コイル71のコイルボビン71Aに保持し、温度補償コイル71に近接して配置でき、入力軸14を安定的に支持できる。   (c) The input bearing 17 is held on the coil bobbin 71A of the temperature compensation coil 71 and can be disposed close to the temperature compensation coil 71, so that the input shaft 14 can be stably supported.

(d)電動パワーステアリング装置10のトルクセンサ30において、上述(a)〜(c)を実現できる。これにより、ステアリングホイールに加えた操舵トルクの検出精度を向上し、電動モータによるアシスト精度を向上できる。   (d) In the torque sensor 30 of the electric power steering apparatus 10, the above-described (a) to (c) can be realized. Thereby, the detection accuracy of the steering torque applied to the steering wheel can be improved, and the assist accuracy by the electric motor can be improved.

尚、トルクセンサ30は、第1のコア40と第2のコア50を以下の如くに構成している。   In the torque sensor 30, the first core 40 and the second core 50 are configured as follows.

第1のコア40は、ステンレス鋼、アルミニウム、銅、樹脂等の非磁性材料からなる遮蔽材42を金型にセットし、この遮蔽材42の周囲に、樹脂に鉄粉等の磁性材金属粉を混合した磁性材41を鋳込んでインサートモールドしてなるものである。具体的には、遮蔽材42は円筒状(円筒本体42A)をなし、下端部の周方向複数位置に歯42Bを設け、相隣る歯42Bの間の谷部42Cに磁性材41をモールドする。より具体的には、遮蔽材42は円筒本体42Aの下端部の周方向複数か所からL形をなして径方向外方に突出する歯42Bを形成し、歯42Bの山部の下向き端面である平面視矩形端面を入力軸14の中心軸に直交する平面に形成するとともに、円筒本体42Aの下端部の相隣る歯42Bの間に谷部42Cを形成し、磁性材41を遮蔽材42の円筒本体42Aの外周及び谷部42Cの中にモールドする。磁性材41は遮蔽材42の円筒本体42Aの外周にモールドされる円筒本体41Aと、円筒本体41Aの下端部の周方向複数か所からL形をなして径方向内方に突出する装填部分41Bを形成し、装填部分41Bの下向き端面である平面視矩形端面を歯42Bの山部の下向き端面そのものに合致させて入力軸14の中心軸に直交する平面に形成する。   The first core 40 has a shielding material 42 made of a non-magnetic material such as stainless steel, aluminum, copper, resin, etc. set in a mold, and a magnetic metal powder such as iron powder or the like around the shielding material 42. The magnetic material 41 mixed with is cast and insert molded. Specifically, the shielding material 42 has a cylindrical shape (cylindrical body 42A), teeth 42B are provided at a plurality of positions in the circumferential direction of the lower end, and the magnetic material 41 is molded in a valley 42C between adjacent teeth 42B. . More specifically, the shielding member 42 forms teeth 42B projecting radially outward from a plurality of circumferential positions at the lower end of the cylindrical main body 42A, and is formed on the downward end surface of the crest of the teeth 42B. A rectangular end surface in plan view is formed in a plane orthogonal to the central axis of the input shaft 14, and a valley portion 42 </ b> C is formed between adjacent teeth 42 </ b> B at the lower end portion of the cylindrical main body 42 </ b> A. The cylindrical body 42A is molded into the outer periphery and the valley portion 42C. The magnetic material 41 includes a cylindrical main body 41A molded on the outer periphery of the cylindrical main body 42A of the shielding material 42, and a loading portion 41B protruding inward in the radial direction in an L shape from a plurality of circumferential positions at the lower end of the cylindrical main body 41A. And the rectangular end surface in plan view, which is the downward end surface of the loading portion 41B, is formed in a plane orthogonal to the central axis of the input shaft 14 by matching the downward end surface of the crest of the tooth 42B itself.

そして、第1のコア40は、遮弊材42の歯42Bを磁性材41に対する磁気的遮蔽部40Bとする。第1のコア40は、下端面の周方向で遮蔽材42の遮蔽部40B(歯42B)が遮蔽する部分の側傍(相隣る遮蔽部40B、40Bに挟まれる平面視矩形部分)の磁性材41の非遮蔽部(装填部分41B)を、歯42Bの山部の下向き端面そのものに合致させ、この非遮蔽部を前述の磁路形成部40Aとする。   The first core 40 uses the teeth 42 </ b> B of the shielding material 42 as a magnetic shielding part 40 </ b> B for the magnetic material 41. The first core 40 is magnetized on the side of the portion shielded by the shielding portion 40B (teeth 42B) of the shielding material 42 in the circumferential direction of the lower end surface (rectangular portion in plan view sandwiched between the adjacent shielding portions 40B and 40B). The non-shielding portion (loading portion 41B) of the material 41 is matched with the downward end surface of the crest of the tooth 42B, and this non-shielding portion is used as the above-described magnetic path forming portion 40A.

このとき、第1のコア40は、磁性材41を遮蔽材42の円筒本体42Aの下端部〜中間部の外周にモールドし、中間部〜上端部の外周にはモールドしない。第1のコア40は、この遮蔽材42の円筒本体42Aを入力軸14の小径部Bに圧入する。   At this time, the first core 40 molds the magnetic material 41 on the outer periphery of the cylindrical body 42A of the shielding material 42 on the outer periphery of the lower end portion to the intermediate portion, and does not mold on the outer periphery of the intermediate portion to the upper end portion. The first core 40 press-fits the cylindrical body 42 </ b> A of the shielding material 42 into the small diameter portion B of the input shaft 14.

第2のコア50は、ステンレス鋼、アルミニウム、銅、樹脂等の非磁性材料からなる遮蔽材52を金型にセットし、この遮蔽材52の周囲に、樹脂に鉄粉等の磁性材金属粉を混合した磁性材51を鋳込でインサートモールドしてなるものである。具体的には、遮蔽材52は円筒状(円筒本体52A)をなし、上端部の周方向複数位置に歯52Bを設け、相隣る歯52Bの間の谷部52Cに磁性材51をモールドする。より具体的には、遮蔽材52は円筒本体52Aの上端部の周方向複数か所からL形をなして径方向外方に突出する歯52Bを形成し、歯52Bの山部の上向き端面である平面視矩形端面を出力軸15の中心軸に直交する平面に形成するとともに、円筒本体52Aの上端部の相隣る歯52Bの間に谷部52Cを形成し、磁性材51を遮蔽材52の円筒本体52Aの外周及び谷部52Cの中にモールドする。磁性材51は遮蔽材52の円筒本体52Aの外周にモールドされる円筒本体51Aと、円筒本体51Aの上端部の周方向複数か所からL形をなして径方向内方に突出する装填部分51Bを形成し、装填部分51Bの上向き端面である平面視矩形端面を歯52Bの山部の上向き端面そのものに合致させて出力軸15の中心軸に直交する平面に形成する。   In the second core 50, a shielding material 52 made of a nonmagnetic material such as stainless steel, aluminum, copper, or resin is set in a mold. Around the shielding material 52, a magnetic material metal powder such as iron powder is applied to the resin. The magnetic material 51 mixed with is cast and insert molded. Specifically, the shielding material 52 has a cylindrical shape (cylindrical main body 52A), teeth 52B are provided at a plurality of positions in the circumferential direction of the upper end portion, and the magnetic material 51 is molded in the valley portions 52C between the adjacent teeth 52B. . More specifically, the shielding material 52 forms teeth 52B projecting radially outward from a plurality of circumferential positions at the upper end of the cylindrical main body 52A, and the upward end surface of the crest of the teeth 52B. A rectangular end surface in a plan view is formed on a plane orthogonal to the central axis of the output shaft 15, and a valley portion 52 </ b> C is formed between adjacent teeth 52 </ b> B at the upper end portion of the cylindrical main body 52 </ b> A. The cylindrical body 52A is molded into the outer periphery and the valley 52C. The magnetic material 51 includes a cylindrical main body 51A molded on the outer periphery of the cylindrical main body 52A of the shielding material 52, and a loading portion 51B that protrudes inward in the radial direction in an L shape from a plurality of circumferential positions at the upper end of the cylindrical main body 51A. And the rectangular end surface in plan view, which is the upward end surface of the loading portion 51B, is formed in a plane perpendicular to the central axis of the output shaft 15 by matching the upward end surface of the tooth 52B.

そして、第2のコア50は、遮弊材52の歯52Bを磁性材51に対する磁気的遮蔽部50Bとする。第2のコア50は、上端面の周方向で遮蔽材52の遮蔽部50B(歯52B)が遮蔽する部分の側傍(相隣る遮蔽部50B、50Bに挟まれる平面視矩形部分)の磁性材51の非遮蔽部(装填部分51B)を、歯52Bの山部の上向き端面そのものに合致させ、この非遮蔽部を前述の磁路形成部50Aとする。   The second core 50 uses the teeth 52 </ b> B of the shielding material 52 as a magnetic shielding part 50 </ b> B for the magnetic material 51. The second core 50 is magnetic on the side of the portion shielded by the shielding portion 50B (teeth 52B) of the shielding material 52 in the circumferential direction of the upper end surface (rectangular portion in plan view sandwiched between adjacent shielding portions 50B and 50B). The non-shielding part (loading part 51B) of the material 51 is matched with the upward end surface itself of the crest of the tooth 52B, and this non-shielding part is used as the magnetic path forming part 50A.

このとき、第2のコア50は、磁性材51を遮蔽材52の円筒本体52Aの上端部〜中間部の外周にモールドし、中間部〜下端部の外周にはモールドしない。第2のコア50は、この遮蔽材52の円筒本体52Aを出力軸15に圧入する。   At this time, the second core 50 molds the magnetic material 51 on the outer periphery of the cylindrical body 52 </ b> A of the shielding material 52, and does not mold the outer periphery of the intermediate portion to the lower end. The second core 50 press-fits the cylindrical body 52 </ b> A of the shielding material 52 into the output shaft 15.

第1のコア40の磁路形成部40Aと第2のコア50の磁路形成部50Aは適宜長離隔された対向関係をなす。本実施例において、第1のコア40(磁性材41、遮蔽材42)と第2のコア50(磁性材51、遮蔽材52)は内外径寸法、軸長寸法を同一とする同一形状とされている。   The magnetic path forming part 40A of the first core 40 and the magnetic path forming part 50A of the second core 50 have a facing relationship that is appropriately spaced apart. In the present embodiment, the first core 40 (magnetic material 41, shielding material 42) and the second core 50 (magnetic material 51, shielding material 52) have the same shape with the same inner and outer diameter dimensions and axial length dimensions. ing.

従って、本実施例にあっては以下の作用効果も奏する。
(a)第1と第2のコア40、50の端面に非磁性材料からなる遮蔽材42、52を設け、遮蔽材42、52の遮蔽部40B、50Bの側傍の磁性材の非遮蔽部を磁路形成部40A、50Aとした。第1のコア40の磁路形成部40Aと第2のコア50の磁路形成部50Aの間で生ずる磁束の通路は、図3(B)の実線矢印で示す如くに、第1のコア40において相隣る遮蔽材42の遮蔽部40Bと遮蔽部40Bに挟まれる範囲の磁路形成部40A、第2のコア50において相隣る遮蔽材52の遮蔽部50Bと遮蔽部50Bに挟まれる範囲の磁路形成部50Aに限定され、図3(B)の破線矢印で示す如くの遮蔽部40B、50Bの側に回り込むことを抑制される。このため、入力軸14と出力軸15の間のトーションバー16のねじれに伴なう、第1のコア40の磁路形成部40Aと第2のコア50の磁路形成部50Aの重なり面積(磁束通過面積)の変化のみに応じた透磁率の変化量となり、トルク検出コイル61の検出出力幅を増大でき、ひいては検出精度及び感度を向上できる。
Therefore, in this embodiment, the following operational effects are also achieved.
(a) The shielding members 42 and 52 made of a non-magnetic material are provided on the end surfaces of the first and second cores 40 and 50, and the non-shielding portion of the magnetic material beside the shielding portions 40B and 50B of the shielding materials 42 and 52. Were defined as magnetic path forming portions 40A and 50A. The path of the magnetic flux generated between the magnetic path forming portion 40A of the first core 40 and the magnetic path forming portion 50A of the second core 50 is the first core 40 as shown by the solid line arrow in FIG. The adjacent shield member 42 has a shield part 40B and a magnetic path forming part 40A in the range sandwiched between the shield parts 40B, and the second core 50 has a shield part 52B and the shield part 50B and the shield part 50B. This is limited to the magnetic path forming portion 50A, and is prevented from wrapping around the shielding portions 40B and 50B as indicated by broken line arrows in FIG. For this reason, the overlapping area of the magnetic path forming portion 40A of the first core 40 and the magnetic path forming portion 50A of the second core 50 accompanying the twist of the torsion bar 16 between the input shaft 14 and the output shaft 15 ( The amount of change in the magnetic permeability according to only the change in the magnetic flux passage area) can be increased, so that the detection output width of the torque detection coil 61 can be increased, thereby improving the detection accuracy and sensitivity.

(b)各コア40、50が、非磁性材料からなる遮蔽材42、52を、樹脂に磁性材金属粉を混合した磁性材41、51でインサートモールドしてなることにより、磁性材41、51と遮蔽材42、52のエアギャップをなくし、トルクセンサ30の検出感度を向上できる。   (b) The cores 40 and 50 are formed by insert-molding the shielding materials 42 and 52 made of a non-magnetic material with the magnetic materials 41 and 51 in which the magnetic material metal powder is mixed with the resin. The air gap between the shielding members 42 and 52 can be eliminated, and the detection sensitivity of the torque sensor 30 can be improved.

(c)各コア40、50は、磁性材41、51と遮蔽材42、52の両部品の組立てのための寸法公差の管理の如くを不要とし、組立性を向上する。   (c) The cores 40 and 50 do not require management of dimensional tolerances for assembling both the magnetic members 41 and 51 and the shielding members 42 and 52, and improve the assemblability.

(d)磁性材41、51は、磁性材金属粉を樹脂に混合したものを、金型にセットされた遮蔽材42、52の周囲にモールドするだけで成形され、低コストになる。   (d) The magnetic materials 41 and 51 are formed simply by molding a mixture of magnetic material metal powder in a resin around the shielding materials 42 and 52 set in a mold, thereby reducing the cost.

(e)第1のコア40の遮蔽材42を入力軸に圧入し、第2のコア50の遮弊材52を出力軸に圧入するものであり、各コア40、50の組付性を簡易にできる。   (e) The shielding material 42 of the first core 40 is press-fitted into the input shaft, and the shielding material 52 of the second core 50 is press-fitted into the output shaft. Can be.

(f)各コア40、50は、金型にセットされた遮蔽材42、52の相隣る歯42B、52Bの間の谷部42C、52Cに磁性材41、51をモールドすることで、組立性を向上できる。   (f) The cores 40 and 50 are assembled by molding the magnetic materials 41 and 51 in the valley portions 42C and 52C between the adjacent teeth 42B and 52B of the shielding materials 42 and 52 set in the mold. Can be improved.

(g)各コア40、50が、磁性材41、51を遮蔽材42、52の円筒本体42A、52Aの外周及び谷部42C、52Cの中にモールドしてなるから、磁性材41、51と遮蔽材42、52の結合強度を軸方向及び周方向で強化できる。   (g) Since each of the cores 40 and 50 is formed by molding the magnetic materials 41 and 51 into the outer periphery of the cylindrical main bodies 42A and 52A and the valley portions 42C and 52C of the shielding materials 42 and 52, the magnetic materials 41 and 51 The coupling strength of the shielding materials 42 and 52 can be enhanced in the axial direction and the circumferential direction.

(h)各コア40、50は、磁性材41、51を遮蔽材42、52の円筒本体の一端部〜中間部外周のみにモールドし、中間部〜他端部の外周にモールドしないから、金型にセットされた遮蔽材42、52のインサートモールド時の放熱性をその中間部〜他端部で良好にし、結果として遮弊材42、52のこの部分での熱ひずみを極小にし、入力軸又は出力軸への圧入寸法精度を向上し、各コア40、50の組付性を向上する。   (h) Since the cores 40 and 50 mold the magnetic materials 41 and 51 only on one end to the outer periphery of the cylindrical body of the shielding materials 42 and 52 and do not mold on the outer periphery of the intermediate and other ends, The heat dissipation at the time of insert molding of the shielding materials 42 and 52 set in the mold is improved from the middle portion to the other end portion, and as a result, the thermal strain at this portion of the shielding materials 42 and 52 is minimized, and the input shaft Or the press-fit dimension precision to an output shaft is improved, and the assembly | attachment property of each core 40 and 50 is improved.

(i)各コア40、50が互いに同一形状をなすことにより、各コア40、50を共通部品化できる。   (i) Since the cores 40 and 50 have the same shape, the cores 40 and 50 can be made into common parts.

(j)電動パワーステアリング装置10のトルクセンサ30において、上述(a)〜(i)を実現できる。これにより、ステアリングホイールに加えた操舵トルクの検出精度を向上し、電動モータによるアシスト精度を向上できる。   (j) In the torque sensor 30 of the electric power steering apparatus 10, the above (a) to (i) can be realized. Thereby, the detection accuracy of the steering torque applied to the steering wheel can be improved, and the assist accuracy by the electric motor can be improved.

以上、本発明の実施例を図面により詳述したが、本発明の具体的な構成はこの実施例に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。例えば、本発明のコア40、50において、遮蔽材42、52は磁性材41、51(鉄等)より電気抵抗率が低い金属(アルミニウム、銅等)からなるものでも良い。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration of the present invention is not limited to this embodiment, and even if there is a design change or the like without departing from the gist of the present invention. It is included in the present invention. For example, in the cores 40 and 50 of the present invention, the shielding materials 42 and 52 may be made of a metal (aluminum, copper, etc.) having a lower electrical resistivity than the magnetic materials 41, 51 (iron, etc.).

図1は電動パワーステアリング装置の要部を示す断面図である。FIG. 1 is a cross-sectional view showing a main part of the electric power steering apparatus. 図2はトルクセンサを拡大して示す断面図である。FIG. 2 is an enlarged sectional view showing the torque sensor. 図3はトルクセンサの模式図である。FIG. 3 is a schematic diagram of the torque sensor.

符号の説明Explanation of symbols

10 電動パワーステアリング装置
11、12 ハウジング
14 入力軸
15 出力軸
16 トーションバー
17 入力軸受
18 出力軸受
30 トルクセンサ
40 第1のコア
50 第2のコア
61 トルク検出コイル
71 温度補償コイル
71A コイルボビン
DESCRIPTION OF SYMBOLS 10 Electric power steering apparatus 11, 12 Housing 14 Input shaft 15 Output shaft 16 Torsion bar 17 Input bearing 18 Output bearing 30 Torque sensor 40 1st core 50 2nd core 61 Torque detection coil 71 Temperature compensation coil 71A Coil bobbin

Claims (3)

入力軸と出力軸のそれぞれを入力軸受と出力軸受のそれぞれを介してハウジングに支持し、
入力軸と出力軸のそれぞれに固定される第1と第2のコアとともに磁気回路を構成するトルク検出コイルをハウジングに設け、
入力軸と出力軸とを連結したトーションバーに作用するトルクを検出するトルクセンサにおいて、
温度補償コイルをハウジングに設け、該温度補償コイルと入力軸の間に前記入力軸受を設け、該温度補償コイルを該入力軸受に電磁結合してなることを特徴とするトルクセンサ。
Support the input shaft and output shaft to the housing via the input bearing and output bearing,
A torque detection coil that constitutes a magnetic circuit together with the first and second cores fixed to the input shaft and the output shaft is provided in the housing,
In the torque sensor for detecting the torque acting on the torsion bar connecting the input shaft and the output shaft,
A torque sensor comprising: a temperature compensation coil provided in a housing; the input bearing provided between the temperature compensation coil and an input shaft; and the temperature compensation coil being electromagnetically coupled to the input bearing.
前記入力軸受が温度補償コイルのコイルボビンと入力軸の間に設けられる請求項1に記載のトルクセンサ。   The torque sensor according to claim 1, wherein the input bearing is provided between a coil bobbin of a temperature compensation coil and an input shaft. ステアリングホイールが結合される入力軸と、電動モータに連動する出力軸とを有し、請求項1又は2に記載のトルクセンサの検出トルクにより電動モータを駆動することを特徴とする電動パワーステアリング装置。   3. An electric power steering apparatus comprising: an input shaft to which a steering wheel is coupled; and an output shaft linked to the electric motor, wherein the electric motor is driven by torque detected by a torque sensor according to claim 1 or 2. .
JP2005283078A 2005-09-28 2005-09-28 Torque sensor and electric power steering device Expired - Fee Related JP4718955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005283078A JP4718955B2 (en) 2005-09-28 2005-09-28 Torque sensor and electric power steering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005283078A JP4718955B2 (en) 2005-09-28 2005-09-28 Torque sensor and electric power steering device

Publications (2)

Publication Number Publication Date
JP2007093381A JP2007093381A (en) 2007-04-12
JP4718955B2 true JP4718955B2 (en) 2011-07-06

Family

ID=37979281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005283078A Expired - Fee Related JP4718955B2 (en) 2005-09-28 2005-09-28 Torque sensor and electric power steering device

Country Status (1)

Country Link
JP (1) JP4718955B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4275998B2 (en) * 2003-06-10 2009-06-10 株式会社ショーワ Torque sensor and electric power steering device

Also Published As

Publication number Publication date
JP2007093381A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
US8015885B2 (en) Torque detector
US8887580B2 (en) Torque detection device, method of manufacturing torque detection device, and electric power steering system including torque detection device
EP2947442B1 (en) Torque sensor and electric power steering system
EP2107355A2 (en) Magnetic torque sensor
EP2749856A1 (en) Torque Detector and Steering System including the Torque Detector
WO2013140864A1 (en) Torque sensor
EP3671157B1 (en) Torque sensor and steering device
EP3764071A1 (en) Sensor device
JP2018072086A (en) Rotation angle detection device
EP3715221A1 (en) Sensor device
JP5513998B2 (en) Torque sensor
JP4883972B2 (en) Torque sensor and electric power steering device
JP4718955B2 (en) Torque sensor and electric power steering device
JP5852484B2 (en) Torque sensor
JP2004117328A (en) Torque sensor
JP4833635B2 (en) Torque sensor and electric power steering device
JP2011013134A (en) Torque sensor
JP5508826B2 (en) Torque sensor
JP2007121162A (en) Torque sensor and electric power steering device
JP4275998B2 (en) Torque sensor and electric power steering device
JP2008283761A (en) Electric motor
JP3734397B2 (en) Torque sensor
JP2005003461A (en) Torque sensor and electric power steering apparatus
JP7447714B2 (en) Torque sensor and steering device
JP4279605B2 (en) Torque sensor and electric power steering device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110401

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees