JP4832044B2 - Temperature detector - Google Patents

Temperature detector Download PDF

Info

Publication number
JP4832044B2
JP4832044B2 JP2005283065A JP2005283065A JP4832044B2 JP 4832044 B2 JP4832044 B2 JP 4832044B2 JP 2005283065 A JP2005283065 A JP 2005283065A JP 2005283065 A JP2005283065 A JP 2005283065A JP 4832044 B2 JP4832044 B2 JP 4832044B2
Authority
JP
Japan
Prior art keywords
wiring board
glass tube
printed wiring
end side
flexible printed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005283065A
Other languages
Japanese (ja)
Other versions
JP2007093379A (en
Inventor
俊司 市田
透 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2005283065A priority Critical patent/JP4832044B2/en
Publication of JP2007093379A publication Critical patent/JP2007093379A/en
Application granted granted Critical
Publication of JP4832044B2 publication Critical patent/JP4832044B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

本発明は微小な温度変化をも測定可能で、例えば半導体プロセスの温度制御などに好適に利用可能な温度検出体に関する。   The present invention relates to a temperature detector that can measure even a minute temperature change and can be suitably used, for example, for temperature control of a semiconductor process.

従来から温度制御を必要とする様々なプロセスにおいて白金(Pt)測温抵抗素子を利用した温度センサが広く利用されている(例えば、特許文献1参照)。かかる特許文献1に記載の温度センサは、白金からなる測温抵抗体をフッ素樹脂からなるコーティング部材で被覆し,このコーティング部材の周囲を僅かな隙間を介してフッ素樹脂からなる二重チューブにより囲んで外部から保護し、二重チューブ及び測温抵抗体を石英ガラス管内に挿入して構成されている。   Conventionally, a temperature sensor using a platinum (Pt) resistance temperature detector is widely used in various processes that require temperature control (see, for example, Patent Document 1). In such a temperature sensor described in Patent Document 1, a resistance temperature detector made of platinum is covered with a coating member made of fluororesin, and the periphery of the coating member is surrounded by a double tube made of fluororesin through a slight gap. The double tube and the resistance temperature detector are inserted into the quartz glass tube.

そして、温度センサがこのような構成を有することで、例えば半導体デバイスの製造工程における洗浄装置の温度制御を行うに際して、保護チューブ内に薬液が浸入するのを防止し、従来から問題となっていた測温抵抗体を被覆するSUS製コーティング部材の腐食防止を図っている。
特開2001−296186号公報(4−5頁、図5)
And, when the temperature sensor has such a configuration, for example, when performing temperature control of the cleaning apparatus in the manufacturing process of the semiconductor device, it prevents the chemical solution from entering the protective tube, which has been a problem in the past. The SUS coating member covering the resistance temperature detector is prevented from being corroded.
JP 2001-296186 A (page 4-5, FIG. 5)

このような従来型の白金の測温抵抗体は抵抗値が一般に100Ωと小さく(JISC1604)、高精度の温度測定が必要とされない場合には支障がない。   Such a conventional platinum resistance temperature detector generally has a resistance value as small as 100Ω (JISC1604), and there is no problem when high-precision temperature measurement is not required.

この場合に温度測定を行うに際してこの測温抵抗体に例えば1mAの電流を流したとすると、電力W1=100(Ω)×0.001(A)×0.001(A)=0.0001(W)=0.1(mW)相当の自己発熱が行われることになる。半導体製造プロセスの温度制御など例えば0.001°Cごとの精度で厳密な温度測定を必要とする場合、このような自己発熱が生じると、例えばφ1mm程度の細い保護管では測温抵抗体自体が0.1℃上昇してしまうこともあり、対象物の流速が変化した場合などに温度測定が精度良く行えない。   In this case, assuming that a current of, for example, 1 mA is passed through the resistance temperature detector when performing temperature measurement, electric power W1 = 100 (Ω) × 0.001 (A) × 0.001 (A) = 0.0001 (W) = 0.1 (mW ) A considerable amount of self-heating will occur. When strict temperature measurement is required with accuracy of every 0.001 ° C., such as temperature control in a semiconductor manufacturing process, when such self-heating occurs, the resistance temperature detector itself is used in a thin protective tube of about φ1 mm, for example. The temperature may rise by 0.1 ° C., and the temperature cannot be measured accurately when the flow rate of the object changes.

一方、このような不具合を解決するために、例えば特開2002−286555号公報に記載された温度センサが提案されている。かかる温度センサは温度検出素子がアルミナ等のセラミック基板と、このセラミック基板の表面に形成された白金(Pt)などの金属箔抵抗体とから構成され、この温度検出素子がフレキシブルプリント配線板とハーメチック部品で連結され、これらが保護管内に密封収容されている。なお、保護管は、例えばSUS304やSUS316等の耐食性金属であるステンレス鋼で形成され、基端部が開放するとともに先端側が閉塞する細長い小径パイプと、この小径パイプの基端部に接合された大径パイプとから構成されている。そして、温度検出素子は先端側の金属製の小径パイプ内に密封収容されている。   On the other hand, in order to solve such a problem, for example, a temperature sensor described in JP-A-2002-286555 has been proposed. In such a temperature sensor, the temperature detection element is composed of a ceramic substrate made of alumina or the like and a metal foil resistor such as platinum (Pt) formed on the surface of the ceramic substrate. They are connected by parts, and these are sealed and accommodated in a protective tube. The protective tube is formed of, for example, stainless steel, which is a corrosion-resistant metal such as SUS304 or SUS316. It consists of a diameter pipe. The temperature detection element is hermetically housed in a metal small-diameter pipe on the tip side.

この温度検出素子はセラミック基板上に線幅が約10μm程度の白金の箔をパターニングして形成されているので、その抵抗値が1000Ωと上述した従来の温度検出素子よりもかなり大きくなっている。この新たな温度検出素子を用いることで、金属箔抵抗体に流す電流は0.1mA程度で良くなるので、温度検出素子の電力W2=1000(Ω)×0.0001(A)×0.0001(A)=0.00001(W)=0.01(mW)となり、従来の温度検出素子の自己発熱の1/10となる。そのため、半導体製造プロセスの温度制御など例えば0.001°Cごとの精度で厳密な温度測定を必要とする場合に温度検出素子の自己発熱による影響を最小限に抑えることができ、このような技術分野にこの新たな温度センサを好適に利用できる。   Since this temperature detection element is formed by patterning a platinum foil having a line width of about 10 μm on a ceramic substrate, its resistance value is 1000Ω, which is considerably larger than the conventional temperature detection element described above. By using this new temperature detection element, the current flowing through the metal foil resistor can be about 0.1 mA. Therefore, the power W2 of the temperature detection element = 1000 (Ω) × 0.0001 (A) × 0.0001 (A) = 0.00001 (W) = 0.01 (mW), which is 1/10 of the self-heating of the conventional temperature detection element. For this reason, the influence of self-heating of the temperature detection element can be minimized when strict temperature measurement is required with accuracy of every 0.001 ° C., such as temperature control in a semiconductor manufacturing process. This new temperature sensor can be suitably used in the field.

しかし、このような検出精度に優れた温度センサであっても以下のような解決すべき課題が残されている。   However, even such a temperature sensor with excellent detection accuracy still has the following problems to be solved.

この温度センサは温度検出素子がセラミック基板上に線幅が約10μm程度の白金の箔をパターニングして形成されているので、この周囲を空間を介さずにガラス等で直接囲繞するとガラスの溶融時による熱が温度検出素子に直接作用するため、このような温度検出素子の周囲を直接ガラスで囲繞した構造の温度センサを製造することは耐熱材料を使用したり、ガラス溶融温度に耐えられるような特別の接合材料や方法や設備等を検討したりする必要があり難しい。しかしながら、温度検出素子自体に汚れや傷が付かないようにするとともに耐食性を高めるために温度検出素子を何らかの形でパッケージングすることは必須とされている。   In this temperature sensor, the temperature detecting element is formed by patterning a platinum foil with a line width of about 10 μm on a ceramic substrate. If this area is surrounded directly by glass or the like without a space, Since the heat generated by the element directly acts on the temperature detection element, manufacturing a temperature sensor having such a structure in which the periphery of the temperature detection element is directly surrounded by glass uses a heat-resistant material or can withstand the glass melting temperature. It is difficult to study special bonding materials, methods and equipment. However, it is indispensable to package the temperature detection element in some form in order to prevent the temperature detection element itself from being stained or scratched and to improve the corrosion resistance.

従って、提案されている温度センサのようにSUSからなる金属管に温度検出素子、フレキシブルプリント基板、及びこのフレキシブルプリント基板に接続されたハーメチックシール部品を収容する必要がある。しかし、温度検出素子を金属管に収容すると、保護管内部が外部から見えないので、微細な構造を有する温度検出素子が保護管内でどのように組み付けられているか組み付け中に確認できないとともに、温度検出素子自体にゴミ等が付着しているか否かを組み付け中や組み付け後に確認できない。また、保護管が金属管であるため、温度センサの電気的導通部分が保護管に接触するおそれがあるとともにこれに関連して温度センサの耐電圧を高くとることができない。   Therefore, it is necessary to accommodate a temperature detection element, a flexible printed circuit board, and a hermetic seal component connected to the flexible printed circuit board in a metal tube made of SUS like the proposed temperature sensor. However, when the temperature detection element is housed in a metal tube, the inside of the protective tube cannot be seen from the outside, so it is not possible to check how the temperature detection element with a fine structure is assembled in the protective tube, and temperature detection Whether or not dust or the like is attached to the element itself cannot be confirmed during or after assembly. In addition, since the protective tube is a metal tube, there is a possibility that the electrically conductive portion of the temperature sensor may come into contact with the protective tube, and in this connection, the withstand voltage of the temperature sensor cannot be increased.

また、提案されている温度センサのように温度検出素子がハーメチックシールに片持ち梁構造で支持されていると、温度センサの使用中に温度センサに加わる振動が片持ち梁構造の温度検出素子を余計に振れさせることがあり、好ましくない。   In addition, when the temperature detection element is supported by a hermetic seal with a cantilever structure as in the proposed temperature sensor, vibration applied to the temperature sensor during use of the temperature sensor causes the temperature detection element of the cantilever structure. It may cause excessive vibration and is not preferable.

また、温度センサの使用中や保管中に金属製の保護管が錆びて腐食しないように常に注意を払わなければならない。   Care must always be taken to prevent the metal protective tube from rusting and corroding during use and storage of the temperature sensor.

本発明の目的は、組み付け時に温度検出素子の組み付け状態を確認し易く使用中の振動にも強い高精度の温度検出体を提供することにある。   An object of the present invention is to provide a highly accurate temperature detection body that is easy to confirm the assembled state of the temperature detection element at the time of assembly and is resistant to vibration during use.

上述した課題を解決するために、本発明の請求項1にかかる温度検出体は、
フレキシブルプリント配線板と、前記フレキシブルプリント配線板に接着されかつ少なくとも一方の面に当該フレキシブルプリント配線板の配線パターンと導通する温度測定用の金属膜が表面にパターニングして形成された基板を有する温度検出部と、前記温度検出部を収容するパッケージングを備えた温度検出体において、
前記パッケージングは、両端部が開口したガラス管と、当該ガラス管の温度検出部の信号取り出し方向端部から前記プリント配線板を外部に延在させるとともに当該フレキシブルプリント配線板又は基板の一部の少なくとも何れか一方を基端側接着剤によって支持しながら当該ガラス管の信号取り出し方向端部を当該基端側接着剤によって密封した基端側密封部と、前記ガラス管の先端側端部に前記フレキシブルプリント配線板又は基板の少なくとも何れか一方の先端側端部を先端側接着材によって支持しながら当該ガラス管の先端側端部を当該先端側接着材によって密封した先端側密封部を備え、
前記基端側密封部と前記先端側密封部によって前記フレキシブルプリント配線板又は基板の少なくとも何れか一方を両端支持構造としたことを特徴としている。
In order to solve the above-described problem, a temperature detection body according to claim 1 of the present invention includes:
Has a flexible printed wiring board, the flexible printed is adhered to the wiring board and the metal foil layer for temperature measurement conducted with the flexible printed circuit board wiring pattern on at least one surface is formed by patterning on the surface substrate In the temperature detector comprising a temperature detector and a packaging for housing the temperature detector,
The packaging includes a glass tube having both ends opened, and the printed wiring board extending outside from a signal extraction direction end of the temperature detection unit of the glass tube and a part of the flexible printed wiring board or the substrate. A base end side sealing portion in which at least one of the glass tube is supported by the base end side adhesive and the end portion in the signal extraction direction of the glass tube is sealed by the base end side adhesive, and the distal end side end portion of the glass tube Provided with a front end side sealing portion in which the front end side end portion of the glass tube is sealed with the front end side adhesive material while supporting the front end side end portion of at least one of the flexible printed wiring board or the substrate with the front end side adhesive material,
At least one of the flexible printed wiring board and the substrate has a double-end support structure by the base end side sealing portion and the distal end side sealing portion.

また、本発明の請求項2にかかる温度検出体は、
フレキシブルプリント配線板と、前記フレキシブルプリント配線板に接着されかつ少なくとも一方の面に当該フレキシブルプリント配線板の配線パターンと導通する温度測定用の金属膜が表面にパターニングして形成された基板を有する温度検出部と、前記温度検出部を収容するパッケージングを備えた温度検出体において、
前記パッケージングは、一端部のみが開口したガラス管と、当該ガラス管の開口部から前記フレキシブルプリント配線板を外部に延在させるとともに当該フレキシブルプリント配線板又は基板の少なくとも何れか一方を接着材によって支持しながら当該ガラス管の開口部を当該接着材によって密封した基端側密封部と、前記ガラス管の先端側端部に前記フレキシブルプリント配線板又は基板の少なくとも何れか一方の先端側端部を支持する先端側支持部を備え、
前記基端側密封部と前記先端側支持部によって前記フレキシブルプリント配線板又は基板の少なくとも何れか一方を両端支持構造としたことを特徴としている。
Moreover, the temperature detector according to claim 2 of the present invention is:
Has a flexible printed wiring board, the flexible printed is adhered to the wiring board and the metal foil layer for temperature measurement conducted with the flexible printed circuit board wiring pattern on at least one surface is formed by patterning on the surface substrate In the temperature detector comprising a temperature detector and a packaging for housing the temperature detector,
The packaging includes a glass tube having only one end opened, and the flexible printed wiring board is extended from the opening of the glass tube to the outside, and at least one of the flexible printed wiring board or the substrate is bonded with an adhesive. A proximal end side sealing portion that seals the opening of the glass tube with the adhesive while supporting, and a distal end side end portion of at least one of the flexible printed wiring board or the substrate at the distal end side end portion of the glass tube Provided with a tip side support part to support,
It is characterized in that at least one of the flexible printed wiring board and the substrate has a double-end support structure by the base end side sealing portion and the tip end side support portion.

温度検出部が基板とこの基板の少なくとも一方の面に形成された金属膜からなり抵抗値を1000Ωと大きくしたので、温度検出部の自己発熱による影響を最小限に抑えた温度測定を可能とする。   The temperature detector consists of a substrate and a metal film formed on at least one surface of the substrate, and the resistance value is increased to 1000Ω, enabling temperature measurement with minimal influence of self-heating of the temperature detector. .

また、両端が接着材で密封されたガラス管に温度検出素子がパッケージングされているので、温度検出部とプリント配線板が保護管内でどのように組み付けられているかや温度検出部やプリント配線板にゴミ等が付着しているか否かを組み付け中や組み付け後に確認できる。また、温度検出体の電気的導通部分が金属製の保護管に接触して短絡するおそれが無く、温度センサの耐電圧を高くすることができる。   Moreover, since the temperature detection element is packaged in a glass tube sealed at both ends with an adhesive, how the temperature detection unit and the printed wiring board are assembled in the protective tube, the temperature detection unit and the printed wiring board It is possible to check whether or not dust or the like is attached to the device during or after assembly. In addition, there is no possibility that the electrically conducting portion of the temperature detector contacts the metal protective tube and short-circuits, and the withstand voltage of the temperature sensor can be increased.

また、金属製の保護管に温度検出部とプリント配線板の一部がパッケージングされている場合のように保護管の錆びによる腐食防止に注意を払う必要もない。   In addition, it is not necessary to pay attention to preventing corrosion due to rust of the protective tube as in the case where the temperature detector and a part of the printed wiring board are packaged in a metal protective tube.

また、温度検出素子がガラス管内に両持ち梁構造で支持されているので、片持ち梁構造の温度検出素子のように温度検出体の使用中に温度検出体に振動が加わっても温度検出素子が余計に振れたりすることはない。これによって、温度検出体の使用中に温度検出素子が振動等の影響を直接受けないで済む。 In addition, since the temperature detection element is supported in a glass tube by a double-supported beam structure, even if vibration is applied to the temperature detection element during use of the temperature detection element, such as a temperature detection element having a cantilever structure, the temperature detection element Will not shake more. Thus, the temperature detecting element is not directly affected by vibration or the like during use of the temperature detecting body.

また、本発明の請求項3に記載の温度検出体は、
フレキシブルプリント配線板と、前記フレキシブルプリント配線板に接着されかつ少なくとも一方の面に当該フレキシブルプリント配線板の配線パターンと導通する温度測定用の金属膜が表面にパターニングして形成された基板を有する温度検出部と、前記温度検出部を収容するパッケージングを備えた温度検出体において、
前記パッケージングは、前記温度検出部の信号取り出し方向端部が開口するとともにガラス管又は接着材により先端側端部が閉塞したガラス管と、当該ガラス管の信号取り出し方向端部側開口部から前記フレキシブルプリント配線板を外部に延在させるとともに当該フレキシブルプリント配線板又は基板の一部の少なくとも何れか一方を接着材によって支持しながら当該ガラス管の信号取り出し方向端部側開口部を当該接着材によって密封した基端側密封部を備え、
当該フレキシブルプリント配線板には長手方向所定位置に当該プリント配線板の幅方向に突出するフレキシブルプリント配線板支持部が備わり、前記フレキシブルプリント配線板及び基板は前記ガラス管内において片持ち梁状に延在するとともに、前記フレキシブルプリント配線板支持部が前記ガラス管の内周面に接触することで当該フレキシブルプリント配線板及び基板を前記ガラス管内に所定の姿勢で支持することを特徴としている。
Moreover, the temperature detector according to claim 3 of the present invention is
Has a flexible printed wiring board, the flexible printed is adhered to the wiring board and the metal foil layer for temperature measurement conducted with the flexible printed circuit board wiring pattern on at least one surface is formed by patterning on the surface substrate In the temperature detector comprising a temperature detector and a packaging for housing the temperature detector,
The packaging includes a glass tube whose end in the signal extraction direction of the temperature detection unit is open and whose end on the front end side is closed by a glass tube or an adhesive, and the opening in the signal extraction direction end side of the glass tube. While extending the flexible printed wiring board to the outside and supporting at least one of the flexible printed wiring board or a part of the substrate with the adhesive, the signal extraction direction end side opening of the glass tube is formed with the adhesive. With a sealed proximal seal,
The flexible printed wiring board is provided with a flexible printed wiring board support portion protruding in the width direction of the printed wiring board at a predetermined position in the longitudinal direction, and the flexible printed wiring board and the substrate extend in a cantilever shape in the glass tube. In addition, the flexible printed wiring board support portion is in contact with the inner peripheral surface of the glass tube so that the flexible printed wiring board and the substrate are supported in a predetermined posture in the glass tube.

温度検出部が基板とこの基板の少なくとも一方の面に形成された金属膜からなり抵抗値を1000Ωと大きくしたので、温度検出部の自己発熱による影響を最小限に抑えた温度測定を可能とする。   The temperature detector consists of a substrate and a metal film formed on at least one surface of the substrate, and the resistance value is increased to 1000Ω, enabling temperature measurement with minimal influence of self-heating of the temperature detector. .

また、両端が接着材で密封されたガラス管に温度検出部とプリント配線板の一部がパッケージングされているので、温度検出部やプリント配線板の一部がガラス管内でどのように組み付けられているかや温度検出部やプリント配線板にゴミ等が付着しているか否かを組み付け中や組み付け後に確認できる。また、温度検出体の電気的導通部分が金属製の保護管に接触して短絡するおそれが無く、温度検出体の耐電圧を高くすることが可能である。   In addition, since the temperature detector and part of the printed wiring board are packaged in a glass tube sealed at both ends with an adhesive, how the temperature detector and part of the printed wiring board are assembled in the glass tube And whether or not dust or the like is attached to the temperature detection unit or the printed wiring board can be checked during or after assembly. In addition, there is no possibility that the electrically conducting portion of the temperature detector contacts the metal protective tube and short-circuits, and the withstand voltage of the temperature detector can be increased.

また、金属製の保護管に温度検出部とプリント配線板の一部がパッケージングされている場合のように保護管の錆びによる腐食防止に注意を払う必要もない。   In addition, it is not necessary to pay attention to preventing corrosion due to rust of the protective tube as in the case where the temperature detector and a part of the printed wiring board are packaged in a metal protective tube.

また、温度検出部及びプリント配線板がガラス管内に片持ち梁構造で支持されていても、プリント配線板の幅方向に突出するプリント配線板支持部がガラス管の内周面に接触することで温度検出部及びプリント配線板をガラス管内に所定の姿勢で支持することができ、温度検出体が振動を受けてもこれに収容された温度検出素子の位置や姿勢がずれたり余計に振れたりすることもない。   In addition, even if the temperature detection unit and the printed wiring board are supported in a cantilever structure in the glass tube, the printed wiring board support unit protruding in the width direction of the printed wiring board is in contact with the inner peripheral surface of the glass tube. The temperature detector and the printed wiring board can be supported in the glass tube in a predetermined posture, and even if the temperature detector is subjected to vibration, the position and posture of the temperature detection element accommodated in the temperature detector are displaced or excessively shaken. There is nothing.

また、温度検出部及びプリント配線板をガラス管の一端から挿入するだけで片持ち梁構造の温度検出部及びプリント配線板をプリント配線板支持部によってガラス管内に所定の姿勢で確実に支持できるので、請求項1及び請求項2に記載の温度検出体に較べて組み付け性が更に向上する。   In addition, the temperature detection unit and the printed wiring board having a cantilever structure can be reliably supported in the glass tube in a predetermined posture by the printed wiring board support unit simply by inserting the temperature detection unit and the printed wiring board from one end of the glass tube. Assembling property is further improved as compared with the temperature detecting body according to claim 1 and claim 2.

また、本発明の請求項4に記載の温度検出体は、請求項1乃至請求項3の何れかに記載の温度検出体において、
前記基端側密封部から導出した前記フレキシブルプリント配線板の導出部及び当該フレキシブルプリント配線板と外部導出ケーブルとを電気的に接続する接続部を収容する保護管を前記温度検出体が更に備え、前記ガラス管の基端側密封部及びその近傍が前記保護管の先端部に支持されたまま、当該ガラス管の温度検出部収容部分が保護管外部に突出していることを特徴とする。
Moreover, the temperature detection body according to claim 4 of the present invention is the temperature detection body according to any one of claims 1 to 3,
The temperature detector further includes a protective tube that houses a lead-out portion of the flexible printed wiring board led out from the base end side sealing portion and a connection portion that electrically connects the flexible printed wiring board and the external lead-out cable, The glass tube temperature detecting portion housing portion protrudes to the outside of the protective tube while the proximal end side sealing portion of the glass tube and the vicinity thereof are supported by the distal end portion of the protective tube.

ガラス管は腐食しないため、先端部に金属保護管がなくても耐食性が高く、腐食性ガス中における温度検出にもこの温度検出体を問題なく使用できる。   Since the glass tube does not corrode, it has high corrosion resistance even without a metal protective tube at the tip, and this temperature detector can be used without any problem for temperature detection in corrosive gas.

なお、温度検出部は基板とこの基板の少なくとも一方の面に形成された金属膜からなるので、衝撃などを受けた際に発生する応力により検出温度がずれることがある。そのため、温度検出部自体に衝撃が加わったか否かを判断する必要がある。この温度検出部を収容するガラス管は衝撃に弱いので、ガラス管自体を金属保護管から突出させて外部にむき出すことで、ガラス管自体に衝撃が加わって割れ等が生じることで温度検出部自体にも衝撃が加わったことをその後いつでも知ることができる。   Since the temperature detection unit is made of a substrate and a metal film formed on at least one surface of the substrate, the detection temperature may be shifted due to stress generated when receiving an impact or the like. Therefore, it is necessary to determine whether or not an impact is applied to the temperature detection unit itself. Since the glass tube that houses this temperature detector is vulnerable to impact, the glass tube itself protrudes from the metal protective tube and is exposed to the outside. You can always know that you have also been shocked.

また、本発明の請求項5に記載の温度検出体は、請求項1乃至請求項4の何れかに記載の温度検出体において、
不活性ガス、セラミックス、絶縁性オイルの何れかを前記ガラス管内に充填したことを特徴としている。
Moreover, the temperature detection body according to claim 5 of the present invention is the temperature detection body according to any one of claims 1 to 4,
The glass tube is filled with any of inert gas, ceramics, and insulating oil.

好ましくは、窒素やアルゴンなどの不活性ガスをガラス管に封入することで、腐食性ガスや水分がガラス管の内部に入り込むのを防ぎ、ガラス管内部の部品(抵抗パターン、樹脂、コーティング材、電気的及び構造上の接続部)の腐食を防止することができ、より安定した温度検出特性を有する信頼性の高い温度検出体とすることができる。   Preferably, an inert gas such as nitrogen or argon is sealed in the glass tube to prevent corrosive gas or moisture from entering the glass tube, and components inside the glass tube (resistance pattern, resin, coating material, It is possible to prevent corrosion of the electrical and structural connection portions), and to provide a highly reliable temperature detection body having more stable temperature detection characteristics.

若しくは、好ましくは真空で脱泡した化学的に安定したシリコンオイルやフッ素オイルをガラス管に充填することで、ガラス管表面から温度検出部までの熱伝導性を高め、温度検出体周囲雰囲気の温度変化に対する応答性を向上させることができる。   Alternatively, preferably, the glass tube is filled with chemically stable silicon oil or fluorine oil degassed in a vacuum, thereby increasing the thermal conductivity from the surface of the glass tube to the temperature detection unit, and the temperature of the ambient temperature detection body Responsiveness to changes can be improved.

若しくは、ガラス粉末やセラミック粉末をガラス管に充填することで、温度検出素子をガラス管外部から認識することは難しくなるが、温度検出素子をガラス管内でよりしっかりと支持できるようになる。なお、この場合、超音波等の振動を加えながら充填した方が良い。これによって、ガラス管内におけるこれらの粉末の充填率を高めることができる。また、この粉末の隙間に窒素やアルゴンなどの不活性ガスを封入すると、腐食性ガスや水分がガラス管の内部に入り込むのを防ぎ、ガラス管内部の部品の腐食を防止することができる。   Alternatively, by filling the glass tube with glass powder or ceramic powder, it becomes difficult to recognize the temperature detection element from the outside of the glass tube, but the temperature detection element can be more firmly supported in the glass tube. In this case, it is better to fill while applying vibration such as ultrasonic waves. Thereby, the filling rate of these powders in the glass tube can be increased. In addition, if an inert gas such as nitrogen or argon is sealed in the gap between the powders, corrosive gas and moisture can be prevented from entering the glass tube, and corrosion of components inside the glass tube can be prevented.

また、本発明の請求項6に記載の温度検出体は、請求項1乃至請求項5の何れかに記載の温度検出体において、
前記ガラス管に代えて透明のプラスチック管を備えたことを特徴としている。
Moreover, the temperature detection body according to claim 6 of the present invention is the temperature detection body according to any one of claims 1 to 5,
Instead of the glass tube, a transparent plastic tube is provided.

このような透明のプラスチック管を温度検出体が備えることで、温度検出体を腐食性ガス中で使用できなくなるが、それ以外の請求項1乃至請求項5に記載の作用をそれぞれ対応して発揮することが十分可能である。   By providing such a transparent plastic tube in the temperature detection body, the temperature detection body cannot be used in a corrosive gas, but the other effects according to claims 1 to 5 are exhibited correspondingly. It is possible enough to do.

本発明によると、組み付け時に温度検出素子の組み付け状態を確認し易く使用中の振動にも強い高精度の温度センサを提供することができるようになる。   According to the present invention, it is possible to provide a high-accuracy temperature sensor that is easy to check the assembled state of the temperature detection element at the time of assembly and is resistant to vibration during use.

以下、本発明の一実施形態に係る温度検出体について図面に基づいて説明する。本発明の一実施形態に係る温度検出体1は、図1に示すように、内部に温度検出素子(温度検出部)150(図2参照)を収容したガラス管100と、ガラス管100の基端部に連結されSUS316などの耐食性に優れた金属でできた金属保護管20と、金属保護管内に収容されガラス管100から延在したいわゆるPWB(Printed Wire Board)と呼ばれるプリント配線板160に電気的に接続された中継基板(接続部)30と、同じく金属保護管内に一部が収容され中継基板30と電気的に接続されかつ温度検出素子150からの出力信号を外部に導くケーブル40を有している。   Hereinafter, a temperature detector according to an embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, a temperature detection body 1 according to an embodiment of the present invention includes a glass tube 100 in which a temperature detection element (temperature detection unit) 150 (see FIG. 2) is housed, and a base of the glass tube 100. Electricity is connected to a metal protective tube 20 made of a metal having excellent corrosion resistance such as SUS316 and a printed wiring board 160 called a PWB (Printed Wire Board) housed in the metal protective tube and extending from the glass tube 100. And a relay board (connecting portion) 30 connected to each other, and a cable 40 that is partly housed in a metal protective tube and is electrically connected to the relay board 30 and guides an output signal from the temperature detection element 150 to the outside. is doing.

温度検出素子150は、図2に示すように、上面に白金(Pt)の箔からなる抵抗体155が形成された細長のセラミック基板156からなり、温度検出素子150のセラミック基板156の下面にはこの温度検出素子150よりも長さの長いプリント配線板160が接着材を介して接合されている。温度検出素子150の抵抗体155は例えば厚さ3μm程度の白金箔で線幅が約10μm程度にパターニングして形成されており、その抵抗値は1000Ωとなっている。   As shown in FIG. 2, the temperature detection element 150 is composed of an elongated ceramic substrate 156 having a resistor 155 made of platinum (Pt) foil on the upper surface, and the lower surface of the ceramic substrate 156 of the temperature detection element 150 is formed on the lower surface. A printed wiring board 160 having a length longer than that of the temperature detecting element 150 is bonded via an adhesive. The resistor 155 of the temperature detection element 150 is formed by patterning a line width of about 10 μm with a platinum foil of about 3 μm in thickness, for example, and its resistance value is 1000Ω.

ガラス管100は本実施形態の場合、石英ガラスでできており、例えばφ1mmと極めて細いガラス管が用いられ、かつガラス管100の両端が開口しており、ガラス管100の先端側開口部101ではプリント配線板160の先端161をエポキシ樹脂からなる接着材によって支持しながら当該ガラス管の先端側開口部101をこの接着材によって密封することで先端側密封支持部110を形成している。   In this embodiment, the glass tube 100 is made of quartz glass. For example, a very thin glass tube having a diameter of 1 mm is used, and both ends of the glass tube 100 are open. The front end side sealing support portion 110 is formed by sealing the front end side opening 101 of the glass tube with this adhesive while supporting the front end 161 of the printed wiring board 160 with an adhesive made of epoxy resin.

また、ガラス管100の基端側開口部102からはプリント配線板160が金属保護管内の中継基板30に向かって延在している。ガラス管100の基端側開口部102ではプリント配線板160をこのように延在させた状態でエポキシ樹脂からなる接着材によって支持しながら基端側開口部102をこの接着材によって密封することで基端側密封支持部120を形成している。そして、ガラス管100の内部は先端側密封支持部110と基端側密封支持部120とで完全に密封され、その内部には窒素やアルゴン等の不活性ガスが充填され、温度検出体外部の腐食性ガスや水分がガラス管内に入り込んでガラス管内部の部品(抵抗パターンや樹脂やコーティング材や電気的及び構造上の接続部)を腐食させないようになっている。   Further, the printed wiring board 160 extends from the proximal end side opening 102 of the glass tube 100 toward the relay substrate 30 in the metal protective tube. The base end side opening 102 of the glass tube 100 is sealed with the adhesive while the printed wiring board 160 is supported by the adhesive made of epoxy resin in the state where the printed wiring board 160 is extended in this manner. A proximal side sealing support 120 is formed. The inside of the glass tube 100 is completely sealed by the distal end side sealing support part 110 and the proximal end side sealing support part 120, and the inside thereof is filled with an inert gas such as nitrogen or argon, Corrosive gas and moisture are prevented from entering the glass tube and corroding the components inside the glass tube (resistance pattern, resin, coating material, and electrical and structural connections).

プリント配線板160には本実施形態の場合、厚さが0.2mm以下と極めて薄く十分な可撓性を有するフレキシブルプリント配線板が用いられている。そして、図3に示すプリント配線板160の下層に延在した2本の導体部165,166が先端でスルーホールを介して図4に示す上層の検出素子先端側接続電極165a,166aとそれぞれ電気的に接続されている。この導体部165,166はその長手方向の基端側においてプリント配線板160の基端側端部163に向かって互いに離間するようにハの字状をなして延在形成され、プリント配線板160の基端側端部163において互いに間隔A(図3参照)だけ隔てながらスルーホールを介して下層と上層が接続された状態でケーブル接続側電極165b,166bを形成している。   In the case of this embodiment, the printed wiring board 160 is a flexible printed wiring board that is extremely thin with a thickness of 0.2 mm or less and has sufficient flexibility. The two conductor portions 165 and 166 extending to the lower layer of the printed wiring board 160 shown in FIG. 3 are electrically connected to the upper detection element tip side connection electrodes 165a and 166a shown in FIG. Connected. The conductor portions 165 and 166 are formed in a C-shape so as to be spaced apart from each other toward the proximal end portion 163 of the printed wiring board 160 on the proximal end side in the longitudinal direction. The cable connection side electrodes 165b and 166b are formed in a state in which the lower layer and the upper layer are connected to each other through a through hole while being separated from each other by a distance A (see FIG. 3).

また、図4に示すプリント配線板160の上層には検出素子先端側接続電極165a,166aと温度検出素子150の長さに対応して離間した検出素子基端側接続電極167a,168aが形成され、この検出素子基端側接続電極167a,168aから互いにほぼ平行に導体部167,168がプリント配線板160の基端側端部163に向かって延在し、プリント配線板160の基端側端部163において互いに間隔Bを隔てながらスルーホールを介して下層と上層が接続された状態でケーブル接続側電極167b,168bを形成している。   In addition, detection element base end side connection electrodes 167a and 168a spaced apart corresponding to the lengths of the temperature detection element 150 and the detection element front end side connection electrodes 165a and 166a are formed on the upper layer of the printed wiring board 160 shown in FIG. The conductor portions 167 and 168 extend from the detection element base end side connection electrodes 167a and 168a substantially parallel to each other toward the base end side end portion 163 of the printed wiring board 160, and the base end side end of the printed wiring board 160 In the portion 163, the cable connection side electrodes 167b and 168b are formed in a state in which the lower layer and the upper layer are connected to each other through a through hole while being spaced apart from each other by a distance B.

温度検出素子150は、上述したように上面に白金(Pt)の箔からなる抵抗体155が形成された例えば幅0.8mm、長さ8mm、厚さ0.25mm程度の細長のアルミナでできたセラミック基板からなり、その製造工程は以下の通りとなっている。   The temperature detection element 150 is made of, for example, elongated alumina having a width of 0.8 mm, a length of 8 mm, and a thickness of about 0.25 mm in which the resistor 155 made of platinum (Pt) foil is formed on the upper surface as described above. It consists of a ceramic substrate, and its manufacturing process is as follows.

最初に、セラミック基板に白金の箔を接着し、箔の表面処理を行い、抵抗用レジストを塗布し、抵抗用レジストパターンを作成し、抵抗パターン作成(エッチング)し、抵抗用レジストを剥離する。そして、電極用レジストを塗布し、電極用レジストパターンを作成し、電極(金)メッキを行い、電極用レジストを剥離する。そして、パターン保護用レジストを塗布し、パターン保護用レジストエッチングを行って電極部分だけ露出させる。   First, a platinum foil is bonded to a ceramic substrate, the foil is subjected to surface treatment, a resist for resist is applied, a resist resist pattern is created, a resist pattern is created (etched), and the resist resist is peeled off. Then, an electrode resist is applied, an electrode resist pattern is created, electrode (gold) plating is performed, and the electrode resist is peeled off. Then, a resist for pattern protection is applied, and resist etching for pattern protection is performed to expose only the electrode portion.

このようにして製造された温度検出素子150を用いた温度検出体1の組み付け方法について以下に説明する。まず、温度検出素子150の下面に形成された電極150aとプリント配線板160の電極(図5(a)では電極165aを代表的に図示)を図5(a)に示すように半田接合するか、図5(b)に示すように温度検出素子150の上面に形成された電極150bとプリント配線板160の電極(図5(b)では電極165aを代表的に図示)とを金(Au)のワイヤ171でワイヤボンディングしてこれらの電極間を電気的に接続した後、この周囲をエポキシ樹脂などの補強用樹脂172で囲繞することで外部からの絶縁を図ると共に電気接続部の補強を図る。   A method for assembling the temperature detection body 1 using the temperature detection element 150 manufactured as described above will be described below. First, whether the electrode 150a formed on the lower surface of the temperature detection element 150 and the electrode of the printed wiring board 160 (the electrode 165a is representatively shown in FIG. 5A) are soldered as shown in FIG. 5A. As shown in FIG. 5B, the electrode 150b formed on the upper surface of the temperature detecting element 150 and the electrode of the printed wiring board 160 (the electrode 165a is representatively shown in FIG. 5B) are gold (Au). Then, these electrodes are electrically connected to each other and then surrounded by a reinforcing resin 172 such as an epoxy resin so as to insulate from the outside and reinforce the electrical connection portion. .

図6は上述のように互いに接合された温度検出素子とプリント配線板を4枚並べた状態を示している。このように、温度検出素子150とプリント配線板160を一度に纏めて接合すると温度検出体1の製造効率を高めることができる。   FIG. 6 shows a state in which four temperature detecting elements and printed wiring boards joined together as described above are arranged. Thus, if the temperature detection element 150 and the printed wiring board 160 are joined together at once, the manufacturing efficiency of the temperature detection body 1 can be increased.

そして、この温度検出素子150及びこれが接合されたプリント配線板160を両端が開放した透明のガラス管100に挿入し、当該ガラス管の基端側開口部102からプリント配線板160を一部外部に延在させた状態でガラス管100の両端部をエポキシ樹脂からなる接着材によって封止して、先端側密封支持部110と基端側密封支持部120を形成する(図7参照)。これによって、温度検出素子150の接合されたプリント配線板160はガラス管100内で両端支持構造のまま密封収容される。   Then, the temperature detecting element 150 and the printed wiring board 160 to which the temperature detecting element 150 is bonded are inserted into the transparent glass tube 100 having both ends open, and the printed wiring board 160 is partially exposed to the outside from the proximal end side opening 102 of the glass tube. In the extended state, both ends of the glass tube 100 are sealed with an adhesive made of epoxy resin to form the distal end side sealing support portion 110 and the proximal end side sealing support portion 120 (see FIG. 7). As a result, the printed wiring board 160 to which the temperature detecting element 150 is bonded is hermetically accommodated in the glass tube 100 with the both-end support structure.

次いで、図8(a)に示すように、プリント配線板の端部にプリント配線板160のケーブル接続側電極165b,166b(図8(a)では図示せず)と中継基板30を半田等公知の電気的接続手段によって接続した後、この接続部をエポキシ樹脂などの補強用樹脂81によって囲繞する。ケーブル被覆部41から露出した導線42,43を半田等によって中継基板30に接続する。そして、図8(b)に示すように、熱収縮チューブ83をプリント配線板160の基端側端部163、中継基板30、導線42,43、及びケーブル被覆部41の端部まで被せ、加熱して熱収縮チューブ83を収縮させ、外部からの絶縁性を高める。これと共に、ケーブルの被覆部先端近傍にケーブル抜け防止用のスプライス(抜け止め具)82を加締める。   Next, as shown in FIG. 8A, the cable connection side electrodes 165b and 166b (not shown in FIG. 8A) of the printed wiring board 160 and the relay substrate 30 are soldered to the end of the printed wiring board. Then, the connection portion is surrounded by a reinforcing resin 81 such as an epoxy resin. The conductive wires 42 and 43 exposed from the cable covering portion 41 are connected to the relay substrate 30 by solder or the like. Then, as shown in FIG. 8B, the heat shrinkable tube 83 is covered to the base end side end portion 163 of the printed wiring board 160, the relay substrate 30, the conductors 42 and 43, and the end portions of the cable covering portion 41 and heated. Thus, the heat shrinkable tube 83 is contracted to enhance the insulation from the outside. At the same time, a splicing (preventing tool) 82 for preventing the cable from coming off is caulked in the vicinity of the tip of the cable covering portion.

次いで、金属保護管内全体に図1に示すエポキシ樹脂85を充填し、ガラス管100及びこれから一部延在したプリント配線板160と中継基板30、ケーブル40の一部を金属保護管20にその拡径側端部開口部(図1中右側)から挿入する。そして、ガラス管100がその基端部を除いて金属保護管20の先端から外部に突出するまでこれらを挿入する。そして、ガラス管100から導出したプリント配線板160、中継基板30、ケーブル40を金属保護管20に収容したまま、エポキシ樹脂85を硬化させる。この際、プリント配線板160はフレキシブルで可撓性を有するので、プリント配線板160が金属保護管内で適度に撓んで中継基板30やケーブル40に関する金属保護管内の配置の自由度を高めることができる。なお、エポキシ樹脂85が硬化した後は、スプライス82のアンカー効果により金属保護管20からこれらの部品が脱抜するのを確実に防止する。   Next, the entire inside of the metal protective tube is filled with the epoxy resin 85 shown in FIG. 1, and the glass tube 100 and the printed wiring board 160 partially extending therefrom, the relay substrate 30, and a part of the cable 40 are expanded on the metal protective tube 20. It inserts from a diameter side edge part opening part (right side in FIG. 1). And these are inserted until the glass tube 100 protrudes outside from the front-end | tip of the metal protective tube 20 except the base end part. Then, the epoxy resin 85 is cured while the printed wiring board 160, the relay board 30, and the cable 40 led out from the glass tube 100 are accommodated in the metal protective tube 20. At this time, since the printed wiring board 160 is flexible and flexible, the printed wiring board 160 can be appropriately bent in the metal protective tube, and the degree of freedom in arrangement of the relay substrate 30 and the cable 40 in the metal protective tube can be increased. . In addition, after the epoxy resin 85 is hardened, these parts are reliably prevented from being detached from the metal protective tube 20 by the anchor effect of the splice 82.

上述のようにして組み付けられた温度検出体1は、以下のような作用を生じる。まず、温度検出素子150がセラミック基板156とこのセラミック基板156の上面に形成された白金箔の抵抗体155からなるので、温度検出素子150の抵抗値を例えば1000Ωと従来の温度検出素子に較べてかなり高抵抗にできる。そのため、温度検出に当たって温度検出素子150に流す電流を例えば0.1mAと小さくすることができ、その結果、温度検出素子150の自己発熱時において温度検出素子周辺の気体の対流が生じても検出対象物の温度上昇を最小限に抑えることができ、温度検出素子150の自己発熱による影響を受けずに温度測定を行うことが可能となる。   The temperature detector 1 assembled as described above produces the following action. First, since the temperature detection element 150 includes a ceramic substrate 156 and a platinum foil resistor 155 formed on the upper surface of the ceramic substrate 156, the resistance value of the temperature detection element 150 is, for example, 1000Ω, compared to a conventional temperature detection element. Can be quite high resistance. Therefore, the current flowing through the temperature detection element 150 during temperature detection can be reduced to, for example, 0.1 mA. As a result, even if convection of gas around the temperature detection element occurs during the self-heating of the temperature detection element 150, the detection target An increase in the temperature of the object can be minimized, and temperature measurement can be performed without being affected by the self-heating of the temperature detection element 150.

更に、先端側密封支持部110と基端側密封支持部120により両端が接着材で密封されたガラス管100に温度検出素子150がパッケージングされているので、温度検出素子150の大きさが非常の小さいにも関わらずガラス管内でどのように組み付けられているかや温度検出素子150へのゴミ等の付着の有無を組み付け中及び組み付け後に確認できる。また、温度検出素子150がガラス管内に収容されているので、温度検出素子150の電気的導通部分が金属保護管20に接触して短絡するおそれが無く、温度検出体1の耐電圧を高めることが可能である。   Furthermore, since the temperature detection element 150 is packaged in the glass tube 100 whose both ends are sealed with an adhesive by the distal end side sealing support part 110 and the proximal end side sealing support part 120, the size of the temperature detection element 150 is very large. In spite of the small size, it is possible to confirm how the glass tube is assembled in the glass tube and whether dust or the like is attached to the temperature detection element 150 during and after the assembly. Moreover, since the temperature detection element 150 is accommodated in the glass tube, there is no possibility that the electrically conductive portion of the temperature detection element 150 contacts the metal protective tube 20 and short-circuits, and the withstand voltage of the temperature detection body 1 is increased. Is possible.

また、金属保護管に温度検出素子全体がパッケージングされて金属保護管自体を腐食性雰囲気中に晒す場合のように金属保護管の錆びによる腐食防止に注意を払う必要もない。   Further, it is not necessary to pay attention to preventing corrosion due to rust of the metal protective tube as in the case where the entire temperature detecting element is packaged in the metal protective tube and the metal protective tube itself is exposed to a corrosive atmosphere.

また、温度検出素子150が接合されたプリント配線板160がガラス管100の両端の先端側密封支持部110と基端側密封支持部120により両持ち梁構造で支持されているので、片持ち梁構造の温度検出素子のように温度検出体の使用中に温度検出体に加わった振動により温度検出素子が余計に振れることがなく、振動等の影響を直接受けないで済む。   In addition, since the printed wiring board 160 to which the temperature detection element 150 is bonded is supported by the distal end side sealing support portions 110 and the proximal end side sealing support portions 120 at both ends of the glass tube 100 in a cantilever structure, Like the temperature detecting element having the structure, the temperature detecting element is not excessively shaken by vibration applied to the temperature detecting body during use of the temperature detecting body, and is not directly affected by vibration or the like.

また、温度検出素子150はセラミック基板156とこのセラミック基板156の一方の面に形成された白金箔の抵抗体155からなるので、衝撃などを受けた際に発生する応力により検出温度がずれることがある。そのため、温度検出素子自体に衝撃が加わったか否かを判断する必要がある。そして、本実施形態にかかる温度検出体1は金属製の保護管20の先端部からガラス管100が外部雰囲気に晒されたまま突出した構成となっており、ガラス管自体は衝撃に弱いので、ガラス管100に衝撃が加わって割れることで、温度検出素子自体にも衝撃が加わったことをその後にいつでも知ることができる。   Further, since the temperature detection element 150 includes the ceramic substrate 156 and the platinum foil resistor 155 formed on one surface of the ceramic substrate 156, the detection temperature may be shifted due to stress generated when receiving an impact or the like. is there. Therefore, it is necessary to determine whether or not an impact is applied to the temperature detection element itself. And the temperature detection body 1 concerning this embodiment becomes the structure which the glass tube 100 protruded from the front-end | tip part of the metal protective tube 20 exposed to the external atmosphere, and since the glass tube itself is weak to an impact, By applying an impact to the glass tube 100 and cracking it, it can be known at any time thereafter that the impact has also been applied to the temperature detection element itself.

なお、上述の実施形態においては中継基板30を介してプリント配線板160とケーブル40の導線42,43とを電気的に接続していたが、必ずしもこれに限定されず、中継基板を省略してプリント配線板の電極部に外部配線を直接接続しても構わない。   In the above-described embodiment, the printed wiring board 160 and the conductors 42 and 43 of the cable 40 are electrically connected via the relay board 30. However, the present invention is not limited to this, and the relay board is omitted. You may connect an external wiring directly to the electrode part of a printed wiring board.

続いて、上述の実施形態の幾つかの変形例について説明する。係る各変形例は上述の実施形態のガラス管内における温度検出素子及びプリント配線板の支持構造のみを変更したもので、その他の構成については上述した実施形態と同様であるので、ガラス管、温度検出素子、及びプリント配線板については対応する符号を付して詳細な説明を省略し、その他の構成、即ち金属保護管、中継基板、及びケーブルについては図示を省略する。また、これらの変形例においても中継基板を必ずしも必要としないことは上述の実施形態の場合と同様である。   Subsequently, some modifications of the above-described embodiment will be described. Each of the modified examples is obtained by changing only the support structure of the temperature detection element and the printed wiring board in the glass tube of the above-described embodiment, and other configurations are the same as those of the above-described embodiment. The elements and the printed wiring board are denoted by the corresponding reference numerals and detailed description thereof is omitted, and the other components, that is, the metal protective tube, the relay board, and the cable are not shown. In these modified examples, the relay board is not necessarily required, as in the case of the above-described embodiment.

まず、本実施形態に係る温度検出体の第1変形例について説明する。この第1変形例にかかる温度検出体2は、図9に示すように、セラミック基板の先端側をガラス管200の先端側開口部201から僅かに突出させたままエポキシ樹脂の接着材によって支持しかつこの接着材によってガラス管200の先端側開口部201を密封して先端側密封支持部210を形成している。また、ガラス管200の基端側開口部202は上述の実施形態と同様にこの基端側開口部202から金属保護管20に向かって延在したプリント配線板260をエポキシ樹指の接着材によって支持しかつこの接着材によってガラス管200の基端側開口部202を密封して基端側密封支持部220を形成している。このような構成を有するガラス管200に上述した温度検出体の製造方法に基づいて中継基板30やケーブル40を接続し、これらを金属保護管20に取り付けて温度検出体2を完成させる。   First, the 1st modification of the temperature detection body which concerns on this embodiment is demonstrated. As shown in FIG. 9, the temperature detector 2 according to the first modification is supported by an epoxy resin adhesive with the tip side of the ceramic substrate slightly protruding from the tip side opening 201 of the glass tube 200. And the front end side opening part 201 of the glass tube 200 is sealed with this adhesive material, and the front end side sealing support part 210 is formed. In addition, the base end side opening 202 of the glass tube 200 is formed by bonding the printed wiring board 260 extending from the base end side opening 202 toward the metal protective tube 20 with an epoxy resin adhesive as in the above-described embodiment. The base end side opening 202 of the glass tube 200 is sealed by this adhesive and the base end side sealing support portion 220 is formed. The relay board 30 and the cable 40 are connected to the glass tube 200 having such a configuration based on the above-described manufacturing method of the temperature detector, and these are attached to the metal protective tube 20 to complete the temperature detector 2.

このような構成を有する温度検出体2によっても、上述した実施形態と同様の作用、即ち温度検出素子250の自己発熱による影響を最小限に抑えた温度測定を可能とする。また、温度検出素子250がガラス管内でどのように組み付けられているか、温度検出素子自体にゴミ等が付着しているか否かを組み付け中及び組み付け後に確認できる。また、温度検出素子250の電気的導通部分が金属保護管20に接触して短絡するおそれが無く温度検出体2の耐電圧を高くすることができる。   The temperature detector 2 having such a configuration also enables temperature measurement with the same effect as that of the above-described embodiment, that is, the influence of self-heating of the temperature detection element 250 is minimized. In addition, it is possible to check how the temperature detection element 250 is assembled in the glass tube and whether dust or the like is attached to the temperature detection element itself during and after the assembly. Further, there is no possibility that the electrically conducting portion of the temperature detecting element 250 contacts the metal protective tube 20 and short-circuits, and the withstand voltage of the temperature detecting body 2 can be increased.

また、金属保護管に温度検出素子全体がパッケージングされて金属保護管自体を腐食性雰囲気中に晒す場合のように金属保護管の錆びによる腐食防止に注意を払う必要もない。   Further, it is not necessary to pay attention to preventing corrosion due to rust of the metal protective tube as in the case where the entire temperature detecting element is packaged in the metal protective tube and the metal protective tube itself is exposed to a corrosive atmosphere.

また、片持ち梁構造の温度検出素子のように温度検出体の使用中に温度検出体に加わった振動により温度検出素子が余計に振れることがなく、振動等の影響を受けるのを防止できる。   In addition, the temperature detection element is not excessively shaken by vibration applied to the temperature detection body during use of the temperature detection body, such as a temperature detection element having a cantilever structure, and the influence of vibration or the like can be prevented.

また、ガラス管自体に衝撃が加わって割れが生じることで温度検出素子自体にも衝撃が加わったことをその後いつでも知ることができる。   In addition, it is possible to know at any time thereafter that the impact has been applied to the temperature detection element itself by applying an impact to the glass tube itself and causing a crack.

続いて、本実施形態に係る温度検出体の第2変形例について説明する。この第2変形例にかかる温度検出体3は、図10に示すように、セラミック基板356の先端側をガラス管300の先端側開口部301から僅かに突出させたまま接着材によって支持しかつこの接着材によってガラス管300の先端側開口部301を密封することで先端側密封支持部310を形成している。また、ガラス管300の基端側開口部302においてはセラミック基板356の基端側端部をガラス管300の基端側開口部302から若干突出させたままこのセラミック基板356に接合され金属保護管20に向かって延在したプリント配線板360とともにエポキシ樹脂の接着材によって支持しかつこの接着材によってガラス管300の基端側開口部302を密封することで基端側密封支持部320を形成している。そして、このような構成を有するガラス管300に上述した温度検出体1,2の製造方法に基づいて中継基板30やケーブル40を接続し、これを金属保護管20に取り付けて温度検出体3を完成させている。   Then, the 2nd modification of the temperature detection body which concerns on this embodiment is demonstrated. As shown in FIG. 10, the temperature detector 3 according to the second modified example is supported by an adhesive while the front end side of the ceramic substrate 356 is slightly projected from the front end side opening 301 of the glass tube 300. The distal end side sealing support portion 310 is formed by sealing the distal end side opening 301 of the glass tube 300 with an adhesive. Further, in the base end side opening 302 of the glass tube 300, the base end side end of the ceramic substrate 356 is joined to the ceramic substrate 356 while slightly protruding from the base end side opening 302 of the glass tube 300, and the metal protective tube is joined. The base end side sealing support 320 is formed by supporting the printed wiring board 360 extending toward the base plate 20 with an epoxy resin adhesive and sealing the base end opening 302 of the glass tube 300 with the adhesive. ing. Then, the relay board 30 and the cable 40 are connected to the glass tube 300 having such a configuration based on the above-described manufacturing method of the temperature detectors 1 and 2, and the temperature detector 3 is attached to the metal protective tube 20. It has been completed.

このような構成を有する温度検出体3によっても、上述した実施形態及びその変形例と同様の作用、即ち高精度の温度測定を行うことが可能となる。また、温度検出素子350の組み付け状態やゴミ等付着の有無を組み付け中及び組み付け後に確認できる。また、温度検出体3の耐電圧を高くすることができる。また、金属保護管の錆びによる腐食防止に注意を払う必要もない。また、温度検出体3に加わる振動等の影響を温度検出素子350が直接受けるのを防止できる。また、ガラス管300が割れることで温度検出素子自体にも衝撃が加わったことをその後いつでも知ることができる。   Also with the temperature detector 3 having such a configuration, it is possible to perform the same operation as the above-described embodiment and its modification, that is, highly accurate temperature measurement. Further, the assembled state of the temperature detecting element 350 and the presence or absence of dust or the like can be confirmed during and after the assembly. Moreover, the withstand voltage of the temperature detector 3 can be increased. Moreover, it is not necessary to pay attention to preventing corrosion due to rust of the metal protective tube. Further, it is possible to prevent the temperature detection element 350 from being directly affected by vibrations applied to the temperature detection body 3. Further, it can be known at any time after that that the glass tube 300 is broken so that an impact is also applied to the temperature detecting element itself.

続いて、本実施形態に係る温度検出体の第3変形例について説明する。この第3変形例にかかる温度検出体4では、図11に示すように、上述の実施形態及びその第1変形例及び第2変形例と異なり、温度検出体先端側が元々閉塞し、温度検出体基端側のみが開口した片端開口のガラス管400を使用している。   Then, the 3rd modification of the temperature detection body which concerns on this embodiment is demonstrated. In the temperature detector 4 according to the third modified example, as shown in FIG. 11, unlike the above-described embodiment and the first modified example and the second modified example, the front end side of the temperature detector is originally closed, A glass tube 400 having one end opened only at the base end side is used.

そして、プリント配線板460の先端をガラス管先端底部においてエポキシ樹脂の接着材を固着して形成された先端側支持部410を介して支持するとともに、ガラス管400の基端側開口部402は上述の実施形態と同様にこの基端側開口部402から金属保護管20に向かって延在したプリント配線板460をエポキシ樹脂の接着材によって支持しかつこの接着材によってガラス管の基端側開口部402を密封することで基端側密封支持部420を形成している。そして、このような構成を有するガラス管400に上述した温度検出体の製造方法に基づいて中継基板30やケーブル40を接続し、これを金属保護管20に取り付けて温度検出体4を完成させている。なお、先端側支持部410を構成するエポキシ樹脂をプリント配線板460及び温度検出素子450をガラス管内に挿入する前にガラス管400の先端側底部にくっ付けておいても良く、このエポキシ樹脂をプリント配線板460の先端に予めくっ付けておいてプリント配線板460とともにガラス管内に挿入しても良い。   And while supporting the front-end | tip of the printed wiring board 460 through the front end side support part 410 formed by adhering the adhesive material of an epoxy resin in the bottom end part of a glass tube, the base end side opening part 402 of the glass tube 400 is mentioned above. As in the embodiment, the printed wiring board 460 extending from the proximal end opening 402 toward the metal protective tube 20 is supported by an epoxy resin adhesive, and the proximal end opening of the glass tube is supported by the adhesive. By sealing 402, the base end side sealing support part 420 is formed. Then, the relay substrate 30 and the cable 40 are connected to the glass tube 400 having such a configuration based on the above-described manufacturing method of the temperature detector, and the temperature detector 4 is completed by attaching it to the metal protective tube 20. Yes. Note that the epoxy resin constituting the tip side support portion 410 may be attached to the bottom side of the tip side of the glass tube 400 before the printed wiring board 460 and the temperature detecting element 450 are inserted into the glass tube. The printed wiring board 460 may be attached to the tip of the printed wiring board 460 in advance and inserted into the glass tube together with the printed wiring board 460.

このような構成を有する温度検出体4によっても、上述した実施形態及びその変形例と同様の作用、即ち高精度の温度測定を行うことが可能となる。また、温度検出素子450の組み付け状態やゴミ等付着の有無を組み付け中及び組み付け後に確認できる。また、温度検出体4の耐電圧を高くすることができる。また、金属保護管20の錆びによる腐食防止に注意を払う必要がない。また、温度検出体4に加わる振動等の影響を温度検出素子450が直接受けるのを防止できる。   Also by the temperature detector 4 having such a configuration, it is possible to perform the same operation as the above-described embodiment and its modification, that is, highly accurate temperature measurement. Further, the assembled state of the temperature detecting element 450 and the presence or absence of dust or the like can be confirmed during and after the assembly. Further, the withstand voltage of the temperature detector 4 can be increased. Moreover, it is not necessary to pay attention to preventing corrosion due to rust of the metal protective tube 20. Further, it is possible to prevent the temperature detection element 450 from being directly affected by vibrations applied to the temperature detection body 4.

これに加えて、ガラス管400の先端部が元々閉塞しているので、温度検出体450の組み付け時にこの部分の密封性を確認する必要がない。また、ガラス管400が割れることで温度検出素子自体にも衝撃が加わったことをその後にいつでも知ることができる。   In addition to this, since the tip of the glass tube 400 is originally closed, it is not necessary to check the sealing performance of this portion when the temperature detector 450 is assembled. Further, it can be known at any time after that that the glass tube 400 is broken, and that the temperature detection element itself is also impacted.

続いて、本実施形態にかかる温度検出体の第4変形例について説明する。この第4変形例にかかる温度検出体5においても、上述の第3変形例と同様に、温度検出体先端側が元々閉塞し、温度検出体のガラス管の基端側が開口した片端開口のガラス管500を使用している。   Then, the 4th modification of the temperature detection body concerning this embodiment is demonstrated. Also in the temperature detector 5 according to the fourth modified example, similarly to the above-described third modified example, the tip end side of the temperature detector is originally closed, and the glass tube of one end opening in which the base end side of the glass tube of the temperature detector is opened. 500 is used.

そして、図12に示すように、セラミック基板556の先端をガラス管先端底部において接着材を固着して形成された先端側支持部510を介して支持するとともに、ガラス管500の基端側開口部562では、第2変形例と同様にセラミック基板556の基端側端部をガラス管500の基端側開口部502から若干突出させたままこのセラミック基板556に接合され金属保護管20に向かって延在したプリント配線板560とともにエポキシ樹脂の接着材で支持し、かつこの接着材によってガラス管500の基端側開口部502を密封することで基端側密封支持部520を形成している。   And as shown in FIG. 12, while supporting the front-end | tip of the ceramic board | substrate 556 via the front end side support part 510 formed by adhering an adhesive material in the glass tube front-end | tip bottom part, the base end side opening part of the glass tube 500 is supported. At 562, the base end side end portion of the ceramic substrate 556 is slightly protruded from the base end side opening 502 of the glass tube 500 and joined to the ceramic substrate 556 toward the metal protective tube 20 as in the second modification. The proximal printed wiring board 560 is supported by an epoxy resin adhesive, and the proximal end opening 502 of the glass tube 500 is sealed by this adhesive to form a proximal end sealing support 520.

このような構成によっても、上述した実施形態及びその変形例と同様の作用、即ち高精度の温度測定を行うことが可能となる。また、温度検出素子550の組み付け状態やゴミ等付着の有無を組み付け中及び組み付け後に確認できる。また、温度検出体5の耐電圧を高めることができる。また、金属保護管の錆びによる腐食防止に注意を払う必要がない。また、温度検出体5に加わる振動等の影響を温度検出素子550が直接受けるのを防止できる。   Even with such a configuration, it is possible to perform the same operation as that of the above-described embodiment and its modification, that is, highly accurate temperature measurement. Further, the assembled state of the temperature detection element 550 and the presence or absence of dust or the like can be confirmed during and after the assembly. In addition, the withstand voltage of the temperature detector 5 can be increased. Moreover, it is not necessary to pay attention to preventing corrosion due to rust of the metal protective tube. Further, it is possible to prevent the temperature detection element 550 from being directly affected by vibration or the like applied to the temperature detection body 5.

また、第3変形例と同様に、ガラス管500の先端部が元々閉塞しているので、温度検出体5の組み付け時にこの部分の密封性を確認する必要がない。また、ガラス管500が割れることで温度検出素子自体にも衝撃が加わったことをその後いつでも知ることができる。   Moreover, since the front-end | tip part of the glass tube 500 is obstruct | occluded originally like the 3rd modification, it is not necessary to confirm the sealing performance of this part at the time of the assembly | attachment of the temperature detection body 5. FIG. Further, it can be known at any time after that that the glass tube 500 is broken and an impact is applied to the temperature detecting element itself.

図13は、本実施形態に係る温度検出体の第5変形例を示している。この温度検出体6の場合も、第3変形例及び第4変形例と同様に、一端のみが開口されたガラス管600を用いているが、セラミック基板656の先端側をガラス管600の先端底部に形成された先端側支持部610を介して支持するとともに、プリント配線板660を支持しながらガラス管600の基端側開口部602を基端側密封支持部620で密封している点で構成が異なっている。しかしながら、この作用については第3変形例及び第4変形例と同様となっている。   FIG. 13 shows a fifth modification of the temperature detector according to this embodiment. In the case of this temperature detection body 6 as well, the glass tube 600 having only one end opened is used as in the third and fourth modifications, but the tip end side of the ceramic substrate 656 is the bottom end of the glass tube 600. The base end side opening 602 of the glass tube 600 is sealed with the base end side sealing support portion 620 while supporting the printed wiring board 660 while supporting the printed wiring board 660. Is different. However, this action is the same as in the third and fourth modifications.

なお、上述の実施形態及びその各種変形例のように温度検出素子又はプリント配線板の先端をガラス管の先端に接着材で固定する代わりに、図14に示すような長手方向所定位置に幅方向に突出するプリント配線板支持部761〜764が備わったプリント配線板760を用い、このプリント配線板支持部を図15(a)及び図15(b)に示すように、各ガラス管の内周面に接触させることで当該プリント配線板内に所定の姿勢で支持するようにしても良い。   Instead of fixing the tip of the temperature detecting element or the printed wiring board to the tip of the glass tube with an adhesive as in the above-described embodiment and its various modifications, the width direction is set at a predetermined position in the longitudinal direction as shown in FIG. The printed wiring board 760 provided with the printed wiring board support portions 761 to 764 protruding to the inner periphery of each glass tube as shown in FIGS. 15 (a) and 15 (b). You may make it support in a predetermined attitude | position in the said printed wiring board by making it contact a surface.

プリント配線板支持部は図15(a)に示すプリント配線板支持部歩761〜764のように或る程度の突出量に抑えても良く、図15(b)に示すプリント配線板支持部765〜768のようにかなり突出してガラス管内周面に沿って一定距離延在するようにしても良い。なお、図15(a)はプリント基板支持部761〜764の突出量が小さく、予め決まった内径のガラス管内にプリント配線板760と温度検出素子750を支持する場合を示し、図15(b)はプリント基板支持部765〜768の突出量が大きく、様々な内径のガラス管内にプリント配線板760と温度検出素子750を支持する場合を示している。   The printed wiring board support portion may be limited to a certain amount of protrusion like printed wiring board support portion steps 761 to 764 shown in FIG. 15A, and the printed wiring board support portion 765 shown in FIG. ˜768 and may extend a certain distance along the inner peripheral surface of the glass tube. FIG. 15A shows a case where the printed circuit board support portions 761 to 764 have a small protruding amount and the printed wiring board 760 and the temperature detecting element 750 are supported in a glass tube having a predetermined inner diameter, and FIG. Shows a case in which the printed board support portions 765 to 768 have a large protruding amount, and the printed wiring board 760 and the temperature detecting element 750 are supported in glass tubes having various inner diameters.

ガラス管内のプリント配線板760の支持構造をこのようにすることによっても、上述した実施形態及びその変形例と同様の作用、即ち高精度の温度測定を行うことが可能となる。また、温度検出素子の組み付け状態の確認やゴミ等付着の有無を組み付け中及び組み付け後に確認できる。また、温度検出体7の耐電圧を高くすることができる。また、金属保護管の錆びによる腐食防止に注意を払う必要もない。   Also by making the support structure of the printed wiring board 760 in the glass tube in this way, it becomes possible to perform the same operation as the above-described embodiment and its modification, that is, highly accurate temperature measurement. Further, it is possible to confirm the assembled state of the temperature detection element and whether or not dust or the like is attached during or after the assembly. Further, the withstand voltage of the temperature detector 7 can be increased. Moreover, it is not necessary to pay attention to preventing corrosion due to rust of the metal protective tube.

また、温度検出素子がガラス管内に片持ち梁構造で支持されていても、プリント配線板の幅方向に突出するプリント配線板支持部がガラス管の内周面に接触することで当該ガラス管内に所定の姿勢で支持することができ、温度検出体が振動を受けてもこれに収容されたプリント配線板が余計に振れたりすることなく、振動の影響を温度検出素子に直接及ぼさずに済む。   In addition, even if the temperature detection element is supported in a cantilever structure in the glass tube, the printed wiring board support portion protruding in the width direction of the printed wiring board comes into contact with the inner peripheral surface of the glass tube, so It can be supported in a predetermined posture, and even if the temperature detection body receives vibration, the printed wiring board accommodated in the temperature detection body does not shake excessively, and the influence of vibration does not directly affect the temperature detection element.

また、このような構造とすることによって、上述した実施形態及びその変形例と異なり、すなわち温度検出素子750及びこれが接合されたプリント配線板760をガラス管の一端から挿入するだけで片持ち梁構造の温度検出素子750及びプリント配線板760をプリント配線板支持部761〜764(765〜768)によってガラス管内に所定の姿勢で確実に支持できるので、上述した実施形態及びその変形例にかかる温度検出体に較べて組み付け性を更に向上させることができる。   In addition, by adopting such a structure, unlike the above-described embodiment and its modifications, that is, the temperature detection element 750 and the printed wiring board 760 to which the temperature detection element 750 is bonded can be simply inserted from one end of the glass tube. Since the temperature detection element 750 and the printed wiring board 760 can be reliably supported in a predetermined posture in the glass tube by the printed wiring board support portions 761 to 764 (765 to 768), the temperature detection according to the above-described embodiment and its modification example is possible. The assemblability can be further improved compared to the body.

また、上述のプリント配線板支持部の突出量を適当に調整することで、プリント配線板760とこれに接合した温度検出素子750をガラス管700の中心軸線に対して好ましい方向に偏倚させることも可能である。   In addition, the printed wiring board 760 and the temperature detecting element 750 bonded thereto may be biased in a preferred direction with respect to the central axis of the glass tube 700 by appropriately adjusting the protruding amount of the printed wiring board support portion described above. Is possible.

以上説明した実施形態及びその変形例にかかる温度検出体1〜6は、ガラス管の内部に窒素やアルゴン等の不活性ガスを充填し、温度検出体外部の腐食性ガスや水分がガラス管内に入り込んでガラス管内部の部品(抵抗パターンや樹脂やコーティング材や電気的及び構造上の接続部)を腐食させないようになっていたが、必ずしもこれに限定されず、ガラス管内に真空で脱泡した熱伝導性の良い化学的に安定したシリコンオイルやフッ素オイルを充填しても良い。これによって、温度検出体周囲の雰囲気の温度変化を温度検出素子に迅速に伝え、温度変化に対する応答性を向上させることができる。   The temperature detectors 1 to 6 according to the embodiment described above and the modifications thereof are filled with an inert gas such as nitrogen or argon inside the glass tube, and corrosive gas or moisture outside the temperature detector is contained in the glass tube. It was designed not to corrode the parts inside the glass tube (resistive pattern, resin, coating material, electrical and structural connections), but it was not necessarily limited to this. It may be filled with chemically stable silicon oil or fluorine oil having good thermal conductivity. Thereby, the temperature change of the atmosphere around the temperature detection body can be quickly transmitted to the temperature detection element, and the responsiveness to the temperature change can be improved.

また、上述の実施形態及びその各種変形例の温度検出体1〜6について、ガラス管内にガラス粉末やセラミック粉末を充填した構造としても良い。これによって、温度検出素子の外部からの認識は難しくなるが、絶縁性を高めつつ温度検出素子をガラス管内でよりしっかりと支持できるようになる。また、熱伝導性を高めるので、上述のシリコンオイルやフッ素オイルを充填した場合と同様に温度検出体周囲の雰囲気の温度の変化に対する検出応答性が向上する。なお、この場合、好ましくは超音波等の振動を加えながらガラス粉末やセラミック粉末を充填するのが良い。これによって、ガラス管内におけるこれらの粉末の充填率を高めることができる。また、この粉末の隙間に窒素やアルゴンなどの不活性ガスを封入すると、腐食性ガスや水分がガラス管内に入り込むのを確実に防止し、ガラス管内部の部品の腐食を防止することができるようになる。   Moreover, about the temperature detection bodies 1-6 of the above-mentioned embodiment and its various modifications, it is good also as a structure filled with glass powder or ceramic powder in the glass tube. This makes it difficult to recognize the temperature detection element from the outside, but enables the temperature detection element to be more firmly supported in the glass tube while enhancing the insulation. Further, since the thermal conductivity is increased, the detection response to the change in the temperature of the atmosphere around the temperature detection body is improved as in the case of filling the above-described silicon oil or fluorine oil. In this case, the glass powder or ceramic powder is preferably filled while applying vibration such as ultrasonic waves. Thereby, the filling rate of these powders in the glass tube can be increased. In addition, if an inert gas such as nitrogen or argon is sealed in the gap between the powders, corrosive gas and moisture can be reliably prevented from entering the glass tube, and corrosion of components inside the glass tube can be prevented. become.

また、上述の実施形態及びその各種変形例の温度検出体1〜6がガラス管に代えて透明のプラスチック管を備えていても良い。   Further, the temperature detectors 1 to 6 of the above-described embodiment and its various modifications may include a transparent plastic tube instead of the glass tube.

このような透明のプラスチック管を温度検出体が備えることで、腐食性ガス中においてこの温度検出体を使用できなくなるが、それ以外では温度検出体がガラス管を備えた場合と同等の作用を発揮することができる。   By providing such a transparent plastic tube to the temperature detector, this temperature detector cannot be used in corrosive gas, but otherwise the same effect as when the temperature detector has a glass tube is exhibited. can do.

なお、上述したガラス管は透明で外部からガラス管内部を確認できれば良く、その材質はホウ珪酸ガラスや鉛ガラス、石英ガラス等の何れであっても良い。   In addition, the glass tube mentioned above should just be transparent and can confirm the inside of a glass tube from the outside, and the material may be any, such as borosilicate glass, lead glass, quartz glass.

また、ガラス管の基端側密封支持部や先端側密封支持部を構成する接着材は本実施形態及びその変形例においてエポキシ樹脂の接着材として紹介したが、必ずしもこれに限定されることはなく、シリコーン系、ポリイミド系等の接着材であっても良い。   Moreover, although the adhesive material which comprises the proximal end side sealing support part of a glass tube and a front end side sealing support part was introduced as an adhesive material of an epoxy resin in this embodiment and its modification, it is not necessarily limited to this. Further, it may be an adhesive such as silicone or polyimide.

また、温度検出素子を構成する基板は本実施形態及びその変形例においてセラミック基板を使用したが、この場合のセラミック基板はアルミナやジルコニア等何れの材料でできていても良い。また、セラミック基板の代わりに同じく絶縁性を有するガラス基板などの無機材料でできた基板を用いても良い。   The substrate constituting the temperature detecting element is a ceramic substrate in the present embodiment and its modifications, but the ceramic substrate in this case may be made of any material such as alumina or zirconia. Further, instead of a ceramic substrate, a substrate made of an inorganic material such as an insulating glass substrate may be used.

また、上述の実施形態及びその変形例に関する温度検出体の温度検出素子にはセラミック基板上面に白金(Pt)の箔をパターニングしたが、必ずしもこれに限定されず公知のエッチング技術によって白金の薄膜を温度検出素子の上面にパターニングしても良い。また、白金の代わりにニッケル(Ni)の箔や薄膜をセラミック基板の上面にパターンニングしても良い。   Moreover, although the platinum (Pt) foil was patterned on the upper surface of the ceramic substrate in the temperature detection element of the temperature detection body related to the above-described embodiment and its modification, the present invention is not necessarily limited thereto, and a platinum thin film is formed by a known etching technique. Patterning may be performed on the upper surface of the temperature detection element. Also, nickel (Ni) foil or thin film may be patterned on the upper surface of the ceramic substrate instead of platinum.

また、上述の実施形態及びその各変形例においては、接着材でできた先端側密封支持部又は先端側支持部にセラミック基板又はプリント配線板の何れか一方を支持した。しかしながら、この支持部でセラミック基板及びプリント配線板の両方を支持しても良いことは言うまでもない。また、例えば本実施形態の第1変形例において、白金の箔からなる抵抗体をセラミック基板(図9における上下面側)に形成しても良い。   Moreover, in the above-mentioned embodiment and each modification thereof, either the ceramic substrate or the printed wiring board is supported by the distal end side sealing support portion or the distal end side support portion made of an adhesive. However, it goes without saying that both the ceramic substrate and the printed wiring board may be supported by this support portion. For example, in the first modification of the present embodiment, a resistor made of platinum foil may be formed on the ceramic substrate (upper and lower surfaces in FIG. 9).

本発明の一実施形態に係る温度検出体を長手方向中心軸線に沿って切断した側方断面図である。It is the side sectional view which cut the temperature detection object concerning one embodiment of the present invention along the longitudinal direction central axis. 本発明の一実施形態に係る温度検出体の温度検出素子及びプリント配線板のガラス管内における支持構造を示す断面図である。It is sectional drawing which shows the support structure in the glass tube of the temperature detection element of the temperature detection body which concerns on one Embodiment of this invention, and a printed wiring board. 本発明の一実施形態に係る温度検出体のプリント配線板の上層を示す上面図である。It is a top view which shows the upper layer of the printed wiring board of the temperature detection body which concerns on one Embodiment of this invention. 本発明の一実施形態に係る温度検出体のプリント配線板の下層を示す下面図である。It is a bottom view which shows the lower layer of the printed wiring board of the temperature detection body which concerns on one Embodiment of this invention. 図1に示した温度検出素子とプリント配線板の接続状態の一形態を概略的に示す側方断面図(図5(a))、及びそれらの接続状態の別形態を概略的に示す側方断面図(図5(b))である。1 is a side cross-sectional view (FIG. 5A) schematically showing one form of a connection state between the temperature detection element and the printed wiring board shown in FIG. 1, and a side view schematically showing another form of the connection state. It is sectional drawing (FIG.5 (b)). 図1に示したプリント配線板に温度検出素子を接合したものを4つ並列に並べて示す平面図である。FIG. 2 is a plan view showing four printed circuit boards shown in FIG. 1 in which four temperature detection elements are joined in parallel. 温度検出素子の接合されたプリント配線板をガラス管に挿入して支持した状態を示す長手方向断面図である。It is longitudinal direction sectional drawing which shows the state which inserted and supported the printed wiring board with which the temperature detection element was joined to the glass tube. 図1に示した温度検出体の組み付け工程の一部を図8(a)〜図8(b)の順に示す側面図である。It is a side view which shows a part of assembly | attachment process of the temperature detection body shown in FIG. 1 in order of Fig.8 (a)-FIG.8 (b). 図2に示した温度検出素子の支持構造の第1変形例を示した断面図である。It is sectional drawing which showed the 1st modification of the support structure of the temperature detection element shown in FIG. 図2に示した温度検出素子の支持構造の第2変形例を示した断面図である。It is sectional drawing which showed the 2nd modification of the support structure of the temperature detection element shown in FIG. 図2に示した温度検出素子の支持構造の第3変形例を示した断面図である。It is sectional drawing which showed the 3rd modification of the support structure of the temperature detection element shown in FIG. 図2に示した温度検出素子の支持構造の第4変形例を示した断面図である。It is sectional drawing which showed the 4th modification of the support structure of the temperature detection element shown in FIG. 図2に示した温度検出素子の支持構造の第5変形例を示した断面図である。It is sectional drawing which showed the 5th modification of the support structure of the temperature detection element shown in FIG. 図2に示した温度検出素子の支持構造の更なる変形例に用いるプリント配線板の上層を示す上面図である。It is a top view which shows the upper layer of the printed wiring board used for the further modification of the support structure of the temperature detection element shown in FIG. 図2に示した更なる変形例の支持構造をガラス管の管径方向に示した断面図であり、支持突出部の突出量が小さいプリント配線板を図15(a)に示し、支持突出部の突出量が大きいプリント配線板を図15(b)に示している。FIG. 15 is a cross-sectional view showing the support structure of the further modification shown in FIG. 2 in the tube diameter direction of the glass tube, and a printed wiring board with a small protrusion amount of the support protrusion is shown in FIG. A printed wiring board having a large protrusion amount is shown in FIG.

符号の説明Explanation of symbols

1〜6 温度検出体
20 金属保護管
30 中継基板
40 ケーブル
41 ケーブル被覆部
42,43 導線
81 補強用樹脂
82 スプライス
83 熱収縮チューブ
85 エポキシ樹脂
100,200,300,400,500,600,700 ガラス管
101,201,301 先端側開口部
102,202,302,402,502 基端側開口部
110,210,310 先端側密封支持部
120,220,320,420,520,620 基端側密封支持部
150,250,350,450,550,750 温度検出素子
150a 電極
150b 電極
156,356,556,656 セラミック基板
160,260,360,460,560,660,760 プリント配線板
161 先端
163 基端側端部
165,166 導体部
165a 電極
165a,166a 検出素子先端側接続電極
165b,166b ケーブル接続側電極
167,168 導体部
167a,168a 検出素子基端側接続電極
167b,168b ケーブル接続側電極
171 ワイヤ
172 補強用樹脂
410,510,610 先端側支持部
761〜768 プリント配線板支持部
1-6 Temperature detector 20 Metal protective tube 30 Relay board 40 Cable 41 Cable covering part 42, 43 Conductor 81 Reinforcing resin 82 Splice 83 Heat shrinkable tube 85 Epoxy resin 100, 200, 300, 400, 500, 600, 700 Glass Tube 101, 201, 301 Tip side opening 102, 202, 302, 402, 502 Base side opening 110, 210, 310 Tip side sealing support 120, 220, 320, 420, 520, 620 Base side sealing support Part 150, 250, 350, 450, 550, 750 Temperature detection element 150a Electrode 150b Electrode 156, 356, 556, 656 Ceramic substrate 160, 260, 360, 460, 560, 660, 760 Printed wiring board 161 Front end 163 Base end side End portion 165, 166 Conductor portion 1 65a electrode 165a, 166a detection element tip side connection electrode 165b, 166b cable connection side electrode 167, 168 conductor portion 167a, 168a detection element base end side connection electrode 167b, 168b cable connection side electrode 171 wire 172 reinforcing resin 410, 510, 610 Tip side support part 761-768 Printed wiring board support part

Claims (6)

フレキシブルプリント配線板と、前記フレキシブルプリント配線板に接着されかつ少なくとも一方の面に当該フレキシブルプリント配線板の配線パターンと導通する温度測定用の金属膜が表面にパターニングして形成された基板を有する温度検出部と、前記温度検出部を収容するパッケージングを備えた温度検出体において、
前記パッケージングは、両端部が開口したガラス管と、当該ガラス管の温度検出部の信号取り出し方向端部から前記プリント配線板を外部に延在させるとともに当該フレキシブルプリント配線板又は基板の一部の少なくとも何れか一方を基端側接着剤によって支持しながら当該ガラス管の信号取り出し方向端部を当該基端側接着剤によって密封した基端側密封部と、前記ガラス管の先端側端部に前記フレキシブルプリント配線板又は基板の少なくとも何れか一方の先端側端部を先端側接着材によって支持しながら当該ガラス管の先端側端部を当該先端側接着材によって密封した先端側密封部を備え、
前記基端側密封部と前記先端側密封部によって前記フレキシブルプリント配線板又は基板の少なくとも何れか一方を両端支持構造としたことを特徴とする温度検出体。
Has a flexible printed wiring board, the flexible printed is adhered to the wiring board and the metal foil layer for temperature measurement conducted with the flexible printed circuit board wiring pattern on at least one surface is formed by patterning on the surface substrate In the temperature detector comprising a temperature detector and a packaging for housing the temperature detector,
The packaging includes a glass tube having both ends opened, and the printed wiring board extending outside from a signal extraction direction end of the temperature detection unit of the glass tube and a part of the flexible printed wiring board or the substrate. A base end side sealing portion in which at least one of the glass tube is supported by the base end side adhesive and the end portion in the signal extraction direction of the glass tube is sealed by the base end side adhesive, and the distal end side end portion of the glass tube Provided with a front end side sealing portion in which the front end side end portion of the glass tube is sealed with the front end side adhesive material while supporting the front end side end portion of at least one of the flexible printed wiring board or the substrate with the front end side adhesive material,
A temperature detection body characterized in that at least one of the flexible printed wiring board and the substrate has a double-end support structure by the proximal end side sealing portion and the distal end side sealing portion.
フレキシブルプリント配線板と、前記フレキシブルプリント配線板に接着されかつ少なくとも一方の面に当該フレキシブルプリント配線板の配線パターンと導通する温度測定用の金属膜が表面にパターニングして形成された基板を有する温度検出部と、前記温度検出部を収容するパッケージングを備えた温度検出体において、
前記パッケージングは、一端部のみが開口したガラス管と、当該ガラス管の開口部から前記フレキシブルプリント配線板を外部に延在させるとともに当該フレキシブルプリント配線板又は基板の少なくとも何れか一方を接着材によって支持しながら当該ガラス管の開口部を当該接着材によって密封した基端側密封部と、前記ガラス管の先端側端部に前記フレキシブルプリント配線板又は基板の少なくとも何れか一方の先端側端部を支持する先端側支持部を備え、
前記基端側密封部と前記先端側支持部によって前記フレキシブルプリント配線板又は基板の少なくとも何れか一方を両端支持構造としたことを特徴とする温度検出体。
Has a flexible printed wiring board, the flexible printed is adhered to the wiring board and the metal foil layer for temperature measurement conducted with the flexible printed circuit board wiring pattern on at least one surface is formed by patterning on the surface substrate In the temperature detector comprising a temperature detector and a packaging for housing the temperature detector,
The packaging includes a glass tube having only one end opened, and the flexible printed wiring board is extended from the opening of the glass tube to the outside, and at least one of the flexible printed wiring board or the substrate is bonded with an adhesive. A proximal end side sealing portion that seals the opening of the glass tube with the adhesive while supporting, and a distal end side end portion of at least one of the flexible printed wiring board or the substrate at the distal end side end portion of the glass tube Provided with a tip side support part to support,
A temperature detection body characterized in that at least one of the flexible printed wiring board and the substrate has a double-end support structure by the base end side sealing portion and the front end side support portion.
フレキシブルプリント配線板と、前記フレキシブルプリント配線板に接着されかつ少なくとも一方の面に当該フレキシブルプリント配線板の配線パターンと導通する温度測定用の金属膜が表面にパターニングして形成された基板を有する温度検出部と、前記温度検出部を収容するパッケージングを備えた温度検出体において、
前記パッケージングは、前記温度検出部の信号取り出し方向端部が開口するとともにガラス管又は接着材により先端側端部が閉塞したガラス管と、当該ガラス管の信号取り出し方向端部側開口部から前記フレキシブルプリント配線板を外部に延在させるとともに当該フレキシブルプリント配線板又は基板の一部の少なくとも何れか一方を接着材によって支持しながら当該ガラス管の信号取り出し方向端部側開口部を当該接着材によって密封した基端側密封部を備え、
当該フレキシブルプリント配線板には長手方向所定位置に当該プリント配線板の幅方向に突出するフレキシブルプリント配線板支持部が備わり、前記フレキシブルプリント配線板及び基板は前記ガラス管内において片持ち梁状に延在するとともに、前記フレキシブルプリント配線板支持部が前記ガラス管の内周面に接触することで当該フレキシブルプリント配線板及び基板を前記ガラス管内に所定の姿勢で支持することを特徴とする温度検出体。
Has a flexible printed wiring board, the flexible printed is adhered to the wiring board and the metal foil layer for temperature measurement conducted with the flexible printed circuit board wiring pattern on at least one surface is formed by patterning on the surface substrate In the temperature detector comprising a temperature detector and a packaging for housing the temperature detector,
The packaging includes a glass tube whose end in the signal extraction direction of the temperature detection unit is open and whose end on the front end side is closed by a glass tube or an adhesive, and the opening in the signal extraction direction end side of the glass tube. While extending the flexible printed wiring board to the outside and supporting at least one of the flexible printed wiring board or a part of the substrate with the adhesive, the signal extraction direction end side opening of the glass tube is formed with the adhesive. With a sealed proximal seal,
The flexible printed wiring board is provided with a flexible printed wiring board support portion protruding in the width direction of the printed wiring board at a predetermined position in the longitudinal direction, and the flexible printed wiring board and the substrate extend in a cantilever shape in the glass tube. In addition, the flexible printed wiring board support portion contacts the inner peripheral surface of the glass tube so that the flexible printed wiring board and the substrate are supported in a predetermined posture in the glass tube.
前記基端側密封部から導出した前記フレキシブルプリント配線板の導出部及び当該フレキシブルプリント配線板と外部導出ケーブルとを電気的に接続する接続部を収容する保護管を前記温度検出体が更に備え、前記ガラス管の基端側密封部及びその近傍が前記保護管の先端部に支持されたまま、当該ガラス管の温度検出部収容部分が保護管外部に突出していることを特徴とする、請求項1乃至請求項3の何れかに記載の温度検出体。 The temperature detector further includes a protective tube that houses a lead-out portion of the flexible printed wiring board led out from the base end side sealing portion and a connection portion that electrically connects the flexible printed wiring board and the external lead-out cable, The proximal end side sealing portion of the glass tube and its vicinity are supported by the distal end portion of the protective tube, and the temperature detection portion housing portion of the glass tube protrudes outside the protective tube. The temperature detection body in any one of Claim 1 thru | or 3. 不活性ガス、セラミックス、絶縁性オイルの何れかを前記ガラス管内に充填したことを特徴とする、請求項1乃至請求項4の何れかに記載の温度検出体。   The temperature detector according to any one of claims 1 to 4, wherein the glass tube is filled with any one of inert gas, ceramics, and insulating oil. 前記ガラス管に代えて透明のプラスチック管を備えたことを特徴とする、請求項1乃至請求項5の何れかに記載の温度検出体。   6. The temperature detector according to claim 1, wherein a transparent plastic tube is provided instead of the glass tube.
JP2005283065A 2005-09-28 2005-09-28 Temperature detector Expired - Fee Related JP4832044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005283065A JP4832044B2 (en) 2005-09-28 2005-09-28 Temperature detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005283065A JP4832044B2 (en) 2005-09-28 2005-09-28 Temperature detector

Publications (2)

Publication Number Publication Date
JP2007093379A JP2007093379A (en) 2007-04-12
JP4832044B2 true JP4832044B2 (en) 2011-12-07

Family

ID=37979279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005283065A Expired - Fee Related JP4832044B2 (en) 2005-09-28 2005-09-28 Temperature detector

Country Status (1)

Country Link
JP (1) JP4832044B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5189419B2 (en) * 2008-06-30 2013-04-24 アズビル株式会社 Temperature sensor
JP2010210603A (en) * 2009-03-06 2010-09-24 Nakayamadenki Co Ltd Local in-brain temperature measuring sensor for small animal
US9103731B2 (en) * 2012-08-20 2015-08-11 Unison Industries, Llc High temperature resistive temperature detector for exhaust gas temperature measurement
KR102122140B1 (en) * 2015-11-12 2020-06-11 알프스 알파인 가부시키가이샤 Temperature sensor and position detection device
WO2018146787A1 (en) * 2017-02-10 2018-08-16 株式会社岡崎製作所 Resistance temperature sensor and method for fabricating same
CN110027744B (en) * 2017-11-14 2021-02-05 深圳市蓝特电路板有限公司 Flexible printed circuit board packaging detection equipment
JP7370604B2 (en) * 2021-02-02 2023-10-30 山里産業株式会社 Resistance temperature detector element and method for manufacturing the resistor temperature detector element

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5031027B1 (en) * 1970-04-20 1975-10-06
JPS54125284A (en) * 1978-03-23 1979-09-28 Hitachi Chem Co Ltd Production of flexible printed circuit
JPS58165026A (en) * 1982-03-25 1983-09-30 Ishizuka Denshi Kk Heat-sensing unit
JPS59180403A (en) * 1983-03-31 1984-10-13 Yokohama Rubber Co Ltd:The Rubbery elastic body and strain gage for structured body made of said body
JP3012962B2 (en) * 1993-12-16 2000-02-28 川惣電機工業株式会社 Manufacturing method of thermocouple device
JP2781538B2 (en) * 1995-12-13 1998-07-30 株式会社岡崎製作所 Manufacturing method of temperature sensor
JP3572312B2 (en) * 1996-07-12 2004-09-29 いすゞ自動車株式会社 Ceramic sheath type thermocouple
JP2002296122A (en) * 2001-03-30 2002-10-09 Tokyo Electron Ltd Heat treatment device and heat treatment method
JP3740037B2 (en) * 2001-07-17 2006-01-25 株式会社山武 TEMPERATURE SENSOR AND METHOD FOR MANUFACTURING THE TEMPERATURE SENSING ELEMENT
JP4202771B2 (en) * 2003-01-14 2008-12-24 株式会社山武 Airtight structure of circuit board with sensor
JP4356867B2 (en) * 2003-02-05 2009-11-04 株式会社山武 Temperature sensor

Also Published As

Publication number Publication date
JP2007093379A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
JP4832044B2 (en) Temperature detector
CN101583858B (en) Temperature sensor with lead wires
JP5487672B2 (en) Physical quantity sensor
US7817010B2 (en) Temperature probe and method of making the same
US20020135454A1 (en) Temperature sensor
TW201346944A (en) Flexible cable for low profile electrical device
JP4908411B2 (en) Pressure sensor and manufacturing method thereof
JP6650170B1 (en) Sheath thermocouple
JP4821786B2 (en) Temperature sensor and temperature sensor integrated pressure sensor
JP4968371B2 (en) Manufacturing method of sensor device and sensor device
JP4147740B2 (en) Temperature sensor
JP2010054491A (en) Temperature measuring sensor and temperature measuring device using the temperature measuring sensor
JP2008203072A (en) Combined sensor for detecting angular velocity and acceleration
JP4486103B2 (en) Acceleration sensor and method of manufacturing acceleration sensor
JP3875848B2 (en) Temperature sensor
JP4356867B2 (en) Temperature sensor
JP5189419B2 (en) Temperature sensor
JP2019174135A (en) Temperature sensor
JP2002286555A (en) Temperature sensor
JP4500181B2 (en) Package for storing semiconductor element and watt hour meter
JP2011185869A (en) Flow sensor
JP5920501B2 (en) Manufacturing method of sensor device and sensor device
JP4236387B2 (en) Thermal detector, fire detector and composite alarm
JP7307268B2 (en) sensor
JP6314766B2 (en) Physical quantity sensor and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080924

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20080924

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20090820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110411

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110825

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110920

R150 Certificate of patent or registration of utility model

Ref document number: 4832044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees