JP4829055B2 - Minute height measuring method and minute height measuring apparatus - Google Patents

Minute height measuring method and minute height measuring apparatus Download PDF

Info

Publication number
JP4829055B2
JP4829055B2 JP2006252136A JP2006252136A JP4829055B2 JP 4829055 B2 JP4829055 B2 JP 4829055B2 JP 2006252136 A JP2006252136 A JP 2006252136A JP 2006252136 A JP2006252136 A JP 2006252136A JP 4829055 B2 JP4829055 B2 JP 4829055B2
Authority
JP
Japan
Prior art keywords
projection light
measured
height
measurement
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006252136A
Other languages
Japanese (ja)
Other versions
JP2008076059A (en
Inventor
本 裕 之 山
谷 康一郎 深
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
V Technology Co Ltd
Original Assignee
V Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by V Technology Co Ltd filed Critical V Technology Co Ltd
Priority to JP2006252136A priority Critical patent/JP4829055B2/en
Publication of JP2008076059A publication Critical patent/JP2008076059A/en
Application granted granted Critical
Publication of JP4829055B2 publication Critical patent/JP4829055B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、被測定物上の凹凸を測定する微小高さ測定方法に関し、詳しくは、被測定物上の凹凸を測定するのに要する時間を短縮可能な微小高さ測定方法及び微小高さ測定装置に係るものである。   The present invention relates to a minute height measuring method for measuring unevenness on an object to be measured, and more specifically, a minute height measuring method and minute height measurement capable of reducing the time required to measure the unevenness on an object to be measured. It concerns the device.

従来の微小高さ測定装置は、測定針を基板表面に接触させた状態で走査して基板上の突起、異物等の高さを測定するものであり、上記測定針の先端形状が走査方向に直交する平坦な直線部分を有する形状とされ、一回の走査で微小高さの測定ができるようになっていた(例えば、特許文献1参照)。
特開平10−68618号公報
Conventional minute height measuring devices measure the height of protrusions, foreign objects, etc. on a substrate by scanning with the measuring needle in contact with the substrate surface, and the tip shape of the measuring needle is in the scanning direction. The shape has a flat straight portion perpendicular to each other, and a minute height can be measured by one scan (see, for example, Patent Document 1).
JP-A-10-68618

しかし、このような従来の微小高さ測定装置においては、測定針を所定の走査範囲内で走査して、一定の直線上の連続的な高さ変化を測定するものであったので、上記走査範囲内の測定針の走査時間だけ測定時間がかかり、被測定物上の突起や異物の高さを短時間に測定することができなかった。   However, in such a conventional minute height measuring apparatus, the measuring needle is scanned within a predetermined scanning range to measure a continuous height change on a certain straight line. Measurement time is required only for the scanning time of the measuring needle within the range, and the height of protrusions and foreign matter on the object to be measured cannot be measured in a short time.

そこで、本発明は、このような問題点に対処し、被測定物上の凹凸を測定するのに要する時間を短縮可能な微小高さ測定方法及び微小高さ測定装置を提供することを目的とする。   Accordingly, the present invention aims to provide a micro height measuring method and a micro height measuring apparatus capable of addressing such problems and reducing the time required to measure the unevenness on the object to be measured. To do.

上記目的を達成するために、第1の発明による微小高さ測定方法は、対物レンズにより被測定物上の所定の測定位置に細線状の投影光を投影するステップと、前記対物レンズ又は被測定物の高さを前記対物レンズの光軸方向に変化させながら、前記対物レンズを介して前記被測定物上の投影光の複数枚の画像を撮像するステップと、前記撮像された投影光の各画像にて、前記投影光の長さ方向に交差する方向に分割設定された複数の測定領域毎に、該各測定領域内に予め指定された複数の測定点の前記投影光の長さ方向に交差する方向の輝度勾配の大きさをそれぞれ算出し、それらを測定領域内で総和してコントラストを測定するステップと、前記測定領域毎に最大のコントラストを示した前記対物レンズ又は被測定物の高さの変化量を抽出し、該高さの変化量に基づいて前記被測定物上の投影光に沿った高さ分布を求めるステップと、を行うものである。 In order to achieve the above object, a minute height measuring method according to a first invention includes a step of projecting thin line-shaped projection light onto a predetermined measurement position on an object to be measured by an objective lens, and the objective lens or the object to be measured. Imaging a plurality of images of the projection light on the object to be measured through the objective lens while changing the height of the object in the optical axis direction of the objective lens; and In the image, for each of a plurality of measurement areas divided and set in a direction intersecting with the length direction of the projection light, in the length direction of the projection light at a plurality of measurement points designated in advance in each measurement area The steps of calculating the magnitude of the luminance gradient in the intersecting direction and summing them in the measurement area to measure the contrast, and the height of the objective lens or object to be measured showing the maximum contrast for each measurement area Extract the amount of change , And performs determining a height profile along the projection light on the object to be measured based on the amount of change in the height-and.

このような構成により、対物レンズにより被測定物上の所定の測定位置に細線状の投影光を投影し、対物レンズ又は被測定物の高さを対物レンズの光軸方向に変化させながら、対物レンズを介して被測定物上の投影光の複数枚の画像を撮像し、撮像された投影光の各画像にて、投影光の長さ方向に交差する方向に分割設定された複数の測定領域毎に、該各測定領域内に予め指定された複数の測定点の前記投影光の長さ方向に交差する方向の輝度勾配の大きさをそれぞれ算出し、それらを測定領域内で総和してコントラストを測定し、測定領域毎に最大のコントラストを示した対物レンズ又は被測定物の高さの変化量を抽出し、該高さの変化量に基づいて被測定物上の投影光に沿った高さ分布を求める。 With such a configuration, the objective lens projects a thin line-shaped projection light on a predetermined measurement position on the object to be measured, and changes the height of the object lens or the object to be measured in the direction of the optical axis of the object lens. A plurality of measurement areas obtained by capturing a plurality of images of the projection light on the object to be measured via the lens, and divided and set in a direction intersecting the length direction of the projection light in each of the captured projection light images Each time, the magnitude of the luminance gradient in the direction intersecting the length direction of the projection light at a plurality of measurement points specified in advance in each measurement area is calculated, and these are summed in the measurement area to contrast. The amount of change in the height of the objective lens or the object to be measured showing the maximum contrast for each measurement region is extracted, and the height along the projection light on the object to be measured is determined based on the amount of change in the height. Find the height distribution.

また、前記被測定物上の投影光は、スリットを通過した光である。これにより、被測定物上にスリットを通過した光で細線状の投影光を生成する。   The projection light on the object to be measured is light that has passed through the slit. Thereby, a thin line-shaped projection light is generated by the light passing through the slit on the object to be measured.

また、第2の発明による微小高さ測定装置は、対物レンズにより被測定物上の所定の測定位置に細線状の投影光を投影可能な顕微鏡と、前記顕微鏡又は被測定物の高さを前記対物レンズの光軸方向に変化させる変位手段と、前記対物レンズの結像点と光学的に共役の関係に配設され、前記対物レンズを介して前記被測定物上の投影光の複数枚の画像を撮像する撮像手段と、前記変位手段の駆動を制御すると共に、前記撮像手段により撮像された投影光の各画像にて、前記投影光の長さ方向に交差する方向に分割設定された複数の測定領域毎に、該各測定領域内に予め指定された複数の測定点の前記投影光の長さ方向に交差する方向の輝度勾配の大きさをそれぞれ算出し、それらを測定領域内で総和してコントラストを測定し、前記測定領域毎に最大のコントラストを示した前記顕微鏡又は被測定物の高さの変化量を抽出し、該高さの変化量に基づいて前記被測定物上の投影光に沿った高さ分布を求める制御手段と、を備えたものである。 According to a second aspect of the present invention, there is provided a micro-height measuring apparatus, wherein a microscope capable of projecting a thin line-shaped projection light onto a predetermined measurement position on the object to be measured by an objective lens, and the height of the microscope or the object to be measured Displacement means for changing in the optical axis direction of the objective lens and an optically conjugate relationship with the imaging point of the objective lens, and a plurality of projection light beams on the object to be measured via the objective lens A plurality of image pickup means for picking up an image, and a plurality of divisional controls in the direction intersecting the length direction of the projection light in each image of the projection light picked up by the image pickup means while controlling the driving of the displacement means For each of the measurement areas, the magnitude of the brightness gradient in the direction intersecting the length direction of the projection light at each of the plurality of measurement points specified in advance in each measurement area is calculated and summed in the measurement area. and measuring the contrast, the measurement region for each Control means for extracting a height change amount of the microscope or the object to be measured showing the maximum contrast, and obtaining a height distribution along the projection light on the object to be measured based on the height change amount; , With.

このような構成により、顕微鏡で対物レンズにより被測定物上の所定の測定位置に細線状の投影光を投影し、制御手段で変位手段の駆動を制御し、変位手段で顕微鏡又は被測定物の高さを対物レンズの光軸方向に変化させ、上記対物レンズの結像点と光学的に共役の関係に配設された撮像手段で対物レンズを介して被測定物上の投影光の複数枚の画像を撮像し、制御手段で撮像手段により撮像された投影光の各画像にて、投影光の長さ方向に交差する方向に分割設定された複数の測定領域毎に、該各測定領域内に予め指定された複数の測定点の前記投影光の長さ方向に交差する方向の輝度勾配の大きさをそれぞれ算出し、それらを測定領域内で総和してコントラストを測定し、測定領域毎に最大のコントラストを示した顕微鏡又は被測定物の高さの変化量を抽出し、該高さの変化量に基づいて被測定物上の投影光に沿った高さ分布を求める。 With such a configuration, the projection light in the form of a thin line is projected at a predetermined measurement position on the object to be measured by the objective lens in the microscope, the drive of the displacement means is controlled by the control means, and the microscope or the object to be measured is controlled by the displacement means. A plurality of pieces of projection light on the object to be measured via the objective lens by the imaging means arranged in an optically conjugate relationship with the imaging point of the objective lens by changing the height in the optical axis direction of the objective lens For each of a plurality of measurement areas divided and set in a direction intersecting the length direction of the projection light in each image of the projection light imaged by the imaging means by the control means . The brightness gradient in the direction intersecting the length direction of the projection light at a plurality of measurement points specified in advance is calculated, and the sum is calculated in the measurement area to measure the contrast. Of the microscope or object under test showing the maximum contrast Extracting the amount of change, determine the height distribution along the projection light on the object to be measured based on the amount of change in the height-.

さらに、前記被測定物上の投影光の像は、スリットを通過した光である。これにより、被測定物上にスリットを通過した光で細線状の投影光を生成する。   Furthermore, the image of the projection light on the object to be measured is light that has passed through the slit. Thereby, a thin line-shaped projection light is generated by the light passing through the slit on the object to be measured.

請求項1に係る微小高さ測定方法によれば、細線状の投影光の長さ方向に交差する方向に分割設定された複数の測定領域毎に、該各測定領域内に予め指定された複数の測定点の上記投影光の長さ方向に交差する方向の輝度勾配の大きさをそれぞれ算出し、それらを測定領域内で総和してコントラストを測定し、測定領域毎に最大のコントラストを示した対物レンズ又は被測定物の高さの変化量を抽出し、該高さの変化量に基づいて被測定物上の投影光に沿った高さ分布を求めるようにしているので、被測定物上の凹凸を測定するのに要する時間は、殆ど電気的な処理時間で決まり、従来の接触針の物理的な移動速度で決まる測定時間よりも大幅に短縮することができる。また、投影光の位置が多少ずれた場合や、投影光のボケが予想以上に大きくなった場合にもコントラストを適切に計算することができる。したがって、微小高さの測定を確実に実行することができる。 According to the minute height measuring method according to claim 1, for each of a plurality of measurement areas divided and set in a direction intersecting with the length direction of the thin line-shaped projection light, a plurality of pre-designated values in each measurement area The brightness gradients in the direction intersecting the length direction of the projection light at the measurement points were calculated and summed in the measurement area to measure the contrast, and the maximum contrast was shown for each measurement area. Since the amount of change in the height of the objective lens or the object to be measured is extracted, the height distribution along the projection light on the object to be measured is obtained based on the amount of change in the height. The time required to measure the unevenness of the contact point is almost determined by the electrical processing time, and can be significantly shortened from the measurement time determined by the physical movement speed of the conventional contact needle. Further, the contrast can be appropriately calculated even when the position of the projection light is slightly shifted or the blur of the projection light becomes larger than expected. Therefore, the measurement of the minute height can be surely executed.

また、請求項3に係る微小高さ測定装置は、制御手段により細線状の投影光の長さ方向に交差する方向に分割設定された複数の測定領域毎に、該各測定領域内に予め指定された複数の測定点の上記投影光の長さ方向に交差する方向の輝度勾配の大きさをそれぞれ算出し、それらを測定領域内で総和してコントラストを測定し、測定領域毎に最大のコントラストを示した顕微鏡又は被測定物の高さの変化量を抽出し、該高さの変化量に基づいて被測定物上の投影光に沿った高さ分布を求めるようにしているので、被測定物上の凹凸を測定するのに要する時間は、殆ど電気的な処理時間で決まり、従来の接触針の物理的な移動速度で決まる測定時間よりも大幅に短縮することができる。また、投影光の位置が多少ずれた場合や、投影光のボケが予想以上に大きくなった場合にもコントラストを適切に計算することができる。したがって、微小高さの測定を確実に実行することができる。 According to a third aspect of the present invention, there is provided the minute height measuring apparatus according to the present invention, for each of the plurality of measurement areas divided and set in the direction intersecting the length direction of the thin line-shaped projection light by the control means. The brightness gradient in the direction intersecting the length direction of the projection light at each of the plurality of measurement points is calculated and summed in the measurement area to measure the contrast, and the maximum contrast for each measurement area The amount of change in the height of the microscope or object to be measured is extracted, and the height distribution along the projection light on the object to be measured is obtained based on the amount of change in the height. The time required to measure the unevenness on the object is almost determined by the electrical processing time, and can be significantly shortened from the measurement time determined by the physical movement speed of the conventional contact needle. Further, the contrast can be appropriately calculated even when the position of the projection light is slightly shifted or the blur of the projection light becomes larger than expected. Therefore, the measurement of the minute height can be surely executed.

さらに、請求項2又は4に係る発明によれば、細線状の投影光を容易に生成することができる。特に、微小高さ測定装置においては、被測定物上にスリット板のスリットを通過した光を投影して投影光を生成しているので、光学構成が簡単となる。したがって、安価な装置を提供することができる。 Furthermore, according to the invention which concerns on Claim 2 or 4 , a thin line-shaped projection light can be produced | generated easily. In particular, in the minute height measuring apparatus, the light passing through the slit of the slit plate is projected onto the object to be measured to generate the projection light, so that the optical configuration is simplified. Therefore, an inexpensive device can be provided.

以下、本発明の実施形態を添付図面に基づいて詳細に説明する。図1は本発明による微小高さ測定装置の実施形態を示す概念図である。この微小高さ測定装置は、被測定物上の凹凸を測定するもので、顕微鏡1と、変位手段2と、撮像手段3と、制御手段4とからなる。なお、以下の説明においては、被測定物上の突起の高さを測定する場合について述べる。   Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a conceptual diagram showing an embodiment of a minute height measuring apparatus according to the present invention. This minute height measuring apparatus measures unevenness on an object to be measured, and includes a microscope 1, a displacement means 2, an imaging means 3, and a control means 4. In the following description, the case of measuring the height of the protrusion on the object to be measured will be described.

上記顕微鏡1は、被測定物5上の観察を可能にすると共に被測定物5上の所定の測定位置、例えば突起に対して細線状の投影光15を投影する機能を持ったものであり、対物レンズ6と、光源7と、スリット板8と、結像レンズ9とを有している。   The microscope 1 has a function of allowing observation on the object 5 to be measured and projecting a thin line-shaped projection light 15 onto a predetermined measurement position on the object 5 to be measured, for example, a projection, The objective lens 6, the light source 7, the slit plate 8, and the imaging lens 9 are provided.

上記対物レンズ6は、被測定物5上に光を集光するものである。また、上記対物レンズ6の上方には、光源7が設けられている。この光源7は、可視光を含む光を放射するものである。ここで、高さ測定用の光として例えば紫外線や赤外線や特定波長の光が使用される場合には、光の放射方向前方に所定の波長の光を選択的に透過するフィルタが抜差し可能に設けられる。さらに、上記対物レンズ6と光源7との間にて、対物レンズ6の結像点と共役の関係をなす位置にはスリット板8が設けられている。このスリット板8は、細線状の投影光15(図5参照)を形成するものであり、図2に示すように不透明な部材の中央部に光の通過量を制限するスリット10が形成されている。そして、上記対物レンズ6とスリット板8との間には、結像レンズ9が設けられている。この結像レンズ9は、上記対物レンズ6と共に上記スリット板8のスリット10の像を被測定物5上に結像する結像光学系を構成するものである。     The objective lens 6 collects light on the object to be measured 5. A light source 7 is provided above the objective lens 6. The light source 7 emits light including visible light. Here, for example, when ultraviolet light, infrared light, or light of a specific wavelength is used as light for height measurement, a filter that selectively transmits light of a predetermined wavelength is provided in front of the light emission direction so that it can be inserted and removed. It is done. Further, a slit plate 8 is provided between the objective lens 6 and the light source 7 at a position having a conjugate relationship with the image forming point of the objective lens 6. This slit plate 8 forms thin line-shaped projection light 15 (see FIG. 5), and a slit 10 for limiting the amount of light passing is formed in the center of an opaque member as shown in FIG. Yes. An imaging lens 9 is provided between the objective lens 6 and the slit plate 8. The imaging lens 9 constitutes an imaging optical system that forms an image of the slit 10 of the slit plate 8 on the object 5 together with the objective lens 6.

上記顕微鏡1の側部には、変位手段2が設けられている。この変位手段2は、顕微鏡1の高さを矢印A,Bで示す対物レンズ6の光軸方向に変化させるものであり、顕微鏡1を昇降させる例えばパルスモータ等の駆動部11と、顕微鏡1を垂直方向に誘導する案内部12とを備えている。そして、案内部12の下端部は、ベース部材13に固定されている。   Displacement means 2 is provided on the side of the microscope 1. This displacement means 2 changes the height of the microscope 1 in the direction of the optical axis of the objective lens 6 indicated by arrows A and B, and moves the microscope 1 up and down, for example, a drive unit 11 such as a pulse motor, and the microscope 1. And a guide portion 12 for guiding in the vertical direction. The lower end portion of the guide portion 12 is fixed to the base member 13.

上記顕微鏡1の対物レンズ6からスリット板8に向かう光路がハーフミラー14によって分岐された光路上にて、対物レンズ6の結像点と光学的に共役の関係をなす位置には、撮像手段3が設けられている。この撮像手段3は、対物レンズ6を介して被測定物5上の投影光15の複数枚の画像を撮像するものであり、多数の画素を二次元に配置して有する例えばCCD撮像素子16からなっている。なお、図1において、符号17は、被測定物5上の投影光15をCCD撮像素子16の受光面16aに結像する結像レンズである。   On the optical path branched from the objective lens 6 of the microscope 1 toward the slit plate 8 by the half mirror 14, the imaging means 3 is located at a position optically conjugate with the imaging point of the objective lens 6. Is provided. The image pickup means 3 picks up a plurality of images of the projection light 15 on the object to be measured 5 through the objective lens 6, for example from a CCD image pickup device 16 having a large number of pixels arranged in two dimensions. It has become. In FIG. 1, reference numeral 17 denotes an imaging lens that forms an image of the projection light 15 on the DUT 5 on the light receiving surface 16 a of the CCD image sensor 16.

上記変位手段2及び撮像手段3には、制御手段4が結線されている。この制御手段4は、変位手段2の駆動を制御すると共に、測定領域18〜18(図5(b)参照)毎に最大のコントラストを示した顕微鏡1の高さの変化量(上昇量)を抽出し、該高さの変化量(上昇量)に基づいて被測定物5上の投影光15に沿った高さ分布を求め、該高さ分布における最大値と所定の基準値との差から突起の高さを算出するものであり、図3に示すようにホストコンピュータ(以下、「制御用PC」と記載する)17と、制御及び処理部20と、A/D変換部21と、メモリ22とを備えている。 Control means 4 is connected to the displacement means 2 and the imaging means 3. The control means 4 controls the driving of the displacement means 2 and changes in the height of the microscope 1 that shows the maximum contrast for each measurement region 18 1 to 18 n (see FIG. 5B) (amount of increase). ) And a height distribution along the projection light 15 on the object to be measured 5 is obtained based on the amount of change in height (amount of increase), and the maximum value in the height distribution and a predetermined reference value The height of the protrusion is calculated from the difference. As shown in FIG. 3, a host computer (hereinafter referred to as “control PC”) 17, a control and processing unit 20, an A / D conversion unit 21, And a memory 22.

上記制御用PC19は、オペレータが細線状の投影光15に交差する線でその長さ方向に分割されて設定される複数の測定領域18〜18の分割数や、顕微鏡1の1回当りの上昇量及び画像データの取得回数(撮影枚数)等の各種パラメータを入力することを可能とすると共に、後述の制御及び処理部20から上記測定領域18〜18毎に互いに関連付けて出力されるコントラスト及び顕微鏡1の上昇量のデータに基づいて測定領域18〜18毎に最大のコントラストを示す上昇量を各測定領域18〜18に対応する被測定物5上の投影光15が投影された部分の高さとして求め、それらに基づいて被測定物5上の投影光15に沿った高さ分布を求め、該高さ分布における最大値と所定の基準値との差から突起の高さを算出するものであり、その結果を表示部に表示させるようになっている。なお、上記測定領域18〜18の分割数が設定されると、該測定領域18〜18に対応するCCD撮像素子16の複数の画素23がコントラストの測定点(Xn0,Yn0)〜(Xnk,Ynm)として自動設定され(図6参照)、該画素23のアドレス情報が制御及び処理部20に出力されるようになっている。なお、上記各測定点の座標は、X軸を投影光15の長さ方向平行する軸とし、Y軸を投影光15の長さ方向直交する軸として設定して示したものである。また、上記測定領域18〜18のX軸方向の幅は、CCD撮像素子16の同方向の全幅であってもよく、又は投影光15を含んでその近傍に設定された所定幅であってもよい。 The control PC 19 is configured such that the number of divisions of the plurality of measurement regions 18 1 to 18 n set by the operator being divided in the length direction by a line intersecting with the thin line-shaped projection light 15, or once for the microscope 1. Various parameters such as the increase amount of image data and the number of times of image data acquisition (number of captured images) can be input, and are output in association with each other from the control and processing unit 20 described later for each of the measurement regions 18 1 to 18 n. The projected light 15 on the object to be measured 5 corresponding to each of the measurement regions 18 1 to 18 n is an increase amount indicating the maximum contrast for each of the measurement regions 18 1 to 18 n based on the data of the contrast and the amount of increase of the microscope 1. Is obtained as the height of the projected portion, and the height distribution along the projection light 15 on the object to be measured 5 is obtained based on the height, and the projection is determined from the difference between the maximum value in the height distribution and a predetermined reference value. High And calculates a, and causes a display section to display the results. When the number of divisions of the measurement areas 18 1 to 18 n is set, the plurality of pixels 23 of the CCD image sensor 16 corresponding to the measurement areas 18 1 to 18 n are measured with contrast measurement points (X n0 , Y n0). ) To (X nk , Y nm ) (see FIG. 6), and the address information of the pixel 23 is output to the control and processing unit 20. The coordinates of each measurement point are shown by setting the X axis as an axis parallel to the length direction of the projection light 15 and the Y axis as an axis perpendicular to the length direction of the projection light 15. Further, the width in the X-axis direction of the measurement regions 18 1 to 18 n may be the entire width in the same direction of the CCD image pickup device 16, or a predetermined width set in the vicinity thereof including the projection light 15. May be.

上記制御及び処理部20は、上記投影光15の長さ方向に交差する方向に分割設定された複数の測定領域18〜18毎にコントラストを測定するものであり、例えば、上記測定領域18内に予め指定された複数の測定点(Xn0,Yn0)〜(Xnk,Ynm)毎に上記投影光15の長さ方向直交する方向の輝度勾配の大きさをそれぞれ算出し、該各測定点(Xn0,Yn0)〜(Xnk,Ynm)における輝度勾配の大きさを上記測定領域18内で総和することによって投影光15の長さ方向と直交する方向の輝度勾配の大きさを求め、これをコントラストとして算出するようになっている。また、予め設定された画像データの取得回数及び顕微鏡1の1回当りの上昇量に関する指令信号を変位手段2に送り、上記顕微鏡1を上記上昇量で所定回数だけ上昇させるものである。さらに、所定のタイミングで予め設定された画像の取得回数だけA/D変換部21を起動する変換タイミング信号を上記A/D変換部21に出力するものである。さらにまた、上記各測定領域18〜18のコントラストと変位手段2から入力する顕微鏡1の上昇量データとを互いに関連付けてメモリ22に書き込むものである。そして、上記メモリ22から読み出した各測定領域18〜18の全てのコントラストとそれに関連付けられた顕微鏡1の上昇量データとを制御用PC19に出力するものである。 The control and processing unit 20 measures the contrast for each of the plurality of measurement regions 18 1 to 18 n that are divided and set in the direction intersecting the length direction of the projection light 15. a plurality of measurement points specified in advance in the n (X n0, Y n0) ~ (X nk, Y nm) in the direction of brightness gradient perpendicular to the length direction of the projection light 15 for each size were calculated, respectively The luminance gradients at the respective measurement points (X n0 , Y n0 ) to (X nk , Y nm ) are summed within the measurement region 18 n , so that the direction perpendicular to the length direction of the projection light 15 is obtained. The magnitude of the luminance gradient is obtained, and this is calculated as the contrast. Further, a command signal relating to the preset number of times of image data acquisition and the amount of increase of the microscope 1 per one time is sent to the displacing means 2, and the microscope 1 is raised by the amount of increase a predetermined number of times. Further, a conversion timing signal for activating the A / D conversion unit 21 is output to the A / D conversion unit 21 for a predetermined number of times of image acquisition at a predetermined timing. Furthermore, the contrast of each of the measurement areas 18 1 to 18 n and the rising amount data of the microscope 1 input from the displacement means 2 are associated with each other and written in the memory 22. Then, and it outputs the all contrast and increased amount data of the microscope 1 associated with it for each measurement region 18 1 ~ 18 n read out from the memory 22 to the control PC 19.

上記A/D変換部21は、上記撮像手段3から入力したアナログ信号をデジタルデータに変換するものであり、上記制御及び処理部20から入力する変換タイミング信号に基づいて所定のタイミングでデジタル変換するようになっている。また、上記メモリ22は、上記制御用PC19により入力された各種パラメータを記憶すると共に、上記測定されたコントラストと顕微鏡1の上昇量データとを測定領域18〜18毎に関連付けて記憶するものであり、例えば書き換え可能な半導体メモリである。 The A / D conversion unit 21 converts the analog signal input from the imaging unit 3 into digital data, and performs digital conversion at a predetermined timing based on the conversion timing signal input from the control and processing unit 20. It is like that. The memory 22 stores various parameters input by the control PC 19, and stores the measured contrast and the amount of increase data of the microscope 1 in association with each measurement region 18 1 to 18 n. For example, a rewritable semiconductor memory.

次に、このように構成された微小高さ測定装置を使用して行なう微小高さ測定方法について図4のフローチャートを参照して説明する。
先ず、ステップS1においては、制御用PC19により測定領域18〜18の分割数や、顕微鏡1の1回当りの上昇量や、画像データの取得回数等のパラメータが入力されて初期設定がなされる。
Next, a minute height measuring method performed using the minute height measuring apparatus configured as described above will be described with reference to the flowchart of FIG.
First, in step S1, parameters such as the number of divisions of the measurement areas 18 1 to 18 n , the amount of increase per microscope 1 and the number of times image data is acquired are input by the control PC 19 and initial settings are made. The

ステップS2においては、図示省略の照明光源が点灯され、例えば制御用PC19の表示部に表示される撮像手段3による撮像画像を見ながら、図5(a)に示すように、被測定物5上の突起22に投影光15を合わせる。   In step S2, an illumination light source (not shown) is turned on, and, for example, while looking at an image taken by the imaging means 3 displayed on the display unit of the control PC 19, as shown in FIG. The projection light 15 is aligned with the projection 22 of the above.

ステップS3においては、図示省略の測定開始スイッチの操作により、高さ測定が開始されて、ステップS4に進む。このとき、上記照明手段は消灯される。   In step S3, height measurement is started by operating a measurement start switch (not shown), and the process proceeds to step S4. At this time, the illumination means is turned off.

ステップS4においては、制御手段4の制御及び処理部20から変換タイミング信号をA/D変換部21に出力して所定時間A/D変換部21を駆動し、撮像手段3により撮像された被測定物5上の投影光15の画像をA/D変換して1回目の画像データの取得を行なう。このとき、画像データの取得回数がカウントされる。   In step S4, a conversion timing signal is output from the control and processing unit 20 of the control unit 4 to the A / D conversion unit 21 to drive the A / D conversion unit 21 for a predetermined time, and the measurement target imaged by the imaging unit 3 is measured. The image of the projection light 15 on the object 5 is A / D converted to acquire the first image data. At this time, the number of times image data is acquired is counted.

ステップS5においては、上記取得画像データに基づいて、図5(b)に示すように、予め設定された複数の測定領域18〜18毎にコントラストを測定する。具体的には、図6に示すように、例えば測定領域18内に予め指定された複数の測定点(Xn0,Yn0)〜(Xnk,Ynm)毎に上記投影光15の長さ方向直交する方向の輝度勾配の大きさを算出し、該測定点(Xn0,Yn0)〜(Xnk,Ynm)における輝度勾配の大きさを上記測定領域18内で総和してコントラストを算出する。そして、測定領域18〜18毎に算出されたコントラストは、顕微鏡1の上昇量データ(この場合は、例えばゼロ)と関連付けてメモリ22に保存される。なお、上記コントラストの計算は、例えば下記の計算式により実行することができる。ここで、Cは各測定領域18〜18のコントラスト、Bは各画素23で検出される輝度(検出出力)、nは測定領域18〜18の番号、(Xn0,Yn0)〜(Xnk,Ynm)はn番目の測定領域18の測定範囲を示している。 In step S5, the contrast is measured for each of a plurality of preset measurement areas 18 1 to 18 n as shown in FIG. 5B based on the acquired image data. Specifically, as shown in FIG. 6, for example , the length of the projection light 15 at each of a plurality of measurement points (X n0 , Y n0 ) to (X nk , Y nm ) designated in advance in the measurement region 18 n . It is to calculate the magnitude of the direction of the brightness gradient perpendicular to the direction, and the sum surveying a fixed point (X n0, Y n0) ~ (X nk, Y nm) the magnitude of the luminance gradient in the above measurement region 18 in the n To calculate the contrast. Then, the contrast calculated for each of the measurement regions 18 1 to 18 n is stored in the memory 22 in association with the rising amount data of the microscope 1 (in this case, for example, zero). Note that the contrast calculation can be executed by, for example, the following calculation formula. Here, C is the contrast of each measurement region 18 1 to 18 n , B is the luminance (detection output) detected by each pixel 23, n is the number of the measurement region 18 1 to 18 n , and (X n0 , Y n0 ). ˜ (X nk , Y nm ) indicates the measurement range of the n-th measurement region 18 n .

Figure 0004829055
Figure 0004829055

ステップS6においては、全ての測定領域18〜18に対するコントラストの測定を終了したか否かが制御及び処理部20おいて判定される。即ち、メモリ22から読み出された測定領域18〜18の分割数と現在の測定領域18の番号nとが比較され、両者が一致するか否かが判定される。この場合、両者が一致せず、全ての測定領域18〜18に対するコントラストの測定がまだ終了していないときには、“NO”判定となってステップS5に戻り、取得画像データに基づいて2番目の測定領域18に対するコントラストの測定が実行される。以後、n番目の測定領域18に対するコントラストの測定が終了するまでステップS5とS6とが繰り返し実行される。そして、全ての測定領域18〜18に対するコントラストの測定が終了して“YES”判定となるとステップS7に進む。 In step S6, the control and processing unit 20 determines whether or not the contrast measurement for all the measurement regions 18 1 to 18 n has been completed. That is, the division number of the measurement areas 18 1 to 18 n read from the memory 22 is compared with the number n of the current measurement area 18 n to determine whether or not they match. In this case, when the two do not match and the measurement of contrast for all the measurement regions 18 1 to 18 n has not been completed yet, the determination is “NO” and the process returns to step S5, and the second is based on the acquired image data. the measurement region 18 second measurement of contrast for is executed. Thereafter, steps S5 and S6 are repeatedly executed until the contrast measurement for the nth measurement region 18n is completed. Then, when the contrast measurement for all the measurement regions 18 1 to 18 n is completed and the determination is “YES”, the process proceeds to step S7.

ステップS7においては、ステップS4でカウントした画像データの取得回数が所定回数となったか否かが制御及び処理部20において判定される。即ち、メモリ22から読み出された画像データの取得回数とステップS4でカウントした画像データの取得回数とが比較されて両者が一致するか否かが判定される。この場合、画像データの取得回数がまだ所定回数となっていないときには、“NO”判定となってステップS8に進む。   In step S7, the control and processing unit 20 determines whether or not the number of acquisitions of the image data counted in step S4 has reached a predetermined number. That is, the number of acquisitions of the image data read from the memory 22 is compared with the number of acquisitions of the image data counted in step S4 to determine whether or not they match. In this case, when the number of times of image data acquisition has not yet reached the predetermined number, “NO” determination is made, and the process proceeds to step S8.

ステップS8においては、メモリ22から読み出した顕微鏡1の1回当りの上昇量の設定データに基づいて制御及び処理部20から変位手段2に指令信号を送出し、顕微鏡1を所定量だけ例えば図1に示す矢印A方向に上昇させる。そして、ステップS4に戻ってステップS4〜S8が再度実行される。以降、ステップS7において、画像の取得回数が所定回数に達して“YES”判定となるまでステップS4〜S8が繰り返し実行され、“YES”判定となるとステップS9に進む。   In step S8, a command signal is sent from the control and processing unit 20 to the displacing means 2 based on the setting data of the amount of increase per time of the microscope 1 read from the memory 22, and the microscope 1 is sent by a predetermined amount, for example, FIG. Is raised in the direction of arrow A shown in FIG. Then, returning to step S4, steps S4 to S8 are executed again. Thereafter, in step S7, steps S4 to S8 are repeatedly executed until the predetermined number of image acquisition times reaches “YES”, and if “YES” is determined, the process proceeds to step S9.

ステップS9においては、メモリ22に顕微鏡1の上昇量データと関連付けて記憶された全てのコントラストを読み出して制御用PC19に送出する。制御用PC19では、入力した全てのコントラストについて解析し、測定領域18〜18毎に最大のコントラストを示す上昇量データから顕微鏡1の高さを求め、該顕微鏡1の高さを測定領域18〜18に対応する被測定物5上の投影光15が投影された部分の高さとして算出し、それらに基づいて被測定物5上の投影光15に沿った高さ分布を求める。 In step S9, all the contrasts stored in the memory 22 in association with the ascent data of the microscope 1 are read out and sent to the control PC 19. The control PC 19 analyzes all the input contrasts, obtains the height of the microscope 1 from the amount of increase data indicating the maximum contrast for each of the measurement regions 18 1 to 18 n , and determines the height of the microscope 1 as the measurement region 18. 1 ~ 18 n projected light 15 on the object to be measured 5 corresponding to is calculated as the height of the projected portion, obtains the height distribution along the projection light 15 on the object to be measured 5 on the basis of them.

ステップS10においては、上記高さ分布における最大値と所定の基準値との差を算出し、これを測定対象の突起24の高さとして表示部に表示する。また、被測定物5上の測定位置の高さ分布を、測定領域18〜18に対応させてグラフ化して表示させてもよい。さらに、制御用PC19にプリンタを接続して上記高さの測定結果をプリントアウトさせてもよい。 In step S10, the difference between the maximum value in the height distribution and a predetermined reference value is calculated, and this is displayed on the display unit as the height of the projection 24 to be measured. Further, the height distribution of the measurement positions on the object to be measured 5 may be displayed in a graph corresponding to the measurement regions 18 1 to 18 n . Furthermore, a printer may be connected to the control PC 19 to print out the height measurement result.

なお、上記実施形態においては、被測定物5上の突起24の高さを測定する場合について説明したが、本発明はこれに限られず、被測定物5上の投影光15に沿った高さ分布から被測定物5の表面の凹凸を測定することもできる。この場合、上記高さ分布中に所定の基準値を設定すれば、該基準値に対する凹凸量を測定することができる。上記基準値としては、例えば、高さ分布中の平均値、重心、最頻値、直線とフィッティングする値、最小値、最大値、又は指定した位置の高さ等から任意に選択することができる。   In the above embodiment, the case where the height of the protrusion 24 on the object to be measured 5 is measured has been described. However, the present invention is not limited to this, and the height along the projection light 15 on the object to be measured 5. Unevenness on the surface of the DUT 5 can also be measured from the distribution. In this case, if a predetermined reference value is set in the height distribution, the unevenness with respect to the reference value can be measured. The reference value can be arbitrarily selected from, for example, an average value in a height distribution, a center of gravity, a mode value, a value to be fitted to a straight line, a minimum value, a maximum value, or a height at a specified position. .

また、上記実施形態においては、各種パラメータをオペレータが入力して設定する場合について説明したが、本発明はこれに限られず、各種パラメータについて予め定められた値を自動設定するようにしてもよい。   Moreover, although the case where an operator inputs and sets various parameters has been described in the above embodiment, the present invention is not limited to this, and predetermined values for various parameters may be automatically set.

さらに、上記実施形態においては、撮像手段3として二次元のCCD撮像素子16を用いた場合について説明したが、本発明はこれに限られず、投影光15と直交してラインCCDを配設したものであってもよい。この場合、上記ラインCCDを投影光15と平行方向にスキャンしながら所定のタイミングで一次元画像を取得し、該取得した複数の一次元画像をそれぞれメモリすれば、該複数の一次元画像に基づいて二次元画像を得ることができる。したがって、この二次元画像を用いて、上述と同様の処理を行なえば被測定物5上の投影光15に沿った微小高さを測定することができる。そして、撮像素子はCCDに限られず、CMOSであっても、他の撮像素子であってもよい。   Furthermore, in the above-described embodiment, the case where the two-dimensional CCD image pickup device 16 is used as the image pickup means 3 has been described. However, the present invention is not limited to this, and a line CCD is disposed orthogonal to the projection light 15. It may be. In this case, if a one-dimensional image is acquired at a predetermined timing while scanning the line CCD in a direction parallel to the projection light 15, and the acquired plurality of one-dimensional images are respectively stored, the plurality of one-dimensional images are stored. To obtain a two-dimensional image. Therefore, if the same processing as described above is performed using this two-dimensional image, the minute height along the projection light 15 on the object to be measured 5 can be measured. The imaging device is not limited to the CCD, and may be a CMOS or another imaging device.

以上の説明においては、測定領域18〜18内に予め指定された複数の測定点(Xn0,Yn0)〜(Xnk,Ynm)毎に投影光15の長さ方向直交する方向の輝度勾配の大きさを算出し、該各測定点(Xn0,Yn0)〜(Xnk,Ynm)における輝度勾配の大きさを上記測定領域18内で総和することによって投影光15の長さ方向と直交する方向の輝度勾配の大きさを求め、これをコントラストとする場合について述べたが、本発明はこれに限られず、コントラストは、各測定領域18〜18内に予め指定された複数の測定点の輝度勾配の大きさを計算し、それを測定領域内で総和するものであれば、如何なる方法で測定されたものであってもよいし、単に明部と暗部との輝度差であってもよい。または、コントラストは、撮像される投影光の輝度値で代表させてもよい。この場合、微小高さの測定は、各測定領域に対応する投影光の輝度変化に基づいて行なえばよい。 In the above description, the plurality of measurement points (X n0 , Y n0 ) to (X nk , Y nm ) designated in advance in the measurement regions 18 1 to 18 n are orthogonal to the length direction of the projection light 15. calculating the magnitude of the direction of the brightness gradient, respective measurement point (X n0, Y n0) ~ (X nk, Y nm) projection light by the magnitude of the luminance gradient in summing in the measurement region 18 in the n The case where the magnitude of the luminance gradient in the direction orthogonal to the length direction of 15 is obtained and this is used as the contrast has been described. However, the present invention is not limited to this, and the contrast is included in each of the measurement regions 18 1 to 18 n . It may be measured by any method as long as it calculates the magnitude of the luminance gradient at a plurality of measurement points specified in advance and sums them up within the measurement area, and it is simply a bright part and a dark part. And the luminance difference. Alternatively, the contrast may be represented by the brightness value of the projected light to be imaged. In this case, the measurement of the minute height may be performed based on the luminance change of the projection light corresponding to each measurement region.

また、以上の説明においては、投影光15がスリット板8に形成された一つのスリット10を通過した光を投影したものである場合について述べたが、本発明はこれに限られず、投影光15は、複数のスリット10を通過した光であってもよく、所定の幅を有するパターン状のものであってもよく、さらには、ビームスポットを高速走査して生成されたものであってもよい。   In the above description, the case where the projection light 15 is obtained by projecting light that has passed through one slit 10 formed on the slit plate 8 has been described. However, the present invention is not limited to this, and the projection light 15 is not limited thereto. May be light that has passed through a plurality of slits 10, may have a pattern shape having a predetermined width, and may be generated by scanning a beam spot at high speed. .

そして、以上の説明においては、スリット板8を対物レンズ6の結像点と共役の関係をなす位置に配設した場合について述べたが、本発明はこれに限られず、被測定物5上にスリット10を通過した光による細線状の投影光15が得られればいずれの位置にスリット板8を配設してもよい。   In the above description, the case where the slit plate 8 is disposed at a position conjugated with the imaging point of the objective lens 6 has been described. However, the present invention is not limited to this, and the slit plate 8 is placed on the object to be measured 5. The slit plate 8 may be disposed at any position as long as the thin line-shaped projection light 15 is obtained by the light passing through the slit 10.

本発明による微小高さ測定装置の実施形態を示す概念図である。It is a conceptual diagram which shows embodiment of the micro height measuring apparatus by this invention. 上記微小高さ測定装置に使用されるスリット板の一構成例を示す平面図である。It is a top view which shows one structural example of the slit plate used for the said micro height measuring apparatus. 上記微小高さ測定装置の制御手段の一構成例を示すブロック図である。It is a block diagram which shows one structural example of the control means of the said micro height measurement apparatus. 上記微小高さ測定装置を使用して行なう微小高さ測定方法を説明するフローチャートである。It is a flowchart explaining the minute height measuring method performed using the said minute height measuring apparatus. 微小高さ測定について示す説明図であり、(a)は突起に対して投影光が投影された状態を示し、(b)は投影光に沿って分割設定された複数の測定領域を示している。It is explanatory drawing shown about minute height measurement, (a) shows the state by which the projection light was projected with respect to protrusion, (b) has shown the several measurement area | region divided and set along the projection light. . 上記測定領域内のコントラストの測定について示す説明図である。It is explanatory drawing shown about the measurement of the contrast in the said measurement area | region.

符号の説明Explanation of symbols

1…顕微鏡
2…変位手段
3…撮像手段
4…制御手段
5…被測定物
6…対物レンズ
8…スリット板
10…スリット
15…投影光
18〜18…測定領域
23…画素
1 ... microscope 2 ... displacement means 3 ... imaging unit 4 ... control unit 5 ... DUT 6 ... objective lens 8 ... slit plate 10 ... slit 15 ... projected light 18 1 ~ 18 n ... measured region 23 ... pixel

Claims (4)

対物レンズにより被測定物上の所定の測定位置に細線状の投影光を投影するステップと、
前記対物レンズ又は被測定物の高さを前記対物レンズの光軸方向に変化させながら、前記対物レンズを介して前記被測定物上の投影光の複数枚の画像を撮像するステップと、
前記撮像された投影光の各画像にて、前記投影光の長さ方向に交差する方向に分割設定された複数の測定領域毎に、該各測定領域内に予め指定された複数の測定点の前記投影光の長さ方向に交差する方向の輝度勾配の大きさをそれぞれ算出し、それらを測定領域内で総和してコントラストを測定するステップと、
前記測定領域毎に最大のコントラストを示した前記対物レンズ又は被測定物の高さの変化量を抽出し、該高さの変化量に基づいて前記被測定物上の投影光に沿った高さ分布を求めるステップと、
を行うことを特徴とする微小高さ測定方法。
Projecting thin line-shaped projection light onto a predetermined measurement position on the object to be measured by the objective lens;
Capturing a plurality of images of the projection light on the object to be measured through the objective lens while changing the height of the object lens or the object to be measured in the optical axis direction of the objective lens;
For each of a plurality of measurement areas divided and set in a direction crossing the length direction of the projection light in each image of the captured projection light , a plurality of measurement points designated in advance in each measurement area Calculating the magnitude of the luminance gradient in the direction intersecting the length direction of the projection light, and summing them in the measurement region to measure the contrast;
The amount of change in the height of the objective lens or the object to be measured showing the maximum contrast for each measurement region is extracted, and the height along the projection light on the object to be measured based on the amount of change in the height Obtaining a distribution;
A method for measuring a minute height, characterized in that
前記被測定物上の投影光は、スリットを通過した光であることを特徴とする請求項1記載の微小高さ測定方法。   2. The minute height measuring method according to claim 1, wherein the projection light on the object to be measured is light that has passed through a slit. 対物レンズにより被測定物上の所定の測定位置に細線状の投影光を投影可能な顕微鏡と、
前記顕微鏡又は被測定物の高さを前記対物レンズの光軸方向に変化させる変位手段と、
前記対物レンズの結像点と光学的に共役の関係に配設され、前記対物レンズを介して前記被測定物上の投影光の複数枚の画像を撮像する撮像手段と、
前記変位手段の駆動を制御すると共に、前記撮像手段により撮像された投影光の各画像にて、前記投影光の長さ方向に交差する方向に分割設定された複数の測定領域毎に、該各測定領域内に予め指定された複数の測定点の前記投影光の長さ方向に交差する方向の輝度勾配の大きさをそれぞれ算出し、それを測定領域内で総和してコントラストを測定し、前記測定領域毎に最大のコントラストを示した前記顕微鏡又は被測定物の高さの変化量を抽出し、該高さの変化量に基づいて前記被測定物上の投影光に沿った高さ分布を求める制御手段と、
を備えたことを特徴とする微小高さ測定装置。
A microscope capable of projecting thin line-shaped projection light onto a predetermined measurement position on the object to be measured by an objective lens;
Displacement means for changing the height of the microscope or the object to be measured in the optical axis direction of the objective lens,
An imaging means that is disposed in an optically conjugate relationship with the imaging point of the objective lens and that captures a plurality of images of projection light on the object to be measured via the objective lens;
Controlling the driving of the displacement means, and for each of a plurality of measurement areas divided and set in the direction intersecting the length direction of the projection light in each image of the projection light imaged by the imaging means , Calculate the magnitude of the luminance gradient in the direction intersecting the length direction of the projection light at a plurality of measurement points specified in advance in the measurement area, and sum the measurements in the measurement area to measure the contrast, The amount of change in the height of the microscope or the object to be measured showing the maximum contrast for each measurement region is extracted, and the height distribution along the projection light on the object to be measured is calculated based on the amount of change in the height. The required control means,
A minute height measuring device characterized by comprising:
前記被測定物上の投影光は、スリットを通過した光であることを特徴とする請求項3記載の微小高さ測定装置。 4. The minute height measuring apparatus according to claim 3, wherein the projection light on the object to be measured is light that has passed through a slit.
JP2006252136A 2006-09-19 2006-09-19 Minute height measuring method and minute height measuring apparatus Expired - Fee Related JP4829055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006252136A JP4829055B2 (en) 2006-09-19 2006-09-19 Minute height measuring method and minute height measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006252136A JP4829055B2 (en) 2006-09-19 2006-09-19 Minute height measuring method and minute height measuring apparatus

Publications (2)

Publication Number Publication Date
JP2008076059A JP2008076059A (en) 2008-04-03
JP4829055B2 true JP4829055B2 (en) 2011-11-30

Family

ID=39348310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006252136A Expired - Fee Related JP4829055B2 (en) 2006-09-19 2006-09-19 Minute height measuring method and minute height measuring apparatus

Country Status (1)

Country Link
JP (1) JP4829055B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5248551B2 (en) * 2010-06-17 2013-07-31 株式会社東芝 Height detection device
JP2013002968A (en) * 2011-06-16 2013-01-07 Hitachi High-Tech Instruments Co Ltd Component height measuring method and apparatus therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2696044B2 (en) * 1992-07-14 1998-01-14 株式会社ミツトヨ Focus detection method, non-contact displacement measuring method and apparatus using the same
JP3438855B2 (en) * 1997-01-23 2003-08-18 横河電機株式会社 Confocal device
JP2001066112A (en) * 1999-06-25 2001-03-16 Mitsutoyo Corp Image measuring method and device
JP3904000B2 (en) * 2004-05-26 2007-04-11 コニカミノルタホールディングス株式会社 Moving object detection system and moving object detection method

Also Published As

Publication number Publication date
JP2008076059A (en) 2008-04-03

Similar Documents

Publication Publication Date Title
US10560634B2 (en) Image inspection apparatus and image inspection method
KR102609442B1 (en) Camera and method for three-dimensional measurement of dental objects
JP5941395B2 (en) Image acquisition device and focus method of image acquisition device
JP4077754B2 (en) 3D shape measuring device
JP2014190890A (en) Hardness testing machine and hardness testing method
JP5385703B2 (en) Inspection device, inspection method, and inspection program
JP2010276540A (en) Living tissue surface analyzer, living tissue surface analysis program, and living tissue surface analysis method
JP4829055B2 (en) Minute height measuring method and minute height measuring apparatus
JP2009109682A (en) Automatic focus adjusting device and automatic focus adjusting method
JP5572464B2 (en) Confocal microscope
JP5342178B2 (en) Shape measuring apparatus and shape measuring method
JP2014163892A (en) Laser measurement system
JP4137212B2 (en) Height measuring method and height measuring apparatus
JP2007286147A (en) Infrared microscope
JP2005214787A (en) Three-dimensional shape measuring apparatus
JP2013092409A (en) Shape measurement device
JP2021124429A (en) Scanning measurement method and scanning measurement device
JP2008076142A (en) Light intensity measuring apparatus and light intensity measuring method
JP2016080517A (en) Surface inspection device
JPH11304439A (en) Contactless extensometer
JP2003295066A (en) Microscope apparatus
JP5269502B2 (en) Image processing method and microscope apparatus
JP2003149121A (en) Scanning probe microscope
JP4496149B2 (en) Dimensional measuring device
JP2009186216A (en) Three-dimensional shape measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4829055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees