JP4830870B2 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP4830870B2
JP4830870B2 JP2007016268A JP2007016268A JP4830870B2 JP 4830870 B2 JP4830870 B2 JP 4830870B2 JP 2007016268 A JP2007016268 A JP 2007016268A JP 2007016268 A JP2007016268 A JP 2007016268A JP 4830870 B2 JP4830870 B2 JP 4830870B2
Authority
JP
Japan
Prior art keywords
turbine
gas temperature
temperature
pressure egr
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007016268A
Other languages
Japanese (ja)
Other versions
JP2008184900A (en
Inventor
力 曽我
茂人 矢羽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007016268A priority Critical patent/JP4830870B2/en
Priority to DE102008000159.7A priority patent/DE102008000159B4/en
Publication of JP2008184900A publication Critical patent/JP2008184900A/en
Application granted granted Critical
Publication of JP4830870B2 publication Critical patent/JP4830870B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • F02D41/1447Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/24Layout, e.g. schematics with two or more coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D2041/0067Determining the EGR temperature
    • F02D2041/007Determining the EGR temperature by estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D41/0072Estimating, calculating or determining the EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

本発明は、内燃機関の排気行程においてポスト噴射を行って後処理装置の再生を行う内燃機関用制御装置に関するものである。   The present invention relates to a control device for an internal combustion engine that performs post-injection in an exhaust stroke of the internal combustion engine to regenerate the aftertreatment device.

近年、ディーゼルエンジン(以下、内燃機関という)から排出されるパティキュレートをディーゼルパティキュレートフィルタ(以下、捕集器という)で捕集するシステムが開発されている。これを連続的に使用するには捕集器に堆積したパティキュレートを定期的に燃焼除去して捕集器を再生することが必要であるため、定期的に排出ガス温度を上げて捕集器温度をパティキュレートが燃焼する温度まで昇温させ、堆積したパティキュレートを燃焼除去するようにしている。因みに、捕集器温度を上げる方法としては、メイン噴射の後にポスト噴射を行って捕集器に未燃HCを供給し、未燃HCの酸化反応によって捕集器内部を昇温させる方法が知られている。   In recent years, a system for collecting particulates discharged from a diesel engine (hereinafter referred to as an internal combustion engine) with a diesel particulate filter (hereinafter referred to as a collector) has been developed. In order to use this continuously, it is necessary to recycle the collector by periodically burning and removing the particulates accumulated in the collector. The temperature is raised to a temperature at which the particulates burn, and the accumulated particulates are removed by combustion. Incidentally, as a method of raising the collector temperature, there is known a method in which post-injection is performed after main injection to supply unburned HC to the collector, and the temperature inside the collector is raised by an oxidation reaction of unburned HC. It has been.

しかし、捕集器再生時に排出ガス温度や捕集器温度が高温になりすぎると、捕集器や高温にさらされるエンジン部品(例えば、EGRクーラおよびEGR弁を含むEGR系の部品、過給機)が熱的損傷を受けるおそれがある。このため、捕集器やエンジン部品の熱的損傷を受けることなく捕集器を再生できる温度制御法が提案されている。   However, if the exhaust gas temperature or collector temperature becomes too high during regeneration of the collector, the collector or engine components exposed to the high temperature (for example, EGR system parts including EGR coolers and EGR valves, superchargers) ) May be thermally damaged. For this reason, a temperature control method has been proposed in which the collector can be regenerated without receiving thermal damage to the collector or engine parts.

例えば、捕集器温度を上げるための昇温手段の操作量を捕集器温度に応じて調整し、捕集器の熱的損傷を防止するものがある(例えば、特許文献1参照)。   For example, there is one that adjusts the operation amount of the temperature raising means for raising the collector temperature according to the collector temperature to prevent thermal damage to the collector (see, for example, Patent Document 1).

また、排気温度センサにて検出される排出ガス温度についてエンジン部品の熱的損傷が生じない排出ガス温上限値を設定し、これを超えるときは排出ガス温度を低下させる制御を実施し、エンジン部品の熱的損傷を防止するものがある(例えば、特許文献2参照)。
特開特開2005−240672号公報 特開特開2004−211680号公報
In addition, an exhaust gas temperature upper limit is set for the exhaust gas temperature detected by the exhaust temperature sensor so that thermal damage to the engine parts does not occur. There is one that prevents thermal damage (see, for example, Patent Document 2).
JP-A-2005-240672 Japanese Patent Laid-Open No. 2004-21680

しかしながら、特許文献1にて提案された装置は、捕集器の熱的損傷のみを防止するものであり、エンジン部品の温度が高い状態を検出できないため、エンジン部品の熱的損傷を防止することができない。   However, the device proposed in Patent Document 1 prevents only thermal damage of the collector, and cannot detect a high temperature of the engine component, thereby preventing thermal damage of the engine component. I can't.

また、特許文献2にて提案された装置は、噴射時期や噴射量を変更して排出ガス温度を低下させるため捕集器温度も低下してしまい、例えば捕集器温度が低すぎてパティキュレートが燃焼除去されない、といった捕集器再生への悪影響が生じる虞がある。   Further, the apparatus proposed in Patent Document 2 changes the injection timing and the injection amount to lower the exhaust gas temperature, so that the collector temperature also decreases. For example, the collector temperature is too low and the particulates There is a risk of adverse effects on the regeneration of the collector, such as being not removed by combustion.

本発明は上記点に鑑みて、ポスト噴射を行って後処理装置の再生を行う内燃機関用制御装置において、後処理装置再生中の後処理装置の温度変化を抑えつつ、エンジン部品の熱的損傷等を回避可能にすることを目的とする。   In view of the above points, the present invention provides a control device for an internal combustion engine that performs post-injection to regenerate the aftertreatment device, and suppresses the temperature change of the aftertreatment device during regeneration of the aftertreatment device, while also causing thermal damage to engine parts. The purpose is to make it possible to avoid this.

本発明の第1の特徴では、排出ガスがタービン(14)に流入する際の流速をノズル(16)により制御するターボ過給機(13)と、排出ガス中の有害物質を処理する後処理装置(40)とを備える内燃機関(1)に搭載され、ポスト噴射を行って後処理装置(40)の再生を行う内燃機関用制御装置であって、タービン(14)よりも上流側の排出ガスの温度であるタービン上流ガス温度の値が所定値を超えたときに、タービン上流ガス温度の値が所定値以下のときよりもタービン(14)に流入する排出ガスの流速が低下するようにノズル(16)の作動を制御するタービン上流ガス温度低下手段(S102)を備えている。   In the first feature of the present invention, a turbocharger (13) for controlling a flow rate when exhaust gas flows into the turbine (14) by a nozzle (16), and post-processing for treating harmful substances in the exhaust gas. A control device for an internal combustion engine mounted on an internal combustion engine (1) having a device (40) and performing post-injection to regenerate the post-processing device (40), the exhaust upstream of the turbine (14) When the value of the turbine upstream gas temperature, which is the gas temperature, exceeds a predetermined value, the flow rate of the exhaust gas flowing into the turbine (14) is lower than when the value of the turbine upstream gas temperature is less than the predetermined value. Turbine upstream gas temperature lowering means (S102) for controlling the operation of the nozzle (16) is provided.

このような構成では、タービン(14)に流入する排出ガスの流速を低下させることにより、タービン上流の排気圧が低下し、ひいてはタービン上流の排出ガスの温度が低下するため、タービン(14)の熱的損傷を回避することができる。また、ポスト噴射の噴射量を変更することなく排出ガスの温度を低下させることができるため、後処理装置(40)の温度変化を抑制することができる。   In such a configuration, by reducing the flow rate of the exhaust gas flowing into the turbine (14), the exhaust pressure upstream of the turbine is lowered, and consequently the temperature of the exhaust gas upstream of the turbine is lowered. Thermal damage can be avoided. Moreover, since the temperature of exhaust gas can be reduced without changing the injection quantity of post injection, the temperature change of a post-processing apparatus (40) can be suppressed.

この場合、タービン(14)と後処理装置(40)との間の排出ガスの温度であるタービン下流ガス温度を検出する排気温度センサ(72)を備え、この排気温度センサ(72)にて検出したタービン下流ガス温度に基づいてタービン上流ガス温度を推定することができる。   In this case, an exhaust gas temperature sensor (72) for detecting the temperature of the turbine downstream gas, which is the temperature of the exhaust gas between the turbine (14) and the aftertreatment device (40), is provided and detected by this exhaust gas temperature sensor (72) The turbine upstream gas temperature can be estimated based on the turbine downstream gas temperature.

このようにすれば、本来後処理装置(40)の温度制御に用いられる排気温度センサ(72)の情報を利用するため、新たに排気温度センサを設けることなくタービン上流ガス温度を推定することができる。   In this way, since the information of the exhaust temperature sensor (72) originally used for temperature control of the aftertreatment device (40) is used, it is possible to estimate the turbine upstream gas temperature without providing a new exhaust temperature sensor. it can.

また、タービン(14)と後処理装置(40)との間の排出ガスの温度であるタービン下流ガス温度の情報、およびタービン上流ガス温度とタービン下流ガス温度との差であるタービン前後温度差の情報を取得し、タービン下流ガス温度にタービン前後温度差を加算してタービン上流ガス温度を推定することができる。 そして、タービン下流ガス温度やノズルの作動位置に応じてタービン前後温度差が変化するため、タービン下流ガス温度およびノズル(16)の作動位置のうち少なくとも一つに基づいてタービン前後温度差を推定すれば、タービン上流ガス温度をより正確に推定することができる。   Also, information on the turbine downstream gas temperature, which is the temperature of the exhaust gas between the turbine (14) and the aftertreatment device (40), and the turbine front-rear temperature difference, which is the difference between the turbine upstream gas temperature and the turbine downstream gas temperature. Information can be acquired, and the turbine upstream gas temperature can be estimated by adding the temperature difference before and after the turbine to the turbine downstream gas temperature. Since the temperature difference between the front and rear of the turbine changes according to the turbine downstream gas temperature and the nozzle operating position, the turbine front and rear temperature difference is estimated based on at least one of the turbine downstream gas temperature and the nozzle (16) operating position. Thus, the turbine upstream gas temperature can be estimated more accurately.

また、吸気絞り弁(22)の開度および吸気圧に応じてタービン前後温度差が変化するため、吸気絞り弁(22)の開度と吸気圧とに基づいてタービン前後温度差を推定すれば、タービン上流ガス温度をより正確に推定することができる。   Further, since the temperature difference between the front and rear of the turbine changes according to the opening and intake pressure of the intake throttle valve (22), if the temperature difference between the front and rear of the turbine is estimated based on the opening and intake pressure of the intake throttle valve (22). The turbine upstream gas temperature can be estimated more accurately.

なお、特許請求の範囲およびこの欄で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each means described in a claim and this column shows the correspondence with the specific means as described in embodiment mentioned later.

(第1実施形態)
本発明の第1実施形態について説明する。図1は本発明の第1実施形態に係る内燃機関用制御装置の全体構成を示す図である。
(First embodiment)
A first embodiment of the present invention will be described. FIG. 1 is a diagram showing an overall configuration of a control device for an internal combustion engine according to a first embodiment of the present invention.

図1に示す内燃機関1は、車両に搭載される水冷式ディーゼルエンジンであり、その車両は内燃機関1にて駆動される。内燃機関1は、高圧燃料を蓄える1つのコモンレール11と、このコモンレール11に連結されて内燃機関1のシリンダ内に燃料を噴射する複数の燃料噴射弁12を有している。因みに、内燃機関1に駆動される図示しないポンプによって燃料を高圧化して、その高圧燃料をコモンレール11に圧送するようになっている。   An internal combustion engine 1 shown in FIG. 1 is a water-cooled diesel engine mounted on a vehicle, and the vehicle is driven by the internal combustion engine 1. The internal combustion engine 1 includes a common rail 11 that stores high-pressure fuel, and a plurality of fuel injection valves 12 that are connected to the common rail 11 and inject fuel into a cylinder of the internal combustion engine 1. Incidentally, the pressure of the fuel is increased by a pump (not shown) driven by the internal combustion engine 1, and the high-pressure fuel is pumped to the common rail 11.

内燃機関1の吸気マニホールド21には、吸気管20が連結されており、その連結部に吸気絞り弁22が設けられている。そして、吸気絞り弁22によって、吸気系の通路面積が調整されて吸気流量が調整されるようになっている。   An intake pipe 20 is connected to an intake manifold 21 of the internal combustion engine 1, and an intake throttle valve 22 is provided at the connection portion. The intake throttle valve 22 adjusts the passage area of the intake system to adjust the intake flow rate.

内燃機関1の排気マニホールド31には、排気管30が連結されており、排気管30の途中には、排出ガス中のパティキュレート(以下、PMという)を捕集する後処理装置としての捕集器40が配置されている。   An exhaust pipe 30 is connected to the exhaust manifold 31 of the internal combustion engine 1, and is collected in the middle of the exhaust pipe 30 as a post-processing device that collects particulates (hereinafter referred to as PM) in the exhaust gas. A container 40 is arranged.

この捕集器40は、例えば、コーディエライト等の耐熱性セラミックスをハニカム構造に成形して、多孔質の隔壁で区画された多数の排気流路401の入口または出口を互い違いに目封じしてなる。そして、内燃機関1からの排出ガスは、入口側が開口している排気流路401内に入り、多孔質の隔壁を通過して隣の排気流路401に流入するようになっており、多孔質の隔壁を通過する際にPMが捕集される。また、排気管30における捕集器40の上流側には、酸化触媒41が配置されている。   For example, the collector 40 is formed by forming heat-resistant ceramics such as cordierite into a honeycomb structure, and alternately sealing the inlets or outlets of a large number of exhaust passages 401 partitioned by porous partition walls. Become. The exhaust gas from the internal combustion engine 1 enters the exhaust passage 401 having an opening on the inlet side, passes through the porous partition wall, and flows into the adjacent exhaust passage 401. PM is collected when passing through the partition walls. Further, an oxidation catalyst 41 is disposed on the exhaust pipe 30 upstream of the collector 40.

排気管30における酸化触媒41の上流側には、吸入空気を加圧するターボ過給機13のタービン14が設けられ、このタービン14は、吸気管20に設けられたコンプレッサ15とタービン軸を介して連結されている。これにより、排出ガスの熱エネルギーを利用してタービン14を駆動するとともに、タービン軸を介してコンプレッサ15を駆動し、吸気管20に導入される吸気をコンプレッサ15内で圧縮する。   A turbine 14 of a turbocharger 13 that pressurizes intake air is provided upstream of the oxidation catalyst 41 in the exhaust pipe 30. The turbine 14 is connected to a compressor 15 provided in the intake pipe 20 and a turbine shaft. It is connected. Thus, the turbine 14 is driven using the thermal energy of the exhaust gas, and the compressor 15 is driven via the turbine shaft, and the intake air introduced into the intake pipe 20 is compressed in the compressor 15.

図2はタービン14の構成を模式的に示すもので、タービン14の外周に複数個設けられたノズル16は、図示しない電動機等の駆動手段により駆動されるようになっている。そして、ノズル16の傾きを変えることにより、タービン14に流入する排出ガスの流速が変えられるようになっている。因みに、ノズル16の傾きが図2の破線位置から実線位置に近くなるのに伴って、タービン14に流入する排出ガスの流速が高くなる。   FIG. 2 schematically shows the configuration of the turbine 14. A plurality of nozzles 16 provided on the outer periphery of the turbine 14 are driven by a driving means such as an electric motor (not shown). The flow rate of the exhaust gas flowing into the turbine 14 can be changed by changing the inclination of the nozzle 16. Incidentally, as the inclination of the nozzle 16 becomes closer to the solid line position from the broken line position in FIG. 2, the flow rate of the exhaust gas flowing into the turbine 14 increases.

図1に示すように、コンプレッサ15よりも下流側で且つ吸気絞り弁22よりも上流側の吸気管20内には、コンプレッサ15で圧縮されて高温となった吸気を冷却するインタークーラ23が設けられている。   As shown in FIG. 1, an intercooler 23 is provided in the intake pipe 20 downstream of the compressor 15 and upstream of the intake throttle valve 22 for cooling the intake air that has been compressed by the compressor 15 and has reached a high temperature. It has been.

排気マニホールド31は、高圧EGR通路50によって吸気マニホールド21と連結されており、排出ガスの一部が高圧EGR通路50を介して吸気系に戻されるようになっている。より詳細には、高圧EGR通路50は、排気系におけるタービン14よりも上流から分岐して、吸気系における吸気絞り弁22よりも下流に連結されている。   The exhaust manifold 31 is connected to the intake manifold 21 by a high-pressure EGR passage 50 so that a part of the exhaust gas is returned to the intake system through the high-pressure EGR passage 50. More specifically, the high-pressure EGR passage 50 branches from the upstream side of the turbine 14 in the exhaust system and is connected downstream of the intake throttle valve 22 in the intake system.

高圧EGR通路50には高圧EGR弁51が設けられ、高圧EGR弁51によって高圧EGR通路50の通路面積が調整されて吸気系へ還流される排出ガスの量が調整されるようになっている。また、高圧EGR通路50における高圧EGR弁51の上流側には、還流される排出ガスを冷却するための高圧EGRクーラ52が設けられている。   The high pressure EGR passage 50 is provided with a high pressure EGR valve 51, and the passage area of the high pressure EGR passage 50 is adjusted by the high pressure EGR valve 51 so that the amount of exhaust gas recirculated to the intake system is adjusted. A high-pressure EGR cooler 52 for cooling the exhaust gas to be refluxed is provided on the high-pressure EGR passage 50 upstream of the high-pressure EGR valve 51.

また、排気管30は、低圧EGR通路60によって吸気管20と連結されており、排出ガスの一部が低圧EGR通路60を介して吸気系に戻されるようになっている。より詳細には、低圧EGR通路60は、排気系における捕集器40よりも下流から分岐して、吸気系におけるコンプレッサ15よりも上流に連結されている。   Further, the exhaust pipe 30 is connected to the intake pipe 20 by a low-pressure EGR passage 60, and a part of the exhaust gas is returned to the intake system through the low-pressure EGR passage 60. More specifically, the low pressure EGR passage 60 branches from the downstream side of the collector 40 in the exhaust system and is connected upstream of the compressor 15 in the intake system.

低圧EGR通路60には低圧EGR弁61が設けられ、低圧EGR弁61によって低圧EGR通路60の通路面積が調整されて吸気系へ還流される排出ガスの量が調整されるようになっている。また、低圧EGR通路60における低圧EGR弁61の上流側には、還流される排出ガスを冷却するための低圧EGRクーラ62が設けられている。   The low pressure EGR passage 60 is provided with a low pressure EGR valve 61, and the passage area of the low pressure EGR passage 60 is adjusted by the low pressure EGR valve 61 so that the amount of exhaust gas recirculated to the intake system is adjusted. In addition, a low pressure EGR cooler 62 for cooling the exhaust gas to be recirculated is provided upstream of the low pressure EGR valve 61 in the low pressure EGR passage 60.

排気マニホールド31には、タービン14よりも上流側の排気圧に応じた電気信号を出力する排気圧センサ71が設けられている。排気管30におけるタービン14と酸化触媒41との間には、タービン14を通過して酸化触媒41に流入する排出ガスの温度に応じた電気信号を出力する第1排気温度センサ72が設けられている。   The exhaust manifold 31 is provided with an exhaust pressure sensor 71 that outputs an electrical signal corresponding to the exhaust pressure upstream of the turbine 14. Between the turbine 14 and the oxidation catalyst 41 in the exhaust pipe 30, a first exhaust temperature sensor 72 that outputs an electric signal corresponding to the temperature of the exhaust gas that passes through the turbine 14 and flows into the oxidation catalyst 41 is provided. Yes.

排気管30における捕集器40の下流側には、捕集器40を通過した排出ガスの温度に応じた電気信号を出力する第2排気温度センサ73が設けられている。コンプレッサ15よりも上流側の吸気管20には、吸気流量に応じた電気信号を出力するエアフロメータ74が設けられている。吸気マニホールド21には、吸気絞り弁22よりも下流側の吸気圧に応じた電気信号を出力する吸気圧センサ75が設けられている。内燃機関1には、内燃機関回転数を検出する回転数センサ76が設けられている。   A second exhaust temperature sensor 73 that outputs an electrical signal corresponding to the temperature of the exhaust gas that has passed through the collector 40 is provided on the exhaust pipe 30 downstream of the collector 40. The intake pipe 20 upstream of the compressor 15 is provided with an air flow meter 74 that outputs an electric signal corresponding to the intake flow rate. The intake manifold 21 is provided with an intake pressure sensor 75 that outputs an electrical signal corresponding to the intake pressure downstream of the intake throttle valve 22. The internal combustion engine 1 is provided with a rotation speed sensor 76 that detects the rotation speed of the internal combustion engine.

ECU80は、図示しないCPU、ROM、EEPROM、RAM等からなる周知のマイクロコンピュータを備え、マイクロコンピュータに記憶したプログラムに従って演算処理を行うものである。そして、ECU80には、センサ類71〜76からの信号が入力され、さらに、吸気絞り弁22の開度、高圧EGR弁51の開度、低圧EGR弁61の開度、車速、アクセル開度、冷却水温、クランク位置、燃料圧等を検出する各種センサ(図示せず)からの信号が入力されるようになっている。また、ECU80は、演算結果に基づいて、燃料噴射弁12、ノズル16、吸気絞り弁22、高圧EGR弁51、低圧EGR弁61等を制御する。   The ECU 80 includes a known microcomputer including a CPU, a ROM, an EEPROM, a RAM, and the like (not shown), and performs arithmetic processing according to a program stored in the microcomputer. The ECU 80 receives signals from the sensors 71 to 76, and further opens the opening of the intake throttle valve 22, the opening of the high pressure EGR valve 51, the opening of the low pressure EGR valve 61, the vehicle speed, the accelerator opening, Signals from various sensors (not shown) for detecting the coolant temperature, the crank position, the fuel pressure, and the like are input. Further, the ECU 80 controls the fuel injection valve 12, the nozzle 16, the intake throttle valve 22, the high pressure EGR valve 51, the low pressure EGR valve 61, and the like based on the calculation result.

次に、本実施形態の作動を説明する。本実施形態は、周知の方法にて捕集器40のPM堆積量を推定し、PM堆積量が所定値に達すると捕集器40の再生を行う。具体的には、内燃機関1の排気行程においてメイン噴射の後にポスト噴射を行うように、ECU80が燃料噴射弁12の作動を制御する。このポスト噴射により捕集器40に未燃HCを供給し、未燃HCの酸化反応によって捕集器40を昇温させ、捕集器40に堆積したPMを燃焼、除去するようになっている。   Next, the operation of this embodiment will be described. In the present embodiment, the PM accumulation amount of the collector 40 is estimated by a known method, and when the PM accumulation amount reaches a predetermined value, the collector 40 is regenerated. Specifically, the ECU 80 controls the operation of the fuel injection valve 12 so that post injection is performed after main injection in the exhaust stroke of the internal combustion engine 1. By this post injection, unburned HC is supplied to the collector 40, the collector 40 is heated by an oxidation reaction of unburned HC, and PM deposited on the collector 40 is burned and removed. .

次に、タービン14の熱的損傷を回避する制御について説明する。図3はECU80にて実行される損傷回避制御処理を示す流れ図であり、この処理は内燃機関1の運転を行うためにキースイッチがオン位置に操作されると開始され、内燃機関1を停止させるためにキースイッチがオフ位置に操作されると終了される。   Next, control for avoiding thermal damage to the turbine 14 will be described. FIG. 3 is a flowchart showing a damage avoidance control process executed by the ECU 80. This process is started when the key switch is operated to the on position in order to operate the internal combustion engine 1, and the internal combustion engine 1 is stopped. Therefore, the operation is terminated when the key switch is operated to the off position.

図3に示すように、まず、タービン上流ガス温度取得手段としてのステップS100では、タービン14よりも上流側の排出ガスの温度であるタービン上流ガス温度を推定する。ここで、図4は、タービン14よりも下流側の排出ガスの温度であるタービン下流ガス温度と、タービン上流ガス温度との関係を示す特性図であり、タービン下流ガス温度が高くなるのに伴ってタービン上流ガス温度も高くなる関係になっている。そこで、本実施形態では、第1排気温度センサ72で検出したタービン下流ガス温度に基づいて、タービン上流ガス温度を推定する。   As shown in FIG. 3, first, in step S <b> 100 as the turbine upstream gas temperature acquisition means, the turbine upstream gas temperature that is the temperature of the exhaust gas upstream of the turbine 14 is estimated. Here, FIG. 4 is a characteristic diagram showing the relationship between the turbine downstream gas temperature, which is the temperature of the exhaust gas downstream from the turbine 14, and the turbine upstream gas temperature. As the turbine downstream gas temperature increases, FIG. Therefore, the turbine upstream gas temperature is also increased. Therefore, in the present embodiment, the turbine upstream gas temperature is estimated based on the turbine downstream gas temperature detected by the first exhaust temperature sensor 72.

なお、図4に示すタービン下流ガス温度とタービン上流ガス温度との関係を定義したマップをECU80のROMに記憶しておき、そのマップからタービン上流ガス温度を求めることができる。   A map defining the relationship between the turbine downstream gas temperature and the turbine upstream gas temperature shown in FIG. 4 is stored in the ROM of the ECU 80, and the turbine upstream gas temperature can be obtained from the map.

次のステップS101では、ステップS100で推定したタービン上流ガス温度を所定値T1と比較し、タービン上流ガス温度が所定値T1以下であれば(ステップS101がNO)、損傷回避制御処理を一旦終了する。   In the next step S101, the turbine upstream gas temperature estimated in step S100 is compared with a predetermined value T1, and if the turbine upstream gas temperature is equal to or lower than the predetermined value T1 (NO in step S101), the damage avoidance control process is temporarily ended. .

一方、ステップS100で推定したタービン上流ガス温度が所定値T1を超えているとき(ステップS101がYES)、換言すると、タービン14が熱的損傷を受ける虞がある状況のときには、ステップS102に進む。   On the other hand, when the turbine upstream gas temperature estimated in step S100 exceeds the predetermined value T1 (YES in step S101), in other words, when the turbine 14 may be thermally damaged, the process proceeds to step S102.

タービン上流ガス温度低下手段としてのステップS102では、タービン上流ガス温度を低下させる制御を行う。本実施形態では、ノズル16の傾きを変えることにより、タービン14に流入する排出ガスの流速を変化させる。具体的には、タービン上流ガス温度が所定値T1を超えたときにタービン14に流入する排出ガスの流速が、タービン上流ガス温度が所定値T1以下のときにタービン14に流入する排出ガスの流速よりも低くなるように、ノズル16の作動を制御する。   In step S102 as the turbine upstream gas temperature lowering means, control for lowering the turbine upstream gas temperature is performed. In the present embodiment, the flow rate of the exhaust gas flowing into the turbine 14 is changed by changing the inclination of the nozzle 16. Specifically, the flow rate of the exhaust gas flowing into the turbine 14 when the turbine upstream gas temperature exceeds a predetermined value T1, and the flow rate of the exhaust gas flowing into the turbine 14 when the turbine upstream gas temperature is equal to or lower than the predetermined value T1. The operation of the nozzle 16 is controlled to be lower.

より詳細には、内燃機関回転数およびアクセル開度に対するノズル16の目標開度(タービン上流ガス温度が所定値T1以下のときの適合値)を定めたマップをECU80のROMに記憶しておき、タービン上流ガス温度が所定値T1以下のときには、内燃機関回転数およびアクセル開度に基づいてそのマップから目標開度を求め、その目標開度になるようにノズル16の作動を制御する。一方、タービン上流ガス温度が所定値T1を超えたときには、内燃機関回転数およびアクセル開度に基づいてそのマップから目標開度を求め、タービン14に流入する排出ガスの流速が低くなるようにその目標開度を補正し、補正後の目標開度になるようにノズル16の作動を制御する。   More specifically, a map that defines the target opening degree of the nozzle 16 with respect to the internal combustion engine speed and the accelerator opening degree (applicable value when the turbine upstream gas temperature is equal to or lower than the predetermined value T1) is stored in the ROM of the ECU 80, When the turbine upstream gas temperature is equal to or lower than the predetermined value T1, the target opening is obtained from the map based on the engine speed and the accelerator opening, and the operation of the nozzle 16 is controlled so as to be the target opening. On the other hand, when the turbine upstream gas temperature exceeds the predetermined value T1, the target opening is obtained from the map based on the engine speed and the accelerator opening, and the flow rate of the exhaust gas flowing into the turbine 14 is reduced. The target opening is corrected, and the operation of the nozzle 16 is controlled so that the corrected target opening is obtained.

ここで、図5は、捕集器40の温度が一定の場合の、タービン14に流入する排出ガスの流速とタービン上流ガス温度との関係を示す特性図である。この図5に示すように、タービン14に流入する排出ガスの流速を低下させることにより、タービン上流の排気圧が低下してタービン上流ガス温度が低下する。   Here, FIG. 5 is a characteristic diagram showing the relationship between the flow velocity of the exhaust gas flowing into the turbine 14 and the turbine upstream gas temperature when the temperature of the collector 40 is constant. As shown in FIG. 5, by reducing the flow rate of the exhaust gas flowing into the turbine 14, the exhaust pressure upstream of the turbine is reduced and the turbine upstream gas temperature is lowered.

そして、タービン上流ガス温度が所定値T1以下(ステップS101がNO)になるまでステップS100〜102の処理が繰り返し実行され、タービン14の熱的損傷が回避される。また、ポスト噴射の噴射量を変更することなくタービン上流ガス温度を低下させることができるため、捕集器40の再生中にステップS102が実行されても捕集器40の温度変化を抑制することができる。   And the process of step S100-102 is repeatedly performed until turbine upstream gas temperature becomes below predetermined value T1 (step S101 is NO), and the thermal damage of the turbine 14 is avoided. Moreover, since the turbine upstream gas temperature can be lowered without changing the injection amount of the post injection, the temperature change of the collector 40 is suppressed even if step S102 is executed during the regeneration of the collector 40. Can do.

上記のように、本実施形態によれば、捕集器40の温度変化を抑制しつつ、タービン14の熱的損傷を回避することができる。   As described above, according to the present embodiment, thermal damage to the turbine 14 can be avoided while suppressing the temperature change of the collector 40.

また、第1排気温度センサ72で検出したタービン下流ガス温度に基づいてタービン上流ガス温度を推定するため、新たに排気温度センサを設けることなくタービン上流ガス温度を推定することができる。   Further, since the turbine upstream gas temperature is estimated based on the turbine downstream gas temperature detected by the first exhaust temperature sensor 72, the turbine upstream gas temperature can be estimated without providing a new exhaust temperature sensor.

なお、タービン上流ガス温度は、下記のa〜cのようにして求めてもよい。   In addition, you may obtain | require turbine upstream gas temperature as follows ac.

(a)図6の縦軸は、タービン上流ガス温度とタービン下流ガス温度との差であるタービン前後温度差であり、横軸はタービン下流ガス温度である。タービン下流ガス温度が高くなるのに伴って放熱量が多くなるため、図6に示すように、タービン下流ガス温度が高くなるのに伴ってタービン前後温度差が大きくなる。   (A) The vertical axis | shaft of FIG. 6 is a turbine back-and-front temperature difference which is a difference of turbine upstream gas temperature and turbine downstream gas temperature, and a horizontal axis is turbine downstream gas temperature. Since the amount of heat release increases as the turbine downstream gas temperature increases, as shown in FIG. 6, the temperature difference between the front and rear of the turbine increases as the turbine downstream gas temperature increases.

そこで、ステップS100では、第1排気温度センサ72で検出したタービン下流ガス温度に基づいてタービン前後温度差を推定し、この推定したタービン前後温度差をタービン下流ガス温度に加算してタービン上流ガス温度を推定する。   Accordingly, in step S100, the temperature difference between the turbine front and rear is estimated based on the turbine downstream gas temperature detected by the first exhaust temperature sensor 72, and the estimated turbine front and rear temperature difference is added to the turbine downstream gas temperature to obtain the turbine upstream gas temperature. Is estimated.

タービン下流ガス温度に応じてタービン前後温度差が変化するため、このようにすれば、タービン上流ガス温度をより正確に推定することができる。   Since the temperature difference between the front and rear of the turbine changes according to the turbine downstream gas temperature, the turbine upstream gas temperature can be estimated more accurately in this way.

(b)図7の縦軸はタービン前後温度差であり、横軸はタービン14に流入する排出ガスの流速である。タービン14に流入する排出ガスの流速が高くなって過給量が大きくなるほど、ターボ過給機13の仕事量が大きくなるため、図7に示すように、タービン14に流入する排出ガスの流速が高くなるのに伴ってタービン前後温度差が大きくなる。   (B) The vertical axis in FIG. 7 is the temperature difference across the turbine, and the horizontal axis is the flow rate of the exhaust gas flowing into the turbine 14. As the flow rate of the exhaust gas flowing into the turbine 14 increases and the supercharging amount increases, the work amount of the turbocharger 13 increases, so that the flow rate of the exhaust gas flowing into the turbine 14 increases as shown in FIG. As the temperature increases, the temperature difference between the front and rear of the turbine increases.

そこで、ステップS100では、タービン14に流入する排出ガスの流速と相関のあるノズル16の作動位置に基づいてタービン前後温度差を推定し、この推定したタービン前後温度差をタービン下流ガス温度に加算してタービン上流ガス温度を推定する。   Therefore, in step S100, the temperature difference between the front and rear of the turbine is estimated based on the operating position of the nozzle 16 that correlates with the flow rate of the exhaust gas flowing into the turbine 14, and the estimated temperature difference before and after the turbine is added to the turbine downstream gas temperature. To estimate the turbine upstream gas temperature.

ノズルの作動位置に応じてタービン前後温度差が変化するため、このようにすれば、タービン上流ガス温度をより正確に推定することができる。   Since the temperature difference between the front and rear of the turbine changes according to the nozzle operating position, the turbine upstream gas temperature can be estimated more accurately in this way.

(c)図8は、吸気絞り弁22の開度および吸気絞り弁22よりも下流側の吸気圧に対するタービン前後温度差のマップである。同じ吸気絞り弁22の開度においては吸気圧が高いほどターボ過給機13は多く仕事をしており、タービン前後温度差が大きくなる。また、同じ吸気圧では吸気絞り弁22の開度が小さいほどターボ過給機13は多く仕事をしており、タービン前後温度差が大きくなる。したがって、図8のマップには、吸気絞り弁22の開度が小さくなるほど、また吸気圧が高くなるほど、タービン前後温度差が大きくなるように、吸気絞り弁22の開度および吸気圧に対するタービン前後温度差の関係が定義されている。   (C) FIG. 8 is a map of the temperature difference across the turbine with respect to the opening of the intake throttle valve 22 and the intake pressure downstream of the intake throttle valve 22. At the same opening degree of the intake throttle valve 22, the higher the intake pressure, the more the turbocharger 13 is working and the greater the temperature difference between the front and rear of the turbine. Further, at the same intake pressure, the turbocharger 13 is doing more work as the opening of the intake throttle valve 22 is smaller, and the temperature difference between the front and rear of the turbine becomes larger. Therefore, the map of FIG. 8 shows that the opening and closing of the intake throttle valve 22 and the intake pressure are increased so that the difference in temperature before and after the turbine increases as the opening of the intake throttle valve 22 decreases and the intake pressure increases. A temperature difference relationship is defined.

そこで、ステップS100では、吸気絞り弁22の開度と吸気圧センサ75にて検出した吸気圧とに基づいて図8のマップからタービン前後温度差を求め、この求めたタービン前後温度差をタービン下流ガス温度に加算してタービン上流ガス温度を推定する。   Therefore, in step S100, the turbine front-rear temperature difference is obtained from the map of FIG. 8 based on the opening of the intake throttle valve 22 and the intake pressure detected by the intake pressure sensor 75, and the obtained turbine front-rear temperature difference is determined downstream of the turbine. The turbine upstream gas temperature is estimated by adding to the gas temperature.

吸気絞り弁22の開度および吸気圧に応じてタービン前後温度差が変化するため、このようにすれば、タービン上流ガス温度をより正確に推定することができる。   Since the temperature difference between the front and rear of the turbine changes according to the opening of the intake throttle valve 22 and the intake pressure, the turbine upstream gas temperature can be estimated more accurately in this way.

(第2実施形態)
本発明の第2実施形態について説明する。第1実施形態では、捕集器40の温度変化を抑制しつつタービン14の熱的損傷を回避可能にしたのに対し、本実施形態は、捕集器40の温度変化を抑制しつつ高圧EGR系部品の熱的損傷を回避可能にしたものである。
(Second Embodiment)
A second embodiment of the present invention will be described. In the first embodiment, thermal damage to the turbine 14 can be avoided while suppressing the temperature change of the collector 40, whereas in the present embodiment, the high pressure EGR is suppressed while suppressing the temperature change of the collector 40. This makes it possible to avoid thermal damage to system parts.

なお、本実施形態の内燃機関用制御装置の全体構成は、第1実施形態の内燃機関用制御装置の全体構成と同一であるため、以下、図1を参照しつつ本実施形態について説明する。   In addition, since the whole structure of the control apparatus for internal combustion engines of this embodiment is the same as the whole structure of the control apparatus for internal combustion engines of 1st Embodiment, this embodiment is demonstrated below, referring FIG.

図9は、本実施形態の制御装置においてECU80にて実行される損傷回避制御処理を示す流れ図であり、この処理は内燃機関1の運転を行うためにキースイッチがオン位置に操作されると開始され、内燃機関1を停止させるためにキースイッチがオフ位置に操作されると終了される。   FIG. 9 is a flowchart showing a damage avoidance control process executed by the ECU 80 in the control device of the present embodiment. This process starts when the key switch is operated to the ON position in order to operate the internal combustion engine 1. When the key switch is operated to the off position in order to stop the internal combustion engine 1, the process is terminated.

図9に示すように、まず、高圧EGRガス温度取得手段としてのステップS200では、高圧EGR通路50の排出ガスの温度である高圧EGRガス温度を推定する。より詳細には、高圧EGR弁51と高圧EGRクーラ52との間の排出ガスの温度を推定する。   As shown in FIG. 9, first, in step S200 as the high pressure EGR gas temperature acquisition means, the high pressure EGR gas temperature that is the temperature of the exhaust gas in the high pressure EGR passage 50 is estimated. More specifically, the temperature of the exhaust gas between the high pressure EGR valve 51 and the high pressure EGR cooler 52 is estimated.

ここで、図10は、タービン下流ガス温度と高圧EGRガス温度との関係を示す特性図である。前述したように、タービン下流ガス温度が高くなるのに伴ってタービン上流ガス温度も高くなる(図4参照)。そして、タービン上流ガス温度が高くなるのに伴って高圧EGRガス温度も高くなる。したがって、図10に示すように、タービン下流ガス温度が高くなるのに伴って高圧EGRガス温度も高くなる。そこで、本実施形態では、第1排気温度センサ72で検出したタービン下流ガス温度に基づいて、高圧EGRガス温度を推定する。なお、図10に示すタービン下流ガス温度と高圧EGRガス温度との関係を定義したマップをECU80のROMに記憶しておき、そのマップから高圧EGRガス温度を求めることができる。   Here, FIG. 10 is a characteristic diagram showing the relationship between the turbine downstream gas temperature and the high-pressure EGR gas temperature. As described above, as the turbine downstream gas temperature increases, the turbine upstream gas temperature also increases (see FIG. 4). As the turbine upstream gas temperature increases, the high-pressure EGR gas temperature also increases. Therefore, as shown in FIG. 10, as the turbine downstream gas temperature increases, the high-pressure EGR gas temperature also increases. Therefore, in the present embodiment, the high-pressure EGR gas temperature is estimated based on the turbine downstream gas temperature detected by the first exhaust temperature sensor 72. A map defining the relationship between the turbine downstream gas temperature and the high pressure EGR gas temperature shown in FIG. 10 is stored in the ROM of the ECU 80, and the high pressure EGR gas temperature can be obtained from the map.

次のステップS201では、ステップS200で推定した高圧EGRガス温度を所定値T2と比較し、高圧EGRガス温度が所定値T2以下であれば(ステップS201がNO)、損傷回避制御処理を一旦終了する。   In the next step S201, the high pressure EGR gas temperature estimated in step S200 is compared with a predetermined value T2, and if the high pressure EGR gas temperature is equal to or lower than the predetermined value T2 (step S201 is NO), the damage avoidance control process is temporarily ended. .

一方、ステップS200で推定した高圧EGRガス温度が所定値T2を超えているとき(ステップS201がYES)、換言すると、高圧EGR弁51や高圧EGRクーラ52が熱的損傷を受ける虞がある状況のときには、ステップS202に進む。   On the other hand, when the high pressure EGR gas temperature estimated in step S200 exceeds the predetermined value T2 (step S201 is YES), in other words, the high pressure EGR valve 51 and the high pressure EGR cooler 52 may be thermally damaged. Sometimes, the process proceeds to step S202.

高圧EGRガス温度低下手段としてのステップS202では、高圧EGRガス温度を低下させる制御を行う。本実施形態では、ノズル16の傾きを変えることにより、タービン14に流入する排出ガスの流速を変化させる。具体的には、高圧EGRガス温度が所定値T2を超えたときにタービン14に流入する排出ガスの流速が、高圧EGRガス温度が所定値T2以下のときにタービン14に流入する排出ガスの流速よりも低くなるように、ノズル16の作動を制御する。   In step S202 as the high pressure EGR gas temperature lowering means, control for lowering the high pressure EGR gas temperature is performed. In the present embodiment, the flow rate of the exhaust gas flowing into the turbine 14 is changed by changing the inclination of the nozzle 16. Specifically, the flow rate of the exhaust gas flowing into the turbine 14 when the high-pressure EGR gas temperature exceeds a predetermined value T2, and the flow rate of the exhaust gas flowing into the turbine 14 when the high-pressure EGR gas temperature is equal to or lower than the predetermined value T2. The operation of the nozzle 16 is controlled to be lower.

より詳細には、内燃機関回転数およびアクセル開度に対するノズル16の目標開度(高圧EGRガス温度が所定値T2以下のときの適合値)を定めたマップをECU80のROMに記憶しておき、高圧EGRガス温度が所定値T2以下のときには、内燃機関回転数およびアクセル開度に基づいてそのマップから目標開度を求め、その目標開度になるようにノズル16の作動を制御する。一方、高圧EGRガス温度が所定値T2を超えたときには、内燃機関回転数およびアクセル開度に基づいてそのマップから目標開度を求め、タービン14に流入する排出ガスの流速が低くなるようにその目標開度を補正し、補正後の目標開度になるようにノズル16の作動を制御する。   More specifically, a map that defines the target opening degree of the nozzle 16 with respect to the internal combustion engine speed and the accelerator opening degree (applicable value when the high-pressure EGR gas temperature is equal to or lower than the predetermined value T2) is stored in the ROM of the ECU 80. When the high-pressure EGR gas temperature is equal to or lower than the predetermined value T2, the target opening is obtained from the map based on the engine speed and the accelerator opening, and the operation of the nozzle 16 is controlled so as to be the target opening. On the other hand, when the high-pressure EGR gas temperature exceeds the predetermined value T2, the target opening is obtained from the map based on the engine speed and the accelerator opening, and the flow rate of the exhaust gas flowing into the turbine 14 is reduced. The target opening is corrected, and the operation of the nozzle 16 is controlled so that the corrected target opening is obtained.

ここで、図11は、捕集器40の温度および高圧EGR弁51の開度がともに一定の場合の、タービン14に流入する排出ガスの流速と高圧EGRガス温度との関係を示す特性図である。前述したように、タービン14に流入する排出ガスの流速を低下させるとタービン上流ガス温度が低下する(図5参照)。また、タービン上流ガス温度が低くなるのに伴って高圧EGRガス温度も低くなるため、図11に示すように、タービン14に流入する排出ガスの流速を低下させることにより、高圧EGRガス温度が低下する。   Here, FIG. 11 is a characteristic diagram showing the relationship between the flow rate of the exhaust gas flowing into the turbine 14 and the high-pressure EGR gas temperature when both the temperature of the collector 40 and the opening degree of the high-pressure EGR valve 51 are constant. is there. As described above, when the flow rate of the exhaust gas flowing into the turbine 14 is lowered, the turbine upstream gas temperature is lowered (see FIG. 5). Further, since the high-pressure EGR gas temperature decreases as the turbine upstream gas temperature decreases, the high-pressure EGR gas temperature decreases by reducing the flow rate of the exhaust gas flowing into the turbine 14 as shown in FIG. To do.

そして、高圧EGRガス温度が所定値T2以下(ステップS201がNO)になるまでステップS200〜202の処理が繰り返し実行され、高圧EGR弁51や高圧EGRクーラ52の熱的損傷が回避される。また、ポスト噴射の噴射量を変更することなく高圧EGRガス温度を低下させることができるため、捕集器40の再生中にステップS202が実行されても捕集器40の温度変化を抑制することができる。   And the process of step S200-202 is repeatedly performed until the high pressure EGR gas temperature becomes below predetermined value T2 (step S201 is NO), and the thermal damage of the high pressure EGR valve 51 and the high pressure EGR cooler 52 is avoided. Moreover, since the high-pressure EGR gas temperature can be lowered without changing the injection amount of the post injection, the temperature change of the collector 40 is suppressed even when step S202 is executed during the regeneration of the collector 40. Can do.

上記のように、本実施形態によれば、捕集器40の温度変化を抑制しつつ、高圧EGR弁51や高圧EGRクーラ52の熱的損傷を回避することができる。   As described above, according to the present embodiment, thermal damage to the high pressure EGR valve 51 and the high pressure EGR cooler 52 can be avoided while suppressing the temperature change of the collector 40.

なお、ステップS202において、ノズル16の作動を制御するのに代えて、高圧EGR弁51の開度を制御してもよい。具体的には、高圧EGRガス温度が所定値T2を超えたときの高圧EGR弁51の開度が、高圧EGRガス温度が所定値T2以下のときの高圧EGR弁51の開度よりも小さくなるように、高圧EGR弁51の開度を制御する。   In step S202, the opening degree of the high pressure EGR valve 51 may be controlled instead of controlling the operation of the nozzle 16. Specifically, the opening degree of the high pressure EGR valve 51 when the high pressure EGR gas temperature exceeds the predetermined value T2 is smaller than the opening degree of the high pressure EGR valve 51 when the high pressure EGR gas temperature is equal to or lower than the predetermined value T2. Thus, the opening degree of the high pressure EGR valve 51 is controlled.

ここで、図12は、捕集器40の温度が一定の場合の、高圧EGR弁51の開度と高圧EGRガス温度との関係を示す特性図である。この図12に示すように、高圧EGR弁51の開度を小さくすると、高圧EGR系の排出ガスの循環量である高圧EGRガス量が減少し、高圧EGR系部品(例えば、高圧EGRクーラ52)までの配管での放熱量が増加して、高圧EGR系部品に到達したときの高圧EGRガスの温度が低下する。したがって、高圧EGR系部品の熱的損傷を回避することができる。また、ポスト噴射の噴射量を変更することなく高圧EGRガス温度を低下させることができるため、捕集器40の温度変化を抑制することができる。   Here, FIG. 12 is a characteristic diagram showing the relationship between the opening degree of the high pressure EGR valve 51 and the high pressure EGR gas temperature when the temperature of the collector 40 is constant. As shown in FIG. 12, when the opening degree of the high-pressure EGR valve 51 is reduced, the amount of high-pressure EGR gas, which is the circulation amount of the exhaust gas of the high-pressure EGR system, is reduced. The amount of heat released in the pipes increases until the high pressure EGR gas temperature reaches the high pressure EGR system part. Therefore, thermal damage to the high-pressure EGR system parts can be avoided. Moreover, since the high pressure EGR gas temperature can be lowered without changing the injection amount of the post injection, the temperature change of the collector 40 can be suppressed.

また、高圧EGRガス温度は、下記のd、eのようにして求めてもよい。   Further, the high-pressure EGR gas temperature may be obtained as in the following d and e.

(d)図13の縦軸は、タービン上流ガス温度と高圧EGRガス温度との差である高圧EGRガス温度低下量であり、横軸はタービン上流ガス温度である。タービン上流ガス温度が高くなるのに伴って放熱量が多くなるため、図13に示すように、タービン上流ガス温度が高くなるのに伴って高圧EGRガス温度低下量が大きくなる。   (D) The vertical axis in FIG. 13 is the high-pressure EGR gas temperature drop that is the difference between the turbine upstream gas temperature and the high-pressure EGR gas temperature, and the horizontal axis is the turbine upstream gas temperature. Since the amount of heat release increases as the turbine upstream gas temperature increases, as shown in FIG. 13, the high pressure EGR gas temperature drop increases as the turbine upstream gas temperature increases.

そこで、ステップS200では、第1排気温度センサ72で検出したタービン下流ガス温度に基づいてタービン上流ガス温度を推定し、この推定したタービン上流ガス温度に基づいて高圧EGRガス温度低下量を推定し、タービン上流ガス温度の推定値から高圧EGRガス温度低下量の推定値を減算して高圧EGRガス温度を推定する。   Therefore, in step S200, the turbine upstream gas temperature is estimated based on the turbine downstream gas temperature detected by the first exhaust temperature sensor 72, and the high pressure EGR gas temperature decrease amount is estimated based on the estimated turbine upstream gas temperature. The high pressure EGR gas temperature is estimated by subtracting the estimated value of the high pressure EGR gas temperature drop from the estimated value of the turbine upstream gas temperature.

タービン上流ガス温度に応じて高圧EGRガス温度低下量が変化するため、このようにすれば、高圧EGRガス温度をより正確に推定することができる。   Since the amount of decrease in the high-pressure EGR gas temperature changes according to the turbine upstream gas temperature, the high-pressure EGR gas temperature can be estimated more accurately by doing so.

(e)図14は高圧EGRガス量と高圧EGRガス温度低下量との関係を示す特性図であり、高圧EGRガス量が少なくなるほど、放熱により高圧EGRガス温度低下量が大きくなる。   (E) FIG. 14 is a characteristic diagram showing the relationship between the high-pressure EGR gas amount and the high-pressure EGR gas temperature decrease amount. As the high-pressure EGR gas amount decreases, the high-pressure EGR gas temperature decrease amount increases due to heat dissipation.

そこで、ステップS200では、第1排気温度センサ72で検出したタービン下流ガス温度に基づいてタービン上流ガス温度を推定し、高圧EGRガス量を算出し(詳細後述)、この算出した高圧EGRガス量に基づいて高圧EGRガス温度低下量を推定し、タービン上流ガス温度の推定値から高圧EGRガス温度低下量の推定値を減算して高圧EGRガス温度を推定する。   Therefore, in step S200, the turbine upstream gas temperature is estimated based on the turbine downstream gas temperature detected by the first exhaust temperature sensor 72, the high-pressure EGR gas amount is calculated (details will be described later), and the calculated high-pressure EGR gas amount is calculated. Based on this, the high pressure EGR gas temperature drop is estimated, and the high pressure EGR gas temperature is estimated by subtracting the estimated value of the high pressure EGR gas temperature drop from the estimated value of the turbine upstream gas temperature.

高圧EGRガス量に応じて高圧EGRガス温度低下量が変化するため、このようにすれば、高圧EGRガス温度をより正確に推定することができる。   Since the amount of decrease in the high-pressure EGR gas temperature changes according to the amount of the high-pressure EGR gas, this makes it possible to estimate the high-pressure EGR gas temperature more accurately.

高圧EGRガス量は、下記のf、gのようにして求めることができる。   The amount of high-pressure EGR gas can be determined as f and g below.

(f)排気圧センサ71を備えている場合は、排気圧センサ71にて検出した排気圧、吸気圧センサ75にて検出した吸気圧、および高圧EGR弁51の開度に基づいて、高圧EGRガス量を求める。   (F) When the exhaust pressure sensor 71 is provided, the high pressure EGR is based on the exhaust pressure detected by the exhaust pressure sensor 71, the intake pressure detected by the intake pressure sensor 75, and the opening of the high pressure EGR valve 51. Find the gas volume.

(g)低圧EGR系を備えていない場合は、以下の手順で算出する。まず、回転数センサ76にて検出した内燃機関回転数と吸気圧センサ75にて検出した吸気圧とに基づいて、シリンダ吸入空気量を求める。因みに、シリンダ吸入空気量∝回転数×吸気圧である。次に、エアフロメータ74にて検出した吸気流量(すなわち、新気量)とシリンダ吸入空気量とに基づいて、高圧EGRガス量を求める。因みに、高圧EGRガス量=シリンダ吸入空気量−新気量である。   (G) When the low pressure EGR system is not provided, the calculation is performed according to the following procedure. First, the cylinder intake air amount is obtained based on the internal combustion engine rotational speed detected by the rotational speed sensor 76 and the intake pressure detected by the intake pressure sensor 75. Incidentally, the cylinder intake air amount ∝ number of revolutions × intake pressure. Next, the high-pressure EGR gas amount is obtained based on the intake flow rate (that is, the fresh air amount) detected by the air flow meter 74 and the cylinder intake air amount. Incidentally, high pressure EGR gas amount = cylinder intake air amount−new air amount.

(第3実施形態)
本発明の第3実施形態について説明する。第1実施形態では、捕集器40の温度変化を抑制しつつタービン14の熱的損傷を回避可能にしたのに対し、本実施形態は、捕集器40の温度変化を抑制しつつ低圧EGR系部品の熱的損傷を回避可能にしたものである。
(Third embodiment)
A third embodiment of the present invention will be described. In the first embodiment, it is possible to avoid thermal damage of the turbine 14 while suppressing the temperature change of the collector 40, whereas in this embodiment, the low pressure EGR is suppressed while suppressing the temperature change of the collector 40. This makes it possible to avoid thermal damage to system parts.

なお、本実施形態の内燃機関用制御装置の全体構成は、第1実施形態の内燃機関用制御装置の全体構成と同一であるため、以下、図1を参照しつつ本実施形態について説明する。   In addition, since the whole structure of the control apparatus for internal combustion engines of this embodiment is the same as the whole structure of the control apparatus for internal combustion engines of 1st Embodiment, this embodiment is demonstrated below, referring FIG.

図15は、本実施形態の制御装置においてECU80にて実行される損傷回避制御処理を示す流れ図であり、この処理は内燃機関1の運転を行うためにキースイッチがオン位置に操作されると開始され、内燃機関1を停止させるためにキースイッチがオフ位置に操作されると終了される。   FIG. 15 is a flowchart showing the damage avoidance control process executed by the ECU 80 in the control device of the present embodiment. This process starts when the key switch is operated to the on position in order to operate the internal combustion engine 1. When the key switch is operated to the off position in order to stop the internal combustion engine 1, the process is terminated.

図15に示すように、まず、低圧EGRガス温度取得手段としてのステップS300では、低圧EGR通路60の排出ガスの温度である低圧EGRガス温度を推定する。より詳細には、低圧EGR弁61と低圧EGRクーラ62との間の排出ガスの温度を推定する。   As shown in FIG. 15, first, in step S300 as the low pressure EGR gas temperature acquisition means, the low pressure EGR gas temperature that is the temperature of the exhaust gas in the low pressure EGR passage 60 is estimated. More specifically, the temperature of the exhaust gas between the low pressure EGR valve 61 and the low pressure EGR cooler 62 is estimated.

ここで、図16は、酸化触媒41と低圧EGR通路60の分岐部との間における排出ガスの温度である酸化触媒下流ガス温度と、低圧EGRガス温度との関係を示す特性図であり、酸化触媒下流ガス温度が高くなるのに伴って低圧EGRガス温度も高くなる関係になっている。そこで、本実施形態では、第2排気温度センサ73で検出した酸化触媒下流ガス温度に基づいて、低圧EGRガス温度を推定する。   Here, FIG. 16 is a characteristic diagram showing the relationship between the oxidation catalyst downstream gas temperature, which is the temperature of the exhaust gas between the oxidation catalyst 41 and the branch portion of the low pressure EGR passage 60, and the low pressure EGR gas temperature. The low pressure EGR gas temperature increases as the catalyst downstream gas temperature increases. Therefore, in the present embodiment, the low pressure EGR gas temperature is estimated based on the oxidation catalyst downstream gas temperature detected by the second exhaust temperature sensor 73.

なお、図16に示す低圧EGRガス温度と酸化触媒下流ガス温度との関係を定義したマップをECU80のROMに記憶しておき、そのマップから酸化触媒下流ガス温度を求めることができる。   A map defining the relationship between the low-pressure EGR gas temperature and the oxidation catalyst downstream gas temperature shown in FIG. 16 is stored in the ROM of the ECU 80, and the oxidation catalyst downstream gas temperature can be obtained from the map.

次のステップS301では、ステップS300で推定した低圧EGRガス温度を所定値T3と比較し、低圧EGRガス温度が所定値T3以下であれば(ステップS301がNO)、損傷回避制御処理を一旦終了する。   In the next step S301, the low pressure EGR gas temperature estimated in step S300 is compared with a predetermined value T3. If the low pressure EGR gas temperature is equal to or lower than the predetermined value T3 (NO in step S301), the damage avoidance control process is temporarily ended. .

一方、ステップS300で推定した低圧EGRガス温度が所定値T3を超えているとき(ステップS301がYES)、換言すると、低圧EGR弁61や低圧EGRクーラ62が熱的損傷を受ける虞がある状況のときには、ステップS302に進む。   On the other hand, when the low pressure EGR gas temperature estimated in step S300 exceeds the predetermined value T3 (YES in step S301), in other words, the low pressure EGR valve 61 and the low pressure EGR cooler 62 may be thermally damaged. Sometimes, the process proceeds to step S302.

低圧EGRガス温度低下手段としてのステップS302では、低圧EGRガス温度を低下させる制御を行う。本実施形態では、低圧EGRガス温度が所定値T3を超えたときの低圧EGR弁61の開度が、低圧EGRガス温度が所定値T3以下のときの低圧EGR弁61の開度よりも小さくなるように、低圧EGR弁61の開度を制御する。   In step S302 as the low pressure EGR gas temperature lowering means, control is performed to lower the low pressure EGR gas temperature. In the present embodiment, the opening degree of the low pressure EGR valve 61 when the low pressure EGR gas temperature exceeds the predetermined value T3 is smaller than the opening degree of the low pressure EGR valve 61 when the low pressure EGR gas temperature is equal to or lower than the predetermined value T3. Thus, the opening degree of the low pressure EGR valve 61 is controlled.

より詳細には、内燃機関回転数およびアクセル開度に対する低圧EGR弁61の目標開度(低圧EGRガス温度が所定値T3以下のときの適合値)を定めたマップをECU80のROMに記憶しておき、低圧EGRガス温度が所定値T3以下のときには、内燃機関回転数およびアクセル開度に基づいてそのマップから目標開度を求め、その目標開度になるように低圧EGR弁61を制御する。一方、低圧EGRガス温度が所定値T3を超えたときには、内燃機関回転数およびアクセル開度に基づいてそのマップから目標開度を求め、 開度が小さくなるようにその目標開度を補正し、補正後の目標開度になるように低圧EGR弁61を制御する。   More specifically, a map that defines the target opening degree of the low pressure EGR valve 61 (adapted value when the low pressure EGR gas temperature is equal to or lower than the predetermined value T3) with respect to the engine speed and the accelerator opening degree is stored in the ROM of the ECU 80. When the low-pressure EGR gas temperature is equal to or lower than the predetermined value T3, the target opening is obtained from the map based on the engine speed and the accelerator opening, and the low-pressure EGR valve 61 is controlled so as to be the target opening. On the other hand, when the low-pressure EGR gas temperature exceeds a predetermined value T3, the target opening is obtained from the map based on the internal combustion engine speed and the accelerator opening, and the target opening is corrected so that the opening becomes small, The low pressure EGR valve 61 is controlled so as to achieve the corrected target opening.

ここで、図17は、捕集器40の温度が一定の場合の、低圧EGR弁61の開度と低圧EGRガス温度との関係を示す特性図である。この図17に示すように、低圧EGR弁61の開度を小さくすると、低圧EGR系の排出ガスの循環量である低圧EGRガス量が減少し、低圧EGR系部品(例えば、低圧EGRクーラ62)までの配管での放熱量が増加して、低圧EGR系部品に到達したときの低圧EGRガスの温度が低下する。   Here, FIG. 17 is a characteristic diagram showing the relationship between the opening degree of the low-pressure EGR valve 61 and the low-pressure EGR gas temperature when the temperature of the collector 40 is constant. As shown in FIG. 17, when the opening of the low-pressure EGR valve 61 is reduced, the amount of low-pressure EGR gas, which is the circulation amount of the exhaust gas of the low-pressure EGR system, is reduced. The amount of heat radiation in the pipes up to this point increases, and the temperature of the low pressure EGR gas when it reaches the low pressure EGR system part decreases.

そして、低圧EGRガス温度が所定値T3以下(ステップS301がNO)になるまでステップS300〜302の処理が繰り返し実行され、低圧EGR弁61や低圧EGRクーラ62の熱的損傷が回避される。また、ポスト噴射の噴射量を変更することなく低圧EGRガス温度を低下させることができるため、捕集器40の再生中にステップS302が実行されても捕集器40の温度変化を抑制することができる。   And the process of step S300-302 is repeatedly performed until the low pressure EGR gas temperature becomes below predetermined value T3 (step S301 is NO), and the thermal damage of the low pressure EGR valve 61 or the low pressure EGR cooler 62 is avoided. Moreover, since the low-pressure EGR gas temperature can be lowered without changing the injection amount of the post injection, the temperature change of the collector 40 is suppressed even if step S302 is executed during the regeneration of the collector 40. Can do.

上記のように、本実施形態によれば、捕集器40の温度変化を抑制しつつ、低圧EGR弁61や低圧EGRクーラ62の熱的損傷を回避することができる。   As described above, according to the present embodiment, thermal damage to the low pressure EGR valve 61 and the low pressure EGR cooler 62 can be avoided while suppressing a temperature change of the collector 40.

なお、低圧EGRガス温度は、下記のh、iのようにして求めてもよい。   Note that the low-pressure EGR gas temperature may be obtained as in the following h and i.

(h)図18の縦軸は、酸化触媒下流ガス温度と低圧EGRガス温度との差である低圧EGRガス温度低下量であり、横軸は酸化触媒下流ガス温度である。酸化触媒下流ガス温度が高くなるのに伴って放熱量が多くなるため、図18に示すように、酸化触媒下流ガス温度が高くなるのに伴って低圧EGRガス温度低下量が大きくなる。   (H) The vertical axis in FIG. 18 is the low-pressure EGR gas temperature drop that is the difference between the oxidation catalyst downstream gas temperature and the low-pressure EGR gas temperature, and the horizontal axis is the oxidation catalyst downstream gas temperature. As the oxidation catalyst downstream gas temperature increases, the amount of heat release increases, and as shown in FIG. 18, the low pressure EGR gas temperature decrease amount increases as the oxidation catalyst downstream gas temperature increases.

そこで、ステップS300では、第2排気温度センサ73で検出した酸化触媒下流ガス温度に基づいて低圧EGRガス温度低下量を推定し、酸化触媒下流ガス温度から低圧EGRガス温度低下量の推定値を減算して低圧EGRガス温度を推定する。   Therefore, in step S300, the low pressure EGR gas temperature decrease amount is estimated based on the oxidation catalyst downstream gas temperature detected by the second exhaust temperature sensor 73, and the estimated value of the low pressure EGR gas temperature decrease amount is subtracted from the oxidation catalyst downstream gas temperature. Thus, the low pressure EGR gas temperature is estimated.

酸化触媒下流ガス温度に応じて低圧EGRガス温度低下量が変化するため、このようにすれば、低圧EGRガス温度をより正確に推定することができる。   Since the amount of decrease in the low-pressure EGR gas temperature changes in accordance with the oxidation catalyst downstream gas temperature, this makes it possible to estimate the low-pressure EGR gas temperature more accurately.

(i)図19は低圧EGRガス温度低下量と低圧EGRガス量との関係を示す特性図であり、低圧EGRガス量が少なくなるほど、放熱により低圧EGRガス温度低下量が大きくなる。   (I) FIG. 19 is a characteristic diagram showing the relationship between the low pressure EGR gas temperature drop amount and the low pressure EGR gas amount, and the lower the low pressure EGR gas amount, the greater the low pressure EGR gas temperature drop amount due to heat dissipation.

そこで、ステップS300では、低圧EGRガス量を算出し(詳細後述)、この算出した低圧EGRガス量に基づいて低圧EGRガス温度低下量を推定し、第2排気温度センサ73で検出した酸化触媒下流ガス温度から低圧EGRガス温度低下量の推定値を減算して低圧EGRガス温度を推定する。   Therefore, in step S300, the low pressure EGR gas amount is calculated (details will be described later), the low pressure EGR gas temperature drop amount is estimated based on the calculated low pressure EGR gas amount, and the downstream of the oxidation catalyst detected by the second exhaust temperature sensor 73 is calculated. The low pressure EGR gas temperature is estimated by subtracting the estimated value of the low pressure EGR gas temperature drop from the gas temperature.

低圧EGRガス量に応じて低圧EGRガス温度低下量が変化するため、このようにすれば、低圧EGRガス温度をより正確に推定することができる。   Since the amount of decrease in the low-pressure EGR gas temperature changes in accordance with the amount of low-pressure EGR gas, this makes it possible to estimate the low-pressure EGR gas temperature more accurately.

低圧EGRガス量は、以下の手順で算出する。まず、回転数センサ76にて検出した内燃機関回転数と吸気圧センサ75にて検出した吸気圧とに基づいて、シリンダ吸入空気量を求める。   The amount of low-pressure EGR gas is calculated according to the following procedure. First, the cylinder intake air amount is obtained based on the internal combustion engine rotational speed detected by the rotational speed sensor 76 and the intake pressure detected by the intake pressure sensor 75.

次に、エアフロメータ74にて検出した吸気流量(すなわち、新気量)とシリンダ吸入空気量とに基づいて、全EGRガス量(すなわち、高圧EGRガス量+低圧EGRガス量)を求める。因みに、全EGRガス量=シリンダ吸入空気量−新気量である。   Next, the total EGR gas amount (that is, the high pressure EGR gas amount + the low pressure EGR gas amount) is obtained based on the intake flow rate (that is, the fresh air amount) detected by the air flow meter 74 and the cylinder intake air amount. Incidentally, the total EGR gas amount = cylinder intake air amount−new air amount.

次に、排気圧、吸気圧、および高圧EGR弁51の開度に基づいて、高圧EGRガス量を求める。そして、全EGRガス量から高圧EGRガス量を減算して低圧EGRガス量を求める。   Next, the high pressure EGR gas amount is obtained based on the exhaust pressure, the intake pressure, and the opening degree of the high pressure EGR valve 51. Then, the low pressure EGR gas amount is obtained by subtracting the high pressure EGR gas amount from the total EGR gas amount.

(第4実施形態)
本発明の第4実施形態について説明する。第1実施形態では、捕集器40の温度変化を抑制しつつタービン14の熱的損傷を回避可能にしたのに対し、本実施形態は、捕集器40の温度変化を抑制しつつ吸気圧の異常上昇によるターボ過給機13や内燃機関1の破損を防止可能にしたものである。
(Fourth embodiment)
A fourth embodiment of the present invention will be described. In the first embodiment, thermal damage to the turbine 14 can be avoided while suppressing the temperature change of the collector 40, whereas in the present embodiment, the intake pressure is suppressed while suppressing the temperature change of the collector 40. This makes it possible to prevent the turbocharger 13 and the internal combustion engine 1 from being damaged due to the abnormal rise.

なお、本実施形態の内燃機関用制御装置の全体構成は、第1実施形態の内燃機関用制御装置の全体構成と同一であるため、以下、図1を参照しつつ本実施形態について説明する。   In addition, since the whole structure of the control apparatus for internal combustion engines of this embodiment is the same as the whole structure of the control apparatus for internal combustion engines of 1st Embodiment, this embodiment is demonstrated below, referring FIG.

図20は、本実施形態の制御装置においてECU80にて実行される吸気圧異常時制御処理を示す流れ図であり、この処理は捕集器40の再生が開始されると開始され、捕集器40の再生が完了すると終了される。   FIG. 20 is a flowchart showing an intake pressure abnormality control process executed by the ECU 80 in the control device of the present embodiment. This process is started when regeneration of the collector 40 is started. When the playback of is completed, it ends.

図20に示すように、まず、再生時吸気圧取得手段としてのステップS400では、コンプレッサ15よりも下流側の吸気圧を吸気圧センサ75にて検出する。   As shown in FIG. 20, first, in step S400 as the regeneration intake pressure acquisition means, the intake pressure sensor 75 detects the intake pressure downstream of the compressor 15.

次のステップS401では、ステップS400で検出した吸気圧を所定値Phighと比較し、吸気圧が所定値Phigh以下であれば(ステップS401がYES)、吸気圧異常時制御処理を一旦終了する。   In the next step S401, the intake pressure detected in step S400 is compared with a predetermined value High, and if the intake pressure is equal to or lower than the predetermined value High (step S401 is YES), the control process at the time of abnormal intake pressure is temporarily ended.

一方、ステップS400で検出した吸気圧が所定値Phighを超えているとき(ステップS401がNO)、換言すると、吸気圧の異常上昇によるターボ過給機13や内燃機関1の破損の虞がある状況のときには、ステップS402に進む。   On the other hand, when the intake pressure detected in step S400 exceeds the predetermined value High (NO in step S401), in other words, there is a risk of damage to the turbocharger 13 or the internal combustion engine 1 due to an abnormal increase in intake pressure. In step S402, the process proceeds to step S402.

吸気圧低下手段としてのステップS402では、吸気圧を低下させる制御を行う。本実施形態では、ポスト噴射の噴射量および噴射時期を以下のように制御して吸気圧を低下させる。   In step S402 as intake pressure lowering means, control for lowering the intake pressure is performed. In this embodiment, the intake pressure is lowered by controlling the injection amount and injection timing of post injection as follows.

図21はクランク角に対する燃料噴射弁12のノズルリフト量を示すものであり、破線は吸気圧が所定値Phigh以下のときの制御特性を示し、実線は吸気圧が所定値Phighを超えているときの制御特性を示している。また、図22は、ポスト噴射の噴射量および噴射時期を図21のように制御した場合の、クランク角に対する内燃機関1の熱発生率を示すものであり、破線は吸気圧が所定値Phigh以下のときの特性を示し、実線は吸気圧が所定値Phighを超えているときの特性を示している。   FIG. 21 shows the nozzle lift amount of the fuel injection valve 12 with respect to the crank angle. The broken line shows the control characteristics when the intake pressure is equal to or less than the predetermined value High, and the solid line shows when the intake pressure exceeds the predetermined value High. The control characteristics are shown. FIG. 22 shows the heat generation rate of the internal combustion engine 1 with respect to the crank angle when the injection amount and the injection timing of the post injection are controlled as shown in FIG. 21, and the broken line indicates the intake pressure is below a predetermined value High. The solid line shows the characteristic when the intake pressure exceeds the predetermined value High.

図21に示すように、メイン噴射の後にポスト噴射を3回行うようになっている。そして、ステップS402では、1回目のポスト噴射は、吸気圧が所定値Phigh以下のときの1回目のポスト噴射と比較して、噴射量を減量するとともに噴射時期を遅角させる。また、2回目のポスト噴射は、吸気圧が所定値Phigh以下のときの2回目のポスト噴射と比較して、噴射量を同等とし、噴射時期を遅角させる。さらに、3回目のポスト噴射は、吸気圧が所定値Phigh以下のときの3回目のポスト噴射と比較して、噴射量を増量するとともに噴射時期を遅角させる。   As shown in FIG. 21, post injection is performed three times after main injection. In step S402, the first post-injection reduces the injection amount and retards the injection timing as compared to the first post-injection when the intake pressure is equal to or lower than the predetermined value High. Further, the second post-injection makes the injection amount equal and retards the injection timing as compared to the second post-injection when the intake pressure is equal to or lower than the predetermined value High. Further, the third post-injection increases the injection amount and retards the injection timing as compared with the third post-injection when the intake pressure is equal to or lower than the predetermined value High.

より詳細には、内燃機関回転数およびアクセル開度に対するポスト噴射の噴射量および噴射時期(吸気圧が所定値Phigh以下のときの適合値)を定めたマップをECU80のROMに記憶しておき、吸気圧が所定値Phigh以下のときには、内燃機関回転数およびアクセル開度に基づいてそのマップからポスト噴射の噴射量および噴射時期を求め、その求めた噴射量および噴射時期になるように燃料噴射弁12の作動を制御する。一方、吸気圧が所定値Phighを超えたときには、内燃機関回転数およびアクセル開度に基づいてそのマップからポスト噴射の噴射量および噴射時期を求め、その求めた噴射量および噴射時期を上記した関係になるように補正し、補正後の噴射量および噴射時期になるように燃料噴射弁12の作動を制御する。   More specifically, a map that defines the injection amount and the injection timing of the post-injection with respect to the internal combustion engine speed and the accelerator opening (applicable value when the intake pressure is equal to or lower than the predetermined value High) is stored in the ROM of the ECU 80. When the intake pressure is less than or equal to the predetermined value High, the injection amount and the injection timing of the post-injection are determined from the map based on the internal combustion engine speed and the accelerator opening, and the fuel injection valve is set so as to be the determined injection amount and the injection timing 12 operations are controlled. On the other hand, when the intake pressure exceeds a predetermined value High, the post-injection injection amount and injection timing are obtained from the map based on the internal combustion engine speed and the accelerator opening, and the obtained injection amount and injection timing are related to each other as described above. And the operation of the fuel injection valve 12 is controlled so that the corrected injection amount and injection timing are obtained.

このように、噴射時期の早いポスト噴射の噴射量を減量することにより、筒内で燃焼する燃料の量が減少する。また、ポスト噴射の噴射時期を遅角させることにより、噴射時期の早いポスト噴射は失火し、また噴射時期の遅いポスト噴射も筒内では燃焼しなくなる。したがって、図22に示すようにポスト噴射領域での熱発生率が低下して排気圧が低下し、ターボ過給機13の仕事量が減少して吸気圧が低下する。   In this way, by reducing the injection amount of the post injection with the earlier injection timing, the amount of fuel combusted in the cylinder is reduced. In addition, by delaying the injection timing of the post injection, the post injection with the early injection timing misfires, and the post injection with the late injection timing is not combusted in the cylinder. Therefore, as shown in FIG. 22, the heat generation rate in the post-injection region decreases, the exhaust pressure decreases, the work of the turbocharger 13 decreases, and the intake pressure decreases.

そして、吸気圧が所定値Phigh以下(ステップS401がYES)になるまでステップS400〜402の処理が繰り返し実行され、吸気圧の異常上昇によるターボ過給機13や内燃機関1の破損が防止される。また、ポスト噴射の合計噴射量を変更することなく吸気圧を低下させることができるため、捕集器40の再生中にステップS402が実行されても捕集器40の温度変化を抑制することができる。   Then, the processes in steps S400 to 402 are repeatedly executed until the intake pressure becomes equal to or lower than the predetermined value High (YES in step S401), and the turbocharger 13 and the internal combustion engine 1 are prevented from being damaged due to an abnormal increase in the intake pressure. . Further, since the intake pressure can be reduced without changing the total injection amount of the post injection, the temperature change of the collector 40 can be suppressed even if step S402 is executed during the regeneration of the collector 40. it can.

上記のように、本実施形態によれば、捕集器40の温度変化を抑制しつつ、吸気圧の異常上昇によるターボ過給機13や内燃機関1の破損を防止することができる。   As described above, according to the present embodiment, it is possible to prevent the turbocharger 13 and the internal combustion engine 1 from being damaged due to an abnormal increase in intake pressure while suppressing the temperature change of the collector 40.

なお、ステップS402では、ポスト噴射の噴射量および噴射時期を変更して吸気圧を低下させるようにしたが、ステップS402では下記のj、kのようにして吸気圧を低下させてもよい。   In step S402, the intake pressure is reduced by changing the injection amount and the injection timing of the post-injection. However, in step S402, the intake pressure may be reduced as j and k below.

(j)図23は吸気絞り弁22の開度と吸気圧との関係を示す特性図であり、吸気絞り弁22の開度が小さくなるほど吸気圧は低くなる。したがって、ステップS402では、吸気圧が所定値Phigh以下のときよりも吸気絞り弁22の開度を小さくして吸気圧を低下させる。   (J) FIG. 23 is a characteristic diagram showing the relationship between the opening degree of the intake throttle valve 22 and the intake pressure, and the intake pressure decreases as the opening degree of the intake throttle valve 22 decreases. Therefore, in step S402, the intake pressure is lowered by making the opening of the intake throttle valve 22 smaller than when the intake pressure is less than or equal to the predetermined value High.

(k)ステップS402では、吸気圧が所定値Phigh以下のときよりもタービン14に流入する排出ガスの流速を低下させることにより、ターボ過給機13の仕事量を減少させて吸気圧を低下させる。   (K) In step S402, the work flow of the turbocharger 13 is reduced to lower the intake pressure by lowering the flow rate of the exhaust gas flowing into the turbine 14 than when the intake pressure is equal to or less than the predetermined value High. .

(第5実施形態)
本発明の第5実施形態について説明する。第1実施形態では、捕集器40の温度変化を抑制しつつタービン14の熱的損傷を回避可能にしたのに対し、本実施形態は、捕集器40の温度変化を抑制しつつ吸気圧の異常低下によるオイル上がりを防止可能にしたものである。
(Fifth embodiment)
A fifth embodiment of the present invention will be described. In the first embodiment, thermal damage to the turbine 14 can be avoided while suppressing the temperature change of the collector 40, whereas in the present embodiment, the intake pressure is suppressed while suppressing the temperature change of the collector 40. This makes it possible to prevent the oil from rising due to an abnormal drop in oil.

なお、本実施形態の内燃機関用制御装置の全体構成は、第1実施形態の内燃機関用制御装置の全体構成と同一であるため、以下、図1を参照しつつ本実施形態について説明する。   In addition, since the whole structure of the control apparatus for internal combustion engines of this embodiment is the same as the whole structure of the control apparatus for internal combustion engines of 1st Embodiment, this embodiment is demonstrated below, referring FIG.

図24は、本実施形態の制御装置においてECU80にて実行される吸気圧異常時制御処理を示す流れ図であり、この処理は捕集器40の再生が開始されると開始され、捕集器40の再生が完了すると終了される。   FIG. 24 is a flowchart showing a control process at the time of abnormal intake pressure executed by the ECU 80 in the control device of the present embodiment. This process is started when regeneration of the collector 40 is started, and the collector 40 When the playback of is completed, it ends.

図24に示すように、まず、再生時吸気圧取得手段としてのステップS500では、コンプレッサ15よりも下流側の吸気圧を吸気圧センサ75にて検出する。   As shown in FIG. 24, first, in step S500 as a regeneration intake pressure acquisition means, the intake pressure sensor 75 detects the intake pressure downstream of the compressor 15.

次のステップS501では、ステップS500で検出した吸気圧を所定値Plowと比較し、吸気圧が所定値Plow以上であれば(ステップS501がYES)、吸気圧異常時制御処理を一旦終了する。   In the next step S501, the intake pressure detected in step S500 is compared with a predetermined value Plow. If the intake pressure is greater than or equal to the predetermined value Plow (YES in step S501), the control process for abnormal intake pressure is temporarily ended.

一方、ステップS500で検出した吸気圧が所定値Plow未満のとき(ステップS501がNO)、換言すると、吸気圧の異常低下によるオイル上がりが発生する虞がある状況のときには、ステップS502に進む。   On the other hand, when the intake pressure detected in step S500 is less than the predetermined value Plow (NO in step S501), in other words, when there is a possibility that an increase in oil due to an abnormal decrease in intake pressure may occur, the process proceeds to step S502.

吸気圧上昇手段としてのステップS502では、吸気圧を上昇させる制御を行う。本実施形態では、ポスト噴射の噴射量および噴射時期を以下のように制御して吸気圧を上昇させる。   In step S502 as intake pressure increasing means, control for increasing the intake pressure is performed. In the present embodiment, the intake pressure is increased by controlling the injection amount and injection timing of post injection as follows.

メイン噴射の後にポスト噴射を3回行う場合、ステップS502では、1回目のポスト噴射は、吸気圧が所定値Plow以上のときの1回目のポスト噴射と比較して、噴射量を増量するとともに噴射時期を進角させる。また、2回目のポスト噴射は、吸気圧が所定値Plow以上のときの2回目のポスト噴射と比較して、噴射量を同等とし、噴射時期を進角させる。さらに、3回目のポスト噴射は、吸気圧が所定値Plow以上のときの3回目のポスト噴射と比較して、噴射量を減量するとともに噴射時期を進角させる。   When post injection is performed three times after main injection, in step S502, the first post injection increases the injection amount and injects compared to the first post injection when the intake pressure is equal to or higher than the predetermined value Plow. Advance the time. Further, the second post-injection makes the injection amount equal and advances the injection timing compared to the second post-injection when the intake pressure is equal to or higher than the predetermined value Plow. Further, the third post-injection reduces the injection amount and advances the injection timing compared to the third post-injection when the intake pressure is equal to or higher than the predetermined value Plow.

より詳細には、内燃機関回転数およびアクセル開度に対するポスト噴射の噴射量および噴射時期(吸気圧が所定値Plow以上のときの適合値)を定めたマップをECU80のROMに記憶しておき、吸気圧が所定値Plow以上のときには、内燃機関回転数およびアクセル開度に基づいてそのマップからポスト噴射の噴射量および噴射時期を求め、その求めた噴射量および噴射時期になるように燃料噴射弁12の作動を制御する。一方、吸気圧が所定値Plow未満のときには、内燃機関回転数およびアクセル開度に基づいてそのマップからポスト噴射の噴射量および噴射時期を求め、その求めた噴射量および噴射時期を上記した関係になるように補正し、補正後の噴射量および噴射時期になるように燃料噴射弁12の作動を制御する。   More specifically, a map that defines post-injection injection amount and injection timing (applicable value when the intake pressure is equal to or higher than a predetermined value Plow) with respect to the internal combustion engine speed and the accelerator opening is stored in the ROM of the ECU 80. When the intake pressure is equal to or greater than a predetermined value Plow, the injection amount and the injection timing of the post-injection are obtained from the map based on the engine speed and the accelerator opening, and the fuel injection valve is set so as to obtain the obtained injection amount and the injection timing. 12 operations are controlled. On the other hand, when the intake pressure is less than the predetermined value Plow, the post-injection injection amount and injection timing are obtained from the map based on the internal combustion engine speed and the accelerator opening, and the obtained injection amount and injection timing are in the relationship described above. The operation of the fuel injection valve 12 is controlled so that the corrected injection amount and injection timing are obtained.

このように、噴射時期の早いポスト噴射の噴射量を増量することにより、筒内で燃焼する燃料の量が増加する。また、ポスト噴射の噴射時期を進角させることにより、ポスト噴射の失火が防止される。したがって、ポスト噴射領域での熱発生率が上昇して排気圧が上昇し、ターボ過給機13の仕事量が増加して吸気圧が上昇する。   In this way, by increasing the injection amount of the post injection having an earlier injection timing, the amount of fuel combusted in the cylinder increases. Moreover, misfire of post injection is prevented by advancing the injection timing of post injection. Therefore, the heat generation rate in the post-injection region is increased, the exhaust pressure is increased, the work amount of the turbocharger 13 is increased, and the intake pressure is increased.

そして、吸気圧が所定値Plow以上(ステップS501がYES)になるまでステップS500〜502の処理が繰り返し実行され、吸気圧の異常低下によるオイル上がりが防止される。また、ポスト噴射の合計噴射量を変更することなく吸気圧を上昇させることができるため、捕集器40の再生中にステップS402が実行されても捕集器40の温度変化を抑制することができる。   Then, the processes in steps S500 to S502 are repeatedly executed until the intake pressure becomes equal to or higher than the predetermined value Plow (YES in step S501), and oil rise due to an abnormal decrease in intake pressure is prevented. Further, since the intake pressure can be increased without changing the total injection amount of the post injection, the temperature change of the collector 40 can be suppressed even if step S402 is executed during the regeneration of the collector 40. it can.

上記のように、本実施形態によれば、捕集器40の温度変化を抑制しつつ、吸気圧の異常低下によるオイル上がりを防止することができる。   As described above, according to the present embodiment, it is possible to prevent the oil from rising due to an abnormal decrease in the intake pressure while suppressing the temperature change of the collector 40.

なお、ステップS502では、ポスト噴射の噴射量および噴射時期を変更して吸気圧を上昇させるようにしたが、ステップS502では下記のl、mのようにして吸気圧を上昇させてもよい。   In step S502, the intake pressure is increased by changing the injection amount and the injection timing of the post injection. However, in step S502, the intake pressure may be increased as in the following l and m.

(l)ステップS502では、吸気圧が所定値Plow以上のときよりも吸気絞り弁22の開度を大きくして吸気圧を上昇させる。   (L) In step S502, the opening of the intake throttle valve 22 is made larger than when the intake pressure is greater than or equal to the predetermined value Plow to increase the intake pressure.

(m)ステップS502では、吸気圧が所定値Plow以上のときよりもタービン14に流入する排出ガスの流速を上昇させることにより、ターボ過給機13の仕事量を増加させて吸気圧を上昇させる。   (M) In step S502, the work flow of the turbocharger 13 is increased by increasing the flow rate of the exhaust gas flowing into the turbine 14 than when the intake pressure is greater than or equal to the predetermined value Plow, thereby increasing the intake pressure. .

(他の実施形態)
上記各実施形態では、捕集器40と酸化触媒41とを独立して設けたが、酸化触媒を担持した捕集器を用いてもよい。
(Other embodiments)
In each said embodiment, although the collector 40 and the oxidation catalyst 41 were provided independently, you may use the collector which carry | supported the oxidation catalyst.

上記各実施形態では、後処理装置として捕集器40を用いたが、本発明は、排出ガス中の窒素酸化物(以下、NOxという)を浄化するための吸蔵還元型NOx触媒を後処理装置として用いる場合にも適用することができる。因みに、吸蔵還元型NOx触媒を用いる場合、未燃HCをNOx触媒に供給して、吸蔵したNOxを還元・放出させることにより、NOx触媒を再生する。   In each of the above embodiments, the collector 40 is used as a post-treatment device. However, the present invention uses an NOx storage reduction catalyst for purifying nitrogen oxide (hereinafter referred to as NOx) in exhaust gas as a post-treatment device. It can be applied to the case of using as. Incidentally, when the NOx storage reduction catalyst is used, the NOx catalyst is regenerated by supplying unburned HC to the NOx catalyst and reducing and releasing the stored NOx.

本発明の第1実施形態に係る内燃機関用制御装置の全体構成を示す図である。1 is a diagram illustrating an overall configuration of a control device for an internal combustion engine according to a first embodiment of the present invention. 図1のタービン14の構成を模式的に示す図である。It is a figure which shows typically the structure of the turbine 14 of FIG. 図1のECU80にて実行される損傷回避制御処理を示す流れ図である。It is a flowchart which shows the damage avoidance control process performed in ECU80 of FIG. タービン下流ガス温度とタービン上流ガス温度との関係を示す特性図である。It is a characteristic view which shows the relationship between turbine downstream gas temperature and turbine upstream gas temperature. タービン14に流入する排出ガスの流速とタービン上流ガス温度との関係を示す特性図である。FIG. 6 is a characteristic diagram showing the relationship between the flow rate of exhaust gas flowing into the turbine 14 and the turbine upstream gas temperature. タービン下流ガス温度とタービン前後温度差との関係を示す特性図である。It is a characteristic view which shows the relationship between turbine downstream gas temperature and turbine front-and-back temperature difference. タービン14に流入する排出ガスの流速とタービン前後温度差との関係を示す特性図である。FIG. 6 is a characteristic diagram showing the relationship between the flow rate of exhaust gas flowing into the turbine 14 and the temperature difference before and after the turbine. タービン前後温度差のマップである。It is a map of the temperature difference before and behind a turbine. 第2実施形態の制御装置においてECU80にて実行される損傷回避制御処理を示す流れ図である。It is a flowchart which shows the damage avoidance control process performed in ECU80 in the control apparatus of 2nd Embodiment. タービン下流ガス温度と高圧EGRガス温度との関係を示す特性図である。It is a characteristic view which shows the relationship between turbine downstream gas temperature and high pressure EGR gas temperature. タービン14に流入する排出ガスの流速と高圧EGRガス温度との関係を示す特性図である。FIG. 6 is a characteristic diagram showing the relationship between the flow rate of exhaust gas flowing into the turbine 14 and the high-pressure EGR gas temperature. 高圧EGR弁51の開度と高圧EGRガス温度との関係を示す特性図である。It is a characteristic view which shows the relationship between the opening degree of the high pressure EGR valve 51, and the high pressure EGR gas temperature. タービン上流ガス温度と高圧EGRガス温度低下量との関係を示す特性図である。It is a characteristic view which shows the relationship between turbine upstream gas temperature and high pressure EGR gas temperature fall amount. 高圧EGRガス量と高圧EGRガス温度低下量との関係を示す特性図である。It is a characteristic view which shows the relationship between high pressure EGR gas amount and high pressure EGR gas temperature fall amount. 第3実施形態の制御装置においてECU80にて実行される損傷回避制御処理を示す流れ図である。It is a flowchart which shows the damage avoidance control process performed by ECU80 in the control apparatus of 3rd Embodiment. 酸化触媒下流ガス温度と低圧EGRガス温度との関係を示す特性図である。It is a characteristic view which shows the relationship between oxidation catalyst downstream gas temperature and low-pressure EGR gas temperature. 低圧EGR弁61の開度と低圧EGRガス温度との関係を示す特性図である。It is a characteristic view which shows the relationship between the opening degree of the low pressure EGR valve 61, and the low pressure EGR gas temperature. 酸化触媒下流ガス温度と低圧EGRガス温度低下量との関係を示す特性図である。It is a characteristic view which shows the relationship between an oxidation catalyst downstream gas temperature and the low pressure EGR gas temperature fall amount. 低圧EGRガス温度低下量と低圧EGRガス量との関係を示す特性図である。It is a characteristic view which shows the relationship between the low pressure EGR gas temperature fall amount and the low pressure EGR gas amount. 第4実施形態の制御装置においてECU80にて実行される吸気圧異常時制御処理を示す流れ図である。It is a flowchart which shows the control processing at the time of the intake pressure abnormality performed by ECU80 in the control apparatus of 4th Embodiment. 第4実施形態の制御装置におけるノズルリフトの制御特性を示す図である。It is a figure which shows the control characteristic of the nozzle lift in the control apparatus of 4th Embodiment. 第4実施形態の制御装置における熱発生率の特性を示す図である。It is a figure which shows the characteristic of the heat release rate in the control apparatus of 4th Embodiment. 吸気絞り弁22の開度と吸気圧との関係を示す特性図である。FIG. 6 is a characteristic diagram showing the relationship between the opening of the intake throttle valve 22 and the intake pressure. 第5実施形態の制御装置においてECU80にて実行される吸気圧異常時制御処理を示す流れ図である。It is a flowchart which shows the control processing at the time of the intake pressure abnormality performed by ECU80 in the control apparatus of 5th Embodiment.

符号の説明Explanation of symbols

1…内燃機関、13…ターボ過給機、14…タービン、16…ノズル、40…捕集器(後処理装置)。   DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine, 13 ... Turbocharger, 14 ... Turbine, 16 ... Nozzle, 40 ... Collector (post-processing apparatus).

Claims (4)

排出ガスがタービン(14)に流入する際の流速をノズル(16)により制御するターボ過給機(13)と、排気系において前記タービン(14)よりも下流側に配置されて排出ガス中の有害物質を処理する後処理装置(40)とを備える内燃機関(1)に搭載され、前記内燃機関(1)の排気行程においてポスト噴射を行って前記後処理装置(40)の再生を行う内燃機関用制御装置であって、
前記タービン(14)よりも上流側の排出ガスの温度であるタービン上流ガス温度の情報を取得するタービン上流ガス温度取得手段(S100)と、
前記タービン上流ガス温度取得手段(S100)にて取得した前記タービン上流ガス温度の値が所定値を超えたときに、前記タービン上流ガス温度の値が前記所定値以下のときよりも前記タービン(14)に流入する排出ガスの流速が低下するように前記ノズル(16)の作動を制御するタービン上流ガス温度低下手段(S102)とを備え、
さらに、前記タービン(14)と前記後処理装置(40)との間の排出ガスの温度であるタービン下流ガス温度を検出する排気温度センサ(72)を備え、
前記タービン上流ガス温度取得手段(S100)は、前記排気温度センサ(72)にて検出したタービン下流ガス温度に基づいて前記タービン上流ガス温度を推定することを特徴とする内燃機関用制御装置。
A turbocharger (13) that controls the flow rate when exhaust gas flows into the turbine (14) by a nozzle (16), and an exhaust system that is disposed downstream of the turbine (14) in the exhaust gas. An internal combustion engine that is mounted on an internal combustion engine (1) that includes a post-processing device (40) that processes harmful substances, and that performs post-injection in the exhaust stroke of the internal combustion engine (1) to regenerate the post-processing device (40). An engine control device,
Turbine upstream gas temperature acquisition means (S100) for acquiring information of turbine upstream gas temperature, which is the temperature of exhaust gas upstream of the turbine (14);
When the value of the turbine upstream gas temperature acquired by the turbine upstream gas temperature acquisition means (S100) exceeds a predetermined value, the turbine (14) is more than when the value of the turbine upstream gas temperature is equal to or lower than the predetermined value. Turbine upstream gas temperature lowering means (S102) for controlling the operation of the nozzle (16) so that the flow rate of the exhaust gas flowing into the
And an exhaust temperature sensor (72) for detecting a turbine downstream gas temperature, which is a temperature of exhaust gas between the turbine (14) and the aftertreatment device (40),
The turbine upstream gas temperature acquisition means (S100) estimates the turbine upstream gas temperature based on the turbine downstream gas temperature detected by the exhaust temperature sensor (72).
排出ガスがタービン(14)に流入する際の流速をノズル(16)により制御するターボ過給機(13)と、排気系において前記タービン(14)よりも下流側に配置されて排出ガス中の有害物質を処理する後処理装置(40)とを備える内燃機関(1)に搭載され、前記内燃機関(1)の排気行程においてポスト噴射を行って前記後処理装置(40)の再生を行う内燃機関用制御装置であって、
前記タービン(14)よりも上流側の排出ガスの温度であるタービン上流ガス温度の情報を取得するタービン上流ガス温度取得手段(S100)と、
前記タービン上流ガス温度取得手段(S100)にて取得した前記タービン上流ガス温度の値が所定値を超えたときに、前記タービン上流ガス温度の値が前記所定値以下のときよりも前記タービン(14)に流入する排出ガスの流速が低下するように前記ノズル(16)の作動を制御するタービン上流ガス温度低下手段(S102)とを備え、
さらに、前記タービン上流ガス温度取得手段(S100)は、前記タービン(14)と前記後処理装置(40)との間の排出ガスの温度であるタービン下流ガス温度の情報を取得するタービン下流ガス温度取得手段と、前記タービン上流ガス温度と前記タービン下流ガス温度との差であるタービン前後温度差の情報を取得するタービン前後温度差取得手段とを備え、
前記タービン上流ガス温度取得手段(S100)は、前記タービン下流ガス温度取得手段にて取得した前記タービン下流ガス温度に前記タービン前後温度差取得手段にて取得した前記タービン前後温度差を加算して前記タービン上流ガス温度を推定することを特徴とする内燃機関用制御装置。
A turbocharger (13) that controls the flow rate when exhaust gas flows into the turbine (14) by a nozzle (16), and an exhaust system that is disposed downstream of the turbine (14) in the exhaust gas. An internal combustion engine that is mounted on an internal combustion engine (1) that includes a post-processing device (40) that processes harmful substances, and that performs post-injection in the exhaust stroke of the internal combustion engine (1) to regenerate the post-processing device (40). An engine control device,
Turbine upstream gas temperature acquisition means (S100) for acquiring information of turbine upstream gas temperature, which is the temperature of exhaust gas upstream of the turbine (14);
When the value of the turbine upstream gas temperature acquired by the turbine upstream gas temperature acquisition means (S100) exceeds a predetermined value, the turbine (14) is more than when the value of the turbine upstream gas temperature is equal to or lower than the predetermined value. Turbine upstream gas temperature lowering means (S102) for controlling the operation of the nozzle (16) so that the flow rate of the exhaust gas flowing into the
Further, the turbine upstream gas temperature acquisition means (S100) acquires information on the turbine downstream gas temperature that is the temperature of the exhaust gas between the turbine (14) and the aftertreatment device (40). An acquisition means, and a turbine front-rear temperature difference acquisition means for acquiring information on a turbine front-rear temperature difference, which is a difference between the turbine upstream gas temperature and the turbine downstream gas temperature,
The turbine upstream gas temperature acquisition unit (S100) adds the turbine front-rear temperature difference acquired by the turbine front-rear temperature difference acquisition unit to the turbine downstream gas temperature acquired by the turbine downstream gas temperature acquisition unit, and A control apparatus for an internal combustion engine, characterized by estimating a turbine upstream gas temperature.
前記タービン前後温度差取得手段は、前記タービン下流ガス温度、および前記ノズル(16)の作動位置のうち少なくとも一つに基づいて前記タービン前後温度差を推定することを特徴とする請求項2に記載の内燃機関用制御装置。 3. The turbine front-rear temperature difference is estimated based on at least one of the turbine downstream gas temperature and the operating position of the nozzle (16). Control device for internal combustion engine. 前記タービン前後温度差取得手段は、吸気系の通路を開閉する吸気絞り弁(22)の開度と前記吸気絞り弁(22)よりも下流側の吸気圧とに基づいて前記タービン前後温度差を推定することを特徴とする請求項2に記載の内燃機関用制御装置。 The turbine front-rear temperature difference acquisition means calculates the turbine front-rear temperature difference based on an opening of an intake throttle valve (22) that opens and closes an intake system passage and an intake pressure downstream of the intake throttle valve (22). The control device for an internal combustion engine according to claim 2 , wherein the control device is estimated.
JP2007016268A 2007-01-26 2007-01-26 Control device for internal combustion engine Expired - Fee Related JP4830870B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007016268A JP4830870B2 (en) 2007-01-26 2007-01-26 Control device for internal combustion engine
DE102008000159.7A DE102008000159B4 (en) 2007-01-26 2008-01-25 Control device for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007016268A JP4830870B2 (en) 2007-01-26 2007-01-26 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2008184900A JP2008184900A (en) 2008-08-14
JP4830870B2 true JP4830870B2 (en) 2011-12-07

Family

ID=39597734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007016268A Expired - Fee Related JP4830870B2 (en) 2007-01-26 2007-01-26 Control device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP4830870B2 (en)
DE (1) DE102008000159B4 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011001893A (en) * 2009-06-19 2011-01-06 Denso Corp Exhaust gas purification system
JP5510749B2 (en) * 2011-02-17 2014-06-04 株式会社デンソー Exhaust purification device
FI20115252A0 (en) * 2011-03-14 2011-03-14 Waertsilae Finland Oy Process for operating an engine, exhaust system and oxidation catalyst
FR2973838B1 (en) * 2011-04-08 2015-05-01 Peugeot Citroen Automobiles Sa METHOD OF DETERMINING THE EXHAUST GAS TEMPERATURE BEYOND THE TURBINE PRESSURE TURBINE
JP6233492B1 (en) 2016-11-14 2017-11-22 マツダ株式会社 Exhaust purification device regeneration control device
JP7272328B2 (en) * 2020-07-16 2023-05-12 いすゞ自動車株式会社 internal combustion engine
JP2022090888A (en) * 2020-12-08 2022-06-20 ヤンマーホールディングス株式会社 Controller of engine with supercharger
CN113958417B (en) * 2021-10-21 2024-01-23 中国重汽集团济南动力有限公司 High-temperature protection control method and device for EGR check valve and storage medium

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH664798A5 (en) 1983-11-14 1988-03-31 Bbc Brown Boveri & Cie DEVICE FOR RETURNING THE BLOW-OFF QUANTITY FROM THE CRANKCASE.
DE19731624A1 (en) 1997-07-23 1999-01-28 Volkswagen Ag Reversible rich regeneration of nitrogen@ oxide absorption catalyst
US6256992B1 (en) * 1998-05-27 2001-07-10 Cummins Engine Company, Inc. System and method for controlling a turbocharger to maximize performance of an internal combustion engine
DE60009981T2 (en) 1999-05-21 2005-03-31 Isuzu Motors Ltd. Shutdown control for diesel engine
JP2001055951A (en) 1999-08-18 2001-02-27 Mazda Motor Corp Fuel injection control device for diesel engine
US6418719B2 (en) 2000-01-25 2002-07-16 International Engine Intellectual Property Company, L.L.C. Control of a variable geometry turbocharger by sensing exhaust pressure
US6497095B2 (en) 2000-12-21 2002-12-24 Ford Global Technologies, Inc. Regeneration of diesel engine particulate filter only above low fuel levels
FR2840959B1 (en) 2002-06-18 2005-07-15 Renault Sa METHOD AND SYSTEM FOR CONTROLLING THE OPERATION OF AN INTERNAL COMBUSTION ENGINE OF A MOTOR VEHICLE
JP2004162648A (en) * 2002-11-14 2004-06-10 Toyota Motor Corp Protective device of generator for turbine
JP4135495B2 (en) 2002-12-20 2008-08-20 いすゞ自動車株式会社 Fuel injection control device
US20040123588A1 (en) * 2002-12-30 2004-07-01 Stanglmaier Rudolf H. Method for controlling exhaust gas temperature and space velocity during regeneration to protect temperature sensitive diesel engine components and aftertreatment devices
JP4367176B2 (en) 2003-05-16 2009-11-18 株式会社デンソー Exhaust gas purification device for internal combustion engine
JP2005048748A (en) 2003-07-31 2005-02-24 Nissan Motor Co Ltd Automatic combustion control device of internal combustion engine
JP4103748B2 (en) * 2003-09-18 2008-06-18 日産自動車株式会社 Exhaust gas purification device for internal combustion engine
DE102004042272A1 (en) 2004-09-01 2006-03-02 Robert Bosch Gmbh Method and device for controlling or regulating the boost pressure of an internal combustion engine
DE102004052670A1 (en) 2004-10-29 2006-05-04 Daimlerchrysler Ag Method for operating an internal combustion engine during engine braking operation
JP4606939B2 (en) * 2005-05-18 2011-01-05 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine

Also Published As

Publication number Publication date
DE102008000159B4 (en) 2021-07-22
JP2008184900A (en) 2008-08-14
DE102008000159A1 (en) 2008-08-14

Similar Documents

Publication Publication Date Title
JP4830870B2 (en) Control device for internal combustion engine
JP4665633B2 (en) Exhaust gas purification device for internal combustion engine
CN100416053C (en) Exhaust purifying apparatus and exhaust purifying method for internal combustion engine
JP4442459B2 (en) Internal combustion engine having supercharger with electric motor
JP4640066B2 (en) Exhaust gas purification device for internal combustion engine
EP2532851B1 (en) Exhaust gas purification device for an engine
JP6008978B2 (en) Exhaust gas purification device for internal combustion engine
JP2006316746A (en) Exhaust emission control device for internal combustion engine
JP5316041B2 (en) Engine exhaust purification system
JP2010265844A (en) Exhaust emission control device for internal combustion engine
EP1722088B1 (en) Exhaust gas treatment system for internal combustion engine
JP6353797B2 (en) Engine and work vehicle equipped with the engine
JP4305402B2 (en) Exhaust gas purification device for internal combustion engine
JP2010196498A (en) Pm emission estimation device
JP4453718B2 (en) Exhaust gas purification device for internal combustion engine
JP5284228B2 (en) Exhaust purification device
WO2018088341A1 (en) Regeneration control device for exhaust purification device
JP2010169052A (en) Exhaust emission control device for internal combustion engine
JP4591319B2 (en) Exhaust purification device for internal combustion engine
JP2008232073A (en) Exhaust emission purifier
JP3915671B2 (en) Engine exhaust purification system
JP4534959B2 (en) Exhaust gas purification device for internal combustion engine
JP2002070619A (en) Exhaust emission control device for internal combustion engine
JP6181400B2 (en) Exhaust gas purification system
EP1607595A1 (en) An exhaust system for a turbocharged diesel engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110905

R151 Written notification of patent or utility model registration

Ref document number: 4830870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees