JP2014163892A - Laser measurement system - Google Patents

Laser measurement system Download PDF

Info

Publication number
JP2014163892A
JP2014163892A JP2013037341A JP2013037341A JP2014163892A JP 2014163892 A JP2014163892 A JP 2014163892A JP 2013037341 A JP2013037341 A JP 2013037341A JP 2013037341 A JP2013037341 A JP 2013037341A JP 2014163892 A JP2014163892 A JP 2014163892A
Authority
JP
Japan
Prior art keywords
measurement
laser
measured
distance
control means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013037341A
Other languages
Japanese (ja)
Inventor
Kimiya Aoki
公也 青木
Yamato Koshimizu
大和 輿水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Umemura Educational Institutions
Original Assignee
Umemura Educational Institutions
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Umemura Educational Institutions filed Critical Umemura Educational Institutions
Priority to JP2013037341A priority Critical patent/JP2014163892A/en
Publication of JP2014163892A publication Critical patent/JP2014163892A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a laser measurement system capable of measuring the posture (inclination direction, inclination angle) of an object to be measured with simpler configurations, in a smaller size, and at lower costs.SOLUTION: The laser measurement system includes: a laser measurement device 10 having laser measurement means capable of measuring a distance to a measurement point and displacement means capable of changing the direction and angle or position of the laser measurement means; an imaging device 20 for outputting the image data of a two-dimensional image obtained by imaging a surface WM to be measured; and control means 40. At least three measurement points are set such that a polygon is formed on the surface to be measured. The control means executes, to each of measurement points WP1 to WP3, processing of measuring an actual measured distance as a distance from the laser measurement means 12 to each measurement point by controlling the displacement means 11 such that each measurement point is irradiated with a laser beam, and calculates the inclination direction and inclination angle of the surface WM to be measured to a preliminarily set virtual reference surface on the basis of each measurement point and actual measured distance.

Description

本発明は、計測対象物の被計測面までの距離を計測可能なレーザ計測装置と、撮像装置と、を備えて被計測面の傾斜状態を計測することが可能なレーザ計測システムに関する。   The present invention relates to a laser measurement system that includes a laser measurement device capable of measuring a distance of a measurement object to a measurement surface and an imaging device, and is capable of measuring the tilt state of the measurement surface.

近年、高価なレーザセンサ等を用いて、計測対象物の全体の形状を非常に高速に走査して、計測対象物を短時間で三次元計測できる計測システムが実用化されているが、当該計測システムは、非常に複雑な構造を有してかつ大型であり、数百万円もするような非常に高価なシステムである。
例えば特許文献1に記載された従来技術には、微細構造を有するLSIパッケージの各部を高精度に計測できるように、CCDカメラとレーザプローブ(レーザ計測装置)を併設した撮像ユニットをXYZ方向に駆動して走査し、ワークの微小変位を高精度に計測可能な非接触三次元測定装置が開示されている。
In recent years, a measurement system has been put to practical use that can scan an entire shape of an object to be measured at high speed using an expensive laser sensor or the like, and can measure the object to be measured in three dimensions in a short time. The system is a very expensive system that has a very complex structure, is large, and costs several million yen.
For example, in the prior art described in Patent Document 1, an imaging unit provided with a CCD camera and a laser probe (laser measurement device) is driven in the XYZ directions so that each part of an LSI package having a fine structure can be measured with high accuracy. Thus, a non-contact three-dimensional measuring apparatus capable of scanning and measuring a minute displacement of a workpiece with high accuracy is disclosed.

特開平11−351858号公報Japanese Patent Laid-Open No. 11-351858

例えば製造ラインにおいて、対象物の姿勢検出や水平出し等が必要な場合、対象となる被計測面の傾斜角度や水平出しを行えばよく、対象物全体の三次元形状の計測までは必要とならない場合がある。
このような場合では、特許文献1に記載された三次元測定装置では、用途に対して必要以上の性能を備えた過剰な設備となり、スペース、コスト、性能が無駄となり、好ましくない。
本発明は、このような点に鑑みて創案されたものであり、計測対象物の姿勢(傾斜方向、傾斜角度)の計測を、より簡素な構成で、より小型でより低コストで実現することができるレーザ計測システムを提供することを課題とする。
For example, if it is necessary to detect the posture of the object or level the object in the production line, it is sufficient to perform the inclination angle and leveling of the target measurement surface, and it is not necessary to measure the three-dimensional shape of the entire object. There is a case.
In such a case, the three-dimensional measuring apparatus described in Patent Document 1 is not preferable because it becomes an excessive facility having performance more than necessary for the application, and space, cost, and performance are wasted.
The present invention was devised in view of such points, and realizes measurement of the posture (tilt direction, tilt angle) of a measurement object with a simpler configuration and at a smaller size and lower cost. It is an object of the present invention to provide a laser measurement system capable of performing the above.

上記課題を解決するため、本発明に係るレーザ計測システムは次の手段をとる。
まず、本発明の第1の発明は、計測対象物の被計測面に向かってレーザ光を照射して照射したレーザ光が前記被計測面に当たったレーザスポットまでの距離を計測可能なレーザ計測手段と、前記レーザ計測手段から前記被計測面に向かう方向と角度を変更可能な旋回手段あるいは前記被計測面に対する前記レーザ計測手段の位置を移動させることが可能な移動手段の少なくとも一方を有する変位手段と、を有するレーザ計測装置と、少なくとも前記計測対象物の前記被計測面を撮像した二次元画像の画像データを出力する撮像装置と、前記撮像装置からの画像データを取り込み、前記レーザ計測手段と前記変位手段とを制御する制御手段と、を備えたレーザ計測システムである。
前記計測対象物の概略形状及び前記被計測面の概略形状は、予め前記制御手段に認識されており、前記被計測面上には、多角形を形成するように少なくとも3つの計測点が設定され、前記計測点は、前記制御手段にて設定され、あるいは利用者からの入力によって設定されている。
そして、前記制御手段は、前記撮像装置からの画像データに基づいて前記計測対象物の前記被計測面を認識し、設定された前記計測点にレーザ光が照射されるように前記変位手段を制御して前記レーザ計測手段からレーザ光を照射して前記レーザ計測手段から前記計測点までの距離である実測距離を計測することを、それぞれの前記計測点に対して実行し、それぞれの前記計測点と前記実測距離に基づいて、予め設定した仮想基準面に対する前記被計測面の傾斜方向及び傾斜角度を求める。
In order to solve the above problems, the laser measurement system according to the present invention takes the following means.
First, the first invention of the present invention is a laser measurement capable of measuring a distance to a laser spot where a laser beam irradiated onto the surface to be measured hits the surface to be measured. Displacement having at least one of: means, swiveling means capable of changing a direction and angle from the laser measuring means toward the surface to be measured, or moving means capable of moving the position of the laser measuring means with respect to the surface to be measured A laser measuring device, an imaging device that outputs image data of a two-dimensional image obtained by imaging at least the surface to be measured of the measurement object, image data from the imaging device, and the laser measuring unit And a control means for controlling the displacement means.
The outline shape of the measurement object and the outline shape of the surface to be measured are recognized in advance by the control means, and at least three measurement points are set on the surface to be measured so as to form a polygon. The measurement points are set by the control means or set by input from the user.
Then, the control means recognizes the measurement surface of the measurement object based on image data from the imaging device, and controls the displacement means so that the set measurement point is irradiated with laser light. Then, irradiating a laser beam from the laser measuring unit to measure an actually measured distance that is a distance from the laser measuring unit to the measuring point is performed for each of the measuring points, and each of the measuring points is measured. And the inclination direction and the inclination angle of the surface to be measured with respect to a preset virtual reference surface.

この第1の発明によれば、被計測面上の少なくとも3点の計測点までの距離のそれぞれをレーザ計測装置にて計測するだけでよいので、比較的簡素なレーザ計測装置と変位装置と撮像装置でよい。従って、より簡素な構成で、より小型でより低コストで、対象物(被計測面)の姿勢(傾斜角度)の計測が可能なレーザ計測システムを実現できる。   According to the first aspect of the present invention, it is only necessary to measure each of the distances to at least three measurement points on the surface to be measured by the laser measurement device. It can be a device. Therefore, it is possible to realize a laser measurement system that can measure the posture (inclination angle) of an object (surface to be measured) with a simpler configuration, a smaller size, and a lower cost.

次に、本発明の第2の発明は、上記第1の発明に係るレーザ計測システムであって、表示手段を備え、前記計測点は、前記計測対象物の表面を走査するように前記計測対象物の表面に3つ以上が設定され、前記制御手段は、前記レーザ計測手段から各計測点までの前記実測距離を計測し、各計測点を、所定径の円または多角形で表現して前記表示手段に表示し、各計測点に対応する各円または各多角形の輝度または濃度を、前記実測距離または前記実測距離に基づいた距離が長くなるほど輝度を暗くまたは濃度を濃くして前記表示手段に表示する。   Next, a second invention of the present invention is the laser measurement system according to the first invention, comprising a display means, wherein the measurement point scans the surface of the measurement object. Three or more are set on the surface of the object, and the control means measures the measured distance from the laser measuring means to each measurement point, and expresses each measurement point as a circle or polygon with a predetermined diameter. The display means displays the brightness or density of each circle or each polygon corresponding to each measurement point by decreasing the brightness or increasing the density as the measured distance or the distance based on the measured distance becomes longer. To display.

この第2の発明によれば、比較的簡素な構成であるにもかかわらず、計測対象物を走査し、計測点の位置に対応させた円または多角形を、距離に応じて輝度または濃度を変更して表示することで、作業者が感覚的に計測対象物の形状を把握できることを支援することができる。   According to the second invention, despite the relatively simple configuration, the measurement object is scanned, and the circle or polygon corresponding to the position of the measurement point is changed in luminance or density according to the distance. By changing and displaying, it is possible to assist the operator to grasp the shape of the measurement object sensuously.

次に、本発明の第3の発明は、上記第1の発明または第2の発明に係るレーザ計測システムであって、前記制御手段は、前記撮像装置からの画像データに基づいて、設定した前記計測点の位置と、実際の前記被計測面上に照射されたレーザ光のレーザスポットの位置と、を一致させるように前記変位手段を制御する。   Next, a third invention of the present invention is the laser measurement system according to the first invention or the second invention, wherein the control means is set based on image data from the imaging device. The displacement means is controlled so that the position of the measurement point coincides with the position of the laser spot of the laser beam irradiated on the actual measurement target surface.

この第3の発明によれば、画像データに基づいて、実際の被計測面のレーザスポットの位置を確認しながらレーザスポットの位置を計測点へと移動させることで、レーザスポットを容易にかつ確実に計測点へと導くことができる。   According to the third aspect of the present invention, the laser spot can be easily and surely moved by moving the position of the laser spot to the measurement point while confirming the position of the actual laser spot on the surface to be measured based on the image data. To the measuring point.

本発明のレーザ計測システムの全体構成の例を説明する斜視図である。It is a perspective view explaining the example of the whole structure of the laser measurement system of this invention. 変位装置の例を説明する図である。It is a figure explaining the example of a displacement apparatus. 制御手段の処理手順の例を説明するフローチャートである。It is a flowchart explaining the example of the process sequence of a control means. (A)は計測対象物の表面を走査した状態の画像データの例を示しており、(B)は走査した各計測点を円(または多角形)で表現し、距離に応じて各円(または各多角形)の濃淡を変更した画像データの例を示す図である。(A) shows an example of image data in a state where the surface of the measurement object is scanned, and (B) represents each scanned measurement point with a circle (or polygon), and each circle (or polygon) according to the distance ( Or it is a figure which shows the example of the image data which changed the shading of each polygon).

以下に本発明を実施するための形態を図面を用いて説明する。なおX軸、Y軸、Z軸が記載されている図において、X軸とY軸とZ軸は互いに直交しており、Z軸は鉛直上方を示しており、X軸とY軸は水平方向を示している。
●[レーザ計測システム1の全体構成(図1)]
図1に示すように、レーザ計測システム1は、レーザ計測装置10、撮像装置20、制御手段40にて構成されており、レーザ計測装置10、撮像装置20は、テーブル2に載置されている。
EMBODIMENT OF THE INVENTION Below, the form for implementing this invention is demonstrated using drawing. In the figure showing the X axis, Y axis, and Z axis, the X axis, Y axis, and Z axis are orthogonal to each other, the Z axis indicates vertically upward, and the X axis and Y axis are in the horizontal direction. Is shown.
● [Overall configuration of laser measurement system 1 (Fig. 1)]
As shown in FIG. 1, the laser measurement system 1 includes a laser measurement device 10, an imaging device 20, and a control unit 40, and the laser measurement device 10 and the imaging device 20 are placed on the table 2. .

レーザ計測装置10は、テーブル2に固定された支持部材13と、支持部材13に保持された変位手段11と、変位手段11に取り付けられたレーザ計測手段12にて構成されている。
レーザ計測手段12は、レーザ光を計測点に向けて照射し、レーザ計測手段12から計測点までの距離を計測可能である。
変位手段11は、図2(A)の例に示すようにレーザ計測手段12の方向と角度を変更可能な旋回手段11A、あるいは図2(B)の例に示すように、レーザ計測手段12の位置を移動させることが可能な移動手段11B、の少なくとも一方である。
なお、図2(A)に示す旋回手段11Aは、下方に向けたレーザ計測手段12の向きを任意の方向に変更可能であり、図2(B)に示す移動手段11Bは、例えばXYステージであり、下方に向けたレーザ計測手段12におけるXY平面内の位置を任意の位置に移動可能である。また図2(A)及び(B)では、制御手段40の記載を省略している。
図1、図2(A)及び(B)は、計測対象物Wの被計測面WM上の計測点WP1〜WP3のそれぞれに向けて、レーザ計測手段12からレーザ光を照射した例を示している。
The laser measurement device 10 includes a support member 13 fixed to the table 2, a displacement means 11 held on the support member 13, and a laser measurement means 12 attached to the displacement means 11.
The laser measurement unit 12 can irradiate the laser beam toward the measurement point, and can measure the distance from the laser measurement unit 12 to the measurement point.
As shown in the example of FIG. 2 (A), the displacing means 11 is a turning means 11A capable of changing the direction and angle of the laser measuring means 12, or the laser measuring means 12 as shown in the example of FIG. 2 (B). It is at least one of moving means 11B capable of moving the position.
Note that the turning means 11A shown in FIG. 2A can change the direction of the laser measuring means 12 facing downward to an arbitrary direction, and the moving means 11B shown in FIG. 2B is an XY stage, for example. Yes, the position in the XY plane of the laser measurement means 12 directed downward can be moved to an arbitrary position. 2A and 2B, the description of the control means 40 is omitted.
FIGS. 1, 2A and 2B show an example in which laser light is irradiated from the laser measurement means 12 toward each of the measurement points WP1 to WP3 on the measurement target surface WM of the measurement object W. FIG. Yes.

撮像装置20は、テーブル2に固定された支持部材23と、支持部材23に保持された撮像手段22(CCDカメラ等)にて構成されている。
また撮像手段22の光軸22Zは、少なくとも計測対象物Wの被計測面WMが撮像される方向に向けられている。
なおテーブル2の色彩は、計測対象物Wとは異なる色彩であって画像データ中から背景として除去が容易な色彩であることが好ましい。
そして撮像装置20は、撮像エリア内の被計測面WMを撮像し、撮像にて得られた画像データ(この場合、二次元画像データ)を制御手段40に出力する。
The imaging device 20 includes a support member 23 fixed to the table 2 and an imaging means 22 (CCD camera or the like) held on the support member 23.
Further, the optical axis 22Z of the imaging means 22 is directed at least in the direction in which the measurement target surface WM of the measurement object W is imaged.
The color of the table 2 is preferably a color that is different from the measurement target W and can be easily removed as background from the image data.
Then, the imaging device 20 images the measurement target surface WM in the imaging area and outputs image data (in this case, two-dimensional image data) obtained by the imaging to the control unit 40.

制御手段40は、例えばパーソナルコンピュータであり、撮像装置20からの画像データを取り込み、変位手段11及びレーザ計測手段12を制御可能である。
撮像装置20は、制御手段40からの画像要求信号を受信した場合に画像データを出力するようにしてもよいし、制御手段40からの画像要求信号を受信することなく所定時間間隔で次々と画像データを出力してもよい。本実施の形態では、制御手段40からの画像要求信号を受信した場合に画像データを出力する例にて説明する。
制御手段40は、変位手段11に駆動信号を出力してレーザ計測手段12の方向及び角度、または位置を変位させ、レーザ計測手段12に計測開始信号を出力し、レーザ計測手段12からの検出信号を取り込み、レーザ計測手段12から計測点までの距離を求めることができる。
The control means 40 is a personal computer, for example, and can take in image data from the imaging device 20 and control the displacement means 11 and the laser measurement means 12.
The image capturing apparatus 20 may output image data when receiving an image request signal from the control unit 40, or may sequentially output images at predetermined time intervals without receiving an image request signal from the control unit 40. Data may be output. In the present embodiment, an example in which image data is output when an image request signal from the control means 40 is received will be described.
The control unit 40 outputs a drive signal to the displacement unit 11 to displace the direction, angle, or position of the laser measurement unit 12, outputs a measurement start signal to the laser measurement unit 12, and a detection signal from the laser measurement unit 12. And the distance from the laser measurement means 12 to the measurement point can be obtained.

本実施の形態の例では、計測対象物Wはテーブル2上に載置されている。そして計測対象物Wの被計測面WMは、テーブル2に対して傾斜している。なお図1において二点鎖線にて示す傾斜方向VTは、被計測面WMに直交する直線であり、被計測面WMの傾斜方向と傾斜角度を示している。
なお、レーザ計測システム1は、予め設定した仮想基準面に対する被計測面の傾斜方向及び傾斜角度を求めるが、本実施の形態の説明では、テーブル2の表面を仮想基準面に設定した例で説明する。
このように、本実施の形態のレーザ計測システム1は、計測点までの距離を測定する機能を有する程度の比較的安価なレーザ計測手段12と、二次元画像データを得られる程度の比較的安価な撮像手段22と、パーソナルコンピュータ等の制御手段40と、一般的な変位手段11と、にて非常に簡素な構成で実現されている。しかし、計測対象物Wの被計測面WMの傾斜方向及び傾斜角度を求める程度の用途には充分な精度を有しており、特許文献1に記載されたシステムと比較して非常に小型で安価なシステムである。
In the example of the present embodiment, the measurement object W is placed on the table 2. The measurement target surface WM of the measurement object W is inclined with respect to the table 2. Note that an inclination direction VT indicated by a two-dot chain line in FIG. 1 is a straight line orthogonal to the measurement target surface WM, and indicates an inclination direction and an inclination angle of the measurement target surface WM.
The laser measurement system 1 obtains the inclination direction and the inclination angle of the measurement target surface with respect to a preset virtual reference plane. In the description of the present embodiment, an example in which the surface of the table 2 is set as a virtual reference plane will be described. To do.
As described above, the laser measurement system 1 according to the present embodiment includes a relatively inexpensive laser measurement unit 12 having a function of measuring a distance to a measurement point, and a relatively low price capable of obtaining two-dimensional image data. The image pickup means 22, the control means 40 such as a personal computer, and the general displacement means 11 are realized with a very simple configuration. However, it has sufficient accuracy for use in obtaining the inclination direction and inclination angle of the measurement target surface WM of the measurement object W, and is extremely small and inexpensive compared to the system described in Patent Document 1. System.

●[制御手段40の処理手順(図3)]
次に図3に示すフローチャートを用いて制御手段40の処理手順を説明する。
ステップS10にて、制御手段40は、撮像手段22に画像要求信号を出力し、撮像手段22から画像データを取り込み、画像データ中に撮像されている計測対象物W及び被計測面WMを認識し、ステップS20に進む。なお制御手段40は、計測対象物Wの概略形状及び被計測面WMの概略形状を、予め記憶手段に記憶しており、画像データ中の計測対象物W及び被計測面WMを認識することができる。
[Processing procedure of control means 40 (FIG. 3)]
Next, the processing procedure of the control means 40 will be described using the flowchart shown in FIG.
In step S10, the control unit 40 outputs an image request signal to the imaging unit 22, takes in the image data from the imaging unit 22, and recognizes the measurement target W and the measurement target surface WM captured in the image data. The process proceeds to step S20. Note that the control means 40 stores the approximate shape of the measurement object W and the approximate shape of the measurement surface WM in advance in the storage means, and can recognize the measurement object W and the measurement surface WM in the image data. it can.

ステップS20にて、制御手段40は、認識した被計測面WM上に、多角形を形成するように少なくとも3つの計測点を設定し、ステップS30に進む。図1は、被計測面WM上に三角形を形成するように3点の計測点WP1〜WP3を設定した例を示している。計測点は3点を設定することが好ましく、被計測面WMが平面状でない場合であっても、この被計測面上の3点を含む平面の傾斜方向及び傾斜角度を求めることができる。なお本実施の形態の説明では被計測面WMが平面状の場合であって計測点が3点の場合の例を説明する。
予め被計測面上における計測点の位置を記憶手段に記憶させておけば、上記のように被計測面WMを認識した制御手段40から自動的に実際の被計測面上に計測点を設定することができる。
なお計測点の設定は、作業者からの入力によって行ってもよい。作業者が、制御手段40の表示手段に表示された被計測面WMの画像を見ながら、マウス等の入力手段を用いて、所望する被計測面上の位置をクリックすることで、計測点を設定できるようにしてもよい。
In step S20, the control means 40 sets at least three measurement points on the recognized measurement target surface WM so as to form a polygon, and proceeds to step S30. FIG. 1 shows an example in which three measurement points WP1 to WP3 are set so as to form a triangle on the measurement target surface WM. It is preferable to set three measurement points, and even when the measurement target surface WM is not flat, the inclination direction and the inclination angle of the plane including the three points on the measurement target surface can be obtained. In the description of the present embodiment, an example in which the measurement target surface WM is planar and there are three measurement points will be described.
If the position of the measurement point on the surface to be measured is stored in the storage unit in advance, the measurement point is automatically set on the actual surface to be measured from the control unit 40 that has recognized the surface to be measured WM as described above. be able to.
The measurement point may be set by input from an operator. The operator clicks a desired position on the surface to be measured by using an input unit such as a mouse while viewing the image of the surface to be measured WM displayed on the display unit of the control unit 40, and thereby sets the measurement point. It may be settable.

ステップS30では、制御手段40は、変位手段11及びレーザ計測手段12を制御して、レーザ計測手段12から各計測点までの距離である各実測距離を求め、ステップS40に進む。
制御手段40は、レーザ計測手段12からのレーザ光が計測点WP1に照射されるように変位手段11に駆動信号を出力してレーザ計測手段12の向きあるいは位置を変更した後、レーザ計測手段12に計測開始信号を出力して撮像手段22に画像要求信号を出力する。そして制御手段40は、レーザ計測手段12から検出信号を取り込み、撮像手段22から画像データを取り込み、画像データに撮像されているレーザスポットの位置が、設定した計測点WP1と一致しているか否かを判定する。
レーザスポットの位置が計測点WP1と一致していない場合は、レーザスポットの位置と計測点WP1の位置との差を求め、レーザスポットの位置と計測点WP1の位置とが一致するように再度変位手段11に駆動信号を出力し、再度、レーザ計測手段12から検出信号を取り込み、撮像手段22から画像データを取り込む。
レーザスポットの位置が計測点WP1と一致している場合は、そのときのレーザ計測手段12から検出信号に基づいて、計測点WP1に対する実測距離L1(レーザ計測手段からレーザスポットまでの距離)を求めて記憶する。
この作業を計測点WP2、WP3のそれぞれについても実行し、計測点WP2に対する実測距離L2、計測点WP3に対する実測距離L3のそれぞれを求めて記憶する。
In step S30, the control unit 40 controls the displacement unit 11 and the laser measurement unit 12 to obtain each actually measured distance that is a distance from the laser measurement unit 12 to each measurement point, and proceeds to step S40.
The control means 40 outputs a drive signal to the displacement means 11 so that the laser beam from the laser measurement means 12 is irradiated to the measurement point WP1, changes the orientation or position of the laser measurement means 12, and then the laser measurement means 12 A measurement start signal is output to the image pickup means 22 and an image request signal is output to the imaging means 22. Then, the control means 40 takes in the detection signal from the laser measurement means 12, takes in the image data from the imaging means 22, and determines whether or not the position of the laser spot imaged in the image data matches the set measurement point WP1. Determine.
If the position of the laser spot does not coincide with the measurement point WP1, the difference between the position of the laser spot and the position of the measurement point WP1 is obtained, and the position is again displaced so that the position of the laser spot coincides with the position of the measurement point WP1. A drive signal is output to the means 11, a detection signal is taken in again from the laser measuring means 12, and image data is taken in from the imaging means 22.
When the position of the laser spot coincides with the measurement point WP1, an actual measurement distance L1 (distance from the laser measurement means to the laser spot) with respect to the measurement point WP1 is obtained based on the detection signal from the laser measurement means 12 at that time. And remember.
This operation is also performed for each of the measurement points WP2 and WP3, and the actual measurement distance L2 for the measurement point WP2 and the actual measurement distance L3 for the measurement point WP3 are obtained and stored.

ステップS40では、求めたそれぞれの実測距離に基づいて、仮想基準面(この場合、テーブル2の表面)に対する被計測面WMの傾斜方向及び傾斜角度(仮想基準面に対する傾斜方向VTの傾斜方向及び傾斜角度)を求め、処理を終了する。
以上の説明では、計測対象物Wの形状までは求めずに、計測対象物Wの一部の面である被計測面WMの傾斜方向及び傾斜角度を求めたが、以下に説明するように、計測対象物の表面を走査するように多数の計測点を設定すれば、計測対象物の形状を把握することもできる。
In step S40, based on the obtained actual measured distances, the inclination direction and inclination angle of the measurement target surface WM with respect to the virtual reference plane (in this case, the surface of the table 2) (inclination direction and inclination of the inclination direction VT with respect to the virtual reference plane). The angle is determined, and the process is terminated.
In the above description, the inclination direction and the inclination angle of the measurement target surface WM, which is a part of the surface of the measurement object W, are obtained without obtaining the shape of the measurement object W, but as described below, If a large number of measurement points are set so as to scan the surface of the measurement object, the shape of the measurement object can be grasped.

●[計測対象物の表面を走査して計測対象物の形状を把握する例(図4)]
例えば制御手段40は、変位手段11を制御してレーザ計測手段12からのレーザ光が当たったレーザスポットの位置を所定方向(X軸方向やY軸方向等)に所定微小量だけ移動させてレーザ計測を行うことを繰り返し、計測対象物の表面を走査する。この場合、制御手段40は、計測対象物の表面を走査するように3つ以上の多数の計測点を設定する(作業者が3つ以上の計測点を入力してもよい)。
そして制御手段40は、各計測点WPnに対する各実測距離Lnを求める。
なお図4(A)に示す画像データの例は、2つの直方体を部分的に重ねた計測対象物の画像に、各計測点のレーザスポットを重ねて表示した例を示しており、走査の様子を示している。
このように、計測対象物の表面の計測点を増やしていけば、被計測面の傾斜方向及び傾斜角度だけでなく、被計測面とは別の面を含めて計測対象物の形状を把握することもできる。
● [Example of grasping the shape of the measurement object by scanning the surface of the measurement object (Fig. 4)]
For example, the control means 40 controls the displacement means 11 to move the position of the laser spot hit by the laser light from the laser measurement means 12 in a predetermined direction (X-axis direction, Y-axis direction, etc.) by a predetermined minute amount, and thereby the laser. The measurement is repeated and the surface of the measurement object is scanned. In this case, the control means 40 sets three or more measurement points so as to scan the surface of the measurement object (the operator may input three or more measurement points).
And the control means 40 calculates | requires each measurement distance Ln with respect to each measurement point WPn.
The example of the image data shown in FIG. 4 (A) shows an example in which the laser spot of each measurement point is displayed on the image of the measurement object in which two rectangular parallelepipeds are partially overlapped. Is shown.
In this way, if the number of measurement points on the surface of the measurement object is increased, not only the inclination direction and inclination angle of the surface to be measured, but also the shape of the object to be measured including a surface other than the surface to be measured is grasped. You can also

なお図4(B)の画像の例は、図4(A)に示す画像データから計測点のみを抽出し、各計測点を、所定径の円(または多角形)で表現した例を示している。
さらに、各円(または各多角形)の輝度(または濃度)を、各計測点に対応する実測距離、または実測距離に基づいた距離が長くなるほど暗く(または濃く)表現している。
なお実測距離は、レーザ計測手段12から計測点までの距離であるが、実測距離に基づいた距離は、例えば光軸22Z上における撮像手段22の先端部から各計測点までの距離となるように実測距離から換算した距離等である。
そして作業者は、制御手段の表示手段に表示されて所定径の円(または多角形)の明暗(または濃淡)にて表現された計測対象物の表面を見ることで、計測対象物の形状を感覚的に把握することができる。
4B shows an example in which only measurement points are extracted from the image data shown in FIG. 4A and each measurement point is expressed by a circle (or polygon) having a predetermined diameter. Yes.
Further, the luminance (or density) of each circle (or each polygon) is expressed darker (or darker) as the measured distance corresponding to each measurement point or the distance based on the measured distance becomes longer.
The actually measured distance is the distance from the laser measuring means 12 to the measurement point, but the distance based on the actually measured distance is, for example, the distance from the tip of the imaging means 22 on the optical axis 22Z to each measurement point. This is the distance converted from the measured distance.
Then, the operator can change the shape of the measurement object by looking at the surface of the measurement object displayed on the display means of the control means and expressed in the light (darkness) of a circle (or polygon) of a predetermined diameter. Can be grasped sensuously.

以上、本実施の形態にて説明したレーザ計測システム1は、計測対象物の姿勢(傾斜方向、傾斜角度)の計測を、より簡素な構成で、より小型でより低コストで実現することができる。例えば計測対象物の姿勢(傾斜方向、傾斜角度)がわかると、後工程で正確な作業を行うことができる。
また計測対象物の表面を走査するように計測点を増やせば、計測対象物の形状を計測することもできる。
そして、走査した計測点を円(または多角形)で表現し、実測距離(または実測距離に基づいた距離)に応じて、円(または多角形)の輝度(または濃度)を変更して表示することで、計測対象物の形状の把握を容易に行うことができる画像を表示することができる。
As described above, the laser measurement system 1 described in the present embodiment can realize the measurement of the posture (tilt direction, tilt angle) of the measurement object with a simpler configuration and at a smaller size and lower cost. . For example, when the posture (inclination direction, inclination angle) of the measurement object is known, an accurate operation can be performed in a later process.
In addition, if the number of measurement points is increased so as to scan the surface of the measurement object, the shape of the measurement object can be measured.
Then, the scanned measurement points are represented by a circle (or polygon), and the luminance (or density) of the circle (or polygon) is changed and displayed according to the measured distance (or distance based on the measured distance). Thus, it is possible to display an image that allows the shape of the measurement object to be easily grasped.

本発明のレーザ計測システム1は、本実施の形態で説明した構成、構造、形状、処理手順等に限定されず、本発明の要旨を変更しない範囲で種々の変更、追加、削除が可能である。
また本実施の形態の説明では、変位手段11として、図2(A)にて旋回手段11Aの例を、図2(B)にて移動手段11Bの例を示したが、旋回手段11Aと移動手段11Bの双方を有していてもよい。すなわち変位手段11は、旋回手段11Aと移動手段11Bの少なくとも一方を有していればよい。
また本実施の形態の説明では、テーブル2の表面を仮想基準面としたが、仮想基準面は、任意の面を仮想的に設定することが可能であり、当該仮想基準面に対する傾斜方向、傾斜角度を求めることができる。
The laser measurement system 1 of the present invention is not limited to the configuration, structure, shape, processing procedure, and the like described in the present embodiment, and various modifications, additions, and deletions can be made without changing the gist of the present invention. .
In the description of the present embodiment, as the displacement means 11, the example of the turning means 11A is shown in FIG. 2 (A) and the example of the moving means 11B is shown in FIG. 2 (B). You may have both means 11B. That is, the displacement means 11 only needs to have at least one of the turning means 11A and the moving means 11B.
In the description of the present embodiment, the surface of the table 2 is a virtual reference plane. However, the virtual reference plane can be set virtually on any plane, and the tilt direction and tilt with respect to the virtual reference plane can be set. The angle can be determined.

1 レーザ計測システム
2 テーブル
10 レーザ計測装置
11、11A、11B 変位手段
12 レーザ計測手段
20 撮像装置
22 撮像手段
22Z 光軸
40 制御手段
W 計測対象物
WM 被計測面
WP1〜WP3 計測点

DESCRIPTION OF SYMBOLS 1 Laser measuring system 2 Table 10 Laser measuring apparatus 11, 11A, 11B Displacement means 12 Laser measuring means 20 Imaging apparatus 22 Imaging means 22Z Optical axis 40 Control means W Measurement object WM Measurement surface WP1-WP3 Measurement point

Claims (3)

計測対象物の被計測面に向かってレーザ光を照射して照射したレーザ光が前記被計測面に当たったレーザスポットまでの距離を計測可能なレーザ計測手段と、前記レーザ計測手段から前記被計測面に向かう方向と角度を変更可能な旋回手段あるいは前記被計測面に対する前記レーザ計測手段の位置を移動させることが可能な移動手段の少なくとも一方を有する変位手段と、を有するレーザ計測装置と、
少なくとも前記計測対象物の前記被計測面を撮像した二次元画像の画像データを出力する撮像装置と、
前記撮像装置からの画像データを取り込み、前記レーザ計測手段と前記変位手段とを制御する制御手段と、を備え、
前記計測対象物の概略形状及び前記被計測面の概略形状は、予め前記制御手段に認識されており、
前記被計測面上には、多角形を形成するように少なくとも3つの計測点が設定され、
前記計測点は、前記制御手段にて設定され、あるいは利用者からの入力によって設定され、
前記制御手段は、
前記撮像装置からの画像データに基づいて前記計測対象物の前記被計測面を認識し、
設定された前記計測点にレーザ光が照射されるように前記変位手段を制御して前記レーザ計測手段からレーザ光を照射して前記レーザ計測手段から前記計測点までの距離である実測距離を計測することを、それぞれの前記計測点に対して実行し、
それぞれの前記計測点と前記実測距離に基づいて、予め設定した仮想基準面に対する前記被計測面の傾斜方向及び傾斜角度を求める、
レーザ計測システム。
Laser measuring means capable of measuring the distance to the laser spot where the irradiated laser light hits the surface to be measured by irradiating the surface to be measured of the object to be measured, and from the laser measuring means to the object to be measured A laser measuring device having: at least one of swiveling means capable of changing the direction and angle toward the surface or moving means capable of moving the position of the laser measuring means relative to the surface to be measured;
An imaging device that outputs image data of a two-dimensional image obtained by imaging at least the measurement target surface of the measurement object;
Control means for capturing image data from the imaging device and controlling the laser measurement means and the displacement means;
The approximate shape of the measurement object and the approximate shape of the surface to be measured are recognized in advance by the control means,
On the surface to be measured, at least three measurement points are set so as to form a polygon,
The measurement point is set by the control means, or is set by input from a user,
The control means includes
Recognizing the measurement surface of the measurement object based on image data from the imaging device;
The displacement means is controlled so that the set measurement point is irradiated with laser light, and the laser measurement light is irradiated from the laser measurement means to measure the measured distance that is the distance from the laser measurement means to the measurement point. Is performed for each of the measurement points,
Based on each of the measurement points and the measured distance, the inclination direction and the inclination angle of the measurement target surface with respect to a preset virtual reference surface are obtained.
Laser measurement system.
請求項1に記載のレーザ計測システムであって、
表示手段を備え、
前記計測点は、前記計測対象物の表面を走査するように前記計測対象物の表面に3つ以上が設定され、
前記制御手段は、
前記レーザ計測手段から各計測点までの前記実測距離を計測し、
各計測点を、所定径の円または多角形で表現して前記表示手段に表示し、
各計測点に対応する各円または各多角形の輝度または濃度を、前記実測距離または前記実測距離に基づいた距離が長くなるほど輝度を暗くまたは濃度を濃くして前記表示手段に表示する、
レーザ計測システム。
The laser measurement system according to claim 1,
A display means,
Three or more measurement points are set on the surface of the measurement object so as to scan the surface of the measurement object,
The control means includes
Measure the measured distance from the laser measurement means to each measurement point,
Each measurement point is represented by a circle or polygon with a predetermined diameter and displayed on the display means.
The brightness or density of each circle or each polygon corresponding to each measurement point is displayed on the display means with the brightness becoming darker or darker as the distance based on the measured distance or the measured distance is longer.
Laser measurement system.
請求項1または2に記載のレーザ計測システムであって、
前記制御手段は、
前記撮像装置からの画像データに基づいて、設定した前記計測点の位置と、実際の前記被計測面上に照射されたレーザ光のレーザスポットの位置と、を一致させるように前記変位手段を制御する、
レーザ計測システム。

The laser measurement system according to claim 1 or 2,
The control means includes
Based on the image data from the imaging device, the displacement means is controlled so that the set position of the measurement point and the position of the laser spot of the laser beam irradiated on the actual surface to be measured coincide with each other. To
Laser measurement system.

JP2013037341A 2013-02-27 2013-02-27 Laser measurement system Pending JP2014163892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013037341A JP2014163892A (en) 2013-02-27 2013-02-27 Laser measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013037341A JP2014163892A (en) 2013-02-27 2013-02-27 Laser measurement system

Publications (1)

Publication Number Publication Date
JP2014163892A true JP2014163892A (en) 2014-09-08

Family

ID=51614611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013037341A Pending JP2014163892A (en) 2013-02-27 2013-02-27 Laser measurement system

Country Status (1)

Country Link
JP (1) JP2014163892A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105627954A (en) * 2015-12-21 2016-06-01 广州视源电子科技股份有限公司 Included angle measurement method and device and angle adjustment method and device
CN109990761A (en) * 2017-12-29 2019-07-09 富泰华工业(深圳)有限公司 Horizontal degree measurement system and levelness measuring method
WO2023218505A1 (en) * 2022-05-09 2023-11-16 三菱電機株式会社 Structure measurement device, data processing device, and structure measurement method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105627954A (en) * 2015-12-21 2016-06-01 广州视源电子科技股份有限公司 Included angle measurement method and device and angle adjustment method and device
CN105627954B (en) * 2015-12-21 2019-05-28 广州视源电子科技股份有限公司 Angle measurement method, device and angle adjusting method, device
CN109990761A (en) * 2017-12-29 2019-07-09 富泰华工业(深圳)有限公司 Horizontal degree measurement system and levelness measuring method
CN109990761B (en) * 2017-12-29 2022-04-01 富泰华工业(深圳)有限公司 Levelness measuring system and levelness measuring method
WO2023218505A1 (en) * 2022-05-09 2023-11-16 三菱電機株式会社 Structure measurement device, data processing device, and structure measurement method
JP7388601B1 (en) 2022-05-09 2023-11-29 三菱電機株式会社 Structure measurement device, data processing device, and structure measurement method

Similar Documents

Publication Publication Date Title
JP5547105B2 (en) Dimension measuring apparatus, dimension measuring method and program for dimension measuring apparatus
WO2012020696A1 (en) Device for processing point group position data, system for processing point group position data, method for processing point group position data and program for processing point group position data
JP2017110991A (en) Measurement system, measurement method, robot control method, robot, robot system, and picking device
JP2016061687A (en) Contour line measurement device and robot system
TWI623724B (en) Shape measuring device, structure manufacturing system, stage system, shape measuring method, structure manufacturing method, shape measuring program, and computer readable recording medium
JP2013527471A5 (en)
JP2013171425A (en) Image processing device
JP6417645B2 (en) Alignment method for surface profile measuring device
JP2013092456A (en) Image measuring device
JP6599697B2 (en) Image measuring apparatus and control program therefor
JP6095486B2 (en) Image measuring device
JP6355023B2 (en) Measuring object alignment method and surface shape measuring apparatus in surface shape measuring apparatus
JP2008014882A (en) Three-dimensional measuring device
JP2014163892A (en) Laser measurement system
JP2011237279A (en) Image measuring apparatus, program, and teaching method for image measuring apparatus
JP5222430B1 (en) Dimension measuring apparatus, dimension measuring method and program for dimension measuring apparatus
JP2009058459A (en) Profile measuring system
JP3991040B2 (en) Three-dimensional measuring apparatus and three-dimensional measuring method
JP6360620B2 (en) Charged particle beam apparatus, charged particle beam apparatus alignment method, alignment program, and storage medium
JP2010164377A (en) Surface profile measurement device and surface profile measuring method
JP2022031956A (en) Method for determining scan range
JP6653539B2 (en) Image measuring device, control program therefor, and measuring device
JP2018115988A (en) Front face shape measurement device measurement preparation alignment method, and front face shape measurement device
JP6202875B2 (en) Image measuring apparatus and control program therefor
JP6270264B2 (en) Information processing apparatus, information processing method, program, measurement apparatus, and measurement method