JP4103748B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP4103748B2
JP4103748B2 JP2003326325A JP2003326325A JP4103748B2 JP 4103748 B2 JP4103748 B2 JP 4103748B2 JP 2003326325 A JP2003326325 A JP 2003326325A JP 2003326325 A JP2003326325 A JP 2003326325A JP 4103748 B2 JP4103748 B2 JP 4103748B2
Authority
JP
Japan
Prior art keywords
regeneration
amount
correction coefficient
differential pressure
vehicle speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003326325A
Other languages
Japanese (ja)
Other versions
JP2005090391A (en
Inventor
俊雅 古賀
純一 川島
直哉 筒本
真 大竹
光徳 近藤
尊雄 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003326325A priority Critical patent/JP4103748B2/en
Publication of JP2005090391A publication Critical patent/JP2005090391A/en
Application granted granted Critical
Publication of JP4103748B2 publication Critical patent/JP4103748B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、排気通路に排気中の粒子状物質であるPM(Particulate Matter)を捕集するフィルタを備える内燃機関の排気浄化装置に関し、特にそのフィルタの再生技術に関する。   The present invention relates to an exhaust gas purification apparatus for an internal combustion engine having a filter for collecting PM (Particulate Matter), which is particulate matter in exhaust gas, in an exhaust passage, and particularly relates to a regeneration technique for the filter.

従来より、特許文献1に示されるように、排気通路にPM捕集用フィルタを配置し、所定の再生時期に、フィルタの温度を上昇させる再生処理を行ってフィルタに捕集されているPMを燃焼除去することが行われている。
再生時期の判断については、フィルタの目詰まりにより圧力損失が増大することから、フィルタの前後差圧(上流側と下流側との圧力差)を検出することで、PM堆積量(PM捕集量)を推定し、これが基準値以上となると、再生時期と判断している。
Conventionally, as shown in Patent Document 1, a PM collection filter is disposed in the exhaust passage, and at a predetermined regeneration time, a regeneration process for increasing the temperature of the filter is performed to collect PM collected in the filter. Combustion removal is performed.
For the regeneration timing determination, since the pressure loss increases by clogging of the filter, by detecting the differential pressure across the filter (the pressure difference between the upstream side and downstream side), PM accumulation amount (PM trap amount ) Is estimated, and if this exceeds the reference value, it is determined that the regeneration period has been reached.

ところで、フィルタには、その後部(下流側)からPMが堆積して行くが、再生を開始すると、フィルタ中心部の方が、フィルタ周辺部に比べて、温度が高くなるので、PMの燃焼は中心部から始まり、徐々に周辺部に波及していく。
このため、再生中に、運転状態が変化し、再生が続行できなくなるような運転状態に飛び込んで、再生を中断した場合、部分再生状態となるが、周辺部のPMが燃え残るため、PMの偏在を生じてしまう。PMが偏在して堆積し始めると、PM堆積量に対してフィルタ前後差圧が低く現れるようになる。従って、フィルタ前後差圧とPM堆積量との関係が、完全再生後と、部分再生後(再生中断後)とで、変化してしまう。
By the way, PM accumulates on the filter from its rear part (downstream side), but when regeneration is started, the temperature at the center of the filter is higher than that at the periphery of the filter. It starts from the center and gradually spreads to the periphery.
For this reason, if the operation state changes during regeneration and jumps into an operation state in which regeneration cannot be continued and the regeneration is interrupted, a partial regeneration state is entered, but the PM in the surrounding area remains unburned. Uneven distribution occurs. When PM is unevenly distributed and begins to deposit, the differential pressure across the filter appears with respect to the amount of PM deposited. Therefore, the relationship between the differential pressure before and after the filter and the PM accumulation amount changes between after complete regeneration and after partial regeneration (after regeneration interruption).

従って、部分再生後(再生中断後)に、フィルタ前後差圧よりPM堆積量を推定して、この推定値が基準値に達したところで、再生を開始すると、推定誤差により、完全再生後に比べ、実際のPM堆積量が多いため、フィルタ内の温度が急激に上昇し、限界温度を超えてしまうおそれがあるという問題点があった。
本発明は、このような従来の問題点に鑑み、部分再生後(再生中断後)におけるPM堆積量の推定精度を高めて、再生時期の判断の適正化を図ることができるようすることを目的とする。
Therefore, after partial regeneration (after regeneration interruption), the amount of accumulated PM is estimated from the differential pressure before and after the filter, and when the estimated value reaches the reference value, when regeneration is started, the estimation error causes a comparison with Since the actual PM deposition amount is large, there is a problem that the temperature in the filter rapidly increases and may exceed the limit temperature.
The present invention has been made in view of the above-described conventional problems, and it is an object of the present invention to improve the estimation accuracy of the PM accumulation amount after partial regeneration (after regeneration interruption) and to optimize the judgment of the regeneration time. And

このため、本発明では、部分再生後(再生中断後)に再生時期の判断をする場合は、再生中断時のPM残量に応じて、フィルタ前後差圧に対する補正係数を設定し、前後差圧の検出値に補正係数を乗じることにより、PM堆積量の推定に用いる前後差圧を補正する構成とする。
更に、前記補正係数は、再生中断時のPM残量の他、現在の車速に応じて設定する構成とする。
Therefore, in the present invention, when the regeneration timing is determined after partial regeneration (after regeneration interruption), a correction coefficient for the differential pressure across the filter is set according to the PM remaining amount at the time of regeneration interruption, By multiplying the detected value by a correction coefficient, the differential pressure before and after used for estimating the PM accumulation amount is corrected.
Furthermore, the correction coefficient is set according to the current vehicle speed in addition to the PM remaining amount at the time of regeneration interruption.

本発明によれば、部分再生後(再生中断後)で、PMの偏在を生じているときは、PM残量に応じてフィルタ前後差圧を補正することにより、PM偏在による誤差分を補正して、PM堆積量の推定精度を高めることができ、適切なタイミングで再生を行うことができる。
また、現在の車速に応じてもフィルタ前後差圧を補正することにより、車速が高いほど、再生が容易であることから、再生時期をより早めるなどして、偏在状態をより早期に解消することができる。
According to the present invention, when PM is unevenly distributed after partial regeneration (after regeneration is interrupted), the error due to PM uneven distribution is corrected by correcting the differential pressure across the filter according to the remaining amount of PM. Thus, the estimation accuracy of the PM deposition amount can be improved, and regeneration can be performed at an appropriate timing.
Also, by correcting the differential pressure across the filter according to the current vehicle speed, the higher the vehicle speed, the easier it is to regenerate. Can do.

以下に本発明の実施の形態を図面に基づいて説明する。
図1は本発明の一実施形態を示す車両用ディーゼルエンジンのシステム図である。
ディーゼルエンジン1の各気筒の燃焼室2には、吸気系のエアクリーナ3から、可変ノズル型過給機4の吸気コンプレッサ5、インタークーラ6、吸気絞り弁7、及び、吸気マニホールド8を経て、空気が吸入される。燃料供給系は、コモンレール(図示せず)からこれに蓄圧された高圧燃料を導いて各気筒の燃焼室2内に任意のタイミングで燃料噴射可能な燃料噴射弁9を備えて構成され、各気筒の圧縮行程にて燃料噴射(メイン噴射)がなされ、圧縮着火により燃焼する。燃焼後の排気は、排気系の排気マニホールド10、可変ノズル型過給機4の排気タービン11を経て排出される。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a system diagram of a vehicle diesel engine showing an embodiment of the present invention.
The combustion chamber 2 of each cylinder of the diesel engine 1 passes through an intake air cleaner 3, an intake compressor 5, an intercooler 6, an intake throttle valve 7, and an intake manifold 8 of the variable nozzle supercharger 4. Is inhaled. The fuel supply system includes a fuel injection valve 9 that guides high-pressure fuel accumulated in a common rail (not shown) and injects fuel into the combustion chamber 2 of each cylinder at an arbitrary timing. During the compression stroke, fuel injection (main injection) is performed, and combustion is performed by compression ignition. The exhaust after combustion is discharged through an exhaust manifold 10 of the exhaust system and an exhaust turbine 11 of the variable nozzle supercharger 4.

ここで、ディーゼルエンジン1から排出される排気中のPMを浄化するため、排気通路には、ディーゼル・パティキュレート・フィルタ(以下「DPF」という)12を設け、これによりPMを捕集する。
DPF12は、図2の斜視図に示すように、多孔質セラミックからなり、円柱状の外形を有するハニカム構造体であり、図示しない円筒状のケーシング内に保持マットを介して収納される。
Here, in order to purify PM in the exhaust discharged from the diesel engine 1, a diesel particulate filter (hereinafter referred to as "DPF") 12 is provided in the exhaust passage, thereby collecting the PM.
As shown in the perspective view of FIG. 2, the DPF 12 is a honeycomb structure made of porous ceramic and having a columnar outer shape, and is housed in a cylindrical casing (not shown) via a holding mat.

DPF12の内部構造について説明すると、ハニカム構造体の拡大断面図である図3に示すように、ハニカム構造体の多孔質の格子状セル壁21により仕切られて複数の並列なセル空間22が設けられ、各セル空間22はそれぞれ排気流れ方向に延在している。そして、セル空間22の隣接するもの同士において、一方は出口側を、他方は入口側を、それぞれ封止材23、24により交互に封止してある。   The internal structure of the DPF 12 will be described. As shown in FIG. 3 which is an enlarged sectional view of the honeycomb structure, a plurality of parallel cell spaces 22 are provided by being partitioned by the porous lattice cell walls 21 of the honeycomb structure. Each cell space 22 extends in the exhaust flow direction. In the adjacent ones of the cell spaces 22, one is sealed on the outlet side and the other is sealed on the inlet side by sealing materials 23 and 24, respectively.

入口側が開口し出口側を封止材23により封止されているセル空間22が排気流入側セル空間22Aであり、入口側を封止材24により封止され出口側が開口しているセル空間22が排気流出側セル空間22Bである。
ここで、エンジンからの排気は、排気流入側セル空間22Aに流入し、多孔質のセル壁21(その気孔)を介してのみ、排気流出側セル空間22Bに流出するので、セル壁21にて排気中のPMを確実に捕集することができる。
A cell space 22 having an inlet side opened and an outlet side sealed by a sealing material 23 is an exhaust inflow side cell space 22A, and a cell space 22 having an inlet side sealed by a sealing material 24 and having an outlet side opened. Is the exhaust gas outlet side cell space 22B.
Here, the exhaust from the engine flows into the exhaust inflow side cell space 22A and flows into the exhaust outflow side cell space 22B only through the porous cell wall 21 (its pores). PM in exhaust can be reliably collected.

DPF12でのPMの捕集によりPM堆積量が増加すると、排気抵抗が増大して、運転性が悪化する。よって、所定の再生時期か否かを判断し、再生時期の場合は、再生処理手段(DPF12の温度、より具体的にはDPF12に流入する排気温度を上昇させる手段)、例えば燃料噴射弁9の燃料噴射時期(メイン噴射時期)の遅角、燃料噴射弁9による膨張行程もしくは排気行程での追加的な燃料噴射であるポスト噴射、吸気絞り弁7の開度減少(吸気量減少→空燃比リッチ化→排気温度上昇)、又は、可変ノズル型過給機4による過給圧の低下(吸気量減少→空燃比リッチ化→排気温度上昇)などを用いて、PMを燃焼させることにより、DPF12を再生する。   When the amount of accumulated PM increases due to the collection of PM by the DPF 12, the exhaust resistance increases and the drivability deteriorates. Therefore, it is determined whether or not it is a predetermined regeneration time. In the case of the regeneration time, regeneration processing means (means for raising the temperature of the DPF 12, more specifically, the exhaust gas temperature flowing into the DPF 12), for example, the fuel injection valve 9 Delay in fuel injection timing (main injection timing), post-injection as additional fuel injection in the expansion stroke or exhaust stroke by the fuel injection valve 9, reduction in opening of the intake throttle valve 7 (reduction in intake amount → rich air-fuel ratio) The PMF is burned using a decrease in the supercharging pressure by the variable nozzle type supercharger 4 (intake amount decrease → air-fuel ratio enrichment → exhaust temperature increase) or the like. Reproduce.

このため、図1に示してあるように、燃料噴射弁9、吸気絞り弁7、可変ノズル型過給機4の作動を制御するエンジンコントロールユニット(以下ECUという)13に、エンジン回転数を検出する回転数センサ14、エンジン負荷(例えばアクセル開度)を検出する負荷センサ15、車速を検出する車速センサ16などの他、DPF12での圧力損失の検出のためDPF12の前後差圧を検出する差圧センサ17、DPF12の入口側及び出口側で排気温度をそれぞれ検出する排気温度センサ18、19の信号を入力してある。   Therefore, as shown in FIG. 1, the engine speed is detected by an engine control unit (hereinafter referred to as ECU) 13 that controls the operation of the fuel injection valve 9, the intake throttle valve 7, and the variable nozzle supercharger 4. In addition to a rotation speed sensor 14 that detects engine load (for example, accelerator opening), a vehicle speed sensor 16 that detects vehicle speed, and the like, a difference that detects a differential pressure across the DPF 12 to detect pressure loss at the DPF 12. The pressure sensors 17 and the exhaust temperature sensors 18 and 19 for detecting the exhaust temperatures on the inlet side and the outlet side of the DPF 12 are input.

ここにおいて、ECU13では、差圧センサ17の信号に基づいてDPF12の前後差圧を検出し、検出された前後差圧に基づいてPM堆積量を推定する。そして、推定されたPM堆積量に基づいて再生時期を判断し、再生時期と判断されたときに、所定の再生実施条件(再生可能な運転状態)であることを条件として、再生処理を行う。
次に、ECU13による具体的な制御内容を図4及び図5のフローチャートにより説明する。
Here, the ECU 13 detects the differential pressure across the DPF 12 based on the signal from the differential pressure sensor 17, and estimates the PM accumulation amount based on the detected differential pressure before and after. Then, the regeneration time is determined based on the estimated amount of accumulated PM, and when it is determined that the regeneration time is reached, the regeneration process is performed on the condition that a predetermined regeneration execution condition (recyclable operation state) is satisfied.
Next, specific control contents by the ECU 13 will be described with reference to the flowcharts of FIGS. 4 and 5.

図4は再生時期判断のフローチャートであり、バックグラウンドジョブとして実行される。
S1では、完全再生後(前回の再生は完全再生)か、部分再生後(再生中断後;前回の再生は部分再生)かを判定する。
完全再生後の場合は、S2へ進む。部分再生後(再生中断後)の場合については、後述する。
FIG. 4 is a flowchart for determining the reproduction time, which is executed as a background job.
In S1, it is determined whether it is after complete reproduction (previous reproduction is complete reproduction) or partial reproduction (after reproduction interruption; previous reproduction is partial reproduction).
If it has been completely reproduced, the process proceeds to S2. The case after partial reproduction (after reproduction interruption) will be described later.

S2では、差圧センサ17の信号を読込んで、DPF12の前後差圧ΔPを検出し、これをαとする。
S3では、エンジン回転数と負荷(アクセル開度)とからマップを参照するなどして排気流量Veを推定する。
S4では、所定のマップを参照し、DPF前後差圧ΔP=αと、排気流量Veとから、DPF12のPM堆積量を推定し、これをPMαとする。
In S2, the signal of the differential pressure sensor 17 is read to detect the front-rear differential pressure ΔP of the DPF 12, and this is defined as α.
In S3, the exhaust flow rate Ve is estimated by referring to a map from the engine speed and the load (accelerator opening).
In S4, referring to a predetermined map, the PM accumulation amount of the DPF 12 is estimated from the DPF front-rear differential pressure ΔP = α and the exhaust flow rate Ve, and this is set as PMα.

ここで、PM堆積量の増加と共にDPF前後差圧が大きくなるので、DPF前後差圧が大きくなるほどPM堆積量を多く推定するが、DPF前後差圧は、排気流量に応じても変化し、同一PM堆積量のときは、排気流量が増加するほど大きくなるので、排気流量によりPM堆積量の推定値を補正するようにしている。
S5では、推定されたPM堆積量(PMα)と、再生時期判断用の基準値(PMγ)と比較して、PM堆積量(PMα)≧PMγか否かを判定する。
Here, since the differential pressure across the DPF increases with the increase in the PM deposition amount, the PM deposition amount is estimated to increase as the differential pressure across the DPF increases. However, the differential pressure across the DPF also changes depending on the exhaust flow rate and is the same. Since the PM accumulation amount increases as the exhaust gas flow rate increases, the estimated value of the PM accumulation amount is corrected by the exhaust gas flow rate.
In S5, it is determined whether or not PM accumulation amount (PMα) ≧ PMγ by comparing the estimated PM accumulation amount (PMα) with the reference value (PMγ) for determining the regeneration timing.

PM堆積量<PMγの場合は、再生時期ではないと判断して、S2へ戻るが、PM堆積量≧PMγの場合は、再生時期(要再生)と判断して、S6から再生制御(図5)へ進む。
図5は再生制御のフローチャートであり、図4のS6(又はS19)に引き続いて実行される。
If the PM accumulation amount <PMγ, it is determined that it is not the regeneration time, and the process returns to S2. However, if PM accumulation amount ≧ PMγ, the regeneration time (regeneration required) is determined, and the regeneration control is performed from S6 (FIG. 5). Go to).
FIG. 5 is a flowchart of the reproduction control, which is executed following S6 (or S19) in FIG.

S21では、再生時期と判断された場合に、現在の運転条件が再生実施条件を満たしているか否かの判定を行い、アイドル運転時、減速運転時、極低車速時以外は、再生実施条件が成立しているとして、再生処理を開始すべく、S22へ進む。
S22では、DPF12の再生のため、DPF12の温度(DPF12に流入する排気温度)を上昇させる再生処理を行って、DPF12に捕集されているPMを燃焼除去する。具体的には、例えば燃料噴射弁9の燃料噴射時期(メイン噴射時期)の遅角、燃料噴射弁9による膨張行程もしくは排気行程での追加的な燃料噴射であるポスト噴射、吸気絞り弁7の開度減少、又は、可変ノズル型過給機4による過給圧の低下などを用いて、排気温度を上昇させることで、DPF12内の温度をPMの燃焼可能な温度まで上昇させて、DPF12に捕集されているPMを燃焼除去する。この場合、目標再生処理温度として目標DPF入口側排気温度を設定し、これに基づいて、DPF入口側排気温度センサ18により実際の温度を検出しつつ、燃料噴射時期(メイン噴射時期)、ポスト噴射量あるいはポスト噴射時期、吸気絞り弁開度、又は過給圧を制御する。
In S21, when it is determined that the regeneration time is reached, it is determined whether or not the current operation condition satisfies the regeneration execution condition. The regeneration execution condition is set at any time other than idle operation, deceleration operation, and extremely low vehicle speed. If it is established, the process proceeds to S22 to start the reproduction process.
In S22, in order to regenerate the DPF 12, a regeneration process for increasing the temperature of the DPF 12 (the exhaust gas temperature flowing into the DPF 12) is performed, and the PM trapped in the DPF 12 is burned and removed. Specifically, for example, the delay of the fuel injection timing (main injection timing) of the fuel injection valve 9, post injection that is additional fuel injection in the expansion stroke or exhaust stroke by the fuel injection valve 9, and the intake throttle valve 7 The exhaust gas temperature is increased by using a decrease in the opening degree or a decrease in the supercharging pressure by the variable nozzle type supercharger 4 to increase the temperature in the DPF 12 to a temperature at which PM can be combusted. The collected PM is burned and removed. In this case, the target DPF inlet side exhaust temperature is set as the target regeneration processing temperature, and based on this, the actual temperature is detected by the DPF inlet side exhaust temperature sensor 18, and the fuel injection timing (main injection timing) and post injection are detected. The amount or post injection timing, intake throttle valve opening, or supercharging pressure is controlled.

S23では、所定の再生中断条件を満たしているか否かを判定するため、前記再生実施条件が不成立となったか否かを判定し、再生実施条件が成立している場合は、S24へ進む。
S24では、所定の完全再生条件を満たしているか否かを判定するため、例えば所定の再生時間が経過したか否かを判定する。
In S23, in order to determine whether or not a predetermined reproduction interruption condition is satisfied, it is determined whether or not the reproduction execution condition is not satisfied. If the reproduction execution condition is satisfied, the process proceeds to S24.
In S24, in order to determine whether or not a predetermined complete playback condition is satisfied, for example, it is determined whether or not a predetermined playback time has elapsed.

所定の再生時間が経過していない場合は、未だ完全再生ではないと判断し、再生を続行すべく、S22へ戻る。
所定の再生時間が経過した場合は、完全再生と判断し、S25で完全再生である旨を記憶した後、S27へ進んで再生処理を終了する。ここでは、S22で再生処理用の値に変更したパラメータを全て元の値(運転状態の応じた通常値)に戻す。
If the predetermined reproduction time has not elapsed, it is determined that the reproduction is not complete yet, and the process returns to S22 to continue the reproduction.
If the predetermined reproduction time has elapsed, it is determined that the reproduction is complete, and the fact that the reproduction is complete is stored in S25, and then the process proceeds to S27 and the reproduction process is terminated. Here, all the parameters changed to the values for the regeneration process in S22 are returned to the original values (normal values according to the operating state).

S23での判定で、再生実施条件不成立となった場合、すなわち、再生途中でアイドル運転、減速運転、極低車速運転などに移行した場合は、再生を中断すべきと判断し、S26で部分再生(再生中断)である旨を記憶した後、S27へ進んで再生処理を終了する。
ところで、DPF12の再生を開始すると、DPF12の温度は再生可能な温度まで上昇する。しかし、DPF12の温度は排気ガスによって昇温させているため、排気流量分布により均一にはならず、中心部に比べ、周辺部の温度が若干低い値となってしまう。従って、再生中のPMの燃焼除去は中心部から始まり、徐々に周辺部に波及していく。
If it is determined in S23 that the regeneration execution condition is not satisfied, that is, if the operation shifts to idle operation, deceleration operation, or extremely low vehicle speed operation during the regeneration, it is determined that the regeneration should be interrupted, and the partial regeneration is performed in S26. After storing the message (reproduction interruption), the process proceeds to S27 and the reproduction process is terminated.
By the way, when the regeneration of the DPF 12 is started, the temperature of the DPF 12 rises to a reproducible temperature. However, since the temperature of the DPF 12 is raised by the exhaust gas, it is not uniform due to the exhaust flow rate distribution, and the temperature of the peripheral part is slightly lower than the central part. Therefore, the combustion removal of PM during regeneration starts from the center and gradually spreads to the periphery.

DPF12が完全に再生されれば、DPF12内のPMがほぼ全て燃焼除去されるので、完全再生後は、図6(A)に示すように、PMはDPF12の後部(下流側)から均一に層状に堆積していき、PMの偏在は生じない。但し、堆積していくのは、図3の排気流入側セル空間22Aである。
これに対し、再生を中断して、部分再生となると、温度分布の関係から、図6(B)に示すように、DPF12の周辺部に多くPMが残り(再生残し分)、その後、PMは中心部が少なく、周辺部が多い偏在状態で、湾曲状に堆積していき、PMの偏在を生じてしまう。
If the DPF 12 is completely regenerated, almost all of the PM in the DPF 12 is burned and removed. Therefore, after complete regeneration, the PM is uniformly layered from the rear (downstream side) of the DPF 12, as shown in FIG. PM is deposited and PM is not unevenly distributed. However, what is accumulated is the exhaust inflow side cell space 22A of FIG.
On the other hand, when the regeneration is interrupted and partial regeneration is performed, a large amount of PM remains in the periphery of the DPF 12 (remaining regeneration amount), as shown in FIG. In an unevenly distributed state with few central parts and many peripheral parts, it accumulates in a curved shape, resulting in uneven distribution of PM.

ここで、図6(B)に示したような部分再生後のPM堆積分布(偏在有り)の場合、PMが外側に多く、中心に少ないことにより、図6(A)に示したような完全再生後のPM堆積分布(偏在無し)と比較した場合に、同一PM堆積量でのDPF12における圧力損失が少なくなってしまう。
このため、偏在有りの場合に、偏在無しの場合と同様に、DPF前後差圧からPM堆積量を推定すると、誤差が生じる。
Here, in the case of the PM accumulation distribution after partial regeneration (with uneven distribution) as shown in FIG. 6B, the PM is large on the outside and small on the center, so that the complete accumulation as shown in FIG. When compared with the PM deposition distribution after regeneration (no uneven distribution), the pressure loss in the DPF 12 at the same PM deposition amount is reduced.
For this reason, an error occurs when the PM accumulation amount is estimated from the differential pressure across the DPF in the case where there is uneven distribution, as in the case where there is no uneven distribution.

従って、偏在有りの場合に、PM堆積量の推定値が基準値に達したところで、再生を開始すると、偏在無しの場合に比べ、実際のPM堆積量が多いため、図7に示すPM堆積量(及びDPF入口側排気温度)と再生時DPF温度との関係からわかるように、DPF温度が急激に上昇し、限界温度を超えてしまうおそれがある。
そこで、本発明では、部分再生後(再生中断後)に再生時期の判断をする場合は、再生中断時のPM残量を推定し、これに応じて補正係数を設定し、DPF前後差圧の検出値に補正係数を乗じることにより、PM堆積量の推定に用いるDPF前後差圧を補正して、推定誤差の発生を防止する。
Accordingly, when regeneration is started when the estimated value of the PM deposition amount reaches the reference value in the presence of uneven distribution, the actual PM deposition amount is larger than that in the case of no uneven distribution. As can be seen from the relationship between (and the DPF inlet side exhaust gas temperature) and the regeneration DPF temperature, the DPF temperature may rise rapidly and exceed the limit temperature.
Therefore, in the present invention, when the regeneration timing is determined after partial regeneration (after regeneration interruption), the remaining amount of PM at the time of regeneration interruption is estimated, and a correction coefficient is set according to this to determine the differential pressure across the DPF. By multiplying the detected value by a correction coefficient, the differential pressure across the DPF used for estimating the PM accumulation amount is corrected, thereby preventing an estimation error.

図8は排気流量が一定の場合のDPF前後差圧とPM堆積量との関係を示している。図示実線の完全再生後の特性に対し、部分再生後(再生中断後)は図示点線のように特性が変化してしまう。
従来は、完全再生後であると、部分再生後であるとを問わず、DPF前後差圧がγとなったときに、PM堆積量が再生時期判断用のPMγに達したと判定するので、部分再生後は、実際のDPF前後差圧ΔP=αのとき、実際のPM堆積量がPMγより多いにもかかわらず、完全再生後の特性に基づいてPM堆積量をPMαと推定して、PMγより少ないと誤判定してしまう。
FIG. 8 shows the relationship between the differential pressure across the DPF and the PM deposition amount when the exhaust gas flow rate is constant. The characteristic after the complete reproduction of the solid line in the figure changes after the partial reproduction (after the reproduction is interrupted) as shown by the dotted line in the figure.
Conventionally, when the differential pressure before and after the DPF becomes γ regardless of whether it is after complete regeneration or after partial regeneration, it is determined that the PM accumulation amount has reached PMγ for determining the regeneration time. After the partial regeneration, when the actual differential pressure before and after DPF ΔP = α, the PM deposition amount is estimated as PMα based on the characteristics after complete regeneration even though the actual PM deposition amount is larger than PMγ, and PMγ If it is less, it will be misjudged.

従って、本発明では、部分再生後の場合、例えば、実際のDPF前後差圧ΔP=α’のとき、これに補正係数Kを乗じて、β=α’×Kとし、このβに基づいてPM堆積量をPMβと推定することにより、推定精度を向上させる。
ここで、補正係数Kは、再生中断時のPM残量に応じて、PM残量が多いほど大きく、設定する。再生中断時のPM残量が多いほど、偏在の程度が大きいと考えられ、またPM残量が多いほど、なるべく早期に再生する必要があるからである。
Therefore, in the present invention, after partial regeneration, for example, when the actual differential pressure across the DPF ΔP = α ′, this is multiplied by the correction coefficient K to obtain β = α ′ × K, and PM is determined based on this β. The estimation accuracy is improved by estimating the accumulation amount as PMβ.
Here, the correction coefficient K is set to be larger as the PM remaining amount is larger in accordance with the PM remaining amount at the time when the reproduction is interrupted. This is because the greater the remaining amount of PM at the time of regeneration interruption, the greater the degree of uneven distribution, and the greater the remaining amount of PM, the more necessary it is to regenerate as soon as possible.

更に、補正係数Kは、再生中断時のPM残量と、現在の車速とに応じて、設定するのが望ましい。ここで、車速に関しては、車速が高いほど、大きく設定する。車速が高いときは、PM残量が少なくても、再生が可能であり、偏在状態を早期に解消することが望ましいからである。
同じ理由から、補正係数Kの設定に際しては、PM残量と車速の重み付けを車速に応じて変化させ、車速が高いほど、車速の重み付けを大きくし、逆にPM残量の重み付けを小さくするのが望ましい。
Furthermore, it is desirable to set the correction coefficient K according to the PM remaining amount at the time of regeneration interruption and the current vehicle speed. Here, the vehicle speed is set larger as the vehicle speed is higher. This is because when the vehicle speed is high, regeneration is possible even if the remaining amount of PM is small, and it is desirable to eliminate the uneven distribution state at an early stage.
For the same reason, when setting the correction coefficient K, the weighting of the remaining PM amount and the vehicle speed is changed according to the vehicle speed, and the higher the vehicle speed, the higher the weighting of the vehicle speed, and the lower the weighting of the PM remaining amount. Is desirable.

従って、補正係数Kは、次式により算出する。
K=Kp×Wpmx +Kv×Wvsp
Kpは、再生中断時のPM残量に応じて設定される補正係数で、図9に示されるように、PM残量が多いほど大きくする(1≦Kp≦Kmax ;Kmax は例えば2)
Kvは、現在の車速に応じて設定される補正係数で、図10に示されるように、車速が高いほど大きくする(1≦Kv≦Kmax ;Kmax は例えば2)。
Therefore, the correction coefficient K is calculated by the following equation.
K = Kp x Wpmx + Kv x Wvsp
Kp is a correction coefficient set in accordance with the remaining PM amount at the time of reproduction interruption, and increases as the remaining PM amount increases as shown in FIG. 9 (1 ≦ Kp ≦ Kmax; Kmax is 2 for example).
Kv is a correction coefficient set according to the current vehicle speed, and increases as the vehicle speed increases (1 ≦ Kv ≦ Kmax; Kmax is 2 for example) as shown in FIG.

Wpmx は、Kpに対する重み付け定数、Wvsp はKvに対する重み付け定数で、Wpmx +Wvsp =1とする。
また、Wvsp は、図11に示されるように、車速が高いほど大きくする(0≦Wvsp ≦1)。Wpmx は、Wpmx =1−Wvsp であるので、同じく図11に示されるように、車速が高いほど小さくなる(0≦Wpmx ≦1)。
Wpmx is a weighting constant for Kp, Wvsp is a weighting constant for Kv, and Wpmx + Wvsp = 1.
Further, as shown in FIG. 11, Wvsp increases as the vehicle speed increases (0 ≦ Wvsp ≦ 1). Since Wpmx is Wpmx = 1−Wvsp, as shown in FIG. 11, it becomes smaller as the vehicle speed is higher (0 ≦ Wpmx ≦ 1).

上記の部分再生後(再生中断後)の再生時期判断について、図12及び図4(S1、S7〜S19)のフローチャートにより説明する。
図12は再生中断時PM残量推定のフローチャートであり、所定時間(Δt)毎に実行される。
S101では、再生中(図5のS22の実行中)か否かを判定し、再生中の場合は、S102へ進む。
The reproduction time determination after the partial reproduction (after reproduction interruption) will be described with reference to the flowcharts of FIGS. 12 and 4 (S1, S7 to S19).
FIG. 12 is a flowchart of PM remaining amount estimation at the time of regeneration interruption, and is executed at predetermined time intervals (Δt).
In S101, it is determined whether or not playback is in progress (S22 in FIG. 5 is being executed). If playback is in progress, the process proceeds to S102.

S102では、排気温度センサ27、28の信号よりDPF入口側排気温度Tin及び出口側排気温度Tout を検出し、これらよりDPF温度Tbed を推定する。具体的には、Tbed =k×(Tin+Tout )/2として推定する(但し、kは定数)。
S103では、エンジン回転数と負荷(アクセル開度)とからマップを参照するなどして排気流量Veを推定する。
In S102, the DPF inlet side exhaust temperature Tin and the outlet side exhaust temperature Tout are detected from the signals of the exhaust temperature sensors 27 and 28, and the DPF temperature Tbed is estimated from these. Specifically, Tbed = k × (Tin + Tout) / 2 is estimated (where k is a constant).
In S103, the exhaust flow rate Ve is estimated by referring to a map from the engine speed and the load (accelerator opening).

S104では、DPF温度Tbed と排気流量Veとからマップを参照するなどして再生速度(単位時間当たりのPM処理量)Sを推定する。尚、再生速度は、DPF温度が高いほど、排気流量が小さい(ガス冷却が小さい)ほど、大きくなる。
S105では、再生速度Sに本ルーチンの実行時間隔Δtを乗じて、PM処理量ΔPMd=S×Δtを算出する。
In S104, the regeneration speed (PM processing amount per unit time) S is estimated by referring to a map from the DPF temperature Tbed and the exhaust flow rate Ve. The regeneration speed increases as the DPF temperature increases and the exhaust flow rate decreases (gas cooling decreases).
In S105, the PM processing amount ΔPMd = S × Δt is calculated by multiplying the reproduction speed S by the execution time interval Δt of this routine.

S106では、PM処理量ΔPMdを積算して、累積PM処理量ΣPMdを求め(ΣPMd=ΣPMd+ΔPMd)、リターンする。
S101での判定で、再生中でない場合は、S107へ進む。
S107では、再生中断時(図5でS23からS26へ進んだ場合)か否かを判定し、再生中断時は、S108へ進む。
In S106, the PM processing amount ΔPMd is integrated to obtain a cumulative PM processing amount ΣPMd (ΣPMd = ΣPMd + ΔPMd), and the process returns.
If it is determined in S101 that reproduction is not being performed, the process proceeds to S107.
In S107, it is determined whether or not the reproduction is interrupted (when the process proceeds from S23 to S26 in FIG. 5), and if the reproduction is interrupted, the process proceeds to S108.

S108では、再生中断時のPM残量を算出する。すなわち、再生中に、DPF温度と排気流量とから求められる再生速度と、再生時間とから、累積PM処理量ΣPMdを算出しているので、これを読込み、再生開始時のPM堆積量PMsから累積PM処理量ΣPMdを減算することで、PM残量PMxを算出する(PMx=PMs−ΣPMd)。尚、再生開始時のPM堆積量PMsは、再生時期と判断した時にS4で求めたPMα(又はS17で求めたPMβ)である。   In S108, the remaining PM amount at the time when the reproduction is interrupted is calculated. That is, during regeneration, the accumulated PM processing amount ΣPMd is calculated from the regeneration speed obtained from the DPF temperature and the exhaust gas flow rate and the regeneration time, and is read and accumulated from the PM accumulation amount PMs at the start of regeneration. The PM remaining amount PMx is calculated by subtracting the PM processing amount ΣPMd (PMx = PMs−ΣPMd). Note that the PM accumulation amount PMs at the start of regeneration is PMα obtained in S4 (or PMβ obtained in S17) when the regeneration time is determined.

この後、及び、S107での判定で再生中断時でない時は、S109へ進み、累積PM処理量ΣPMdを0に初期化して、リターンする。
図4は、そのS1→S7〜S19に、部分再生後(再生中断後)の再生時期判断について示している。
S1での判定で、部分再生後(再生中断後;前回の再生が部分再生)の場合は、S7へ進む。
Thereafter, and if the determination at S107 is not when the reproduction is interrupted, the process proceeds to S109, the accumulated PM processing amount ΣPMd is initialized to 0, and the process returns.
FIG. 4 shows the determination of the reproduction time after partial reproduction (after reproduction interruption) from S1 to S7 to S19.
If it is determined in S1 that after partial reproduction (after interruption of reproduction; the previous reproduction is partial reproduction), the process proceeds to S7.

S7では、図12のフローにより算出されている再生中断時のPM残量PMxを読込む。
S8では、図9のテーブル(T1)を参照し、再生中断時のPM残量PMxから、これに対応する補正係数Kpを求める。
S9では、車速センサ16の信号より、現在の車速VSPを検出する。
In S7, the PM remaining amount PMx at the time of reproduction interruption calculated by the flow of FIG. 12 is read.
In S8, referring to the table (T1) in FIG. 9, the correction coefficient Kp corresponding to the PM remaining amount PMx at the time of the reproduction interruption is obtained.
In S9, the current vehicle speed VSP is detected from the signal from the vehicle speed sensor 16.

S10では、図10のテーブル(T2)を参照し、現在の車速VSPから、これに対応する補正係数Kvを求める。
S11では、図11のテーブル(T3)を参照し、現在の車速VSPから、これについての重み付け定数Wvsp 求める。
S12では、Wpmx =1−Wvsp として、PM残量についての重み付け定数Wpmx を求める。
In S10, the table (T2) in FIG. 10 is referred to, and a correction coefficient Kv corresponding to the current vehicle speed VSP is obtained.
In S11, the table (T3) in FIG. 11 is referred to, and a weighting constant Wvsp is obtained from the current vehicle speed VSP.
In S12, a weighting constant Wpmx for the remaining amount of PM is obtained as Wpmx = 1−Wvsp.

S13では、補正係数Kp、Kv、重み付け定数Wpmx 、Wvsp を用いて、次式により、最終的な補正係数Kを算出する。
K=Kp×Wpmx +Kv×Wvsp
S14では、差圧センサ17の信号を読込んで、DPF12の前後差圧ΔPを検出し、これをαとする。
In S13, the final correction coefficient K is calculated by the following equation using the correction coefficients Kp and Kv and the weighting constants Wpmx and Wvsp.
K = Kp x Wpmx + Kv x Wvsp
In S14, the signal of the differential pressure sensor 17 is read to detect the front-rear differential pressure ΔP of the DPF 12, and this is defined as α.

S15では、次式のように、DPF前後差圧の検出値(α)に、補正係数Kを乗じて、PM堆積量推定用のDPF前後差圧(β)を求める。
β=α×K
S16では、エンジン回転数と負荷(アクセル開度)とからマップを参照するなどして排気流量Veを推定する。
In S15, the detected value (α) of the differential pressure before and after the DPF is multiplied by the correction coefficient K to obtain the differential pressure before and after the DPF (β) for estimating the PM accumulation amount as in the following equation.
β = α × K
In S16, the exhaust flow rate Ve is estimated by referring to a map from the engine speed and load (accelerator opening).

S17では、所定のマップを参照し、DPF前後差圧ΔP=βと、排気流量Veとから、DPF12のPM堆積量を推定し、これをPMβとする。
S18では、推定されたPM堆積量(PMβ)と、再生時期判断用の基準値(PMγ)と比較して、PM堆積量(PMβ)≧PMγか否かを判定する。
PM堆積量<PMγの場合は、再生時期ではないと判断して、S9へ戻るが、PM堆積量≧PMγの場合は、再生時期(要再生)と判断して、S19から再生制御(図5)へ進む。
In S17, referring to a predetermined map, the PM accumulation amount of the DPF 12 is estimated from the DPF front-rear differential pressure ΔP = β and the exhaust flow rate Ve, and this is defined as PMβ.
In S18, it is determined whether or not PM accumulation amount (PMβ) ≧ PMγ by comparing the estimated PM accumulation amount (PMβ) with the reference value (PMγ) for determining the regeneration timing.
If PM deposition amount <PMγ, it is determined that it is not the regeneration time, and the process returns to S9. However, if PM deposition amount ≧ PMγ, it is determined that the regeneration time is required (regeneration is required), and regeneration control is performed from S19 (FIG. 5). Go to).

以上説明したように、本実施形態によれば、PM堆積量推定用のDPF前後差圧に対する補正係数を、再生中断時のPM残量に応じて設定し、また特に、PM残量が多いほど大きく設定することにより、PM偏在の程度などを考慮して、PM堆積量の推定精度を向上させることができると共に、PM残量が多いほど、再生時期を早めて、偏在状態を早期に解消することができる。   As described above, according to the present embodiment, the correction coefficient for the differential pressure across the DPF for estimating the PM accumulation amount is set according to the PM remaining amount at the time of regeneration interruption, and in particular, as the PM remaining amount increases. By setting a large value, it is possible to improve the estimation accuracy of the PM deposition amount in consideration of the degree of PM uneven distribution, etc., and the more the remaining PM amount, the earlier the regeneration time and the early release of the uneven distribution state. be able to.

また、本実施形態によれば、PM堆積量推定用のDPF前後差圧に対する補正係数を、再生中断時のPM残量と現在の車速とに応じて設定し、特にまた、車速が高いほど大きく設定することにより、車速が高いほど、再生が容易であることから、再生時期をより早めて、偏在状態をより早期に解消することができる。
また、本実施形態によれば、補正係数の設定に際し、PM残量と車速との重み付けを車速に応じて変化させ、また特に、車速が高いほど、車速の重み付けを大きくすることにより、PM堆積量が少ない場合でも運転状態から再生可能であれば再生時期を早めるような制御に変わり、偏在状態をより早期に解消することができる。
Further, according to the present embodiment, the correction coefficient for the differential pressure across the DPF for estimating the PM accumulation amount is set according to the remaining PM amount at the time of regeneration interruption and the current vehicle speed, and particularly, the higher the vehicle speed, the larger the correction coefficient. By setting, the higher the vehicle speed, the easier the regeneration, so that the regeneration time can be advanced earlier and the uneven distribution state can be eliminated earlier.
Further, according to the present embodiment, when setting the correction coefficient, the weighting of the PM remaining amount and the vehicle speed is changed according to the vehicle speed, and in particular, the higher the vehicle speed, the greater the weighting of the vehicle speed, thereby increasing the PM accumulation. Even if the amount is small, if regeneration is possible from the operating state, the control is changed to advance the regeneration time, and the uneven distribution state can be eliminated earlier.

また、本実施形態によれば、再生中断時のPM残量の推定に際し、再生中に、DPF温度と排気流量とから求められる再生速度と、再生時間とから、累積PM処理量を算出し、再生開始時のPM堆積量から累積PM処理量を減算して、PM残量を算出することにより、PM残量を的確に推定することができる。   Further, according to the present embodiment, when estimating the PM remaining amount at the time of regeneration interruption, during regeneration, the cumulative PM processing amount is calculated from the regeneration speed obtained from the DPF temperature and the exhaust gas flow rate and the regeneration time, By calculating the PM remaining amount by subtracting the accumulated PM processing amount from the PM accumulation amount at the start of regeneration, the PM remaining amount can be accurately estimated.

本発明の一実施形態を示すディーゼルエンジンのシステム図The system diagram of the diesel engine which shows one Embodiment of this invention DPFの概略斜視図Schematic perspective view of DPF DPFの内部構造を示す拡大断面図Enlarged sectional view showing the internal structure of the DPF 再生時期判断のフローチャートFlow chart for playback time judgment 再生制御のフローチャートFlow chart for playback control 完全再生後と部分再生後のPM堆積分布を示す図Diagram showing PM deposition distribution after complete regeneration and partial regeneration PM堆積量と再生時DPF温度との関係を示す図The figure which shows the relationship between PM accumulation amount and DPF temperature at the time of reproduction DPF前後差圧とPM堆積量との関係を示す図The figure which shows the relationship between DPF front-back differential pressure and PM accumulation amount PM残量と補正係数との関係を示す図The figure which shows the relationship between PM remaining amount and correction coefficient 車速と補正係数との関係を示す図Diagram showing the relationship between vehicle speed and correction factor 車速と重み付け定数との関係を示す図Diagram showing the relationship between vehicle speed and weighting constant 再生中断時PM残量推定のフローチャートFlow chart for estimating remaining PM when playback is interrupted

符号の説明Explanation of symbols

1 ディーゼルエンジン
4 可変ノズル型過給機
7 吸気絞り弁
9 燃料噴射弁
12 DPF
13 ECU
14 回転数センサ
15 負荷センサ
16 車速センサ
17 差圧センサ
18、19 排気温度センサ
1 Diesel engine
4 Variable nozzle supercharger
7 Inlet throttle valve
9 Fuel injection valve
12 DPF
13 ECU
14 Speed sensor
15 Load sensor
16 Vehicle speed sensor
17 Differential pressure sensor
18, 19 Exhaust temperature sensor

Claims (6)

排気通路に排気中のPMを捕集するフィルタを備える一方、前記フィルタの前後差圧を検出する前後差圧検出手段と、検出された前後差圧に基づいてPM堆積量を推定するPM堆積量推定手段と、推定されたPM堆積量に基づいて再生時期を判断する再生時期判断手段と、再生時期と判断されたときに前記フィルタの温度を上昇させる再生処理を行って前記フィルタに捕集されているPMを燃焼除去する再生処理手段とを備える内燃機関の排気浄化装置において、
前回の再生中に再生を中断した後の再生時期の判断のため、
前回の再生中の運転履歴に基づいて再生中断時のPM残量を推定するPM残量推定手段と、
再生中断時のPM残量と、現在の車速とに応じて、フィルタ前後差圧に対する補正係数を設定する補正係数設定手段と、
前記検出された前後差圧に補正係数を乗じることにより、前記PM堆積量推定手段にて用いる前後差圧を補正する前後差圧補正手段と、
を設けたことを特徴とする内燃機関の排気浄化装置。
The exhaust passage is provided with a filter for collecting PM in the exhaust, and a front-rear differential pressure detecting means for detecting a front-rear differential pressure of the filter, and a PM deposit amount for estimating the PM deposit amount based on the detected front-rear differential pressure An estimation unit, a regeneration timing determination unit that determines a regeneration timing based on the estimated amount of accumulated PM, and a regeneration process that increases the temperature of the filter when the regeneration timing is determined, and is collected by the filter. In an exhaust gas purification apparatus for an internal combustion engine comprising a regeneration processing means for burning and removing the PM that is burned,
In order to determine the playback time after interrupting playback during the previous playback,
PM remaining amount estimating means for estimating the PM remaining amount at the time of regeneration interruption based on the previous driving history during regeneration;
Correction coefficient setting means for setting a correction coefficient for the differential pressure across the filter according to the remaining PM amount at the time of regeneration interruption and the current vehicle speed ;
A front-rear differential pressure correcting means for correcting the front-rear differential pressure used in the PM deposition amount estimating means by multiplying the detected front-rear differential pressure by a correction coefficient;
An exhaust gas purification apparatus for an internal combustion engine, characterized by comprising:
前記補正係数設定手段は、PM残量が多いほど、補正係数を大きくすることを特徴とする請求項1記載の内燃機関の排気浄化装置。   2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the correction coefficient setting means increases the correction coefficient as the PM remaining amount increases. 前記補正係数設定手段は、車速が高いほど、補正係数を大きくすることを特徴とする請求項1又は請求項2記載の内燃機関の排気浄化装置。 3. The exhaust gas purification apparatus for an internal combustion engine according to claim 1 , wherein the correction coefficient setting means increases the correction coefficient as the vehicle speed increases. 前記補正係数設定手段は、補正係数の設定に際し、PM残量と車速との重み付けを車速に応じて変化させることを特徴とする請求項1〜請求項3のいずれか1つに記載の内燃機関の排気浄化装置。 The internal combustion engine according to any one of claims 1 to 3, wherein the correction coefficient setting means changes the weighting of the PM remaining amount and the vehicle speed in accordance with the vehicle speed when setting the correction coefficient. Exhaust purification equipment. 前記補正係数設定手段は、車速が高いほど、車速の重み付けを大きくすることを特徴とする請求項4記載の内燃機関の排気浄化装置。 The exhaust gas purification apparatus for an internal combustion engine according to claim 4 , wherein the correction coefficient setting means increases the weighting of the vehicle speed as the vehicle speed increases. 前記PM残量算出手段は、再生中に、前記フィルタの温度と排気流量とから求められる再生速度と、再生時間とから、累積PM処理量を算出し、再生開始時のPM堆積量から累積PM処理量を減算して、PM残量を算出するものであることを特徴とする請求項1〜請求項5のいずれか1つに記載の内燃機関の排気浄化装置。 The PM remaining amount calculating means calculates the accumulated PM processing amount from the regeneration speed and the regeneration time obtained from the filter temperature and the exhaust gas flow rate during regeneration, and calculates the accumulated PM from the PM accumulation amount at the start of regeneration. The exhaust gas purification apparatus for an internal combustion engine according to any one of claims 1 to 5 , wherein the PM remaining amount is calculated by subtracting the processing amount.
JP2003326325A 2003-09-18 2003-09-18 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4103748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003326325A JP4103748B2 (en) 2003-09-18 2003-09-18 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003326325A JP4103748B2 (en) 2003-09-18 2003-09-18 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005090391A JP2005090391A (en) 2005-04-07
JP4103748B2 true JP4103748B2 (en) 2008-06-18

Family

ID=34456545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003326325A Expired - Fee Related JP4103748B2 (en) 2003-09-18 2003-09-18 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4103748B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4830870B2 (en) * 2007-01-26 2011-12-07 株式会社デンソー Control device for internal combustion engine
JP4631942B2 (en) 2008-07-23 2011-02-16 マツダ株式会社 Particulate filter regeneration device
JP5404457B2 (en) 2010-02-03 2014-01-29 三菱重工業株式会社 Engine exhaust gas purification device
JP5429404B2 (en) * 2010-11-26 2014-02-26 トヨタ自動車株式会社 Control device for internal combustion engine

Also Published As

Publication number Publication date
JP2005090391A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
JP3864910B2 (en) Exhaust gas purification device for internal combustion engine
JP4228690B2 (en) Exhaust gas purification device for internal combustion engine
JP4513593B2 (en) Exhaust gas purification device for internal combustion engine
US6990802B2 (en) Apparatus and method for regenerating particulate filter that removes particulates out of exhaust gas for internal combustion engine
JP4042476B2 (en) Exhaust gas purification device for internal combustion engine
JP4103720B2 (en) ENGINE EXHAUST PURIFYING APPARATUS AND PARTICLE DEPOSITION STATE JUDGMENT METHOD
US20040211159A1 (en) Exhaust gas cleaner
JP4032849B2 (en) Exhaust gas purification device for vehicle engine
JP2003336520A (en) Emission control device of internal combustion engine
WO2004015249A1 (en) Filter control method and device
JP2003314249A (en) Exhaust-emission control device of internal combustion engine
JP2008261287A (en) Filter clogging determination device of diesel engine
JP2004197657A (en) Reproducing apparatus for particulate filter and engine waste gas purifying facility
JP3937900B2 (en) Exhaust particulate collection filter regeneration device
JP4595521B2 (en) Exhaust gas purification device for internal combustion engine
JP2004197722A (en) Reproducing apparatus of particulate filter and engine waste gas purifying facility
JP2000161044A (en) Regeneration control device for particulate filter
JP4150308B2 (en) Exhaust purification device
JP4103748B2 (en) Exhaust gas purification device for internal combustion engine
JP4093159B2 (en) Exhaust gas purification device for internal combustion engine
JP2004132358A (en) Filter control device
JP4075724B2 (en) Exhaust gas purification device for internal combustion engine
JP4092480B2 (en) Exhaust gas purification device for internal combustion engine
JP2004028030A (en) Exhaust emission control device for internal combustion engine
JP2005273653A (en) Deterioration diagnosis device for filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080317

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees