JP2005003459A - Torque sensor and electric power steering device - Google Patents

Torque sensor and electric power steering device Download PDF

Info

Publication number
JP2005003459A
JP2005003459A JP2003165712A JP2003165712A JP2005003459A JP 2005003459 A JP2005003459 A JP 2005003459A JP 2003165712 A JP2003165712 A JP 2003165712A JP 2003165712 A JP2003165712 A JP 2003165712A JP 2005003459 A JP2005003459 A JP 2005003459A
Authority
JP
Japan
Prior art keywords
cylinder
magnetic path
magnetic
torque sensor
path forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003165712A
Other languages
Japanese (ja)
Inventor
Hitoshi Akagi
仁史 赤木
Ryoichi Tsuchiya
良一 土屋
Shinichi Tokura
真一 戸倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Corp
Original Assignee
Showa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Corp filed Critical Showa Corp
Priority to JP2003165712A priority Critical patent/JP2005003459A/en
Publication of JP2005003459A publication Critical patent/JP2005003459A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Power Steering Mechanism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase the detection output width of a detection coil in a torque sensor, and to improve detection accuracy and sensitivity. <P>SOLUTION: This torque sensor has the first cylinder 31 fixed on an input shaft 14 and having a magnetic path formation part 31A formed on the end face, the second cylinder fixed on an output shaft 15 and having a magnetic path formation part 32A facing to the magnetic path formation part 31A of the first cylinder 31 and formed on the end face, and a cylinder body 33 for storing the detection coil 35 constituting a magnetic circuit together with the first and second cylinders 31, 32. In the sensor, the magnetic path formation parts 31A, 32A formed on the end faces of the first and second cylinders 31, 32 comprise ridged parts of teeth 41, 42 formed on the end faces of the cylinders 31, 32, and shielding materials 51, 52 comprising a non-magnetic material are filled in grooved parts of the teeth 41, 42. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はトルクセンサ及び電動パワーステアリング装置に関する。
【0002】
【従来の技術】
電動パワーステアリング装置は、ステアリングホイールが結合される入力軸と、出力軸とがトーションバーを介して連結され、ステアリングホイールに加えられた操舵トルクをトルクセンサにより検出し、その検出トルクにより電動モータを駆動し、電動モータの発生トルクを出力軸に伝え、結果として、電動モータの発生トルクを運転者がステアリングホイールに加える操舵力に対するアシスト力として用いる。
【0003】
従来のトルクセンサは、特許文献1に記載の如く、入力軸1に固定され、磁路形成部(歯)2Aを端面に形成した磁性材料からなる第1の円筒2と、出力軸3に固定され、第1の円筒2の磁路形成部2Aに対向する磁路形成部(歯)4Aを端面に形成した磁性材料からなる第2の円筒4と、第1と第2の円筒2、4とともに、磁気回路を構成しているトルク検出コイル5Aを収納する筒体5とを有し、入力軸1と出力軸3とを連結したトーションバーに作用するトルクを検出する(図4)。
【0004】
【特許文献1】
実登録2583974(3頁、図2)
【0005】
【発明が解決しようとする課題】
特許文献1のトルクセンサでは、図4(A)に示す如く、第1の円筒2の磁路形成部2Aと第2の円筒4の磁路形成部4Aを、それらの軸端面の周方向に等間隔で凹凸を繰り返すように加工した歯の山部にて構成している。第1の円筒2の磁路形成部2A(山部)と第2の円筒4の磁路形成部4A(山部)の相対する重なり面積を、第1の円筒2と第2の円筒4が構成する磁気回路の磁束通路面積とする。そして、入力軸1と出力軸3の間のトーションバーのねじれにより、第1の円筒2の磁路形成部2A(山部)と第2の円筒4の磁路形成部4A(山部)の重なり面積、換言すれば磁束通路面積を図4(B)、(C)の如くに変化させ、この面積変化に応じた透磁率の変化をトルク検出コイル5Aで検出し、このトルク検出コイル5Aの検出結果によりトーションバーに作用したトルクを検出する。
【0006】
ところが、特許文献1のトルクセンサでは、第1の円筒2の磁路形成部2Aと第2の円筒4の磁路形成部4Aの間で生ずる磁束の通路が、図4(C)に示す如く、磁路形成部2A、4Aの山部の頂面だけでなく側面にも回り込み、入力軸1と出力軸3の間のトーションバーのねじれに伴なう前述の透磁率の変化量を低減し、トルク検出コイル5Aの検出出力を低下させる。
【0007】
本発明の課題は、トルクセンサにおける検出コイルの検出出力幅を増大し、検出精度及び感度を向上することにある。
【0008】
本発明の他の課題は、電動パワーステアリング装置において、ステアリングホイールに加えた操舵トルクの検出精度を向上し、電動モータによるアシスト精度を向上することにある。
【0009】
【課題を解決するための手段】
請求項1の発明は、入力軸に固定され、磁路形成部を端面に形成した磁性材料からなる第1の円筒と、出力軸に固定され、第1の円筒の磁路形成部に対向する磁路形成部を端面に形成した磁性材料からなる第2の円筒と、第1と第2の円筒とともに磁気回路を構成している検出コイルを収納する筒体とを有し、入力軸と出力軸とを連結したトーションバーに作用するトルクを検出するトルクセンサにおいて、第1と第2の円筒の端面に形成される磁路形成部が、該円筒の端面に形成された歯の山部からなり、歯の谷部には非磁性材料からなる遮蔽材を充填してなるようにしたものである。
【0010】
請求項2の発明は、請求項1の発明において更に、前記第1の円筒と第2の円筒が互いに同一形状をなしているようにしたものである。
【0011】
請求項3の発明は、ステアリングホイールが結合される入力軸と、電動モータに連動する出力軸とを有し、請求項1又は2に記載のトルクセンサの検出トルクにより電動モータを駆動する電動パワーステアリング装置である。
【0012】
【発明の実施の形態】
図1は電動パワーステアリング装置の要部を示す断面図、図2はトルクセンサを拡大して示す断面図、図3はトルクセンサを示す模式図、図4は従来のトルクセンサを示す模式図である。
【0013】
(第1実施形態)(図1〜図3)
電動パワーステアリング装置10は、図1に示す如く、車体フレーム等に固定される第1ハウジング11に第2ハウジング12をボルト結合する。そして、ステアリングホイールが結合される入力軸14と、出力軸15をトーションバー16を介して同軸結合し、入力軸14は軸受17を介して第2ハウジング12に支持し、出力軸15は軸受18を介して第1ハウジング11に支持する。
【0014】
電動パワーステアリング装置10は、出力軸15にピニオン軸を連結し、ピニオン軸のピニオンに噛み合うラックを備えたラック軸をハウジングに左右動可能に支持する。出力軸15の回転運動をピニオン軸を介してラック軸の直線運動に変換し、車輪を操舵する。
【0015】
電動パワーステアリング装置10は、第1ハウジング11に電動モータ(不図示)を支持し、電動モータの出力軸にはウォームギヤ21が結合され、ウォームギヤ21に噛み合うウォームホイール22を第1ハウジング11と第2ハウジング12の中で出力軸15に固定してある。
【0016】
電動パワーステアリング装置10は、入力軸14と出力軸15の間にトルクセンサ30を設けている。ステアリングホイールに加えられた操舵トルクをトルクセンサ30により検出し、その検出トルクにより電動モータを駆動し、電動モータの発生トルクをウォームギヤ21、ウォームホイール22を介して出力軸15に伝える。これにより、電動モータの発生トルクを運転者がステアリングホイールに加える操舵力に対するアシスト力として用いる。
【0017】
しかるに、トルクセンサ30は以下の如くに構成される(図2)。
入力軸14は、磁性材料からなり、ハウジング12の内部に位置して出力軸15に同軸的に結合されている部分の側傍に、大径部A、小径部Bを備え、大径部Aの外周を円筒部14Aとし、小径部Bに磁性材料からなる第1の円筒31を圧入固定的に取付けている。第1の円筒31の下部端面には周方向に等ピッチで形成された平面視矩形の多数の磁路形成部31Aを備える。
【0018】
ここで、第1の円筒31にあっては、下部端面の周方向に矩形の多数の歯41を形成し、歯41の山部の平面視矩形の頂面を入力軸14の中心軸に直交する平面に形成する。そして、第1の円筒31の下部端面の一部である歯41の谷部に、ステンレス鋼、アルミニウム、樹脂等の非磁性材料からなる遮蔽材51を充填している(図3)。第1の円筒31を鋳型内にセットし、歯41の谷部に溶融状態の遮蔽材51を鋳込む(モールド)如くに充填した後、冷却固化させる。遮蔽材51は歯41の谷部に隙間なく充填され、遮蔽材51の上面は歯41の山部の頂面と面一をなす。第1の円筒31の端面の周方向で、遮蔽材51が遮蔽する部分の側傍(相隣る遮蔽材51、51に挟まれる平面視矩形部分)の非遮蔽部は、歯41の山部の頂面そのものであり、この非遮蔽部が前述の磁路形成部31Aになる。
【0019】
出力軸15は、ハウジング12の内部に位置して入力軸14に同軸的に結合されている部分の外周に、磁性材料からなる第2の円筒32を圧入固定的に取付けている。第1の円筒31と第2の円筒32は、入力軸14と出力15の軸方向に並置される。第2の円筒32の上部端面には周方向に等ピッチで形成された平面視矩形の多数の磁路形成部32Aを備える。
【0020】
ここで、第2の円筒32にあっては、上部端面の周方向に矩形の多数の歯42を形成し、歯42の山部の平面視矩形の頂面を出力軸15の中心軸に直交する平面に形成する。そして、第2の円筒32の上部端面の一部である歯42の谷部に、ステンレス鋼、アルミニウム、樹脂等の非磁性材料からなる遮蔽材52を充填している(図3)。第2の円筒32を鋳型内にセットし、歯42の谷部に溶融状態の遮蔽材52を鋳込む(モールド)如くに充填した後、冷却固化させる。遮蔽材52は歯42の谷部に隙間なく充填され、遮蔽材52の上面は歯42の山部の頂面と面一をなす。第2の円筒32の端面の周方向で、遮蔽材52が遮蔽する部分の側傍(相隣る遮蔽材52、52に挟まれる平面視矩形部分)の非遮蔽部は、歯42の山部の頂面そのものであり、この非遮蔽部が前述の磁路形成部32Aになる。
【0021】
尚、遮蔽材51、52のモールドに際して、円筒31、32の端面から内面に環状のキャビティーを形成し、冷却固化後の遮蔽材51、52が円筒31、32の内面に径方向で重合される形状とすることで、より確実な結合を保持することもできる。
【0022】
第1の円筒31の磁路形成部31Aと第2の円筒32の磁路形成部32Aは適宜長離隔された対向関係をなす。本実施形態において、第1の円筒31と第2の円筒32は内外径寸法、軸長寸法を同一とする同一形状とされている。
【0023】
ハウジング12の内周には、磁性材料である焼結合金又は、プレス等からなる断面コ字形の第1の筒体33と第2の筒体34が挿入されている。
【0024】
第1の筒体33は、第1の円筒31と第2の円筒32の対向部分に跨るように、それらを囲んでハウジング12に内嵌され、トルク検出コイル35を収納する。35Aはトルク検出コイル35に接続された測定用コードである。第1の筒体33は第1の円筒31、第2の円筒32と磁気回路aを構成し、この磁気回路aは、第1の筒体33と第1の円筒31の表面とのエアギャップa1、第2の円筒32の表面とのエアギャップa2、及び第1の円筒31と第2の円筒32の対向端面間のエアギャップa3を経るように形成される。トルク検出コイル35は第1の円筒31、第2の円筒32と電磁結合し、電磁結合状態に相応する電圧を誘致する。
【0025】
第2の筒体34は、入力軸14の円筒部14Aを囲んでハウジング12に内嵌され、温度補償コイル36を収納する。36Aは温度補償コイル36に接続された測定用コードである。第2の筒体34は円筒部14Aと磁気回路bを構成し、この磁気回路bは、第2の筒体34と円筒部14Aの表面とのエアギャップb1、b2を経るように形成される。温度補償コイル36は円筒部14Aと電磁結合し、電磁結合状態に相応する電圧を誘起する。
【0026】
トーションバー16にトルクが作用していない場合には、トルク検出コイル35と温度補償コイル36の誘起電圧が等しくなるように、第1の円筒31、第2の円筒32、円筒部14Aの電磁結合状態を求め、第1の円筒31、第2の円筒32をそれぞれ位置決めする。円筒部14Aの外径は、磁気回路b中のエアギャップb1、b2のそれぞれが磁界に与える影響、即ちそれぞれの磁気抵抗gb1、gb2の和が、磁気回路a中のエアギャップa1、a2、a3のそれぞれが磁界に与える影響、即ちそれぞれの磁気抵抗ga1、ga2、ga3の和と等しくなるように設定される。
【0027】
従って、トルクセンサ30にあっては、トルク検出コイル35と温度補償コイル32の誘起電圧の差を求めることにより、周囲温度変化による誘起電圧を相殺し、第1の円筒31と第2の円筒32の相対回転量に相応した電磁結合状態を検出し、トーションバー16に作用したトルク、換言すればステアリングホイールに加えられた操舵トルクを検出可能にする。
【0028】
本実施形態によれば以下の作用効果を奏する。
(1)第1と第2の円筒31、32の端面に形成した歯41、42の山部にて磁路形成部31A、32Aを形成し、歯41、42の谷部には非磁性材料からなる遮蔽材51、52を鋳込む如くによって充填する。第1の円筒31の磁路形成部31Aと第2の円筒32の磁路形成部32Aの間で生ずる磁束の通路は、図3(B)の実線矢印で示す如くに、遮蔽材51と遮蔽材51に挟まれる歯41の山部の頂面、遮蔽材52と遮蔽材52に挟まれる歯42の山部の頂面だけに限定され、図3(B)の破線矢印で示す如くの遮蔽材51、52に遮蔽されている山部の側面に回り込むことを抑制される。このため、入力軸14と出力軸15の間のトーションバー16のねじれに伴なう、第1の円筒31の磁路形成部31Aと第2の円筒32の磁路形成部32Aの重なり面積(磁束通路面積)の変化のみに応じた透磁率の変化量となり、トルク検出コイル35の検出出力幅を増大でき、ひいては検出精度及び感度を向上できる。
【0029】
(2)第1と第2の円筒31、32は互いに同一形状とし、共通部品化できる。 (3)電動パワーステアリング装置10のトルクセンサ30において、上述(1)、(2)を実現できる。これにより、ステアリングホイールに加えた操舵トルクの検出精度を向上し、電動モータによるアシスト精度を向上できる。
【0030】
以上、本発明の実施の形態を図面により記述したが、本発明の具体的な構成はこの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。例えば、温度補償コイルを収納する筒体を、入力軸に固定の2つの円筒の対向部分に跨るようにそれらを囲んで設け、当該筒体とそれら2つの円筒により温度補償コイルのための磁気回路を形成しても良い。そして、このとき、2つの円筒の対向端面のそれぞれに形成する磁路形成部を、本発明の遮蔽材の嵌着構造によって構成しても良い。
【0031】
【発明の効果】
本発明によれば、トルクセンサにおける検出コイルの検出出力幅を増大し、検出精度及び感度を向上できる。
【0032】
また、本発明によれば、電動パワーステアリング装置において、ステアリングホイールに加えた操舵トルクの検出精度を向上し、電動モータによるアシスト精度を向上できる。
【図面の簡単な説明】
【図1】図1は電動パワーステアリング装置の要部を示す断面図である。
【図2】図2はトルクセンサを拡大して示す断面図である。
【図3】図3はトルクセンサを示す模式図である。
【図4】図4は従来のトルクセンサを示す模式図である。
【符号の説明】
10 電動パワーステアリング装置
14 入力軸
15 出力軸
16 トーションバー
30 トルクセンサ
31 第1の円筒
31A 磁路形成部
32 第2の円筒
32A 磁路形成部
33、34 筒体
35、36 検出コイル
41、42 歯
51、52 遮蔽材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a torque sensor and an electric power steering apparatus.
[0002]
[Prior art]
In the electric power steering apparatus, an input shaft to which a steering wheel is coupled and an output shaft are connected via a torsion bar, and a steering torque applied to the steering wheel is detected by a torque sensor, and the electric motor is driven by the detected torque. The generated torque of the electric motor is transmitted to the output shaft, and as a result, the generated torque of the electric motor is used as an assist force for the steering force applied by the driver to the steering wheel.
[0003]
As described in Patent Document 1, the conventional torque sensor is fixed to the input shaft 1 and fixed to the first cylinder 2 made of a magnetic material having a magnetic path forming portion (tooth) 2A formed on the end face and to the output shaft 3. The second cylinder 4 made of a magnetic material having a magnetic path forming portion (tooth) 4A facing the magnetic path forming portion 2A of the first cylinder 2 formed on the end face, and the first and second cylinders 2, 4 In addition, it has a cylindrical body 5 that houses a torque detection coil 5A constituting a magnetic circuit, and detects a torque that acts on a torsion bar that connects the input shaft 1 and the output shaft 3 (FIG. 4).
[0004]
[Patent Document 1]
Real registration 2583974 (3 pages, Fig. 2)
[0005]
[Problems to be solved by the invention]
In the torque sensor disclosed in Patent Document 1, as shown in FIG. 4A, the magnetic path forming portion 2A of the first cylinder 2 and the magnetic path forming portion 4A of the second cylinder 4 are arranged in the circumferential direction of their axial end surfaces. It is composed of tooth crests that are processed so as to repeat unevenness at equal intervals. The overlapping area of the magnetic path forming portion 2A (peak portion) of the first cylinder 2 and the magnetic path forming portion 4A (peak portion) of the second cylinder 4 is determined by the first cylinder 2 and the second cylinder 4 as follows. It is set as the magnetic flux path area of the magnetic circuit to comprise. Then, due to torsion of the torsion bar between the input shaft 1 and the output shaft 3, the magnetic path forming portion 2A (peak portion) of the first cylinder 2 and the magnetic path forming portion 4A (peak portion) of the second cylinder 4 are The overlapping area, in other words, the magnetic flux path area is changed as shown in FIGS. 4B and 4C, and the change in permeability according to the change in area is detected by the torque detection coil 5A. Torque acting on the torsion bar is detected from the detection result.
[0006]
However, in the torque sensor of Patent Document 1, the path of the magnetic flux generated between the magnetic path forming portion 2A of the first cylinder 2 and the magnetic path forming portion 4A of the second cylinder 4 is as shown in FIG. The magnetic path forming portions 2A and 4A go not only to the top surfaces of the crests but also to the side surfaces to reduce the amount of change in the magnetic permeability due to the torsion bar torsion between the input shaft 1 and the output shaft 3. The detection output of the torque detection coil 5A is reduced.
[0007]
An object of the present invention is to increase a detection output width of a detection coil in a torque sensor and improve detection accuracy and sensitivity.
[0008]
Another object of the present invention is to improve detection accuracy of steering torque applied to a steering wheel and improve assist accuracy by an electric motor in an electric power steering apparatus.
[0009]
[Means for Solving the Problems]
According to the first aspect of the present invention, a first cylinder made of a magnetic material fixed to the input shaft and having a magnetic path forming portion formed on the end face, and fixed to the output shaft and facing the magnetic path forming portion of the first cylinder. A second cylinder made of a magnetic material having a magnetic path forming portion formed on the end face; and a cylindrical body that houses a detection coil that constitutes a magnetic circuit together with the first and second cylinders. In the torque sensor for detecting the torque acting on the torsion bar connected to the shaft, the magnetic path forming portion formed on the end surfaces of the first and second cylinders is formed from the peak portion of the teeth formed on the end surfaces of the cylinders. Thus, the valleys of the teeth are filled with a shielding material made of a nonmagnetic material.
[0010]
According to a second aspect of the present invention, in the first aspect of the present invention, the first cylinder and the second cylinder have the same shape.
[0011]
According to a third aspect of the present invention, there is provided an electric power having an input shaft to which the steering wheel is coupled and an output shaft interlocked with the electric motor, and driving the electric motor by the torque detected by the torque sensor according to the first or second aspect. It is a steering device.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
1 is a cross-sectional view showing a main part of an electric power steering apparatus, FIG. 2 is an enlarged cross-sectional view showing a torque sensor, FIG. 3 is a schematic view showing a torque sensor, and FIG. 4 is a schematic view showing a conventional torque sensor. is there.
[0013]
First Embodiment (FIGS. 1 to 3)
As shown in FIG. 1, the electric power steering apparatus 10 bolts a second housing 12 to a first housing 11 fixed to a vehicle body frame or the like. The input shaft 14 to which the steering wheel is coupled and the output shaft 15 are coaxially coupled via a torsion bar 16. The input shaft 14 is supported by the second housing 12 via a bearing 17, and the output shaft 15 is supported by a bearing 18. It supports to the 1st housing 11 via.
[0014]
The electric power steering device 10 connects a pinion shaft to the output shaft 15 and supports a rack shaft including a rack that meshes with the pinion of the pinion shaft so that the rack shaft can move left and right. The rotary motion of the output shaft 15 is converted into the linear motion of the rack shaft via the pinion shaft, and the wheels are steered.
[0015]
The electric power steering apparatus 10 supports an electric motor (not shown) on a first housing 11, a worm gear 21 is coupled to an output shaft of the electric motor, and a worm wheel 22 meshing with the worm gear 21 is connected to the first housing 11 and the second housing 11. The housing 12 is fixed to the output shaft 15.
[0016]
The electric power steering apparatus 10 is provided with a torque sensor 30 between the input shaft 14 and the output shaft 15. The steering torque applied to the steering wheel is detected by the torque sensor 30, the electric motor is driven by the detected torque, and the generated torque of the electric motor is transmitted to the output shaft 15 via the worm gear 21 and the worm wheel 22. Thereby, the torque generated by the electric motor is used as an assist force for the steering force applied by the driver to the steering wheel.
[0017]
However, the torque sensor 30 is configured as follows (FIG. 2).
The input shaft 14 is made of a magnetic material, and includes a large diameter portion A and a small diameter portion B on the side of a portion located inside the housing 12 and coaxially coupled to the output shaft 15. The outer periphery of the first cylinder 31 is a cylindrical portion 14A, and a first cylinder 31 made of a magnetic material is attached to the small-diameter portion B in a press-fit manner. The lower end surface of the first cylinder 31 is provided with a large number of magnetic path forming portions 31 </ b> A having a rectangular shape in plan view and formed at an equal pitch in the circumferential direction.
[0018]
Here, in the first cylinder 31, a large number of rectangular teeth 41 are formed in the circumferential direction of the lower end surface, and the top surface of the peak portion of the mountain portion of the teeth 41 is orthogonal to the central axis of the input shaft 14. To form a flat surface. The valleys of the teeth 41, which are part of the lower end surface of the first cylinder 31, are filled with a shielding material 51 made of a nonmagnetic material such as stainless steel, aluminum, or resin (FIG. 3). The first cylinder 31 is set in the mold, and after filling the molten shielding material 51 into the valleys of the teeth 41 (molding), it is cooled and solidified. The shielding material 51 is filled in the valleys of the teeth 41 without any gap, and the upper surface of the shielding material 51 is flush with the top surface of the crests of the teeth 41. In the circumferential direction of the end surface of the first cylinder 31, the non-shielding part on the side of the part shielded by the shielding material 51 (the rectangular part in a plan view sandwiched between the neighboring shielding materials 51, 51) is the peak part of the teeth 41. This non-shielding portion becomes the above-described magnetic path forming portion 31A.
[0019]
The output shaft 15 has a second cylinder 32 made of a magnetic material press fitted and fixed to the outer periphery of a portion located inside the housing 12 and coaxially coupled to the input shaft 14. The first cylinder 31 and the second cylinder 32 are juxtaposed in the axial direction of the input shaft 14 and the output 15. The upper end surface of the second cylinder 32 is provided with a large number of magnetic path forming portions 32 </ b> A having a rectangular shape in plan view and formed at an equal pitch in the circumferential direction.
[0020]
Here, in the second cylinder 32, a large number of rectangular teeth 42 are formed in the circumferential direction of the upper end surface, and the top surface of the rectangular portion of the peak portion of the teeth 42 is orthogonal to the central axis of the output shaft 15. To form a flat surface. The valleys of the teeth 42 that are part of the upper end surface of the second cylinder 32 are filled with a shielding material 52 made of a nonmagnetic material such as stainless steel, aluminum, or resin (FIG. 3). The second cylinder 32 is set in a mold and filled with a shielding material 52 in a molten state in the valleys of the teeth 42 (mold), and then cooled and solidified. The shielding material 52 is filled in the valleys of the teeth 42 without a gap, and the upper surface of the shielding material 52 is flush with the top surface of the crests of the teeth 42. In the circumferential direction of the end surface of the second cylinder 32, the non-shielding portion on the side of the portion shielded by the shielding material 52 (the rectangular portion in a plan view sandwiched between the neighboring shielding materials 52, 52) is the peak portion of the tooth 42. This non-shielding portion is the magnetic path forming portion 32A described above.
[0021]
When the shielding materials 51 and 52 are molded, an annular cavity is formed from the end surfaces of the cylinders 31 and 32 to the inner surface, and the cooled and solidified shielding materials 51 and 52 are polymerized in the radial direction on the inner surfaces of the cylinders 31 and 32. By adopting the shape, more reliable coupling can be maintained.
[0022]
The magnetic path forming portion 31A of the first cylinder 31 and the magnetic path forming portion 32A of the second cylinder 32 have a facing relationship that is appropriately separated by a long distance. In the present embodiment, the first cylinder 31 and the second cylinder 32 have the same shape with the same inner and outer diameter dimensions and axial length dimensions.
[0023]
A first cylinder 33 and a second cylinder 34 having a U-shaped cross section made of a sintered alloy, which is a magnetic material, or a press, are inserted into the inner periphery of the housing 12.
[0024]
The first cylinder 33 is fitted into the housing 12 so as to straddle the opposing portions of the first cylinder 31 and the second cylinder 32 and accommodates the torque detection coil 35. Reference numeral 35A denotes a measurement cord connected to the torque detection coil 35. The first cylinder 33 constitutes a first cylinder 31 and a second cylinder 32 and a magnetic circuit a. The magnetic circuit a is an air gap between the first cylinder 33 and the surface of the first cylinder 31. a1, an air gap a2 with the surface of the second cylinder 32, and an air gap a3 between the opposing end faces of the first cylinder 31 and the second cylinder 32. The torque detection coil 35 is electromagnetically coupled to the first cylinder 31 and the second cylinder 32 and attracts a voltage corresponding to the electromagnetic coupling state.
[0025]
The second cylinder 34 is fitted in the housing 12 so as to surround the cylindrical portion 14 </ b> A of the input shaft 14 and accommodates the temperature compensation coil 36. Reference numeral 36A denotes a measurement cord connected to the temperature compensation coil 36. The second cylindrical body 34 constitutes a cylindrical portion 14A and a magnetic circuit b, and the magnetic circuit b is formed so as to pass through air gaps b1 and b2 between the second cylindrical body 34 and the surface of the cylindrical portion 14A. . The temperature compensation coil 36 is electromagnetically coupled to the cylindrical portion 14A and induces a voltage corresponding to the electromagnetic coupling state.
[0026]
When no torque is applied to the torsion bar 16, the first cylinder 31, the second cylinder 32, and the cylindrical portion 14A are electromagnetically coupled so that the induced voltages of the torque detection coil 35 and the temperature compensation coil 36 are equal. A state is calculated | required and the 1st cylinder 31 and the 2nd cylinder 32 are each positioned. The outer diameter of the cylindrical portion 14A depends on the influence of the air gaps b1 and b2 in the magnetic circuit b on the magnetic field, that is, the sum of the respective magnetic resistances gb1 and gb2 is the air gaps a1, a2, and a3 in the magnetic circuit a. Are set to be equal to the influence of each of the magnetic resistances on the magnetic field, that is, the sum of the respective magnetic resistances ga1, ga2, and ga3.
[0027]
Therefore, in the torque sensor 30, the difference between the induced voltages of the torque detection coil 35 and the temperature compensation coil 32 is obtained to cancel the induced voltage due to the ambient temperature change, and the first cylinder 31 and the second cylinder 32. The electromagnetic coupling state corresponding to the relative rotation amount is detected, and the torque applied to the torsion bar 16, that is, the steering torque applied to the steering wheel can be detected.
[0028]
According to this embodiment, there exist the following effects.
(1) Magnetic path forming portions 31A and 32A are formed at the crests of the teeth 41 and 42 formed on the end surfaces of the first and second cylinders 31 and 32, and the nonmagnetic material is formed at the troughs of the teeth 41 and 42. The shielding materials 51 and 52 made of are filled by casting. The path of the magnetic flux generated between the magnetic path forming part 31A of the first cylinder 31 and the magnetic path forming part 32A of the second cylinder 32, as shown by the solid line arrow in FIG. The top surface of the peak portion of the tooth 41 sandwiched between the materials 51 and the top surface of the top portion of the peak portion of the tooth 42 sandwiched between the shielding material 52 and the shielding material 52 are shielded as shown by the broken line arrows in FIG. It is suppressed that it goes around to the side surface of the peak part shielded by the materials 51 and 52. For this reason, the overlapping area of the magnetic path forming portion 31A of the first cylinder 31 and the magnetic path forming portion 32A of the second cylinder 32 due to the torsion of the torsion bar 16 between the input shaft 14 and the output shaft 15 ( The amount of change in the magnetic permeability according to only the change in the magnetic flux path area) can be increased, and the detection output width of the torque detection coil 35 can be increased.
[0029]
(2) The first and second cylinders 31 and 32 have the same shape and can be made into a common part. (3) In the torque sensor 30 of the electric power steering apparatus 10, the above (1) and (2) can be realized. Thereby, the detection accuracy of the steering torque applied to the steering wheel can be improved, and the assist accuracy by the electric motor can be improved.
[0030]
Although the embodiment of the present invention has been described with reference to the drawings, the specific configuration of the present invention is not limited to this embodiment, and there are design changes and the like without departing from the scope of the present invention. Are also included in the present invention. For example, a cylindrical body that houses a temperature compensation coil is provided so as to straddle the opposing portions of two cylinders fixed to the input shaft, and a magnetic circuit for the temperature compensation coil is formed by the cylinder and the two cylinders. May be formed. And at this time, you may comprise the magnetic path formation part formed in each of the opposing end surface of two cylinders by the fitting structure of the shielding material of this invention.
[0031]
【The invention's effect】
According to the present invention, the detection output width of the detection coil in the torque sensor can be increased, and the detection accuracy and sensitivity can be improved.
[0032]
Further, according to the present invention, in the electric power steering apparatus, the detection accuracy of the steering torque applied to the steering wheel can be improved, and the assist accuracy by the electric motor can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a main part of an electric power steering apparatus.
FIG. 2 is an enlarged cross-sectional view of a torque sensor.
FIG. 3 is a schematic diagram showing a torque sensor.
FIG. 4 is a schematic diagram showing a conventional torque sensor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Electric power steering apparatus 14 Input shaft 15 Output shaft 16 Torsion bar 30 Torque sensor 31 1st cylinder 31A Magnetic path formation part 32 2nd cylinder 32A Magnetic path formation part 33, 34 Cylindrical bodies 35, 36 Detection coils 41, 42 Teeth 51, 52 Shielding material

Claims (3)

入力軸に固定され、磁路形成部を端面に形成した磁性材料からなる第1の円筒と、
出力軸に固定され、第1の円筒の磁路形成部に対向する磁路形成部を端面に形成した磁性材料からなる第2の円筒と、
第1と第2の円筒とともに磁気回路を構成している検出コイルを収納する筒体とを有し、
入力軸と出力軸とを連結したトーションバーに作用するトルクを検出するトルクセンサにおいて、
第1と第2の円筒の端面に形成される磁路形成部が、該円筒の端面に形成された歯の山部からなり、歯の谷部には非磁性材料からなる遮蔽材を充填してなることを特徴とするトルクセンサ。
A first cylinder made of a magnetic material fixed to the input shaft and having a magnetic path forming portion formed on the end face;
A second cylinder made of a magnetic material fixed to the output shaft and having a magnetic path forming portion opposed to the magnetic path forming portion of the first cylinder formed on an end surface;
A cylindrical body that houses a detection coil that forms a magnetic circuit together with the first and second cylinders;
In the torque sensor for detecting the torque acting on the torsion bar connecting the input shaft and the output shaft,
The magnetic path forming portions formed on the end surfaces of the first and second cylinders are formed by tooth crests formed on the end surfaces of the cylinders, and the tooth valley portions are filled with a shielding material made of a nonmagnetic material. A torque sensor characterized by comprising:
前記第1の円筒と第2の円筒が互いに同一形状をなしている請求項1に記載のトルクセンサ。The torque sensor according to claim 1, wherein the first cylinder and the second cylinder have the same shape. ステアリングホイールが結合される入力軸と、電動モータに連動する出力軸とを有し、請求項1又は2に記載のトルクセンサの検出トルクにより電動モータを駆動することを特徴とする電動パワーステアリング装置。3. An electric power steering apparatus comprising: an input shaft to which a steering wheel is coupled; and an output shaft interlocked with the electric motor, wherein the electric motor is driven by torque detected by a torque sensor according to claim 1 or 2. .
JP2003165712A 2003-06-10 2003-06-10 Torque sensor and electric power steering device Pending JP2005003459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003165712A JP2005003459A (en) 2003-06-10 2003-06-10 Torque sensor and electric power steering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003165712A JP2005003459A (en) 2003-06-10 2003-06-10 Torque sensor and electric power steering device

Publications (1)

Publication Number Publication Date
JP2005003459A true JP2005003459A (en) 2005-01-06

Family

ID=34092111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003165712A Pending JP2005003459A (en) 2003-06-10 2003-06-10 Torque sensor and electric power steering device

Country Status (1)

Country Link
JP (1) JP2005003459A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120088513A (en) * 2010-10-22 2012-08-08 울트라테크 인크. Systems and methods for forming a time-averaged line image

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120088513A (en) * 2010-10-22 2012-08-08 울트라테크 인크. Systems and methods for forming a time-averaged line image

Similar Documents

Publication Publication Date Title
JP5130097B2 (en) Torque sensor
US8015885B2 (en) Torque detector
CN105270467B (en) Torque sensor and electric power steering device
JP6160214B2 (en) Torque detection device and electric power steering device including the same
JP6327456B2 (en) Torque sensor and electric power steering device
CN108225633B (en) Device for detecting torque values
JP3898610B2 (en) Torque sensor
JP5153490B2 (en) Torque sensor
JP2010122104A (en) Torque detector
US9573621B2 (en) Power steering apparatus for vehicle and method of producing the same
JP2005003459A (en) Torque sensor and electric power steering device
JP2007285793A (en) Magnetostriction-type torque sensor
JP2005003461A (en) Torque sensor and electric power steering apparatus
JP6687560B2 (en) Torque sensor
JP4275998B2 (en) Torque sensor and electric power steering device
JP2011013134A (en) Torque sensor
JP4279605B2 (en) Torque sensor and electric power steering device
JP4883972B2 (en) Torque sensor and electric power steering device
JP2009092463A (en) Torque detection apparatus, its manufacturing method, and electric power steering system
JP4718955B2 (en) Torque sensor and electric power steering device
JP2002090109A (en) Rotating angle detector, torque detector and steering device
JP4833635B2 (en) Torque sensor and electric power steering device
JP2007121162A (en) Torque sensor and electric power steering device
JP4034028B2 (en) Torque sensor
JP7463940B2 (en) Manufacturing method of torque sensor and magnet assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060405

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090310