JP4833448B2 - Plant disease control method - Google Patents

Plant disease control method Download PDF

Info

Publication number
JP4833448B2
JP4833448B2 JP2001217298A JP2001217298A JP4833448B2 JP 4833448 B2 JP4833448 B2 JP 4833448B2 JP 2001217298 A JP2001217298 A JP 2001217298A JP 2001217298 A JP2001217298 A JP 2001217298A JP 4833448 B2 JP4833448 B2 JP 4833448B2
Authority
JP
Japan
Prior art keywords
seeds
disease
plant disease
plant
inducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001217298A
Other languages
Japanese (ja)
Other versions
JP2003034607A (en
Inventor
莞爾 湊
勝美 茂田
雅彦 駒場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takii and Co Ltd
Original Assignee
Takii and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takii and Co Ltd filed Critical Takii and Co Ltd
Priority to JP2001217298A priority Critical patent/JP4833448B2/en
Publication of JP2003034607A publication Critical patent/JP2003034607A/en
Application granted granted Critical
Publication of JP4833448B2 publication Critical patent/JP4833448B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、植物病害の防除に関するものである。
【0002】
【従来の技術】
野菜や草花などの園芸生産に使用する種子は、播種、育苗後に圃場や温室、ビニールハウス内の土壌あるいは水耕栽培用の培地に定植されたり、直接前述の土壌や培地に播種され栽培される。これらの播種される種子が十分な発芽力を持っていたとしても、播種前に病害に感染している場合がある。これらの種子に感染している病害は種子伝染性病害と呼ばれ、病害に感染した採種母本から種子に伝染したものである(農林種子学総論、161-183、中村俊一郎著、養賢堂、1985年;Seed Quality Basic Mechanisms and Agricultural Implications,160-171,Amarjit S.Basra ed.,Food Products Press,1995年;種子伝染性病の生態と防除、大畑寛一等編、社団法人日本植物防疫協会、1999年)。種子伝染性病害に感染した種子を園芸生産に利用すると、これらの病害感染種子から発病するのはいうまでもなく、育苗、栽培期間中に感染源となって本来無病であった苗、植物体にも病害が伝染し、園芸生産上極めて大きな損失となりやすい。また、圃場、温室、ビニールハウスの土壌や施設に病原菌や感染した作物残さが残ると、その後の栽培でも発病が見られることが多い。
【0003】
以上のように園芸作物の種子が発芽し、生育する過程では様々な種子伝染性病害が発病する危険性があるため、実際現場では播種前の種子に熱や殺菌剤などの物理的、化学的な種子処理をしているのが現状である。また、種子の発芽後に土壌伝染性や空気伝染性の植物病害に感染、発病する場合もあることは言うまでもない。
【0004】
上記のような種子に対する消毒処理や殺菌剤処理は、種子伝染性病害の防除に効果があるものの、以下のような欠点を有する。
【0005】
つまり、
・熱や強力な消毒剤の使用は、種子の発芽力に悪影響を及ぼす懸念がある。
【0006】
・熱や強力な消毒剤の使用は、種子表面あるいは内在する病原菌も含めてほとんどの微生物を死滅させるため、播種後の環境条件の中で、種子周囲の微生物相に影響を及ぼすことになり、種子外部からの病原菌の寡占を招きやすい。
【0007】
・種子伝染性病のために処理される殺菌剤は、防除対象となる病原菌が特定されるため、防除対象以外の病害には効果が低い。複数の殺菌剤の混用も実施されているが、近年の環境保全への動きの中で過度な殺菌剤施用は好ましくない。また病原菌に薬剤耐性が生まれる可能性がある。
【0008】
・種子伝染性のウイルス防除に対しては熱や強力な消毒剤が使用されているが、発芽への悪影響が懸念される。
【0009】
・種子病害や発芽直後の苗立枯病の防除には効果があるものの生育後に感染する土壌伝染性病害や空気伝染性病害の防除効果が低い。
【0010】
近年、作物の病害防除法として、環境保全に向けて従来の化学合成殺菌剤による処理とは異なる方法が研究、考案され、その一部として以下の方法が実施されている。
【0011】
(1)バイオコントロールと称して、植物には病原性を持たないが病原菌に拮抗性を持つ有効微生物を作物や栽培培土に施用することで病害防除する方法(特許第2660317号「蛍光性細菌の活性維持法及び保存法並びにこの培養物からなる微生物資材」;特許第2614101号「新規微生物及びそれを用いた植物病害防除方法」;特許第2732905号「ウリ科作物の病害防除微生物および病害防除法」;特許第2939467号「ナス科植物の生育促進効果及び青枯病防除効果を示す細菌並びに栽培方法」;病害防除の新戦略、141-188、駒田旦・稲葉忠興他編、全国農村教育協会、1992年;農業環境を守る微生物技術、家の光協会、1998年;Seed Technology,Vol.20,2,198-208,1998年;微生物農薬、山田昌雄編、全国農村教育協会、2000年;微生物の資材化 研究の最前線、128-139、鈴井孝仁等編、ソフトサイエンス社、2000年)。
【0012】
(2)全身獲得抵抗性(SAR;systemic acquired resistance)誘導と称して、植物本来の耐病性を非病原性の微生物や外生の物質で誘導する方法。ここで、全身獲得抵抗性とは、植物体の一部にストレスが与えられたときに、そのストレスに対する新たな抵抗性が全身に誘導させる現象をいい、植物の自己防御機構の1つである。そして、これらの全身獲得抵抗性を誘導する物質自体には病原菌に対する殺菌効果はないことが知られている(特許第2964144号「病気に対して植物体を免疫性にするための方法及び組成物」;特開平10−236909号;特開平11−29412号「ファイトアレキシン誘導剤」;特開2000−95609号;Horticultural reviews,Jules Janick ed.,John Wiley & Sons, Inc.,247-271,1997年;Induced Resistance to Disease in Plants,Raymond Hammerschmidt, Joseph Kuc ed.,Kluwer Academic Publishers,1995年)。
【0013】
上記(1)のバイオコントロールは、従来の植物病害防除法に比べて、もともと自然界に生息している微生物を利用しているため環境保全に有効である。また、有効微生物の拮抗性は特異的なものであること、有効微生物の菌株によっては免疫作用により植物に誘導抵抗性をもたらすことが知られている。これらの病害防除に利用される有効微生物は化学合成農薬とは違い、自らが増殖するので防除効果を長続きさせることができる。
【0014】
作物収穫を目的とした農園芸生産における上記有効微生物の利用技術は、広く知られている(特開平5−51305号;特開平6−253827号;特開平7−25716号;特開平7−75562号;特開平9−224655号;特開平10−203917号;特開平11−4606号;特開平11−253151号;米国特許第4886512号;Annual Review of Phytopathology 31,53-80,Cook,R.J.,1993年;HortTechnology,2(3),345-349,M.B.Bennett,V.A.Fritz,N.W.Callan,1992年)。
【0015】
また、上記(2)の植物の全身獲得抵抗性誘導では、防除対象となる病害の範囲が広く、生育した植物のウイルス感染に対しても防除できる可能性が高く、全身獲得抵抗性の誘導活性を高めた化学合成農薬の実用化も始められている。
【0016】
しかしながら、植物病害防除に上記(1)、(2)の方法を利用しようとした場合には、以下のような問題がある。
【0017】
(1)のバイオコントロールは、微生物間の相互作用を利用したものであるので、合成農薬のように劇的に植物病害を抑制しにくい。また、生きた微生物を利用しているだけに有効微生物の生存可否が重要であることは自明であるが、種子処理した場合、播種に供される種子の播種前の貯蔵、保管条件が有効微生物の生存条件と大きく異なる場合が多く、有効微生物の処理後に種子を貯蔵、保管した場合、有効微生物の生存率が低下しやすい。そのため、有効微生物を種子処理し、植物病害防除の目的で利用する場合、該微生物を処理した種子の保管にあたっては、湿度や温度等、従来の種子に比べて特別な取り扱いが必要で、貯蔵、保管期間も限定されるものと考えられている。
【0018】
また、有効微生物自体に植物への免疫誘導力がある場合は、病原菌拮抗性によるよりも広範囲の植物病害防除に有効である可能性は高いが、先に述べた理由で有効微生物を処理した種子を長期間貯蔵、保管した後には有効微生物の生存率が低下し、期待した効果が得られないことになる。
【0019】
さらに、有効微生物と従来の合成殺菌剤を併用する方法では、殺菌剤が有効微生物の生存率、活性を低下させるばかりではなく、もともとのバイオコントロール本来の目的が果たせないことになる。
【0020】
(2)の全身獲得抵抗性を誘導する物質を利用する方法では、専用に化学合成され、高度に全身獲得抵抗性誘導の活性を持つ農薬や物質(今月の農薬、1999年、6月号、33-42)を種子処理し、植物病害防除に使用しようとした場合、すでに生長した植物体への茎葉散布施用とは異なり、植物組織としては未熟な幼根、子葉等に作用するために、発芽や初期生育に悪影響を及ぼす懸念がある。
【0021】
また、特開平6−239880号、特開平10−236909号、特開平11−29412号等には、全身獲得抵抗性誘導物質を使用し植物病害を防除する技術が開示され、特許第2717097号(植物を病気から保護するための組成物)、特開平3−133304号、特開平5−331016号、特開2000−95609号(植物病害の予防用組成およびその使用方法)、特開平8−104602号(植物の生体防御増強剤)、特開平5−331016号(ファイトアレキシンの誘導剤)等には、全身獲得抵抗性誘導物質で種子を処理し、植物病害を防除しようとする技術は開示されているが、全身獲得抵抗性誘導物質と前述の有効微生物を組み合わせて相乗的に植物病害を防除しようとする技術はなかった。
【0022】
以上のように環境保全に留意し、従来の化学合成された殺菌剤処理とは異なる方法で種子を処理し、播種前に貯蔵、保管した場合でも安定して植物病害防除効果を長く持続するような有効な方法がないのが実情である。
【0023】
【発明が解決しようとする課題】
本発明は、環境保全上有効で、防除効果が長続きし、しかも、防除対象となる病害の範囲が広い植物病害の防除方法を提供するものであり、より好ましい態様として、播種前に種子を保存する場合でも安定して病害防除効果を持続するような取り扱い性に優れた植物病害の防除方法を提供するものである。
【0024】
【課題を解決するための手段】
本発明者等は、上記の点に鑑みて環境保全上有効な植物病害の防除方法を鋭意検討した結果、植物病害をもたらす病原菌に対して拮抗作用を持つ有効微生物、とりわけ種子から分離した有効微生物と、植物の全身獲得抵抗性を誘導する物質とを組み合わせて、種子処理することにより、所望の効果が得られることを見い出し、本発明に至った。
【0025】
すなわち、本発明の植物病害防除方法は、植物病害の病原体に対し拮抗性を持つ少なくとも一種類の有効微生物と、植物の全身獲得抵抗性を誘導する少なくとも一種類の誘導物質とで、種子を処理するものであって、
(1)前記有効微生物が、バチルス属(Bacillus sp.)3K−11株(受託番号FERM P−17874)であり、前記誘導物質が、アミノ酪酸、メチオニン、エリスリトールおよびジャスモン酸よりなる群から選択された少なくとも1種の誘導物質であること、又は、
(2)前記有効微生物が、レクレルシア アデカルボキシラータ(Leclercia adecarboxylata)TK−151株(受託番号FERM BP−7617)およびパントエア属(Pantoea sp.)TK−185株(受託番号FERM BP−7618)よりなる群から選択された少なくとも1種であり、前記誘導物質が、サッカリンおよびシリカゲルよりなる群から選択された少なくとも1種の誘導物質であること
を特徴とする。
【0026】
【発明の実施の形態】
以下、本発明の実施に関連する事項について詳細に説明する。
【0027】
本発明で使用できる有効微生物、園芸作物の植物病害をもたらす病原体に対して拮抗性を持っているものであり、具体的には、バチルス属(Bacillus sp.)3K−11株、レクレルシア アデカルボキシラータ(Leclercia adecarboxylata)TK−151株、パントエア属(Pantoea sp.)TK−185株が用いられる。特に好ましくは、採種された野菜や草花などの種子から分離、即ちスクリーニングした有効微生物を使用することである。これらの有効微生物は、野菜や草花の栽培あるいは採種条件の中で増殖してきたものと考えられる。採種後に通常の条件で保存しておいた種子から分離した有効微生物は、播種を目的とする種子の通常の貯蔵、保管条件で長期間貯蔵、保管した後でも生存できる可能性が高く、また、発芽後の栽培環境下でも生存、増殖する可能性が高いことから、好ましい。
【0028】
本発明ではまた、2種以上の複数の有効微生物を使用することも、有効微生物の病原菌に対する拮抗性を低下させない限り可能である。
【0029】
特定の植物病害に対して拮抗性を持つ有効微生物は以下のようにして得ることが出きる。すなわち、種子や土壌などから単一に分離された糸状菌および細菌(以下、候補菌という。)を、防除の対象とする植物病害の病原菌と同一の培地上にて対峙もしくは交差するように塗抹し、病原菌の生育適温下にて数日間培養する(対峙培養)。培養後、双方の生育を観察して、病原菌の生育が候補菌によって明らかに抑制されているものを、拮抗性を持つ有効微生物として選択する(植物病原性微生物研究法、459−474、脇本哲監修、ソフトサイエンス社、1993年)。
【0030】
例えば、本出願人は、特願2000−172313号(無病種子の生産方法)、特願2000−187893号(種子病害防除方法)において種子から採取した有効微生物が植物病害防除に有効であることを開示しているが、これらの有効微生物は、元々通常の貯蔵、保管条件で長期間貯蔵、保管されていた種子から採取されているため、播種に供される種子の通常の貯蔵、保管条件で長期間、生存でき、植物病害に対する拮抗性を維持できるものである。
【0031】
本発明で使用できる全身獲得抵抗性誘導物質としては、種子に処理することにより植物の全身獲得抵抗性を誘導できるものであり、好ましくは、上記の有効微生物の病原菌に対する拮抗性を低下させず、種子の発芽や初期生育に悪影響、つまり発芽速度や発芽率の低下、初期生育の減退を招かない全身獲得抵抗性誘導物質を使用することである。このような全身獲得抵抗性誘導物質としては、アミノ酪酸、含硫アミノ酸、ケイ素エリスリトールサッカリン、ジャスモン酸挙げられる。アミノ酪酸としてはα−アミノ酪酸、γ−アミノ酪酸等が挙げられ、含硫アミノ酸としてはメチオニンが用いられる。ケイ素としてはシリカゲルが用いられる(特開平10−114588号「肥料及びその使用方法」;特開平11−314986号「肥料及びその使用方法」)サッカリンには、サッカリンナトリウム等のサッカリンアルカリ金属塩も含まれる。ジャスモン酸には、ジャスモン酸メチルの他、フェニルアラニン結合型ジャスモン酸、ロイシン結合型ジャスモン酸、イソロイシン結合型ジャスモン酸等のアミノ酸結合型ジャスモン酸も含まれる。
【0032】
上記の全身獲得抵抗性誘導物質の処理量は、使用する物質の種類、対象とする種子の種類、処理方法等により異なり一概には言えないが、予め処理試験をすることで容易に決定できる。また、2種以上の全身獲得抵抗性誘導物質を使用することも、本発明の効果を妨げない限り可能である。
【0033】
次に、本発明における有効微生物と全身獲得抵抗性誘導物質の種子への処理方法であるが、種子表面に有効微生物と全身獲得抵抗性誘導物質の両方を付着させるか、種子内部に吸収させるなど、何らかの方法で播種前に種子へ処理できれば良い。
【0034】
該処理方法としては、例えば、(1) 水溶液への浸漬、(2) フィルムコーティング、(3) ペレット造粒、(4) プライミング処理などが挙げられる。これらの処理方法は、種子への悪影響が認められない限り、適宜に組み合わせても、あるいは複数回処理してもよい。より具体的には、上記方法(1)では、有効微生物と全身獲得抵抗性誘導物質を混合した水溶液に種子を浸漬すればよい。上記(2)の方法では、公知の方法(特許第2520309号)で種子をペレット加工する際に、タルク等の造粒材中に目的とする有効微生物と全身獲得抵抗性誘導物質を混合してもよく、あるいはまた、予め有効微生物の培養液へ種子を浸漬した後、全身獲得抵抗性誘導物質の溶液を使用して造粒してもよい。上記(3)の方法では、公知の方法(特開平11−146707号)でフィルムコーティングする際にコーティング液中に有効微生物と全身獲得抵抗性誘導物質を混合すればよい。上記(4)の方法では、公知の方法(特開平9−220002号)で発芽改善処理(プライミング処理)をする際に、有効微生物を含んだ水溶液を使用して、該水溶液を吸収させた担体に種子を接触させて吸水処理を行うと、該吸水処理中に有効微生物が増殖して種子の表面や内部に良く付着するので、該吸水処理の終了後に、種子に全身獲得抵抗性誘導物質を処理すればよい。
【0035】
なお、本発明の植物病害防除方法においては、本発明の効果を妨げない範囲で、殺菌剤、殺虫剤、植物生育調節剤等の農薬、肥料を併用してもよい。
【0036】
本発明が利用できる園芸作物は、特に限定されないが、例えばタマネギ、ネギ等のユリ科作物、ニンジン、セルリー、ミツバ等のセリ科作物、キャベツ、ブロッコリ、ハクサイ、ダイコン、カブ等のアブラナ科作物、レタス、サラダナ、シュンギク、ゴボウ等のキク科作物、ホウレンソウ、フダンソウ、テンサイ等のアカザ科作物、トマト、ナス、ピーマン、トウガラシ、トルバム、アカナス、タバコ等のナス科作物、キュウリ、メロン、スイカ、カボチャ、カンピョウ等のウリ科作物、スィートコーン等のイネ科作物、エンドウ、ソラマメ、インゲン、ダイズ等のマメ科作物等の食用園芸作物およびパンジー、ペチュニア、アフリカホウセンカ、ユーストマ、ナデシコ、ハボタン、ストック、プリムラ、ヒマワリ、ジニア、マリーゴールド、アスター、キンギョソウ、シクラメン、バーベナ等の草花類の種子をあげることができる。
【0037】
本発明で防除できる植物病害は特に限定されないが、例えばキャベツの黒斑病(Alternaria brassicae)、黒すす病(Alternaria brassicicola)、べと病(Peronospora brassicae)、黒斑細菌病(Pseudomonas syringae p.v. maculicola)、黒腐病(Xanthomonas campestris p.v. campestris)、根朽病(Phoma lingam)やダイコンの黒斑病(Alternaria japonica, Alternaria brassicae)、萎黄病(Fusarium oxysporum f.sp.raphani)、黒腐病(Xanthomonas campestris p.v. campestris)、ハクサイの黒斑病(Alternaria brassicae)、黒腐病(Xanthomonas campestris p.v. campestris)、黄化病(Verticillium dahliae)、ニンジンの黒葉枯病(Alternaria dauci)、黒斑病(Alternaria radicina)、斑点細菌病(Xanthomonas campestris p.v.carotae)、セルリーの葉枯病(Septoria apii)、菌核病(Sclerotinia sclerotiorum)、葉枯細菌病(Pseudomonas syringae p.v. apii)、タマネギの黒斑病(Alternaria porri)、灰色腐敗病(Botrytis allii)、菌糸性腐敗病(Botrytis byssoidea)、乾腐病(Fusarium oxysporum f.sp.cepae)、べと病(Peronospora destructor)、ホウレンソウのべと病(Peronospora farinosa)、萎凋病(Fusarium oxysporum f.sp.spinaciae)、炭そ病(Colletotrichum dematium)、トマトの輪紋病(Alternaria solani)、かいよう病(Clavibacter michiganensis subsp. michiganensis)、斑点細菌病(Xanthomonas campestris p.v.vesicatoria)、ナスの褐斑病(Alternaria solani)、褐紋病(Phomopsis vexans)、キュウリの黒斑病(Alternaria cucumerina)、斑点細菌病(Pseudomonas syringae p.v.lachrymans)、褐斑細菌病(Xanthomonas campestris p.v.cucurbitae)や、草花類では例えばジニアの黒斑病(Alternaria znniae)、斑点細菌病((Xanthomonas campestris p.v. znniae)、ヒマワリの菌核病(Sclerotinia sclerotiorum)、黒斑病(Alternaria helianti)やハボタンの黒腐病(Xanthomonas campestris p.v. campestris)等の種子伝染性病害があげられる。さらに、苗立枯病(Rhizoctoria属菌、Pythuium属菌)、萎凋病(Fusarium属菌、Verticillium属菌)、立枯病(Gaeumannomyces属菌)、アブラナ科野菜根こぶ病(Plasmodiphora brassicae)、べと病(Pernospora属菌)、疫病(Phytophthora属菌)、青枯病(Pseudomonas solanacearum)、軟腐病(Erwinia carotovora)、根頭がんしゅ病(Agrobacterium tumefaciens)、白紋羽病(Rosellinia necatrix)、白絹病(Sclerotiumrolfsi)、立枯病(Aphanomyces)等やSphaerotheca属菌、Erysiphe属菌、Uncinula属菌、Phyllactinia属菌、Podosphaera属菌、うどんこ病(Microsphaera属菌)、灰色カビ病(Botrytis属菌)、炭そ病菌(Colletotrichhum属菌)、つる割病(Fusarium属菌)、各種ウィルスによるモザイク病等の植物病害も本発明による植物病害防除の対象にあげられる。
【0038】
【実施例】
以下に実施例をあげて本発明をより具体的に説明するが、本発明はこれによって限定されるものではない。
【0039】
〔有効微生物のスクリーニング〕
実施例で使用した有効微生物は、本出願人による特願2000−172313号及び特願2000−187893号に記載したとおり、以下のようにしてスクリーニングされた。
【0040】
(1)バチルス属細菌3K−11
ニンジン黒斑病菌(Alternaria radicina)及び黒葉枯病菌(Alternaria dauci)に汚染されたニンジン種子(向陽二号、タキイ種苗株式会社製)を、細菌用培地(キングB培地)と糸状菌用培地(モルツアガー培地)上に並べて、アルタナリヤ属菌の発育適温(25.0℃)に保った。すると、ほとんどの種子からアルタナリヤ属菌が両培地に発生したが、中にはアルタナリヤ属菌が発生せず、細菌または糸状菌が発生した種子が特にキングB培地において低率ながら見られた。これらの発生した菌からアルタナリヤ属菌に拮抗性のある菌をスクリーニングした。すなわち、病原性アルタナリヤ属菌(ニンジン黒斑病菌、黒葉枯病菌)をそれぞれ7〜10日間25℃でモルツアガー培地に平板培養した。発育した菌そうの一部をコルクボーラーで一定量採取し、モルツアガー平板培地の中心部に置き、25℃で2日間培養した後、検定する細菌をアルタナリヤ属菌の菌そうから約3cm離して画線培養した。さらに25℃で7〜10日間培養した後、画線培養した細菌により、アルタナリヤ属菌の生育阻害帯が明確に形成された場合、その細菌を拮抗性細菌と判定した。分離細菌中に占める拮抗性細菌の比率は12%であった。
【0041】
得られた拮抗性細菌は3K−11を含む6菌株であった。3K−11株は、下記表1に示す分類学的性状よりバチルス属細菌(Bacillus sp.)と同定され、受託番号FERM P−17874にて独立行政法人産業技術総合研究所 特許生物寄託センターに寄託されている。
【0042】
【表1】

Figure 0004833448
(2)レクレルシア属細菌TK−151,パントエア属細菌TK−185
キャベツ種子(一号、早秋、春ひかり七号、若峰、ウィナーおよび1488、いずれもタキイ種苗株式会社製)、ブロッコリ種子(アンフリー747およびドシコ、ともにタキイ種苗株式会社製)、カリフラワー種子(バイオレットクィーンおよびスノーミスティーク、ともにタキイ種苗株式会社製)、ハクサイ種子(耐病六十日、ともにタキイ種苗株式会社製)、ダイコン種子(耐病総太り、タキイ種苗株式会社製)およびカブ種子(スワンおよび耐病ひかり、ともにタキイ種苗株式会社製)をそれぞれ種子重量当り2.5倍量の生理食塩水(蒸留水にNaClを0.85重量%溶解)中で2.5時間振盪した。振盪後の溶液をアルブミン寒天培地に均一に塗抹した。塗抹後約6日後に、出現したコロニーを単分離して各々ポテト・デキストロース・ブロス寒天培地(Difco社製)上にて黒腐病菌(Xanthomonas campestris p.v. campestris)と交差するように塗抹し、25℃で培養した。培養3日後に黒腐病菌の生育を抑制しているものを拮抗性細菌として選抜した。
【0043】
その結果、TK−151とTK−185を含む3菌株が得られた。下記表2に示す分類学的性状より、TK−151株はレクレルシア アデカルボキシラータ(Leclercia adecarboxylata)と同定され、受託番号FERM BP−7617にて独立行政法人産業技術総合研究所 特許生物寄託センターに寄託されている。また、TK−185株はパントエア属細菌(Pantoea sp.)と同定され、受託番号FERM BP−7618にて同特許生物寄託センターに寄託されている。
【0044】
【表2】
Figure 0004833448
〔試験1:キャベツ黒腐病に対する拮抗菌TK−151、TK−185とサッカリンナトリウム、シリカゲル処理の効果〕
(1)試験概要
有効微生物としてアブラナ科黒腐病菌に拮抗性を持つTK−151及びTK−185を使用し、全身獲得抵抗性誘導物質としてサッカリンナトリウム及びシリカゲルを使用した。黒腐病菌に汚染されているキャベツ種子(品種:サボイエース、タキイ種苗株式会社製)に対し、表3に記載した試験区で処理を行った。処理は、有効微生物と全身獲得抵抗性誘導物質とを含むコーティング液を作製し、種子へフィルムコーティングすることにより行った。また、比較例として、有効微生物のみを含むコーティング液、全身獲得抵抗性誘導物質のみを含むコーティング液、有効微生物と全身獲得抵抗性誘導物質のいずれも含まないコーティング液についても、同様にコーティング処理を行った。
【0045】
(2)コーティング種子の作製
コーティング液に使用する菌液として、有効微生物TK−151、TK−185をYPG培地で24時間培養し、菌濃度を約2.0×10cfu/mlに調整した。また、TK−151とTK−185の併用処理の場合には、作製した菌液を等量ずつ混合して使用した。全身獲得抵抗性誘導物質の水溶液として、シリカゲル(商品名:イネルギー、富士シリシア社製)の飽和水溶液と、サッカリンナトリウム(和光純薬製)の0.1重量%水溶液を使用した。また、シリカゲルとサッカリンナトリウムの併用処理の場合には、シリカゲル溶液にサッカリンナトリウムを溶解させて使用した。
【0046】
上記の菌液と全身獲得抵抗性誘導物質の水溶液を等量混合した後に、特開平11−146707号に開示されている所定量のメチルセルロースと酸化チタンを混合してコーティング液を作製した。そして、作製したコーティング液を常法にしたがって、上記の黒腐病菌に汚染されているキャベツ種子にコーティング処理した。
【0047】
(3)発芽、発病調査
コーティングした各試験区の種子を深底シャーレに入れた滅菌土壌に播種し、約25℃で発芽させて、発芽率及び播種後14日目に黒腐病の発病率、発病度を調査した。試験区当たりの播種種子数は25粒/シャーレとし、1区当り5シャーレ(150粒/区)で行った。発芽率は国際種子検査規定に準じて調査し、発病率は黒腐病が発生した個体の全発芽個体数に対する割合、発病度は発病個体の発病程度(0:無発病、1:葉脈が褐変化、2:葉面積の約10%以下が黄化、3:葉面積の約10〜50%が黄化、4:葉面積の約50%以上が黄化または枯死)の試験区内の平均値である。以上の調査結果を表4に示す。
【0048】
また、作製したコーティング種子を防湿製の種子袋に密封し、25℃の恒温室内で4ケ月間貯蔵し、貯蔵後に前述の発芽、発病調査を行った。その結果を表4に示す。
【0049】
【表3】
Figure 0004833448
【表4】
Figure 0004833448
表4から明らかなように、本発明による実施例1−1〜1−9は、比較例に比べて、発病率、発病度とも低く、植物病害防除効果が高く、貯蔵後も該防除効果は維持された。
【0050】
〔試験2:ニンジン黒斑病に対する拮抗菌3K−11とメチオニン及びエリスリトール処理の効果〕
(1)試験概要
有効微生物としてニンジン黒斑病菌に拮抗性を持つ3K−11を使用し、全身獲得抵抗性誘導物質としてメチオニン、エリスリトールを使用した。ニンジン黒斑病に汚染されているニンジン種子(品種:向陽二号、タキイ種苗株式会社製)に対し、有効微生物と全身獲得抵抗性誘導物質を用いて、表5に記載した試験区でペレット加工を行った。
【0051】
(2)ペレット種子の作製
有効微生物3K−11をV8ジュース培地(野菜のジュース培地)で振とう培養し、菌濃度1〜2×10cfu/mlに調整した菌液に、上記のニンジン黒斑病に汚染されているニンジン種子を2時間浸漬した後、通風乾燥した。つぎに公知の方法(特許第2520309号)でペレット加工する際に使用する水にメチオニン(ナカライテスク社製)0.1重量%またはエリスリトール(商品名:パルスィート、味の素株式会社製)0.1重量%を溶解させて、ペレット種子を作製した。メチオニンとエリスリトールの併用処理の場合には、混合水溶液を作製したが、その濃度は両物質とも0.1重量%にした。比較例として、菌液と全身獲得抵抗性誘導物質を使用していないペレット種子、菌液浸漬のみで全身獲得抵抗性誘導物質を使用していないペレット種子、及び、全身獲得抵抗性誘導物質のみで菌液を使用していないペレット種子を作製した。
【0052】
(3)発芽、発病調査
作製したペレット種子を滅菌した培土を充填した育苗トレイ(200穴)に播種し(200種子/試験区、1種子/穴)、20℃で発芽させ、発芽率、立枯率、健全株率を調査した。発芽率は国際種子検査規定に準じて調査し、立枯率は発芽後に黒斑病で立枯れた個体の全発芽個体中の割合、健全株率は播種した種子に対する健全に生育した株数の割合であり、その調査結果を表6に示す。
【0053】
また、作製したペレット種子をポリエチレン製の種子容器に入れ、約20℃の恒温室内で貯蔵し、6ケ月後に前述と同様な発芽、発病調査を行った。その結果を表6に示す。
【0054】
【表5】
Figure 0004833448
【表6】
Figure 0004833448
表6から明らかなように、本発明による実施例2−1〜2−3は、比較例に比べて発芽後の立枯率が低く、また健全株率は高く、植物病害防除効果が顕著であり、処理種子を貯蔵した後も該効果は維持された。
【0055】
〔試験3:ハクサイ根こぶ病に対する有効微生物3K−11とジャスモン酸及びγ−アミノ酪酸処理の効果〕
(1)種子の処理
有効微生物3K−11をV8ジュース培地(野菜のジュース培地)で振とう培養し、菌濃度1〜2×10cfu/mlに調整した菌液と、全身獲得抵抗性物質としてジャスモン酸(シグマアルドリッチジャパン株式会社製)0.01ppm及びγ−アミノ酪酸(ナカライテスク株式会社製)0.1%の水溶液を使用して、公知の方法(特開平11−146707号)にしたがって、表7に記載する試験区でコーティング液を作製し、ハクサイ種子(品種:無双、タキイ種苗株式会社製)へコーティング処理した。各試験区の種子量は約1000種子/区である。
【0056】
(2)育苗、汚染土壌への移植
育苗トレイ(200穴)7枚に育苗培土(商品名:たねまき培土、タキイ種苗株式会社製)を充填し、各試験区のコーティング種子及び無処理種子を一育苗トレイ/一試験区で播種した後、慣行の育苗方法で本葉4枚まで育苗した。本葉4枚の段階では試験区の間で苗生育に差異は見られなかった。
【0057】
次に該ハクサイ苗を試験区ごとに20株ずつアブラナ科根こぶ病菌で汚染させた土壌を入れた温室内のプランターに移植した。プランターに移植40日後、各試験区ごとにハクサイ植物体10株を土壌から抜き取り、水洗して根部の根こぶ病発生状態を観察、調査した。結果を表8に示す。またコーティング処理した種子を試験区ごとに防湿性の種子袋に密封し、約20℃で3ヶ月間貯蔵した後、前述と同様に根こぶ病発生状態調査を行った、その結果を表9に示す。
【0058】
発病状態は、発病指数0〜4(0:無発病、1:側根に少量のこぶ、2:側根に大こぶ、3:根鉢内主根にこぶ、4:根鉢内主根に大こぶ又は枯死)の5段階で評価した。表8、9には、観察した10株の発病指数の分布とその平均値を示している。また、発病率は、観察した10個体中で発病の見られた(発病指数1以上の)個体の比率であり、重発病率は、観察した10個体中で発病指数3又は4の個体の比率である。
【0059】
【表7】
Figure 0004833448
【表8】
Figure 0004833448
【表9】
Figure 0004833448
表8、9に示すように、本発明による実施例3−1〜3−3は、比較例に比べ、根こぶの発病を明らかに抑制し、土壌伝染性植物病害であるアブラナ科根こぶ病を防除できた。また、処理種子を貯蔵後も該防除効果を維持できた。
【0060】
【発明の効果】
以上説明したように本発明によれば、環境保全上有効であり、また、病害の防除効果が長続きし、かつ、防除対象となる病害の範囲が広い、植物病害防除効果に優れる種子を得ることができる。また、有効微生物として種子から分離したものを用いることにより、播種に供される種子の通常の貯蔵、保管条件で長期間にわたり、植物病害に対する防除効果を維持することができる種子を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to control of plant diseases.
[0002]
[Prior art]
Seeds used for horticultural production such as vegetables and flowers are planted in the soil in the field, greenhouse, greenhouse, or hydroponics after sowing and raising seedlings, or are sown and cultivated directly on the soil or medium described above. . Even if these seeds to be sown have sufficient germination ability, they may be infected with a disease before sowing. Diseases that infect these seeds are called seed infectious diseases, and are transmitted to seeds from seeded mothers infected with diseases (Agricultural and Forestry Seed Science, 161-183, written by Shunichiro Nakamura, Yokendo) 1985; Seed Quality Basic Mechanisms and Agricultural Implications, 160-171, Amarjit S. Basra ed., Food Products Press, 1995; 1999). When seeds infected with seed infectious diseases are used for horticultural production, it goes without saying that these disease-infected seeds cause disease, and seedlings and plants that were originally disease-free during breeding and cultivation periods In addition, diseases are transmitted and the loss of horticultural production tends to be extremely large. In addition, if pathogenic bacteria or infected crop residues remain in the soil or facilities of farms, greenhouses, or greenhouses, disease often occurs in subsequent cultivation.
[0003]
As mentioned above, since seeds of horticultural crops germinate and grow, there is a risk that various seed infectious diseases will develop, so in the field the physical and chemicals such as heat and fungicide are applied to the seeds before sowing. The current situation is that the seeds are processed properly. Moreover, it goes without saying that after seed germination, the plant may be infected or infected with soil-borne or airborne plant diseases.
[0004]
Although the above-mentioned disinfection treatment and disinfectant treatment for seeds are effective in controlling seed infectious diseases, they have the following drawbacks.
[0005]
That means
・ The use of heat and strong disinfectants may adversely affect seed germination.
[0006]
・ The use of heat and powerful disinfectants kills most microorganisms, including the seed surface and the underlying pathogens, and thus affects the microflora around the seeds in the environmental conditions after sowing. It is easy to invite oligopolistic pathogens from outside the seeds.
[0007]
-The fungicides treated for seed infectious diseases are less effective for diseases other than the control target because the pathogens to be controlled are specified. Although a plurality of bactericides are mixed, excessive bactericidal application is not preferable in the recent movement toward environmental conservation. In addition, drug resistance may be born to pathogenic bacteria.
[0008]
-Heat and powerful disinfectants are used to control seed-borne viruses, but there are concerns about adverse effects on germination.
[0009]
・ Although it is effective in controlling seed diseases and seedling blight immediately after germination, it is less effective in controlling soil-borne and air-borne diseases that are infected after growth.
[0010]
In recent years, methods for controlling diseases of crops have been studied and devised for the purpose of environmental conservation, which are different from conventional chemical synthetic fungicides, and the following methods have been implemented as part of them.
[0011]
(1) A method for controlling diseases by applying effective microorganisms that are not pathogenic to plants but have antagonistic properties against pathogenic bacteria to crops and cultivation soils (refer to Patent No. 2660317 “Fluorescent bacteria Patent No. 2614101 “New microorganisms and plant disease control method using the same”; Patent No. 2732905 “Disease control microorganisms and disease control method of cucurbitaceae crops” Patent No. 2939467 “Bacteria and cultivation method showing growth promotion effect and bacterial wilt control effect of solanaceous plants”; New strategy for disease control, 141-188, Dan Komada, Tadaoki Inaba et al., National Rural Education Association 1992; Microbial technology to protect the agricultural environment, House of Light Association, 1998; Seed Technology, Vol. 20, 2, 198-208, 1998; Microbial pesticide, edited by Masao Yamada, National Rural Education Association, 2000; Organisms forefront of materials studies, 128-139, Suzui Takahito, etc., ed., Soft Science, Inc., 2000).
[0012]
(2) A method of inducing the disease resistance inherent in plants with non-pathogenic microorganisms or exogenous substances, referred to as systemic acquired resistance (SAR) induction. Here, whole body acquired resistance refers to a phenomenon in which when a part of a plant body is stressed, a new resistance to the stress induces the whole body, and is one of the self-defense mechanisms of plants. . And it is known that these substances that induce systemic acquired resistance itself have no bactericidal effect against pathogenic bacteria (Patent No. 2964144, “Method and composition for immunizing plants against diseases”) JP-A-10-236909; JP-A-11-29412 “Phytoalexin inducer”; JP-A 2000-95609; Horticultural reviews, Jules Janick ed., John Wiley & Sons, Inc., 247-271, 1997; Induced Resistance to Disease in Plants, Raymond Hammerschmidt, Joseph Kuc ed., Kluwer Academic Publishers, 1995).
[0013]
The biocontrol (1) is more effective for environmental conservation because it uses microorganisms that originally live in nature compared to conventional plant disease control methods. In addition, it is known that the antagonism of effective microorganisms is specific, and depending on the strain of effective microorganisms, induced resistance is brought to plants by immunity. The effective microorganisms used for controlling these diseases, unlike chemically synthesized pesticides, can proliferate themselves so that the control effect can be continued.
[0014]
Techniques for utilizing the above-mentioned effective microorganisms in agricultural and horticultural production for crop harvesting are widely known (Japanese Patent Laid-Open No. 5-51305; Japanese Patent Laid-Open No. 6-253827; Japanese Patent Laid-Open No. 7-25716; Japanese Patent Laid-Open No. 7-75562). JP-A-9-224655; JP-A-10-203717; JP-A-11-4606; JP-A-11-253151; US Pat. No. 4,886,512; Annual Review of Phytopathology 31, 53-80, Cook, RJ, 1993; HortTechnology, 2 (3), 345-349, MBBennett, VAFritz, NW Callan, 1992).
[0015]
In addition, in the above-mentioned (2) induction of whole body acquired resistance of a plant, the range of diseases to be controlled is wide, and it is highly possible to control against virus infection of a grown plant. Practical use of chemically synthesized pesticides with improved levels has been started.
[0016]
However, when trying to use the methods (1) and (2) for controlling plant diseases, there are the following problems.
[0017]
Since the biocontrol (1) uses the interaction between microorganisms, it is difficult to dramatically suppress plant diseases like synthetic agricultural chemicals. In addition, it is obvious that the viability of effective microorganisms is important just by using living microorganisms, but when seeds are treated, the storage and storage conditions before sowing of seeds to be sown are effective microorganisms. In many cases, when the seeds are stored and stored after the treatment of the effective microorganisms, the survival rate of the effective microorganisms tends to decrease. Therefore, when effective microorganisms are treated with seeds and used for the purpose of controlling plant diseases, storage of the seeds treated with the microorganisms requires special handling, such as humidity and temperature, compared to conventional seeds, storage, The storage period is also considered to be limited.
[0018]
In addition, if the effective microorganism itself has the ability to induce immunity to plants, it is more likely to be effective in controlling a wide range of plant diseases than by pathogen antagonism, but seeds treated with the effective microorganism for the reasons described above. After long-term storage and storage, the survival rate of effective microorganisms decreases, and the expected effect cannot be obtained.
[0019]
Furthermore, in the method using an effective microorganism and a conventional synthetic fungicide in combination, the fungicide not only lowers the survival rate and activity of the effective microorganism but also fails to achieve the original purpose of the original biocontrol.
[0020]
In the method (2) using a substance that induces systemic acquired resistance, a pesticide or substance that is chemically synthesized and has a high activity of inducing systemic acquired resistance (Agricultural Chemicals of this Month, June 1999, When seeds are treated and used for plant disease control, unlike the application of foliage spraying to already grown plants, the plant tissue acts on immature radicles, cotyledons, etc. There are concerns about adverse effects on germination and early growth.
[0021]
JP-A-6-239880, JP-A-10-236909, JP-A-11-29412, etc. disclose a technique for controlling plant diseases using a systemic acquired resistance inducer, and Japanese Patent No. 2717097 ( Compositions for protecting plants from diseases), JP-A-3-133304, JP-A-5-331016, JP-A-2000-95609 (compositions for preventing plant diseases and methods of use thereof), JP-A-8-104602 No. (plant biological defense enhancer), JP-A-5-331016 (phytoalexin inducer), etc. disclose a technique for treating a plant disease with a systemic acquired resistance inducer to control plant diseases. However, there has been no technology for synergistically controlling plant diseases by combining a systemic acquired resistance inducer and the above-mentioned effective microorganisms.
[0022]
As mentioned above, paying attention to environmental conservation, seeds are treated by a method different from conventional chemically synthesized fungicide treatments, so that the plant disease control effect can be sustained stably even when stored and stored before sowing. The fact is that there is no effective method.
[0023]
[Problems to be solved by the invention]
The present invention provides a method for controlling plant diseases that are effective in environmental conservation, have a long-lasting control effect, and have a wide range of diseases to be controlled. In a more preferred embodiment, seeds are stored before sowing. Therefore, the present invention provides a method for controlling plant diseases having excellent handling properties so that the disease control effect can be stably maintained even in the case where the plant disease is to be performed.
[0024]
[Means for Solving the Problems]
In light of the above points, the present inventors have intensively studied a method for controlling plant diseases effective for environmental conservation, and as a result, effective microorganisms having an antagonistic action against pathogenic bacteria that cause plant diseases, particularly effective microorganisms isolated from seeds. It was found that a desired effect can be obtained by combining seeds with a substance that induces systemic acquired resistance of the plant and treating the seeds.
[0025]
  That is, the plant disease control method of the present invention treats seeds with at least one effective microorganism having antagonistic properties against a plant disease pathogen and at least one inducer that induces systemic acquired resistance of the plant. To doWhat
(1) The effective microorganism is Bacillus sp. 3K-11 strain (Accession No. FERM P-17874), and the inducer is selected from the group consisting of aminobutyric acid, methionine, erythritol, and jasmonic acid. At least one inducer, or
(2) The effective microorganism is composed of Leclercia adecarboxylata TK-151 (accession number FERM BP-7617) and Pantoea sp. TK-185 strain (accession number FERM BP-7618). At least one selected from the group, and the inducer is at least one inducer selected from the group consisting of saccharin and silica gel
  It is characterized by.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, matters related to the implementation of the present invention will be described in detail.
[0027]
  Effective microorganisms usable in the present inventionIs, Which is antagonistic to pathogens that cause plant diseases in horticultural cropsSpecifically, Bacillus sp. 3K-11 strain, Leclercia adecarboxylata TK-151 strain, Pantoea sp. TK-185 strain are used.It is particularly preferable to use effective microorganisms that have been separated from, or screened from, seeds such as harvested vegetables and flowers. These effective microorganisms are considered to have proliferated in the cultivation or seeding conditions of vegetables and flowers. It is highly possible that effective microorganisms separated from seeds stored under normal conditions after seeding can survive after normal storage of seeds intended for sowing, storage for long periods under storage conditions, This is preferable because it has a high possibility of survival and proliferation even in a cultivation environment after germination.
[0028]
In the present invention, it is also possible to use a plurality of effective microorganisms of two or more types as long as the antagonistic properties of the effective microorganisms against pathogenic bacteria are not reduced.
[0029]
An effective microorganism having antagonistic properties against a specific plant disease can be obtained as follows. In other words, filamentous fungi and bacteria isolated from seeds and soil (hereinafter referred to as candidate fungi) are smeared so as to confront or cross on the same medium as the pathogen of the plant disease to be controlled. Then, the cells are cultured for several days at a suitable temperature for growth of the pathogenic bacteria (versus culture). After culturing, both growths are observed, and those in which the growth of pathogenic bacteria is clearly suppressed by the candidate bacteria are selected as effective microorganisms having antagonistic properties (Phytopathogenic Microbiology Research Method, 459-474, Satoshi Wakimoto Supervision, Soft Science, 1993).
[0030]
For example, the present applicant has confirmed that effective microorganisms collected from seeds in Japanese Patent Application No. 2000-172313 (a method for producing disease-free seeds) and Japanese Patent Application No. 2000-187893 (a method for controlling seed disease) are effective in controlling plant diseases. Although disclosed, these effective microorganisms are originally collected from seeds that have been stored and stored for a long period of time under normal storage and storage conditions. Therefore, under normal storage and storage conditions for seeds to be sown. It can survive for a long period of time and can maintain antagonism against plant diseases.
[0031]
  As the systemic acquired resistance inducer that can be used in the present invention, the systemic acquired resistance of a plant can be induced by treating seeds.ThePreferably, a systemic acquired resistance inducer that does not reduce the antagonistic effect of the above-mentioned effective microorganisms against pathogenic bacteria and adversely affects seed germination and initial growth, that is, does not cause reduction in germination rate and germination rate, or decrease in initial growth, is used. It is to be. Such systemic acquired resistance inducers include aminobutyric acid, sulfur-containing amino acids, silicon,Erythritol,Saccharin, jasmonic acidButCan be mentioned. Examples of aminobutyric acid include α-aminobutyric acid and γ-aminobutyric acid, and sulfur-containing amino acids include methionine.Is used. Silica gel as silicaIs used(Japanese Patent Laid-Open No. 10-114588 “Fertilizer and Method of Use thereof”; Japanese Patent Laid-Open No. 11-314986 “Fertilizer and Method of Use thereof”).Saccharin also includes saccharin alkali metal salts such as saccharin sodium. Jasmonic acid includes amino acid-bonded jasmonic acid such as phenylalanine-bound jasmonic acid, leucine-bound jasmonic acid, and isoleucine-bound jasmonic acid in addition to methyl jasmonate.
[0032]
The treatment amount of the whole body acquired resistance-inducing substance varies depending on the type of substance used, the type of seed to be used, the treatment method, etc., and cannot be generally stated, but can be easily determined by conducting a treatment test in advance. It is also possible to use two or more systemic acquired resistance inducers as long as the effects of the present invention are not impaired.
[0033]
Next, there is a method for treating seeds with effective microorganisms and whole body acquired resistance inducers in the present invention. Both effective microorganisms and whole body acquired resistance inducers are attached to the seed surface or absorbed inside the seeds. It is sufficient that the seeds can be treated by any method before sowing.
[0034]
Examples of the treatment method include (1) immersion in an aqueous solution, (2) film coating, (3) pellet granulation, and (4) priming treatment. These treatment methods may be appropriately combined or may be treated a plurality of times as long as no adverse effect on the seed is observed. More specifically, in the above method (1), seeds may be immersed in an aqueous solution in which effective microorganisms and systemic acquired resistance inducers are mixed. In the above method (2), when seeds are pelleted by a known method (Patent No. 2520309), a target effective microorganism and a systemic acquired resistance inducer are mixed in a granulated material such as talc. Alternatively, or alternatively, seeds may be preliminarily immersed in a culture solution of effective microorganisms and then granulated using a solution of a systemic acquired resistance inducer. In the above method (3), when a film is coated by a known method (Japanese Patent Laid-Open No. 11-146707), an effective microorganism and a systemic acquired resistance inducer may be mixed in the coating solution. In the above method (4), a carrier that has absorbed an aqueous solution using an aqueous solution containing effective microorganisms when germination improvement treatment (priming treatment) is performed by a known method (Japanese Patent Laid-Open No. 9-220002). When the seed is brought into contact with the seed and subjected to water absorption treatment, effective microorganisms grow during the water absorption treatment and adhere well to the surface and inside of the seed. Therefore, after completion of the water absorption treatment, a systemic acquired resistance inducer is added to the seed. What is necessary is to process.
[0035]
In the plant disease control method of the present invention, agricultural chemicals such as fungicides, insecticides, plant growth regulators, and fertilizers may be used in combination as long as the effects of the present invention are not hindered.
[0036]
Horticultural crops that can be used in the present invention are not particularly limited, for example, liliaceae crops such as onions and leeks, cereals crops such as carrots, celery, and honey bees, cruciferous crops such as cabbage, broccoli, Chinese cabbage, radish, turnips, Asteraceae crops such as lettuce, salad na, syringae, burdock, spinach, chard, sugar beet, etc. Cucumbers, cucumbers, sweet corns, cereals, peas, broad beans, green beans, legumes such as soybeans, edible horticultural crops and pansies, petunias, african spinach, eustoma, nadesico, habutton, stock, primula , Sunflower, zinnia, marigold Can be mentioned aster, snapdragon, cyclamen, the seeds of plants such as verbena.
[0037]
Plant diseases that can be controlled according to the present invention are not particularly limited.For example, cabbage black spot (Alternaria brassicae), black soot (Alternaria brassicicola), downy mildew (Peronospora brassicae), black spot bacterial disease (Pseudomonas syringae pv maculicola) , Black rot (Xanthomonas campestris pv campestris), root rot (Phoma lingam), radish black spot (Alternaria japonica, Alternaria brassicae), yellow rot (Fusarium oxysporum f.sp.raphani), black rot (Xanthomonas campestris) pv campestris), cabbage black spot (Alternaria brassicae), black rot (Xanthomonas campestris pv campestris), yellowing disease (Verticillium dahliae), carrot black leaf blight (Alternaria dauci), black spot (Alternaria radicina) , Spot bacterial disease (Xanthomonas campestris pvcarotae), celery leaf blight (Septoria apii), mycorrhizal disease (Sclerotinia sclerotiorum), leaf blight (Pseudomonas syringae pv apii), onion black spot (Alternaria porri), Gray rot (Botrytis allii), mycelial rot Disease (Botrytis byssoidea), dry rot (Fusarium oxysporum f.sp.cepae), downy mildew (Peronospora destructor), spinach downy mildew (Peronospora farinosa), wilt disease (Fusarium oxysporum f.sp.spinaciae), charcoal Colletotrichum dematium, tomato ringworm (Alternaria solani), scab (Clavibacter michiganensis subsp. Michiganensis), spotted bacterial disease (Xanthomonas campestris pvvesicatoria), eggplant brown spot (Alternaria solani), brown coat disease (Phomopsis vexans), cucumber black spot (Alternaria cucumerina), spot bacterial disease (Pseudomonas syringae pvlachrymans), brown spot bacterial disease (Xanthomonas campestris pvcucurbitae), and in flowering plants, for example Zinnia black spot (Alternaria znniae) , Spot infectious diseases such as spot bacterial disease (Xanthomonas campestris pv znniae), sunflower sclerotia (Sclerotinia sclerotiorum), black spot disease (Alternaria helianti), and black button rot (Xanthomonas campestris pv campestris) . Furthermore, seedling blight (Rhizoctoria genus, Pythuium genus), wilt (Fusarium genus, Verticillium genus), blight (Gaeumannomyces genus), cruciferous vegetable root-knot (Plasmodiphora brassicae), downy Disease (Pernospora genus), plague (Phytophthora genus), bacterial wilt (Pseudomonas solanacearum), soft rot (Erwinia carotovora), root rot (Agrobacterium tumefaciens), white crest (Rosellinia necatrix), white Silkworm (Sclerotiumrolfsi), Blight (Aphanomyces), Sphaerotheca, Erysiphe, Uncinula, Phyllactinia, Podosphaera, powdery mildew (Microsphaera), gray mold (Botrytis) ), Plant anthracnose fungi (Colletotrichhum spp.), Vine split disease (Fusarium spp.), Mosaic diseases caused by various viruses and the like are also included in the control of plant diseases according to the present invention.
[0038]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.
[0039]
[Screening for effective microorganisms]
The effective microorganisms used in the examples were screened as follows as described in Japanese Patent Application Nos. 2000-172313 and 2000-187893 by the applicant.
[0040]
(1) Bacillus bacteria 3K-11
Carrot seeds contaminated with carrot black spot fungus (Alternaria radicina) and black leaf blight fungus (Alternaria dauci) (Kouyoji No., manufactured by Takii Seed Co., Ltd.) were used for bacterial medium (King B medium) and filamentous fungus medium ( And arranged at a suitable temperature (25.0 ° C.) for the growth of Altanaria. As a result, Altanaria spp. Were generated from both seeds in both culture media, but no Alternaria spp. Were generated, and seeds with bacteria or filamentous fungi were seen at a low rate, particularly on King B medium. From these bacteria, screened for bacteria that are antagonistic to Alternaria spp. That is, pathogenic Alternaria spp. (Carrot black spot fungus, black leaf blight fungus) were each plated on a Morzagaer medium at 25 ° C. for 7 to 10 days. A certain amount of the developed fungus is collected with a cork borer, placed in the center of a Malt's agar plate medium, cultured at 25 ° C for 2 days, and then the bacteria to be assayed are separated from the fungus of Alternaria sp. Line culture was performed. Furthermore, after culture | cultivating at 25 degreeC for 7 to 10 days, when the growth inhibition zone of the genus Altanaria was formed clearly by the bacteria which carried out streak culture, the bacteria were determined to be antagonistic bacteria. The ratio of antagonistic bacteria in the isolated bacteria was 12%.
[0041]
The obtained antagonistic bacteria were 6 strains containing 3K-11. The 3K-11 strain was identified as a Bacillus sp. From the taxonomic characteristics shown in Table 1 below, and deposited with the Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology under the accession number FERM P-17874. Has been.
[0042]
[Table 1]
Figure 0004833448
(2) Leclercia sp. TK-151, Pantoea sp. TK-185
Cabbage seeds (No. 1, early autumn, spring Hikari No. 7, Wakamine, Winner and 1488, all manufactured by Takii Seed Co., Ltd.), broccoli seeds (Amfree 747 and Dosico, both manufactured by Takii Seed Co., Ltd.), cauliflower seeds (violet) Queen and Snow Mystique, both from Takii Seed Co., Ltd., Chinese cabbage seeds (disease-resistant 60 days, both from Takii Seed Co., Ltd.), Japanese radish seeds (disease-resistant fat, Takii Seed Co., Ltd.) and turnip seeds (Swan and disease-resistant Hikari) Both were manufactured by Takii Seed & Seed Co., Ltd.) in 2.5 times the amount of physiological saline (0.85% by weight of NaCl dissolved in distilled water) for 2.5 hours. The solution after shaking was smeared uniformly on albumin agar medium. About 6 days after smearing, the colonies that appeared were isolated separately and smeared so as to cross Xanthomonas campestris pv campestris on potato, dextrose, broth agar medium (Difco) and 25 ° C. Incubated with Those which suppressed the growth of black rot fungus after 3 days of culture were selected as antagonistic bacteria.
[0043]
As a result, three strains containing TK-151 and TK-185 were obtained. Based on the taxonomic characteristics shown in Table 2 below, TK-151 strain was identified as Leclercia adecarboxylata and deposited with the Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology under the accession number FERM BP-7617. Has been. The TK-185 strain has been identified as Pantoea sp. And has been deposited with the same biological deposit center under the accession number FERM BP-7618.
[0044]
[Table 2]
Figure 0004833448
[Test 1: Antagonistic bacteria TK-151, TK-185, sodium saccharin and effect of silica gel treatment on cabbage black rot]
(1) Test outline
TK-151 and TK-185 having antagonistic activity against Brassica black rot fungi were used as effective microorganisms, and saccharin sodium and silica gel were used as systemic acquired resistance inducers. The cabbage seeds (variety: Savoy Ace, manufactured by Takii Seed Co., Ltd.) contaminated with black rot fungus were treated in the test zones shown in Table 3. The treatment was performed by preparing a coating solution containing effective microorganisms and a systemic acquired resistance inducer and film-coating the seeds. In addition, as a comparative example, a coating solution containing only effective microorganisms, a coating solution containing only whole body acquired resistance inducers, and a coating solution containing neither effective microorganisms nor whole body acquired resistance inducers are similarly coated. went.
[0045]
(2) Preparation of coated seeds
As the bacterial solution used for the coating solution, effective microorganisms TK-151 and TK-185 are cultured in YPG medium for 24 hours, and the bacterial concentration is about 2.0 × 109Adjusted to cfu / ml. Moreover, in the case of the combined treatment of TK-151 and TK-185, the produced bacterial solutions were mixed and used in equal amounts. As an aqueous solution of the systemic acquired resistance inducer, a saturated aqueous solution of silica gel (trade name: Inergy, manufactured by Fuji Silysia) and a 0.1% by weight aqueous solution of sodium saccharin (manufactured by Wako Pure Chemical Industries) were used. In the case of a combined treatment of silica gel and saccharin sodium, saccharin sodium was dissolved in a silica gel solution.
[0046]
After mixing an equal amount of the above bacterial solution and an aqueous solution of the whole body acquired resistance inducer, a predetermined amount of methylcellulose and titanium oxide disclosed in JP-A-11-146707 were mixed to prepare a coating solution. Then, the prepared coating solution was coated on cabbage seeds contaminated with the black rot fungus according to a conventional method.
[0047]
(3) Germination and disease investigation
The coated seeds of each test group were sown in sterilized soil placed in a deep bottom petri dish, germinated at about 25 ° C., and the germination rate and the onset rate and severity of black rot were investigated 14 days after sowing. The number of seeds sown per test group was 25 grains / petri dish, and 5 dishes (150 grains / group) per section were used. The germination rate was investigated according to the International Seed Inspection Regulation. The germination rate is the percentage of the total germination of individuals with black rot, and the degree of disease is the degree of disease of the diseased individual (0: no disease, 1: the veins are brown) Change: 2: about 10% or less of the leaf area is yellowed, 3: about 10 to 50% of the leaf area is yellowed, 4: about 50% or more of the leaf area is yellowed or dead) Value. The above survey results are shown in Table 4.
[0048]
The prepared coated seeds were sealed in a moisture-proof seed bag and stored in a thermostatic chamber at 25 ° C. for 4 months. After the storage, the above-described germination and germination investigation was performed. The results are shown in Table 4.
[0049]
[Table 3]
Figure 0004833448
[Table 4]
Figure 0004833448
As is clear from Table 4, Examples 1-1 to 1-9 according to the present invention are low in disease incidence and disease severity, and have a high plant disease control effect compared to the comparative examples. Maintained.
[0050]
[Test 2: Effect of Antagonist 3K-11, Methionine and Erythritol Treatment on Carrot Black Spot]
(1) Test outline
3K-11 having antagonistic activity against carrot black spot fungus was used as an effective microorganism, and methionine and erythritol were used as systemic acquired resistance inducers. Carrot seeds contaminated with carrot black spot (variety: Koyoji No. 2 manufactured by Takii Seed Co., Ltd.) were processed into pellets in the test areas listed in Table 5 using effective microorganisms and systemic acquired resistance inducers. Went.
[0051]
(2) Preparation of pellet seed
Effective microorganism 3K-11 is cultured with shaking in V8 juice medium (vegetable juice medium), and the bacterial concentration is 1-2 × 10.8The carrot seeds contaminated with the carrot black spot disease were immersed in the bacterial solution adjusted to cfu / ml for 2 hours, and then dried by ventilation. Next, 0.1% by weight of methionine (manufactured by Nacalai Tesque) or erythritol (trade name: Pulseat, manufactured by Ajinomoto Co., Inc.) 0.1 in water used for pellet processing by a known method (Japanese Patent No. 2520309) Weight percent was dissolved to produce pellet seeds. In the case of combined treatment of methionine and erythritol, a mixed aqueous solution was prepared, but the concentration of both substances was 0.1% by weight. As comparative examples, pellet seeds that do not use bacterial fluid and systemic acquired resistance inducer, pellet seeds that do not use systemic acquired resistance inducer only by immersion in bacterial fluid, and systemic acquired resistance inducer only Pellet seeds that did not use the bacterial solution were prepared.
[0052]
(3) Germination and disease investigation
Seed seed pellets in seedling trays (200 holes) filled with sterilized culture soil (200 seeds / test zone, 1 seed / hole) and germinate at 20 ° C. to determine germination rate, withering rate, healthy strain rate investigated. The germination rate is investigated according to the International Seed Inspection Regulations, the withering rate is the proportion of all germinating individuals that have withered after black spot disease, and the healthy strain rate is the proportion of the number of healthy seeds grown to the seed sowed Table 6 shows the survey results.
[0053]
The prepared pellet seeds were placed in a polyethylene seed container and stored in a constant temperature room at about 20 ° C. After 6 months, germination and disease investigation similar to those described above were conducted. The results are shown in Table 6.
[0054]
[Table 5]
Figure 0004833448
[Table 6]
Figure 0004833448
As is clear from Table 6, Examples 2-1 to 2-3 according to the present invention have a lower withering rate after germination than that of the comparative example, a high healthy strain rate, and a remarkable plant disease control effect. Yes, the effect was maintained after storing the treated seeds.
[0055]
[Test 3: Effect of treatment with effective microorganism 3K-11, jasmonic acid and γ-aminobutyric acid on Chinese cabbage root-knot disease]
(1) Seed treatment
Effective microorganism 3K-11 is cultured with shaking in V8 juice medium (vegetable juice medium), and the bacterial concentration is 1-2 × 10.8Bacteria solution adjusted to cfu / ml and jasmonic acid (Sigma Aldrich Japan Co., Ltd.) 0.01 ppm and γ-aminobutyric acid (Nacalai Tesque Co., Ltd.) 0.1% aqueous solution as systemic acquired resistance substance are used. Then, according to a known method (Japanese Patent Laid-Open No. 11-146707), a coating solution was prepared in the test plots described in Table 7 and coated on Chinese cabbage seeds (variety: Musou, manufactured by Takii Seed Co., Ltd.). The seed amount of each test plot is about 1000 seeds / cut.
[0056]
(2) Raising seedlings and transplanting to contaminated soil
Seven seedling trays (200 holes) were filled with seedling culture soil (trade name: Tanemaki Culture soil, manufactured by Takii Seed Co., Ltd.), and the seeds coated and untreated in each test section were sown in one seedling tray / one test section. Later, up to four true leaves were grown using a conventional seedling method. There was no difference in seedling growth between the test plots at the stage of 4 true leaves.
[0057]
Next, the Chinese cabbage seedlings were transplanted into a planter in a greenhouse containing 20 soils contaminated with Brassicaceae clubroot. Forty days after transplanting to the planter, 10 Chinese cabbage plants were extracted from the soil for each test section, washed with water, and observed and investigated for the occurrence of clubroot disease in the roots. The results are shown in Table 8. In addition, the coated seeds were sealed in a moisture-proof seed bag for each test section and stored at about 20 ° C. for 3 months, and then the occurrence of clubroot was investigated as described above. The results are shown in Table 9. Show.
[0058]
The disease state is the disease index 0 to 4 (0: no disease, 1: small amount of hump on lateral root, 2: large hump on lateral root, 3: hump on main root in root pot, 4: hump on main root in root pot, or death. ). Tables 8 and 9 show the observed distribution of disease index of 10 strains and their average values. Further, the disease incidence is the ratio of individuals with disease occurrence (onset of disease index 1 or higher) among the 10 observed individuals, and the serious disease incidence is the ratio of individuals with disease index 3 or 4 among the observed 10 individuals. It is.
[0059]
[Table 7]
Figure 0004833448
[Table 8]
Figure 0004833448
[Table 9]
Figure 0004833448
As shown in Tables 8 and 9, Examples 3-1 to 3-3 according to the present invention clearly inhibit the occurrence of root-knots compared with the comparative examples, and the Brassicaceae root-knot disease that is a soil-borne plant disease. Could be controlled. Moreover, the control effect could be maintained after storing the treated seeds.
[0060]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain seeds that are effective in environmental conservation, have long-lasting disease control effects, have a wide range of diseases to be controlled, and have excellent plant disease control effects. Can do. In addition, by using what has been separated from the seed as an effective microorganism, it is possible to obtain a seed that can maintain the control effect against plant diseases over a long period of time under normal storage and storage conditions of the seed to be sown. .

Claims (5)

植物病害の病原体に対し拮抗性を持つ少なくとも一種類の有効微生物と、植物の全身獲得抵抗性を誘導する少なくとも一種類の誘導物質とで、種子を処理する植物病害防除方法であって、
前記有効微生物が、バチルス属(Bacillus sp.)3K−11株(受託番号FERM P−17874)であり、
前記誘導物質が、アミノ酪酸、メチオニン、エリスリトールおよびジャスモン酸よりなる群から選択された少なくとも1種の誘導物質である
ことを特徴とする植物病害防除方法。
A plant disease control method for treating seeds with at least one effective microorganism having antagonistic properties against a plant disease pathogen and at least one inducer that induces systemic acquired resistance of the plant,
The effective microorganism is Bacillus sp. 3K-11 strain (Accession No. FERM P-17874),
The plant disease control method , wherein the inducer is at least one inducer selected from the group consisting of aminobutyric acid, methionine, erythritol, and jasmonic acid .
植物病害の病原体に対し拮抗性を持つ少なくとも一種類の有効微生物と、植物の全身獲得抵抗性を誘導する少なくとも一種類の誘導物質とで、種子を処理する植物病害防除方法であって、
前記有効微生物が、レクレルシア アデカルボキシラータ(Leclercia adecarboxylata)TK−151株(受託番号FERM BP−7617)およびパントエア属(Pantoea sp.)TK−185株(受託番号FERM BP−7618)よりなる群から選択された少なくとも1種であり、
前記誘導物質が、サッカリンおよびシリカゲルよりなる群から選択された少なくとも1種の誘導物質である
ことを特徴とする植物病害防除方法。
A plant disease control method for treating seeds with at least one effective microorganism having antagonistic properties against a plant disease pathogen and at least one inducer that induces systemic acquired resistance of the plant,
The effective microorganism is selected from the group consisting of Leclercia adecarboxylata TK-151 (accession number FERM BP-7617) and Pantoea sp. TK-185 strain (accession number FERM BP-7618). At least one of
The plant disease control method , wherein the inducer is at least one inducer selected from the group consisting of saccharin and silica gel .
前記有効微生物と前記誘導物質の種子への処理方法が、水溶液への浸漬、フィルムコーティング、ペレット造粒およびプライミング処理よりなる群から選択された少なくとも1種の種子処理であることを特徴とする請求項1又は2に記載の植物病害防除方法。  The method for treating the seeds of the effective microorganism and the inducer is at least one seed treatment selected from the group consisting of immersion in an aqueous solution, film coating, pellet granulation, and priming treatment. Item 3. The plant disease control method according to Item 1 or 2. 防除する植物病害が種子病害である請求項1〜のいずれかに記載の植物病害防除方法。The plant disease control method according to any one of claims 1 to 3 , wherein the plant disease to be controlled is a seed disease. 請求項1〜のいずれかに記載の植物病害防除方法で処理された種子。Seeds treated by the plant disease control method according to any one of claims 1 to 4 .
JP2001217298A 2001-07-17 2001-07-17 Plant disease control method Expired - Fee Related JP4833448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001217298A JP4833448B2 (en) 2001-07-17 2001-07-17 Plant disease control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001217298A JP4833448B2 (en) 2001-07-17 2001-07-17 Plant disease control method

Publications (2)

Publication Number Publication Date
JP2003034607A JP2003034607A (en) 2003-02-07
JP4833448B2 true JP4833448B2 (en) 2011-12-07

Family

ID=19051646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001217298A Expired - Fee Related JP4833448B2 (en) 2001-07-17 2001-07-17 Plant disease control method

Country Status (1)

Country Link
JP (1) JP4833448B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103250578A (en) * 2012-02-20 2013-08-21 周学尚 Method utilizing sprout inhibition agent to control phytoplasma jujube withes broom disease and phytoplasma paulownia withes broom disease of plants

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4888937B2 (en) * 2004-05-24 2012-02-29 国立大学法人 香川大学 Use of rare sugars to control microbial growth
JP4102388B2 (en) * 2005-06-07 2008-06-18 大韓民国 Microbial Bacillus KR083 that promotes the growth of crops and microbial preparations containing the same
GB0613901D0 (en) * 2006-07-13 2006-08-23 Univ Lancaster Improvements in and relating to plant protection
JP2008189658A (en) 2007-01-12 2008-08-21 Nissan Chem Ind Ltd Method of controlling plant disease
CN101455270B (en) * 2008-07-04 2012-05-30 浙江神光大叶枸发展有限公司 Plant fermentation feedstuff
ES2574905T3 (en) 2010-01-13 2016-06-23 Ajinomoto Co., Inc. Use of an agent to enhance the disease resistance of the Cucurbitaceae plant and a procedure to control plant diseases using the agent
WO2012047608A2 (en) 2010-09-28 2012-04-12 Becker-Underwood, Inc. Methods and compositions containing jasmonates or related compounds for promoting biodefense activity in plants
CN103491784A (en) * 2010-11-16 2014-01-01 德拉华州大学 Compositions and methods for improving rice growth and restricting arsenic uptake
JP6007360B2 (en) * 2011-03-24 2016-10-12 国立研究開発法人農業・食品産業技術総合研究機構 Bacterial wilt resistance inducer and bacterial wilt control method
MX2014004765A (en) 2011-10-18 2015-01-16 Inst Environmental Health Inc Improved method and apparatus for growing sprouts.
MX2016009764A (en) 2014-01-30 2017-04-27 Towada Green Tuff Agro-Science Co Ltd Coating material for seeds and coated seed.
CN104982261B (en) * 2015-06-07 2017-08-29 合浦县公馆镇香山村马拉坡鸡嘴荔枝农民专业合作社 A kind of method for preventing and treating chicken mouth downy mildew of lichee
KR101890025B1 (en) * 2016-05-19 2018-08-20 이광수 Composition for Controlling Strawberry Pathogen Comprising Bacillus subtilis FNR-10 As an Active Ingredient
MX2019002978A (en) * 2016-09-14 2019-09-18 Grace Breeding Ltd Compositions comprising a non-pathogenic bacteria and methods for protecting plant and animal hosts from fungal, bacterial and viral diseases.
CN109168848A (en) * 2018-08-10 2019-01-11 上海市农业科学院 A kind of cultural method inhibiting Chinese pear pericarp rust staining

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4287515B2 (en) * 1998-09-22 2009-07-01 博 河合 Composition for preventing plant diseases and method of use thereof
JP2001299016A (en) * 2000-04-24 2001-10-30 Hokkaido Green Kosan:Kk Healthy growth plant seeds and method for applying activity-promoting agent therefor
JP2001346407A (en) * 2000-06-08 2001-12-18 Ts Shokubutsu Kenkyusho:Kk Method for producing healthy seed
JP4372975B2 (en) * 2000-06-22 2009-11-25 株式会社テイエス植物研究所 Seed disease control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103250578A (en) * 2012-02-20 2013-08-21 周学尚 Method utilizing sprout inhibition agent to control phytoplasma jujube withes broom disease and phytoplasma paulownia withes broom disease of plants
CN103250578B (en) * 2012-02-20 2015-04-08 周学尚 Method utilizing sprout inhibition agent to control phytoplasma jujube with broom disease and phytoplasma paulownia withes broom disease of plants

Also Published As

Publication number Publication date
JP2003034607A (en) 2003-02-07

Similar Documents

Publication Publication Date Title
US10273445B2 (en) Isolated strain of Clonostachys rosea for use as a biological control agent
JP4372975B2 (en) Seed disease control method
JP6183851B2 (en) Soil infectious disease control method and testing method for microorganisms for soil infectious disease control
US11286458B2 (en) Methods and compositions for the biological control of plant pathogens
Pradhanang et al. Effects of plant essential oils on Ralstonia solanacearum population density and bacterial wilt incidence in tomato
JP4833448B2 (en) Plant disease control method
US20170319635A1 (en) Methods and compositions of biocontrol of plant pathogens
KR20180038556A (en) Bacterial strains and uses thereof for controlling plant diseases
JP5714603B2 (en) Novel fluorescent Pseudomonas species of the Pseudomonas azotoformans species for enhancing budding and growth of plants
TW200812492A (en) Combinations of biological control agents with a nematicidal seed coating
JP2016534737A5 (en)
TR201806559T1 (en) BACTERIAL SPECIES BACILLUS AMYLOLIQUEFACIENS SUBSP. PLANTARUM BS89 INCREASING PLANT PRODUCTIVITY AND THEIR PROTECTION OF THE DISEASE
JP2010540622A (en) Composition for improving surface microbial density and use thereof
JPWO2005104853A1 (en) Microbial pesticides that suppress the occurrence of plant diseases
US5194258A (en) Production of enhanced biocontrol agents
KR20050033999A (en) Biocontrol of plant diseases using novel epiphytic isolate of pseudomonas putida cb11
US20210161149A1 (en) Method of controlling soil-borne diseases of plants
JP2001346407A (en) Method for producing healthy seed
JP2011051925A (en) Method for controlling plant disease caused by nematode
KR20230140893A (en) Composition comprising Bacillus amyloliquefaciens strain for increasing resistance to a plant disease and use thereof
Harman et al. Potential and existing uses of
Jayaraj Healthy seed material–a myth or possibility?
CN117126757A (en) Serratia marcescens, microbial agent, pesticide and application thereof
KR100457069B1 (en) Novel pythium myriotylum strain, a pathogen of plants, and a method for the biological control of weeds using same
Tarr Disease control by cultural practices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080214

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080214

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110922

R150 Certificate of patent or registration of utility model

Ref document number: 4833448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees