JP4831715B2 - Monomer production method - Google Patents
Monomer production method Download PDFInfo
- Publication number
- JP4831715B2 JP4831715B2 JP2000060308A JP2000060308A JP4831715B2 JP 4831715 B2 JP4831715 B2 JP 4831715B2 JP 2000060308 A JP2000060308 A JP 2000060308A JP 2000060308 A JP2000060308 A JP 2000060308A JP 4831715 B2 JP4831715 B2 JP 4831715B2
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- reaction
- alcohol
- acrylate
- meth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Materials For Photolithography (AREA)
- Furan Compounds (AREA)
- Pyrane Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
【0001】
【発明の属する技術分野】
本発明はレジスト用ポリマーの原料モノマーの製造方法に関する。
【0002】
【従来の技術】
微細加工用のレジストには様々な材料がある。半導体製造に用いられるレジスト液は、通常、1〜数種類のレジスト用ポリマーの原料モノマー(以下、レジスト用モノマーという。)を(共)重合し、これに添加剤、酸発生剤および溶剤等を加えることにより製造される。
【0003】
このようなレジスト用モノマーとしては、各種の(メタ)アクリレート等のエステル類が知られている。(メタ)アクリレートであるレジスト用モノマーの製造方法としては、縮合剤や酸触媒を用いるアルコールとカルボン酸の脱水反応、アルコールとエステルとのエステル交換反応、酸塩化物を用いるエステル化反応が特開平11−228560号公報に記載されている。
【0004】
【発明が解決しようとする課題】
通常、レジスト用モノマーにはその製造工程に由来する各種の不純物が含まれている。その中には混入するとレジスト用ポリマーの性能に影響を与えるものもがある。本願発明者は、レジスト用モノマーをエステル交換反応により合成する際の原料となるアルコールの脱水物が多く含まれると、レジストの解像度および感度の低下、スカムの生成等の問題が生じることを見出した。
【0005】
したがって本発明は、アルコールの脱水物の含有量が少ないレジスト用モノマーをエステル交換反応により製造する方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者らは鋭意検討を重ねた結果、原料エステルおよび原料として用いるアルコールの水分含有率を200ppm以下とすることによって、前記目的が達成できることを見出し、本発明を完成した。
【0007】
すなわち本発明は、原料エステルと原料アルコールとのエステル交換反応によりレジスト用ポリマーの原料モノマーを製造する方法において、原料エステルおよび原料アルコール中の水分含有率を200ppm以下に脱水した後、触媒として、スズまたはチタンを含む化合物を添加してエステル交換反応を開始することにより、式(1)または式(2)の化合物製造することを特徴とするレジスト用ポリマーの原料モノマーの製造方法である。
【0008】
【化3】
(R1、R2はメチル基または水素原子を示す。nおよびmは独立に0または1個の炭素数を示す。ただし、n=0かつm=0の場合は含まない。)
【0009】
【化4】
(R3はメチル基または水素原子、R4はメチル基またはエチル基を示す。)
【0010】
【発明の実施の形態】
本発明により製造されるレジスト用モノマーは、レジスト用ポリマーの原料に用いられるものであれば特に限定されないが、例えば、アダマンチル(メタ)アクリレート、2−メチル−2−アダマンチル(メタ)アクリレート、2−エチル−2−アダマンチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メバロノラクトン(メタ)アクリレート、γ−ブチロラクトン−3−イル(メタ)アクリレート、γ−ブチロラクトン−3−メチル−3−イル(メタ)アクリレート、γ−ブチロラクトン−2−イル(メタ)アクリレート等が挙げられる。特に、前記式(1)または式(2)で示されるレジスト用ポリマーの原料モノマーである、アダマンチル(メタ)アクリレート、2−メチル−2−アダマンチル(メタ)アクリレート、2−エチル−2−アダマンチル(メタ)アクリレート、メバロノラクトン(メタ)アクリレート、γ−ブチロラクトン−3−イル(メタ)アクリレート、γ−ブチロラクトン−3−メチル−3−イル(メタ)アクリレート、γ−ブチロラクトン−2−イル(メタ)アクリレート等の製造に適している。
【0011】
本発明の製造方法においてエステル交換反応の原料エステルは、原料アルコールとエステル交換反応するものでビニル基を含有するエステルであれば特に限定されないが、例えば、メタクリル酸メチル、メタクリル酸エチル、アクリル酸メチル、アクリル酸エチル等が挙げられる。エステル交換反応においては、生成する副生アルコールを系外に留去しながら反応させることが速度論的に好ましく、このため副生アルコールの炭素数が少なくなるメチルエステルやエチルエステル等が原料エステルとして好ましい。
【0012】
一方、原料アルコールは目的とするレジスト用モノマーにより決められる。例えば、前記のレジスト用モノマーを製造する場合は、アダマンタノール、2−メチル−2−アダマンタノール、2−エチル−2−アダマンタノール、イソボルニルアルコール、シクロヘキサノール、メバロノラクトン、β−ヒドロキシ−γ−ブチロラクトン、β−ヒドロキシ−β−メチル−γ−ブチロラクトン、α−ヒドロキシ−γ−ブチロラクトン等が挙げられる。
【0013】
本発明のレジスト用モノマーの製造方法において、エステル交換反応は前記の原料エステルおよび原料アルコールを用いて従来より知られている方法や条件で実施すればよいが、原料エステルおよび原料アルコール中の水分含有率を200ppm以下となるように脱水してからエステル交換反応を開始する必要がある。水分含有率はカールフィッシャー水分計で測定することができる。原料エステルおよび/または原料アルコールに溶媒等が含まれる場合は、これらを含めたものに対する水分含有率を200ppm以下にする。
【0014】
脱水は、原料エステルと原料アルコールを個別に脱水してもよいが、両者を混合した後に脱水してもよい。脱水する方法は特に限定されず、例えば、蒸留、脱水剤の添加等の方法が挙げられるが、蒸留により水分を留去させる方法が簡便で好ましい。蒸留の際の温度は、通常40〜130℃、好ましくは50〜120℃である。副生成物の生成抑制の観点から蒸留温度は低く方が好ましく、減圧により蒸留温度を低くしてもよいが、例えば、トルエン、ヘキサン等の水と共沸する溶剤を共存させることにより蒸留温度を低くすることもできる。
【0015】
エステル交換反応を実質的に開始するには両原料と触媒を接触させる。エステル交換反応用の触媒は特に限定されないが、例えば、炭酸ソーダ、塩基性イオン交換樹脂、酸化カルシウム、酸化マグネシウム等のアルカリ触媒、ジ−n−ブチルチンオキサイド、ジ−n−オクチルチンオキサイド等のスズ触媒、テトラ−n−ブトキシチタン、テトラ−n−メトキシチタン等のチタン触媒、金属チタンを含有する酸化カルシウム等の固体触媒等が挙げられる。本発明においては、スズ触媒とチタン触媒が特に好ましい。
【0016】
エステル交換反応は、前述したように、従来より知られている方法や条件で実施することができる。具体的な反応条件は原料エステルと原料アルコールの組み合わせにより様々で一概に言えないが、例えば、原料エステルとしてメチルメタクリレート(以下、MMAという。)、原料アルコールとしてβ−ヒドロキシ−γ−ブチロラクトン(以下、HGBという。)を用いてγ−ブチロラクトン−3−イルメタクリレート(以下、HGBMAという。)を製造する場合の条件を以下に説明する。MMAの仕込み比率は1モルのHGBに対して通常1.2〜20モル、好ましくは2〜10モルである。また触媒の使用量は、1モルのHGBに対して通常0.01〜0.5モル、好ましくは0.03〜0.3モルである。反応温度は常圧で90〜120℃、好ましくは95〜110℃である。反応は収率の観点から、転化率80%以上、好ましくは90%以上、特に好ましくは95%以上で終了させる。HGBの反応転化率は反応後の精製の観点から高い方が好ましいが、副生成物の生成を少なく抑える場合には、比較的低い80%程度で反応を終了してもよい。
【0017】
また、エステル交換反応の際には、原料エステル以外に副生するアルコールと共沸組成を作る溶剤を添加してもよい。このような溶剤の種類は特に限定されないが、例えば、メチルエチルケトン、メチルイソプロピルケトン、メチルイソブチルケトン、n−ヘキサン、n−ヘプタン等が挙げられる。
【0018】
通常、このようにして得られたレジスト用モノマーは精製される。精製する方法は特に限定されないが、例えば、蒸留、薄膜蒸留、抽出洗浄およびカラムクロマトグラフィー等が挙げられる。特に、蒸留または薄膜蒸留がコストと有機不純物および金属不純物除去の観点から好ましい。
【0019】
【実施例】
以下、本発明を実施例によって詳しく説明するが、これらに限定されるものではない。実施例における分析はガスクロマトグラフィー(以下、GCという。)および高速液体クロマトグラフィー(以下、LCという。)により行った。水分含有率はカールフィッシャー水分計で測定した。
【0020】
純度および不純物含有率はGCのピーク面積から次式により算出した。
純度(%)=A/B×100
不純物含有率(%)=(B−A)/B×100
ここで、Aは目的物のピーク面積、Bは全ピークの面積の合計を表す。
また、実得収率は次式により算出した。
実得収率(%)=(C/D)×100
ここで、Cは目的化合物のモル数(不純物を含む目的生成物の重量に純度を乗じ、目的生成物の分子量で除して算出)、Dは基準とする原料のモル数を表す。
【0021】
[実施例1] HGBMAの合成
20段オールダーショー付き3LガラスフラスコにHGB204g(2mol)、MMA2000g(20mol)、p−メトキシ−フェノール0.34gを仕込み、内温99〜102℃で1.5時間加熱して水を留去することにより脱水した。脱水した反応液中の水分含有率は107ppmであった。反応液に触媒のジ−n−オクチルチンオキサイド(以下、DOTOという。)を72.2g(0.2mol)投入し、内温103〜105℃で13時間加熱還流した。塔頂温が下がったのを確認し、留出液を抜液した。反応液のGC分析から、転化率は93%であった。
【0022】
反応液1982gからMMAを留去し、濃縮液である粗HGBMA401gを得た。この濃縮液を薄膜蒸発器で精製した。沸点は150〜160℃/26.7Paであった。留出した精製HGBMAは277g(1.63mol)、実得収率は82%であった。また、精製HGBMAをGCで分析したところクロトノラクトンが1.6%含まれていた。
【0023】
精製HGBMAの1H−NMRは以下の通りであった。
1H-NMR(CDCl3) 2.1(3H,s),2.8(1H,d,J=18,4Hz),3.0(1H,dd,J=6.8Hz,18.4Hz),4.5(1H,d,J=10.8Hz),4.7(1H,dd,J=4.8Hz,10.8Hz),5.6(1H,dd,J=4.8Hz,6.8Hz),5.8(1H,s),6.3(1H,s)
【0024】
[実施例2] HGBMAの合成
20段オールダーショー付き3LガラスフラスコにHGB102g(1mol)、MMA1001g(10mol)、メチルエチルケトン(以下、MEKという。)1001g、p−メトキシ−フェノール0.17gを仕込み、内温87〜91℃で2時間加熱して水を留去することにより脱水した。脱水した反応液中の水分含有率は190ppmであった。反応液に触媒のDOTOを18.1g(0.05mol)投入し、内温90〜95℃で5時間加熱攪拌した。さらに、DOTOを18.1g(0.05mol、合計0.1mol)投入し、内温90〜95℃で25時間加熱還流した。反応液のLC分析から転化率は97%であった。
【0025】
反応液1903gからMMA、MEKを留去し、濃縮液である粗HGBMA187gを得た。この濃縮液を薄膜蒸留器で精製した。沸点は150〜160℃/26.7Paであった。留出したHGBMAは143g(0.84mol)、実得収率は84%であった。また、精製HGBMAをGCで分析したところクロトノラクトンが0.9%含まれていた。
【0026】
精製HGBMAの1H−NMRは以下の通りであった。
1H-NMR(CDCl3) 2.1(3H,s),2.8(1H,d,J=18,4Hz),3.0(1H,dd,J=6.8Hz,18.4Hz),4.5(1H,d,J=10.8Hz),4.7(1H,dd,J=4.8Hz,10.8Hz),5.6(1H,dd,J=4.8Hz,6.8Hz),5.8(1H,s),6.3(1H,s)
【0027】
[比較例1] HGBMAの合成
脱水処理をせず、反応時間を13時間から21時間に変更したこと以外は実施例1と同様にしてHGBMAを合成した。反応開始前の反応液の水分含有率は583ppmであった。また転化率は14%であった。また、精製HGBMAをGCで分析したところクロトノラクトンが16.3%含まれていた。
【0028】
【発明の効果】
本発明の方法によれば、アルコールの脱水物の含有量が少ないレジスト用モノマーをエステル交換反応により製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a raw material monomer for a resist polymer.
[0002]
[Prior art]
There are various materials for resists for microfabrication. The resist solution used for semiconductor production usually (co) polymerizes one to several types of resist polymer raw material monomers (hereinafter referred to as resist monomers), and an additive, an acid generator, a solvent and the like are added thereto. It is manufactured by.
[0003]
As such a resist monomer, various esters such as (meth) acrylate are known. As a method for producing a resist monomer which is a (meth) acrylate, a dehydration reaction between an alcohol and a carboxylic acid using a condensing agent or an acid catalyst, a transesterification reaction between an alcohol and an ester, and an esterification reaction using an acid chloride are disclosed in Japanese Patent Laid-Open No. 11-228560.
[0004]
[Problems to be solved by the invention]
Usually, the resist monomer contains various impurities derived from the manufacturing process. Some of them affect the performance of the resist polymer when mixed. The inventor of the present application has found that problems such as reduction in resist resolution and sensitivity, generation of scum, and the like occur when a large amount of dehydrated alcohol is used as a raw material when a resist monomer is synthesized by transesterification. .
[0005]
Accordingly, an object of the present invention is to provide a method for producing a resist monomer having a low alcohol dehydration content by transesterification.
[0006]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have found that the object can be achieved by setting the moisture content of the raw material ester and the alcohol used as the raw material to 200 ppm or less, thereby completing the present invention.
[0007]
That is, the present invention relates to a method for producing a raw material monomer of a resist polymer by a transesterification reaction between a raw material ester and a raw material alcohol, and after dehydrating the water content in the raw material ester and the raw material alcohol to 200 ppm or less, Alternatively, it is a method for producing a raw material monomer for a resist polymer, wherein a compound of formula (1) or formula (2) is produced by adding a compound containing titanium to initiate a transesterification reaction .
[0008]
[Chemical 3]
(R 1 and R 2 each represent a methyl group or a hydrogen atom. N and m independently represent 0 or 1 carbon number. However, n = 0 and m = 0 are not included.)
[0009]
[Formula 4]
(R 3 represents a methyl group or a hydrogen atom, and R 4 represents a methyl group or an ethyl group.)
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The resist monomer produced by the present invention is not particularly limited as long as it is used as a raw material for the resist polymer. For example, adamantyl (meth) acrylate, 2-methyl-2-adamantyl (meth) acrylate, 2- Ethyl-2-adamantyl (meth) acrylate, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, mevalonolactone (meth) acrylate, γ-butyrolactone-3-yl (meth) acrylate, γ-butyrolactone-3-methyl-3- Il (meth) acrylate, γ-butyrolactone-2-yl (meth) acrylate, and the like can be given. In particular, adamantyl (meth) acrylate, 2-methyl-2-adamantyl (meth) acrylate, 2-ethyl-2-adamantyl (which is a raw material monomer for the resist polymer represented by formula (1) or formula (2) ( (Meth) acrylate, mevalonolactone (meth) acrylate, γ-butyrolactone-3-yl (meth) acrylate, γ-butyrolactone-3-methyl-3-yl (meth) acrylate, γ-butyrolactone-2-yl (meth) acrylate, etc. Suitable for manufacturing.
[0011]
In the production method of the present invention, the raw material ester for the transesterification reaction is not particularly limited as long as it is an ester exchange reaction with the raw material alcohol and contains a vinyl group. For example, methyl methacrylate, ethyl methacrylate, methyl acrylate And ethyl acrylate. In the transesterification reaction, it is preferable in terms of kinetics to carry out the reaction while distilling off the produced by-product alcohol out of the system. For this reason, methyl ester, ethyl ester, or the like that reduces the carbon number of the by-product alcohol is used as the raw material ester. preferable.
[0012]
On the other hand, the raw material alcohol is determined by the intended resist monomer. For example, when the resist monomer is produced, adamantanol, 2-methyl-2-adamantanol, 2-ethyl-2-adamantanol, isobornyl alcohol, cyclohexanol, mevalonolactone, β-hydroxy-γ- Examples include butyrolactone, β-hydroxy-β-methyl-γ-butyrolactone, and α-hydroxy-γ-butyrolactone.
[0013]
In the method for producing a resist monomer of the present invention, the transesterification reaction may be carried out by using the above-mentioned raw material ester and raw material alcohol under a conventionally known method and conditions. It is necessary to start the transesterification after dehydration so that the rate becomes 200 ppm or less. The moisture content can be measured with a Karl Fischer moisture meter. When the raw material ester and / or the raw material alcohol contains a solvent or the like, the water content with respect to those including these is set to 200 ppm or less .
[0014]
In the dehydration, the raw material ester and the raw material alcohol may be individually dehydrated, or may be dehydrated after mixing both. The method of dehydrating is not particularly limited, and examples thereof include methods such as distillation and addition of a dehydrating agent. A method of distilling off water by distillation is simple and preferable. The temperature during distillation is usually 40 to 130 ° C, preferably 50 to 120 ° C. From the viewpoint of suppressing the formation of by-products, the distillation temperature is preferably low, and the distillation temperature may be lowered by reducing the pressure.For example, the distillation temperature is reduced by coexisting a solvent azeotropic with water such as toluene and hexane. It can also be lowered.
[0015]
To substantially initiate the transesterification reaction, both raw materials and catalyst are brought into contact. The catalyst for the transesterification reaction is not particularly limited, and examples thereof include alkali catalysts such as sodium carbonate, basic ion exchange resin, calcium oxide and magnesium oxide, di-n-butyltin oxide, di-n-octyltin oxide and the like. Examples thereof include tin catalysts, titanium catalysts such as tetra-n-butoxy titanium and tetra-n-methoxy titanium, and solid catalysts such as calcium oxide containing titanium metal. In the present invention, a tin catalyst and a titanium catalyst are particularly preferable.
[0016]
As described above, the transesterification reaction can be carried out by a conventionally known method and conditions. Specific reaction conditions vary depending on the combination of the raw material ester and the raw material alcohol, and cannot be generally described. For example, methyl methacrylate (hereinafter referred to as MMA) as the raw material ester, and β-hydroxy-γ-butyrolactone (hereinafter referred to as the raw material alcohol). The conditions for producing γ-butyrolactone-3-yl methacrylate (hereinafter referred to as HGBMA) using HGB will be described below. The charging ratio of MMA is usually 1.2 to 20 mol, preferably 2 to 10 mol, relative to 1 mol of HGB. Moreover, the usage-amount of a catalyst is 0.01-0.5 mol normally with respect to 1 mol of HGB, Preferably it is 0.03-0.3 mol. The reaction temperature is 90 to 120 ° C, preferably 95 to 110 ° C at normal pressure. From the viewpoint of yield, the reaction is terminated at a conversion rate of 80% or more, preferably 90% or more, particularly preferably 95% or more. The reaction conversion rate of HGB is preferably higher from the viewpoint of purification after the reaction, but when the production of by-products is suppressed to a low level, the reaction may be completed at a relatively low level of about 80%.
[0017]
In addition, in the transesterification reaction, a solvent that forms an azeotropic composition with alcohol by-produced in addition to the raw material ester may be added. Although the kind of such solvent is not specifically limited, For example, methyl ethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, n-hexane, n-heptane etc. are mentioned.
[0018]
Usually, the resist monomer thus obtained is purified. The purification method is not particularly limited, and examples thereof include distillation, thin film distillation, extraction washing, and column chromatography. In particular, distillation or thin film distillation is preferable from the viewpoint of cost and removal of organic impurities and metal impurities.
[0019]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, it is not limited to these. Analysis in the examples was performed by gas chromatography (hereinafter referred to as GC) and high performance liquid chromatography (hereinafter referred to as LC). The moisture content was measured with a Karl Fischer moisture meter.
[0020]
The purity and impurity content were calculated from the peak area of GC by the following formula.
Purity (%) = A / B × 100
Impurity content (%) = (B−A) / B × 100
Here, A represents the peak area of the object, and B represents the total area of all peaks.
The actual yield was calculated by the following formula.
Actual yield (%) = (C / D) × 100
Here, C represents the number of moles of the target compound (calculated by multiplying the weight of the target product containing impurities by the purity and divided by the molecular weight of the target product), and D represents the number of moles of the reference raw material.
[0021]
[Example 1] Synthesis of HGBMA HGB204g (2mol), MMA2000g (20mol), and p-methoxy-phenol 0.34g were charged in a 3L glass flask with a 20-step old show, and the internal temperature was 99 to 102 ° C for 1.5 hours. It dehydrated by heating and distilling off the water. The water content in the dehydrated reaction solution was 107 ppm. 72.2 g (0.2 mol) of catalyst di-n-octyltin oxide (hereinafter referred to as DOTO) was added to the reaction solution, and the mixture was heated to reflux at an internal temperature of 103 to 105 ° C. for 13 hours. After confirming that the column top temperature had dropped, the distillate was drained. From the GC analysis of the reaction solution, the conversion was 93%.
[0022]
MMA was distilled off from 1982 g of the reaction solution to obtain 401 g of crude HGBMA as a concentrated solution. This concentrate was purified with a thin film evaporator. The boiling point was 150 to 160 ° C./26.7 Pa. Distilled purified HGBMA was 277 g (1.63 mol), and the actual yield was 82%. Further, when purified HGBMA was analyzed by GC, 1.6% of crotonolactone was contained.
[0023]
1 H-NMR of purified HGBMA was as follows.
1 H-NMR (CDCl 3 ) 2.1 (3H, s), 2.8 (1H, d, J = 18,4Hz), 3.0 (1H, dd, J = 6.8Hz, 18.4Hz), 4.5 (1H, d, J = 10.8Hz), 4.7 (1H, dd, J = 4.8Hz, 10.8Hz), 5.6 (1H, dd, J = 4.8Hz, 6.8Hz), 5.8 (1H, s), 6.3 (1H, s)
[0024]
[Example 2] Synthesis of HGBMA A 3 L glass flask with a 20-stage old show was charged with 102 g (1 mol) of HGB, 1001 g (10 mol) of MMA, 1001 g of methyl ethyl ketone (hereinafter referred to as MEK), and 0.17 g of p-methoxy-phenol. It dehydrated by heating at a temperature of 87-91 degreeC for 2 hours, and distilling water off. The water content in the dehydrated reaction solution was 190 ppm. 18.1 g (0.05 mol) of catalyst DOTO was added to the reaction solution, and the mixture was heated and stirred at an internal temperature of 90 to 95 ° C. for 5 hours. Furthermore, 18.1 g (0.05 mol, total 0.1 mol) of DOTO was added, and the mixture was heated to reflux at an internal temperature of 90 to 95 ° C. for 25 hours. From the LC analysis of the reaction solution, the conversion rate was 97%.
[0025]
MMA and MEK were distilled off from 1903 g of the reaction solution to obtain 187 g of crude HGBMA as a concentrated solution. This concentrated solution was purified with a thin film still. The boiling point was 150 to 160 ° C./26.7 Pa. The distilled HGBMA was 143 g (0.84 mol), and the actual yield was 84%. Further, when purified HGBMA was analyzed by GC, it contained 0.9% of crotonolactone.
[0026]
1 H-NMR of purified HGBMA was as follows.
1 H-NMR (CDCl 3 ) 2.1 (3H, s), 2.8 (1H, d, J = 18,4Hz), 3.0 (1H, dd, J = 6.8Hz, 18.4Hz), 4.5 (1H, d, J = 10.8Hz), 4.7 (1H, dd, J = 4.8Hz, 10.8Hz), 5.6 (1H, dd, J = 4.8Hz, 6.8Hz), 5.8 (1H, s), 6.3 (1H, s)
[0027]
[Comparative Example 1] Synthesis of HGBMA HGBMA was synthesized in the same manner as in Example 1 except that no dehydration treatment was performed and the reaction time was changed from 13 hours to 21 hours. The water content of the reaction solution before the start of the reaction was 583 ppm. The conversion rate was 14%. Further, when purified HGBMA was analyzed by GC, it contained 16.3% of crotonolactone.
[0028]
【The invention's effect】
According to the method of the present invention, a resist monomer having a low alcohol dehydration content can be produced by a transesterification reaction.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000060308A JP4831715B2 (en) | 2000-03-06 | 2000-03-06 | Monomer production method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000060308A JP4831715B2 (en) | 2000-03-06 | 2000-03-06 | Monomer production method |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2001247513A JP2001247513A (en) | 2001-09-11 |
JP2001247513A5 JP2001247513A5 (en) | 2007-05-31 |
JP4831715B2 true JP4831715B2 (en) | 2011-12-07 |
Family
ID=18580648
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000060308A Expired - Lifetime JP4831715B2 (en) | 2000-03-06 | 2000-03-06 | Monomer production method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4831715B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1291027C (en) * | 2001-09-12 | 2006-12-20 | 三菱丽阳株式会社 | Process for producing monomer |
KR100979871B1 (en) | 2002-04-01 | 2010-09-02 | 다이셀 가가꾸 고교 가부시끼가이샤 | Process For The Production Of Polymer Solution For ArF Excimer Laser Resist |
JP2004318080A (en) * | 2003-03-28 | 2004-11-11 | Tokyo Ohka Kogyo Co Ltd | Negative resist composition and resist pattern forming method |
JP2005298404A (en) * | 2004-04-12 | 2005-10-27 | Mitsubishi Rayon Co Ltd | Method for producing carboxylic acid ester |
JP2014205662A (en) * | 2013-03-19 | 2014-10-30 | 三菱レイヨン株式会社 | Production method of (meth)acrylate |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH089582B2 (en) * | 1989-03-03 | 1996-01-31 | 東亞合成株式会社 | Method for producing dimethylaminoethyl acrylate |
US5037978A (en) * | 1990-03-12 | 1991-08-06 | Rohm And Haas Company | Hafnium-catalyzed transesterification |
JPH089575B2 (en) * | 1992-01-14 | 1996-01-31 | 昭和電工株式会社 | Method for producing allyl ester |
JP3475464B2 (en) * | 1993-10-21 | 2003-12-08 | 日本油脂株式会社 | Method for producing methacrylic acid ester of tertiary alcohol |
JP3450470B2 (en) * | 1993-11-16 | 2003-09-22 | 三菱レイヨン株式会社 | Method for producing di (meth) acrylate |
US5614650A (en) * | 1995-03-07 | 1997-03-25 | Sandler; Stanley R. | Zirconium compounds of sulfonic acids |
JPH10212283A (en) * | 1996-11-27 | 1998-08-11 | Mitsubishi Rayon Co Ltd | Production of beta-hydroxy-gamma-butyrolactones and beta-(meth)acryoyloxy-gamma-butyrolactones |
JP4195117B2 (en) * | 1998-02-09 | 2008-12-10 | 三菱レイヨン株式会社 | Process for producing β-hydroxy-γ-butyrolactone and β- (meth) acryloyloxy-γ-butyrolactone |
JP3740367B2 (en) * | 1998-03-27 | 2006-02-01 | 三菱レイヨン株式会社 | Copolymer |
JP2000038362A (en) * | 1998-07-22 | 2000-02-08 | Tokuyama Corp | Production of sublimable adamantanol |
AT408882B (en) * | 1998-08-07 | 2002-03-25 | Dsm Fine Chem Austria Gmbh | METHOD FOR THE RESTORATION OF ALPHA KETOCARBONIC ACID ESTERS |
-
2000
- 2000-03-06 JP JP2000060308A patent/JP4831715B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001247513A (en) | 2001-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000229911A (en) | Production of 2-alkyl-2-adamantyl (meth)acrylates | |
US7241916B2 (en) | Process for producing methacrylic ester | |
JP4831715B2 (en) | Monomer production method | |
JP4048076B2 (en) | Decomposition method of Michael adduct | |
JP4520310B2 (en) | Method for producing (meth) acrylic acid N-alkylaminoalkyl ester | |
JP6006801B2 (en) | Method for producing hydroxyalkyl acrylate | |
JP2884433B2 (en) | Method for producing 4-hydroxybutyl acrylate or methacrylate | |
JP4442845B2 (en) | Resist monomer and purification method thereof | |
JP2003321418A (en) | Method for splitting michael-type adduct | |
JPH11100375A (en) | Production of (meth) acryloylmorpholine | |
JP2943523B2 (en) | Method for producing useful compound from Michael adduct of acrylic acid ester | |
JP2002088018A (en) | Method for producing (meth)acrylic acid ester | |
JP4266645B2 (en) | Method for producing (meth) acrylic acid ester | |
JP4099950B2 (en) | Method for producing cyclohexyl (meth) acrylate | |
JP4336961B2 (en) | Method for producing 2-methyl-2-hydroxy-1-propyl (meth) acrylate | |
JP2004018389A (en) | Production method for glyceryl (meth)acrylate | |
JP3238894B2 (en) | Method for producing methyl methacrylate | |
JP2000072719A (en) | Production of allyl 2-hydroxyisobutyrate | |
JP2003226668A (en) | Method for decomposing by-product of process for producing (meth)acrylic acid ester | |
JP2005015398A (en) | Method for producing (meth)acrylic ester | |
JP4125916B2 (en) | Method for producing high purity ester | |
JP2005013934A (en) | Method for recovering catalyst and method for producing methacrylic acid alykyl aminoester | |
JP3312806B2 (en) | Method for producing tetrahydrobenzyl (meth) acrylate | |
JP2598488B2 (en) | Method for producing unsaturated carboxylic acid amide | |
JP2022007362A (en) | Method for producing (meth)acrylic acid ester |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070305 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070305 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100212 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20100402 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20100407 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100510 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100603 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110421 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110714 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110824 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20110829 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110915 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110916 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4831715 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140930 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140930 Year of fee payment: 3 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140930 Year of fee payment: 3 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140930 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |