JP4828047B2 - Apparatus for purifying exhaust gas generated in a substrate manufacturing apparatus having a photo process - Google Patents

Apparatus for purifying exhaust gas generated in a substrate manufacturing apparatus having a photo process Download PDF

Info

Publication number
JP4828047B2
JP4828047B2 JP2001202756A JP2001202756A JP4828047B2 JP 4828047 B2 JP4828047 B2 JP 4828047B2 JP 2001202756 A JP2001202756 A JP 2001202756A JP 2001202756 A JP2001202756 A JP 2001202756A JP 4828047 B2 JP4828047 B2 JP 4828047B2
Authority
JP
Japan
Prior art keywords
exhaust gas
heat storage
storage layer
damper
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001202756A
Other languages
Japanese (ja)
Other versions
JP2003021316A (en
Inventor
雅彦 愛甲
和幸 林
秋夫 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Environmental Systems and Engineering Co Ltd
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Panasonic Environmental Systems and Engineering Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Panasonic Environmental Systems and Engineering Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001202756A priority Critical patent/JP4828047B2/en
Publication of JP2003021316A publication Critical patent/JP2003021316A/en
Application granted granted Critical
Publication of JP4828047B2 publication Critical patent/JP4828047B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Incineration Of Waste (AREA)
  • Treating Waste Gases (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、フォト工程を有する基板の製造装置で発生する排ガスの浄化装置に関する。
【0002】
【従来の技術】
従来から、排ガスを燃焼させることにより、無害なCO2とH2Oに分解する、燃焼式の排ガス浄化装置が知られている。また、燃焼式の排ガス浄化装置に蓄熱層を設けたものが知られている。例えば、第1の蓄熱層を通過させた排ガスを燃焼し、燃焼後の浄化ガスを第2の蓄熱層を通過させる。この時、浄化ガスからの熱が第2の蓄熱層へ蓄熱され、冷却された浄化ガスを排出し、高い熱交換効率を実現して燃焼用の燃料消費量を著しく低減可能な、蓄熱燃焼酸化式の排ガス浄化装置が知られている。この方式は、燃焼後の浄化ガスが持つ熱エネルギーを蓄熱層で吸収し、新たな排ガスを燃焼させるための熱エネルギーとして利用している。
従来のフォト工程を有する基板の製造装置(例えば、半導体あるいは液晶あるいはプラズマディスプレイあるいは有機EL樹脂の製造装置のフォト工程)で発生する排ガスの浄化装置の燃焼手段には、触媒式燃焼手段を用いている。また、当該製造装置の排ガスは、当該製造装置の排ガスの流出口の近傍で排気ブロア等を用いて吸い出されている。
【0003】
【発明が解決しようとする課題】
従来のフォト工程を有する基板の製造装置(例えば、半導体あるいは液晶あるいはプラズマディスプレイあるいは有機EL樹脂の製造装置のフォト工程)で発生する排ガスの浄化装置の燃焼手段に用いている触媒式燃焼手段は、排ガス中の特定成分(例えば、有機シリコン等)が触媒に膜状に堆積し易く、触媒の性能が短期間に低減する。性能が低減した触媒から特定成分を除去することは、非常に困難である。このため、触媒の再利用が困難であり、定期的に交換を要するため、ランニングコストが高く、メンテナンス性が悪い。
本発明は、このような点に鑑みて創案されたものであり、ランニングコストが低く、メンテナンス性がよいフォト工程を有する基板の製造装置で発生する排ガスの浄化装置を提供することを目的とする。
【0004】
【課題を解決するための手段】
上記課題を解決するための本発明の第1発明は、請求項1に記載されたとおりのフォト工程を有する基板の製造装置で発生する排ガスの浄化装置である。
請求項1に記載のフォト工程を有する基板の製造装置で発生する排ガスの浄化装置は、燃焼室と、第1蓄熱層と、第2蓄熱層と、第3蓄熱層と、を備え、それぞれの前記蓄熱層は、一方の端部と他方の端部を有しており、一方の端部から気体を流入させた場合は当該気体が他方の端部から流出し、他方の端部から気体を流入させた場合は当該気体が一方の端部から流出し、通過する気体から熱を吸収または通過する気体を昇温することが可能である。
また、それぞれの前記蓄熱層の一方の端部には、浄化前の排ガスの流入経路を開閉可能な排ガス流入ダンパを備えた排ガス流入口と、浄化後の排ガスの流出経路を開閉可能な浄化ガス流出ダンパを備えた浄化ガス流出口と、清掃用空気の流入経路を開閉可能な空気流入ダンパを備えた空気流入口と、が接続されており、それぞれの前記蓄熱層の他方の端部は、前記燃焼室に接続されている。
そして、前記第1蓄熱層における前記排ガス流入ダンパを開いて前記浄化ガス流出ダンパを閉じて前記空気流入ダンパを閉じ、且つ前記第2蓄熱層における前記排ガス流入ダンパを閉じて前記浄化ガス流出ダンパを開いて前記空気流入ダンパを閉じ、且つ前記第3蓄熱層における前記排ガス流入ダンパを閉じて前記浄化ガス流出ダンパを閉じて前記空気流入ダンパを開き、浄化前の排ガスを、前記排ガス流入口から前記第1蓄熱層を経由させて前記燃焼室に導いて浄化し、前記第3蓄熱層を空気で清掃して使用した空気を前記燃焼室に導いて浄化し、浄化した排ガスと空気を、前記第2蓄熱層を経由させて前記浄化ガス流出口から排出する第1排ガス浄化経路と、前記第2蓄熱層における前記排ガス流入ダンパを開いて前記浄化ガス流出ダンパを閉じて前記空気流入ダンパを閉じ、且つ前記第3蓄熱層における前記排ガス流入ダンパを閉じて前記浄化ガス流出ダンパを開いて前記空気流入ダンパを閉じ、且つ前記第1蓄熱層における前記排ガス流入ダンパを閉じて前記浄化ガス流出ダンパを閉じて前記空気流入ダンパを開き、浄化前の排ガスを、前記排ガス流入口から前記第2蓄熱層を経由させて前記燃焼室に導いて浄化し、前記第1蓄熱層を空気で清掃して使用した空気を前記燃焼室に導いて浄化し、浄化した排ガスと空気を、前記第3蓄熱層を経由させて前記浄化ガス流出口から排出する第2排ガス浄化経路と、前記第3蓄熱層における前記排ガス流入ダンパを開いて前記浄化ガス流出ダンパを閉じて前記空気流入ダンパを閉じ、且つ前記第1蓄熱層における前記排ガス流入ダンパを閉じて前記浄化ガス流出ダンパを開いて前記空気流入ダンパを閉じ、且つ前記第2蓄熱層における前記排ガス流入ダンパを閉じて前記浄化ガス流出ダンパを閉じて前記空気流入ダンパを開き、浄化前の排ガスを、前記排ガス流入口から前記第3蓄熱層を経由させて前記燃焼室に導いて浄化し、前記第2蓄熱層を空気で清掃して使用した空気を前記燃焼室に導いて浄化し、浄化した排ガスと空気を、前記第1蓄熱層を経由させて前記浄化ガス流出口から排出する第3排ガス浄化経路と、を順次切替えて排ガスを浄化する。
なお、排ガスを燃焼させて浄化する燃焼装置は前記燃焼室内かつ前記第1蓄熱層と前記第2蓄熱層と前記第3蓄熱層から離れた位置に設けられており、前記燃焼装置を切替えることなく前記第1排ガス浄化経路と前記第2排ガス浄化経路と前記第3排ガス浄化経路とを順次切替える。
また、本実施の形態に記載のフォト工程を有する基板の製造装置で発生する排ガスの浄化装置では、排ガスの流入口と、燃焼手段と、排ガスの流出口とを備え、燃焼手段として、蓄熱式燃焼手段を用いる。
本実施の形態に記載のフォト工程を有する基板の製造装置で発生する排ガスの浄化装置を用いれば、燃焼手段に反応流路が均一な所定内寸である直線状の多数の穴を有する蓄熱部材を備えた蓄熱式燃焼手段を用いることで、蓄熱部材に排ガスの特定成分が詰まりにくく、分解性能を損ねることがない。このため、ランニンコストが低く、メンテナンス性がよい。また、再利用が可能であるので、廃棄物として処理する必要も低減する。
【0005】
また、本実施の形態に記載のフォト工程を有する基板の製造装置で発生する排ガスの浄化装置では、排ガスの流入口の圧力を検出する圧力検出手段と、排ガスの流出口から浄化ガスを吸い出す排気手段と、制御手段とを備え、制御手段は、圧力検出手段で検出した圧力に基づいて、排気手段を制御する。
本実施の形態に記載のフォト工程を有する基板の製造装置で発生する排ガスの浄化装置を用いれば、当該製造装置の排ガス流出口に対する圧力変動を小さくしつつ、当該製造装置の排ガス流出口の圧力を安定化することができる。このため、フォト工程を有する基板の製造装置(例えば、半導体あるいは液晶あるいはプラズマディスプレイあるいは有機EL樹脂の製造装置のフォト工程)の製品品質をより安定化することができる(製品品質への影響をより小さくできる)。
【0006】
また、本実施の形態に記載のフォト工程を有する基板の製造装置で発生する排ガスの浄化装置では、燃焼手段の前段に、排ガス中の特定の成分の濃度を高める濃縮手段を備える。
本実施の形態に記載のフォト工程を有する基板の製造装置で発生する排ガスの浄化装置を用いれば、当該製造装置が発生する排ガスの量(体積)が増加した場合であっても、濃縮することで、排ガスの量(体積)を燃焼手段の処理能力(単位時間あたりの処理量(体積)等)内に収めることができる。このため、燃焼手段をより小型化することができる。また、濃縮して体積を小さくすることにより、燃焼用の燃料を低減させることができるので、燃焼の効率を向上させることができる。
【0007】
また、本実施の形態に記載のフォト工程を有する基板の製造装置で発生する排ガスの浄化装置では、濃縮手段中あるいは濃縮手段に流入される排ガスの温度を所定値に調節する温度調節手段を備える。
本実施の形態に記載のフォト工程を有する基板の製造装置で発生する排ガスの浄化装置を用いれば、濃縮手段中あるいは濃縮手段に流入される排ガスの温度を所定値(例えば、約200℃)に維持することで、排ガスの温度の低下に伴う液化を防止でき、濃縮手段での目詰まり、劣化等を抑制できる。
【0008】
【発明の実施の形態】
以下に本発明の実施の形態を図面を用いて説明する。
図1は、本発明のフォト工程を有する基板の製造装置(例えば、半導体あるいは液晶あるいはプラズマディスプレイあるいは有機EL樹脂の製造装置のフォト工程)で発生する排ガスの浄化装置の一実施の形態の概略構成図を示している。
製造装置10a、10b、10c(フォト工程を有する基板の製造装置)から発生した排ガスは、配管内を通過して圧力検出手段20(圧力センサ等)に到達する。
圧力検出手段20は、検出した圧力に基づいた検出信号を制御手段40に出力し、検出信号は制御手段40により圧力に変換される。制御手段40は、変換された圧力が所定の圧力を維持するように、排気手段80(排気用ブロアー等)を制御する。この場合、排気手段80と製造装置10a、10b、10cとの間には、各種の工程(濃縮、燃焼等)があるため、排気手段80の動作/停止等に伴う急激な圧力変動は、各種の工程で緩衝される。このため、製造装置10a、10b、10cへの急激な圧力変動が抑制され、製造装置10a、10b、10cからの排ガスの圧力を比較的緩やかに所定の圧力に近づけて安定化させることで、フォト工程を有する基板の製造装置(例えば、半導体あるいは液晶あるいはプラズマディスプレイあるいは有機EL樹脂の製造装置のフォト工程)の製品品質を安定化させることができ、製品品質への影響をより小さくできる。
【0009】
温度調節手段30(例えば、温度センサ及びヒータ等)は、検出した温度に基づいた検出信号を制御手段40に出力し、検出信号は制御手段40により温度に変換される。制御手段40は、変換された温度が所定の温度(例えば、200℃)を維持するように、温度調節手段30を制御する。これにより、排ガスを気相状態に維持することが可能になり、次工程の濃縮手段50の配管内部等で排ガスが液化することを抑制し、濃縮手段50が目詰まり、劣化する(べとつき等により、ダスト等が付着したり、濃縮手段を劣化させる成分が付着・堆積する)ことを抑制できる。
【0010】
濃縮手段50(例えば、ゼオライト、活性炭等を用いた濃縮装置)は、その内部を排ガスが通過する際、例えば、活性炭等でダスト等を除去し、ゼオライト等で排ガス中の特定の成分(例えば、MMP、PGMEA、ECA、EDM等の有機溶剤)を吸着し、特定の成分以外を外部に排出(除去)する。また、ゼオライト等に吸着した特定の成分は、再生用空気等で排ガスに再生され、この時、再生された排ガス内の特定の成分の比率を高めることかできる。このように、排ガスを濃縮して排ガスの量(体積)を小さくできる。このため、蓄熱式燃焼手段70の処理能力を超える排ガスの量(体積)が発生した場合であっても、処理能力内の排ガスの量(体積)に収めることができる。また、定常的に濃縮手段を使用すれば、処理能力が比較的低い蓄熱式燃焼手段70を用いることができるので、蓄熱式燃焼手段70を小型化することができる。また、濃縮して体積を小さくすることにより、燃焼用の燃料を低減させる(加熱不要な成分を予め除去しておく)ことができるので、燃焼の効率を向上させることができる。
【0011】
蓄熱式燃焼手段70には、既存のものを用いている。
蓄熱式燃焼手段70は、例えば、排ガスの流入口と、燃焼室と、排ガスの流出口と、第1の蓄熱層と、第2の蓄熱層と、排ガスの経路を切替える経路切替え手段101、102とを備えている。燃焼室には、燃焼装置76(ガスバーナー等)と温度検出手段74(温度センサ等)が設けられ、温度検出手段74は検出した燃焼温度に基づいた検出信号を制御手段40に出力し、制御手段40は検出信号を温度に変換する。そして、制御手段40は、所定の燃焼温度を維持するように、燃焼用燃料供給手段60(例えば、燃料タンクに接続された燃料ポンプ等)、燃焼装置76を制御する。
また、制御手段40は、経路切替え手段101、102を制御して、排気ガスの経路を切替え、複数設けられた蓄熱層を、各々、排ガス流入用/排ガス流出用/エアパージ用のいずれかに切替える。
【0012】
図2は、従来のフォト工程を有する基板の製造装置で発生する排ガスの浄化装置の概略構成図の例を示している。
図1に示した本発明のフォト工程を有する基板の製造装置で発生する排ガスの浄化装置との相違点を以下に説明する。
各製造装置10a、10b、10cの直後に圧力検出手段20a、20b、20c及び排気手段85a、85b、85cが設けられ、圧力検出手段20の検出信号に基いて排気手段85を動作させている。製造装置10への圧力変動(単位時間当りの圧力の変化量)は、製品品質のバラツキに影響するので好ましくない。そのため、各製造装置10a、10b、10cに個別に排気手段85a、85b、85cを有している。このため、後段の排気手段80と合わせると、イニシャルコスト、ランニングコスト共に大きくなるという問題があった。
また、濃縮手段50が設けられてなく、濃縮手段50の目詰まり、劣化を抑制するための温度調節手段30も設けられていない。このため、触媒式燃焼手段90の処理能力の上限に対応する排ガスの量(体積)以下になるように、製造装置10から排出される排ガスの量を抑える必要がある。
また、排気手段80が、触媒式燃焼手段90の前段にあり、制御手段から制御されず、常時所定の風量で排気している。このため、排気手段80の上流及び下流の各圧力のバラツキが大きくなり、単位時間当りの排ガスの量のバラツキが大きくなる。このため、触媒式燃焼手段90内の燃焼室の燃焼温度のバラツキが大きくなり、分解効率(浄化効率)にも影響する可能性がある。
また、燃焼手段が触媒式燃焼手段90であり、網状あるいは複数の複雑なガス通路を備えた触媒を有している。触媒式燃焼手段90で使用する触媒は、製造工程で使用された有機シリコンが触媒上に膜状に付着し、除去不可能となり、いわゆる永久被毒となってしまい、触媒性能を失ってしまい、メンテナンスができない。また、使用済みとなった触媒は、廃棄物として処理する必要がある。従来の触媒式燃焼手段では、約1.5ヵ月毎に触媒の交換を行っている。
図1に示した本発明のフォト工程を有する基板の製造装置で発生する排ガスの浄化装置は、上記の例に示した従来のフォト工程を有する基板の製造装置で発生する排ガスの浄化装置の問題点を全て解決する。
【0013】
次に、蓄熱式燃焼手段の排ガス浄化方式について、2種類の方式すなわち「2−BED方式」と「3−BED方式」について説明する。
◆[「2−BED方式」]
図3に示す模式図を用いて、「2−BED方式」について説明する。
「2−BED方式」では、蓄熱式燃焼手段70に第1及び第2の蓄熱層71、72を設け、第1の蓄熱層71、第2の蓄熱層72を、経路切替え手段にて第1の蓄熱層71を排ガス流入用、第2の蓄熱層72を浄化ガス流出用として用いる形態と、第1の蓄熱層71を浄化ガス流出用、第2の蓄熱層72を排ガス流入用として用いる形態の交互に切替える方式である。
図3A(上図)は、切替えダンパ(経路切替え手段に相当する)71a、72bを開き、切替えダンパ71b、72aを閉じた状態である。
この状態では、排ガス流入口100から流入した排ガスは、切替えダンパ71aを通過し、更に、第1の蓄熱層71を通過し、第1の蓄熱層71から熱を吸収して燃焼室75内に流入する。燃焼室75に流入した排ガスは、燃焼装置76(ガスバーナー等)により燃焼されて浄化ガスに変換される。浄化ガスは、第2の蓄熱層72を通過し、第2の蓄熱層72に熱を供給して、更に、切替えダンパ72bを通過して、ガス流出口110に流入する。
また、ガス流出口110に流入した浄化ガスは、排気手段80(排気用ブロアー等)により、強制的に吸い出されるので、ガスは滞ることなく上記の経路を辿る。
【0014】
図3B(下図)は、切替えダンパ(経路切替え手段に相当する)71b、72aを開き、切替えダンパ71a、72bを閉じた状態である。
この状態では、排ガス流入口100から流入した排ガスは、切替えダンパ72aを通過し、更に、第2の蓄熱層72を通過し、第2の蓄熱層72から熱を吸収して燃焼室75内に流入する。燃焼室75に流入した排ガスは、燃焼装置76(ガスバーナー等)により燃焼されて浄化ガスに変換される。浄化ガスは、第1の蓄熱層71を通過し、第1の蓄熱層71に熱を供給して、更に、切替えダンパ71bを通過して、ガス流出口110に流入する。
例えば、図3Aと図3Bに示した経路の切替え操作を数分毎に行うことで、排ガス及び浄化ガスと、各蓄熱層との間で熱交換を行わせることで、浄化ガスの熱を有効に利用する。
【0015】
次に、図4及び図5を用いて、蓄熱層を構成する蓄熱部材(本実施の形態で用いた蓄熱部材)の例について説明する。
図4は、蓄熱部材77の外観を示しており、図5は、本実施の形態で用いた蓄熱部材77の模式図を示している。蓄熱部材77は、略直方体の形状であり、図4は、説明のために一部をカットした図である。本実施の形態で用いた蓄熱部材77は、D(縦)約150mm、W(横)約150mm、H(高さ)約300mmの寸法であり、H(高さ)方向に対して平行に、略直線の複数のガス通路77aが設けられている。ガス通路77aを略直線にすることで、圧力損失が低減される。流入口100から切替えダンパ71aを通過した排ガスは、蓄熱部材77に設けられたガス通路77a内を、ほぼ均一な速度分布で通過し、燃焼室75に流入する。このため、燃焼室75に流入する排ガスの量のバラツキが小さいので、燃焼室内の温度を所定温度以上に保つために燃焼装置76の燃焼エネルギーを制御することが容易であり、安定した高い分解効率(浄化率)を得ることができる。蓄熱式燃焼手段70の燃焼室内の温度を800℃以上に保つことにより、安定して約97%の分解効率を得られる。
また、ガス通路77aの内寸は、圧力損失、排ガス内のダストのサイズ、堆積物の除去の容易さ等に基づいて、3〜4mmに設定されている。なお、この寸法は、使用条件等に合わせて任意の寸法に変更してもよい。また、このサイズのガス通路77aでは、ダスト、燃焼で生成されたSiO2等の付着(堆積)による閉塞も発生しにくい。しかも、仮にダスト等による閉塞が発生しても、除去が容易(3〜4mm幅の略直線の孔であるため、針金、細いブラシ等により清掃が可能)であり、メンテナンス性に優れている。
また、蓄熱部材77は、高温(800℃以上)であっても組成の変化がほとんど発生せず、高い蓄熱効果を有するセラミックを素材に用いている。
この蓄熱部材により、流出口での浄化ガスの温度は、流入口の排ガス温度に対して、+30℃〜+40℃にまで冷却される。
【0016】
次に、「3−BED方式」の蓄熱式燃焼手段の排ガス浄化方式について説明する。
◆[「3−BED方式」]
次に、図6に示す模式図を用いて、「3−BED方式」について説明する。上記で説明した「2−BED方式」では、2つの蓄熱層を、排ガス流入用と浄化ガス流出用に交互に切替える。これに対し、「3−BED方式」では、3つの蓄熱層を用いて、蓄熱層を浄化ガス流出用に使用する前に、一旦、空気で清掃し、分解効率(浄化効率)を更に向上させる方式である。
「3−BED方式」では、蓄熱式燃焼手段70に第1、第2、第3の蓄熱層71、72、73を設け、第1の蓄熱層71、第2の蓄熱層72、第3の蓄熱層73を、経路切替え手段にて第1の蓄熱層71を排ガス流入用、第2の蓄熱層72を浄化ガス流出用、第3の蓄熱層73をエアパージ用として用いる形態と、第1の蓄熱層71をエアパージ用、第2の蓄熱層72を排ガス流入用、第3の蓄熱層73を浄化ガス流出用として用いる形態と、第1の蓄熱層71を浄化ガス流出用、第2の蓄熱層72をエアパージ用、第3の蓄熱層73を排ガス流入用として用いる形態とを順番に切替える方式である。
【0017】
図6A(上図)は、切替えダンパ(経路切替え手段に相当する)71a、72bを開き、切替えダンパ71b、72a、73a、73bを閉じた状態である。また、空気流入ダンパ73cを開き、空気流入ダンパ71c、72cを閉じた状態である。
この状態では、排ガス流入口100から流入した排ガスは、切替えダンパ71aを通過し、更に、第1の蓄熱層71を通過し、第1の蓄熱層71から熱を吸収して燃焼室75内に流入する。燃焼室75に流入した排ガスは、燃焼装置76(ガスバーナー等)により燃焼されて浄化ガスに変換される。浄化ガスは、第2の蓄熱層72を通過し、第2の蓄熱層72に熱を供給して、更に、切替えダンパ72bを通過して、ガス流出口110に流入する。
また、ガス流出口110に流入した浄化ガスは、排気手段80(排気用ブロアー等)により、強制的に吸い出されるので、ガスは滞ることなく上記の経路を辿る。
また、空気流入ダンパ73cから空気が流入し、流入した空気が第3の蓄熱層73を通過して、第3の蓄熱層73に残留している未処理の排ガスを燃焼室75に流入させる。この場合、第3の蓄熱層73がエアパージ(空気で清掃する)用に相当する。
【0018】
図6B(中図)は、切替えダンパ(経路切替え手段に相当する)72a、73bを開き、切替えダンパ71a、71b、72b、73aを閉じた状態である。また、空気流入ダンパ71cを開き、空気流入ダンパ72c、73cを閉じた状態である。
この状態では、排ガス流入口100から流入した排ガスは、切替えダンパ72aを通過し、更に、第2の蓄熱層72を通過し、第2の蓄熱層72から熱を吸収して燃焼室75内に流入する。燃焼室75に流入した排ガスは、燃焼装置76(ガスバーナー等)により燃焼されて浄化ガスに変換される。浄化ガスは、第3の蓄熱層73を通過し、第3の蓄熱層73に熱を供給して、更に、切替えダンパ73bを通過して、ガス流出口110に流入する。
また、空気流入ダンパ71cから空気が流入し、流入した空気が第1の蓄熱層71を通過して、第1の蓄熱層71に残留している未処理の排ガスを燃焼室75に流入させる。この場合、第1の蓄熱層71がエアパージ(空気で清掃する)用に相当する。
【0019】
図6C(下図)は、切替えダンパ(経路切替え手段に相当する)71b、73aを開き、切替えダンパ71a、72a、72b、73bを閉じた状態である。また、空気流入ダンパ72cを開き、空気流入ダンパ71c、73cを閉じた状態である。
この状態では、排ガス流入口100から流入した排ガスは、切替えダンパ73aを通過し、更に、第3の蓄熱層73を通過し、第3の蓄熱層73から熱を吸収して燃焼室75内に流入する。燃焼室75に流入した排ガスは、燃焼装置76(ガスバーナー等)により燃焼されて浄化ガスに変換される。浄化ガスは、第1の蓄熱層71を通過し、第1の蓄熱層71に熱を供給して、更に、切替えダンパ71bを通過して、ガス流出口110に流入する。
また、空気流入ダンパ72cから空気が流入し、流入した空気が第2の蓄熱層72を通過して、第2の蓄熱層72に残留している未処理の排ガスを燃焼室75に流入させる。この場合、第2の蓄熱層72がエアパージ(空気で清掃する)用に相当する。
【0020】
例えば、図6A、図6B、図6Cに示した経路の切替え操作を数分毎に順番に行うことで、排ガス及び浄化ガスと、各蓄熱層との間で熱交換を行わせることで、浄化ガスの熱を有効に利用する。
また、浄化ガスを通過させる蓄熱層は、浄化ガス流出用として使用する前に、エアパージ用として使用することで、内部に残存する排ガスを燃焼室に放出させるため、浄化ガスに未処理の排ガスをほとんど含まない。
また、蓄熱部材、蓄熱部材を用いて構成した蓄熱層等、その他は「2−BED方式」と同様である。
【0021】
「2−BED方式」及び「3−BED方式」で説明した蓄熱式燃焼手段は、高い熱交換率(約90%以上)と、高い分解浄化率(約97〜99%)を有している。この性能を引き出すためには、蓄熱式燃焼手段の燃焼室内の温度を約850℃に安定して維持させることが必要である。
本発明のフォト工程を有する基板の製造装置で発生する排ガスの浄化装置では、排ガスの量(単位時間あたりに処理する体積)及び当該排ガスの濃度(MMP、PGMEA、ECA、EDM等の有機溶剤の比率)を濃縮手段で所定の範囲にする。このため、単位時間あたりの排ガスの総体積を小さくできるので、蓄熱式燃焼手段の処理効率を向上させることができる。
また、蓄熱式燃焼手段は、燃焼された浄化ガスの熱を、次の燃焼に用いる排気ガスの昇温に有効に利用するので、燃焼用の燃料をより低減できる。このため、燃料の燃焼によるCO2の発生量をも低減できる。
本実施の形態に示したフォト工程を有する基板の製造装置で発生する排ガスの浄化装置を用いた場合、排ガス中の特定の成分(MMP、PGMEA、ECA、EDM等の有機溶剤)の脱臭効果(臭気浄化率)は約95.6%の浄化率を達成することができ、特定成分(MMP、PGMEA、ECA、EDM等の有機溶剤)の分解浄化率は、約99%以上の浄化率を安定して達成できることを確認できた。
【0022】
本発明のフォト工程を有する基板の製造装置で発生する排ガスの浄化装置は、実施の形態で説明した構成等に限定されず、本発明の要旨を変更しない範囲で種々の変更、追加、削除が可能である。
また、圧力検出手段、温度調節手段、濃縮手段、燃焼用燃料供給手段、蓄熱式燃焼手段、排気手段等は、本実施の形態で説明した、センサ、機器、構造等に限定されず、種々のものを用いることが可能である。
また、実施の形態の説明に用いた数値は一例であり、この数値に限定されるものではない。
また、以上(≧)、以下(≦)、より大きい(>)、未満(<)等は、等号を含んでも含まなくてもよい。
【0023】
【発明の効果】
以上説明したように、請求項1に記載の排ガス浄化装置を用いれば、ランニングコストが低く、メンテナンス性がよいフォト工程を有する基板の製造装置で発生する排ガスの浄化装置を提供できる。
【図面の簡単な説明】
【図1】 本発明のフォト工程を有する基板の製造装置で発生する排ガスの浄化装置の一実施の形態の概略構成図である。
【図2】 従来のフォト工程を有する基板の製造装置で発生する排ガスの浄化装置の例を示す概略構成図である。
【図3】 蓄熱式燃焼手段「2−BED方式」を示す模式図である。
【図4】 蓄熱部材77の外観図である。
【図5】 蓄熱部材の模式図である。
【図6】 蓄熱式燃焼手段「3−BED方式」を示す模式図である。
【符号の説明】
10a、10b、10c 製造装置
20 圧力検出手段
30 温度調節手段
40 制御手段
50 濃縮手段
60 燃焼用燃料供給手段
70 蓄熱式燃焼手段
74 温度検出手段
76 燃焼装置
80 排気手段
101、102 経路切替え手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for purifying exhaust gas generated in a substrate manufacturing apparatus having a photo process.
[0002]
[Prior art]
Conventionally, by burning exhaust gas, harmless CO 2 And H 2 A combustion-type exhaust gas purification apparatus that decomposes into O is known. Further, a combustion type exhaust gas purification device provided with a heat storage layer is known. For example, the exhaust gas that has passed through the first heat storage layer is burned, and the purified gas after combustion passes through the second heat storage layer. At this time, the heat from the purified gas is stored in the second heat storage layer, the cooled purified gas is discharged, high heat exchange efficiency is achieved, and the fuel consumption for combustion can be significantly reduced. An exhaust gas purification device of the type is known. In this method, the heat energy of the purified gas after combustion is absorbed by the heat storage layer and used as heat energy for burning new exhaust gas.
A catalytic combustion means is used as a combustion means of a purification apparatus for exhaust gas generated in a conventional substrate manufacturing apparatus having a photo process (for example, a photo process of a semiconductor, liquid crystal, plasma display, or organic EL resin manufacturing apparatus). Yes. Further, the exhaust gas of the manufacturing apparatus is sucked out using an exhaust blower or the like in the vicinity of the exhaust gas outlet of the manufacturing apparatus.
[0003]
[Problems to be solved by the invention]
The catalytic combustion means used in the purification means of the exhaust gas generated in the conventional substrate manufacturing apparatus having a photo process (for example, the photo process of a semiconductor, liquid crystal, plasma display, or organic EL resin manufacturing apparatus) A specific component (for example, organic silicon) in the exhaust gas is easily deposited on the catalyst in a film shape, and the performance of the catalyst is reduced in a short time. It is very difficult to remove specific components from a catalyst with reduced performance. For this reason, it is difficult to reuse the catalyst, and periodic replacement is required. Therefore, the running cost is high and the maintainability is poor.
The present invention has been made in view of such a point, and an object of the present invention is to provide an apparatus for purifying exhaust gas generated in a substrate manufacturing apparatus having a photo process with low running cost and good maintainability. .
[0004]
[Means for Solving the Problems]
A first invention of the present invention for solving the above-mentioned problems is a purification apparatus for exhaust gas generated in a substrate manufacturing apparatus having a photo process as described in claim 1.
Claim 1 An apparatus for purifying exhaust gas generated in a substrate manufacturing apparatus having a photo process includes a combustion chamber, a first heat storage layer, a second heat storage layer, and a third heat storage layer, and each of the heat storage layers is When the gas flows in from one end, the gas flows out from the other end, and when the gas flows in from the other end, the gas It is possible to raise the temperature of the gas that flows out from one end and absorbs or passes heat from the passing gas.
Further, at one end of each of the heat storage layers, an exhaust gas inlet provided with an exhaust gas inflow damper capable of opening and closing an exhaust gas inflow path before purification, and a purified gas capable of opening and closing an exhaust gas outflow path after purification A purified gas outlet provided with an outflow damper and an air inlet provided with an air inlet damper capable of opening and closing an inflow path of cleaning air are connected, and the other end of each of the heat storage layers is Connected to the combustion chamber.
Then, the exhaust gas inflow damper in the first heat storage layer is opened to close the purified gas outflow damper to close the air inflow damper, and the exhaust gas inflow damper in the second heat storage layer is closed to close the purified gas outflow damper. Open and close the air inflow damper, close the exhaust gas inflow damper in the third heat storage layer, close the purified gas outflow damper and open the air inflow damper, and remove the exhaust gas before purification from the exhaust gas inlet The first heat storage layer is led to the combustion chamber for purification, the third heat storage layer is cleaned with air, the used air is guided to the combustion chamber for purification, and the purified exhaust gas and air are purified. The first exhaust gas purification path for discharging from the purified gas outlet through the two heat storage layer, and the exhaust gas inflow damper in the second heat storage layer are opened to open the purified gas outflow damper. To close the air inflow damper, close the exhaust gas inflow damper in the third heat storage layer, open the purified gas outflow damper to close the air inflow damper, and the exhaust gas inflow damper in the first heat storage layer Is closed, the purified gas outflow damper is closed and the air inflow damper is opened, and the exhaust gas before purification is led from the exhaust gas inlet through the second heat storage layer to the combustion chamber to be purified, and the first A second exhaust gas purification path for cleaning the heat storage layer with air and purifying the used air by purging it to the combustion chamber and discharging the purified exhaust gas and air from the purified gas outlet through the third heat storage layer And opening the exhaust gas inflow damper in the third heat storage layer, closing the purified gas outflow damper to close the air inflow damper, and the exhaust gas inflow dust in the first heat storage layer. Before the purification, and the purification gas outflow damper is closed, the air inflow damper is closed, and the exhaust gas inflow damper in the second heat storage layer is closed, the purification gas outflow damper is closed, and the air inflow damper is opened. The exhaust gas from the exhaust gas inlet is passed through the third heat storage layer to the combustion chamber and purified, and the second heat storage layer is cleaned with air and used air is purified to the combustion chamber. The purified exhaust gas and the air are purified by sequentially switching the third exhaust gas purification path for discharging the purified exhaust gas and air from the purified gas outlet through the first heat storage layer.
A combustion device that burns and purifies exhaust gas is provided in the combustion chamber and at a position away from the first heat storage layer, the second heat storage layer, and the third heat storage layer without switching the combustion device. The first exhaust gas purification path, the second exhaust gas purification path, and the third exhaust gas purification path are sequentially switched.
In addition, the apparatus for purifying exhaust gas generated in the apparatus for manufacturing a substrate having a photo process described in the present embodiment includes an exhaust gas inlet, a combustion means, and an exhaust gas outlet. Use combustion means.
If the apparatus for purifying exhaust gas generated in the apparatus for producing a substrate having a photo process described in the present embodiment is used, a heat storage member having a large number of straight holes having a predetermined internal dimension with a uniform reaction channel in the combustion means By using the regenerative combustion means equipped with the heat storage member, the specific component of the exhaust gas is not easily clogged and the decomposition performance is not impaired. For this reason, the lannin cost is low and the maintainability is good. In addition, since it can be reused, the need for disposal as waste is reduced.
[0005]
Further, in the apparatus for purifying exhaust gas generated in the apparatus for producing a substrate having the photo process described in the present embodiment, pressure detecting means for detecting the pressure of the exhaust gas inlet, and exhaust for sucking the purified gas from the exhaust gas outlet Means and a control means, and the control means controls the exhaust means based on the pressure detected by the pressure detection means.
If the apparatus for purifying exhaust gas generated in the manufacturing apparatus for a substrate having a photo process described in this embodiment is used, the pressure at the exhaust gas outlet of the manufacturing apparatus is reduced while reducing the pressure fluctuation with respect to the exhaust gas outlet of the manufacturing apparatus. Can be stabilized. For this reason, the product quality of the manufacturing apparatus of a substrate having a photo process (for example, the photo process of a semiconductor, liquid crystal, plasma display, or organic EL resin manufacturing apparatus) can be further stabilized. Can be smaller).
[0006]
Moreover, in the purification apparatus of the exhaust gas generated in the apparatus for producing a substrate having the photo process described in the present embodiment, a concentration means for increasing the concentration of a specific component in the exhaust gas is provided in the previous stage of the combustion means.
If the apparatus for purifying exhaust gas generated in the substrate manufacturing apparatus having the photo process described in this embodiment is used, concentration is performed even when the amount (volume) of exhaust gas generated by the manufacturing apparatus increases. Thus, the amount (volume) of the exhaust gas can be accommodated within the processing capacity of the combustion means (the processing amount (volume) per unit time, etc.). For this reason, a combustion means can be reduced more in size. Further, by reducing the volume by concentrating, the fuel for combustion can be reduced, so that the combustion efficiency can be improved.
[0007]
In addition, the purification apparatus for exhaust gas generated in the substrate manufacturing apparatus having the photo process described in the present embodiment includes temperature adjustment means for adjusting the temperature of exhaust gas flowing into or into the concentration means to a predetermined value. .
If the apparatus for purifying exhaust gas generated in the substrate manufacturing apparatus having the photo process described in the present embodiment is used, the temperature of the exhaust gas flowing into or into the concentrating means is set to a predetermined value (for example, about 200 ° C.). By maintaining, liquefaction associated with a decrease in the temperature of the exhaust gas can be prevented, and clogging, deterioration, and the like in the concentration means can be suppressed.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows a schematic configuration of an embodiment of an apparatus for purifying exhaust gas generated in a substrate manufacturing apparatus having a photo process according to the present invention (for example, a photo process of a semiconductor, liquid crystal, plasma display, or organic EL resin manufacturing apparatus). The figure is shown.
Exhaust gas generated from the manufacturing apparatuses 10a, 10b, and 10c (substrate manufacturing apparatus having a photo process) passes through the piping and reaches the pressure detection means 20 (pressure sensor or the like).
The pressure detection means 20 outputs a detection signal based on the detected pressure to the control means 40, and the detection signal is converted into pressure by the control means 40. The control means 40 controls the exhaust means 80 (exhaust blower or the like) so that the converted pressure maintains a predetermined pressure. In this case, since there are various processes (concentration, combustion, etc.) between the exhaust means 80 and the manufacturing apparatuses 10a, 10b, 10c, sudden pressure fluctuations associated with operation / stop of the exhaust means 80 are various. It is buffered in the process of. For this reason, sudden pressure fluctuations to the manufacturing apparatuses 10a, 10b, and 10c are suppressed, and the pressure of the exhaust gas from the manufacturing apparatuses 10a, 10b, and 10c is relatively gently brought close to a predetermined pressure and stabilized. Product quality of a substrate manufacturing apparatus having a process (for example, a photo process of a semiconductor, liquid crystal, plasma display, or organic EL resin manufacturing apparatus) can be stabilized, and the influence on the product quality can be further reduced.
[0009]
The temperature adjusting means 30 (for example, a temperature sensor and a heater) outputs a detection signal based on the detected temperature to the control means 40, and the detection signal is converted into a temperature by the control means 40. The control means 40 controls the temperature adjusting means 30 so that the converted temperature maintains a predetermined temperature (for example, 200 ° C.). As a result, the exhaust gas can be maintained in a gas phase state, and the exhaust gas is prevented from being liquefied inside the piping of the concentration unit 50 in the next step, and the concentration unit 50 is clogged and deteriorates (due to stickiness, etc. , Dust and the like, and components that deteriorate the concentration means adhere and deposit).
[0010]
Concentration means 50 (for example, a concentrator using zeolite, activated carbon, etc.), when exhaust gas passes through the inside, for example, removes dust etc. with activated carbon, etc., and specific components in exhaust gas with zeolite etc. (for example, Organic solvents such as MMP, PGMEA, ECA, EDM, etc.) are adsorbed and the components other than specific components are discharged (removed) to the outside. Further, the specific component adsorbed on the zeolite or the like is regenerated into exhaust gas with regeneration air or the like, and at this time, the ratio of the specific component in the regenerated exhaust gas can be increased. In this way, the exhaust gas can be concentrated to reduce the amount (volume) of the exhaust gas. For this reason, even if the amount (volume) of the exhaust gas exceeding the processing capability of the regenerative combustion means 70 is generated, the amount (volume) of the exhaust gas within the processing capability can be accommodated. In addition, if the concentrating means is used constantly, the regenerative combustion means 70 having a relatively low processing capacity can be used, so that the regenerative combustion means 70 can be reduced in size. Further, by reducing the volume by concentrating, it is possible to reduce the fuel for combustion (remove unnecessary components in advance), so that the efficiency of combustion can be improved.
[0011]
Existing heat storage combustion means 70 is used.
The regenerative combustion means 70 includes, for example, an exhaust gas inlet, a combustion chamber, an exhaust gas outlet, a first heat storage layer, a second heat storage layer, and path switching means 101 and 102 that switch exhaust gas paths. And. The combustion chamber is provided with a combustion device 76 (gas burner or the like) and a temperature detection means 74 (temperature sensor or the like). The temperature detection means 74 outputs a detection signal based on the detected combustion temperature to the control means 40 for control. The means 40 converts the detection signal into temperature. Then, the control means 40 controls the combustion fuel supply means 60 (for example, a fuel pump connected to the fuel tank) and the combustion device 76 so as to maintain a predetermined combustion temperature.
Further, the control means 40 controls the path switching means 101 and 102 to switch the exhaust gas paths, and switches the plurality of heat storage layers to either exhaust gas inflow / exhaust gas outflow / air purge, respectively. .
[0012]
FIG. 2 shows an example of a schematic configuration diagram of an apparatus for purifying exhaust gas generated in a substrate manufacturing apparatus having a conventional photo process.
Differences from the apparatus for purifying exhaust gas generated in the apparatus for producing a substrate having the photo process of the present invention shown in FIG. 1 will be described below.
Immediately after each manufacturing apparatus 10a, 10b, 10c, pressure detection means 20a, 20b, 20c and exhaust means 85a, 85b, 85c are provided, and the exhaust means 85 is operated based on the detection signal of the pressure detection means 20. The pressure fluctuation (the amount of change in pressure per unit time) to the manufacturing apparatus 10 is not preferable because it affects variations in product quality. Therefore, each manufacturing apparatus 10a, 10b, 10c has exhaust means 85a, 85b, 85c individually. For this reason, when combined with the exhaust unit 80 in the subsequent stage, there is a problem that both initial cost and running cost increase.
Further, the concentration means 50 is not provided, and the temperature adjustment means 30 for suppressing clogging and deterioration of the concentration means 50 is not provided. For this reason, it is necessary to suppress the amount of exhaust gas discharged from the manufacturing apparatus 10 so as to be equal to or less than the amount (volume) of the exhaust gas corresponding to the upper limit of the processing capacity of the catalytic combustion means 90.
Further, the exhaust means 80 is in front of the catalytic combustion means 90 and is not controlled by the control means, and always exhausts with a predetermined air volume. For this reason, the variation in the pressures upstream and downstream of the exhaust means 80 increases, and the variation in the amount of exhaust gas per unit time increases. For this reason, the variation in the combustion temperature of the combustion chamber in the catalytic combustion means 90 increases, which may affect the decomposition efficiency (purification efficiency).
Further, the combustion means is a catalytic combustion means 90, which has a catalyst having a mesh shape or a plurality of complicated gas passages. As for the catalyst used in the catalytic combustion means 90, the organic silicon used in the manufacturing process adheres to the catalyst in the form of a film, cannot be removed, becomes so-called permanent poisoning, and loses the catalyst performance. Maintenance is not possible. Moreover, the spent catalyst needs to be treated as waste. In the conventional catalytic combustion means, the catalyst is replaced about every 1.5 months.
The apparatus for purifying exhaust gas generated in the substrate manufacturing apparatus having the photo process of the present invention shown in FIG. 1 is a problem of the apparatus for purifying exhaust gas generated in the substrate manufacturing apparatus having the conventional photo process shown in the above example. Resolve all points.
[0013]
Next, regarding the exhaust gas purification method of the regenerative combustion means, two types of methods, namely “2-BED method” and “3-BED method” will be described.
◆ ["2-BED method"]
The “2-BED system” will be described using the schematic diagram shown in FIG.
In the “2-BED system”, the first and second heat storage layers 71 and 72 are provided in the heat storage combustion unit 70, and the first heat storage layer 71 and the second heat storage layer 72 are first switched by the path switching unit. The heat storage layer 71 is used for exhaust gas inflow, the second heat storage layer 72 is used for purification gas outflow, and the first heat storage layer 71 is used for purification gas outflow, and the second heat storage layer 72 is used for exhaust gas inflow. It is a method of switching alternately.
FIG. 3A (upper view) shows a state in which the switching dampers (corresponding to path switching means) 71a and 72b are opened and the switching dampers 71b and 72a are closed.
In this state, the exhaust gas flowing in from the exhaust gas inlet 100 passes through the switching damper 71a, further passes through the first heat storage layer 71, absorbs heat from the first heat storage layer 71, and enters the combustion chamber 75. Inflow. The exhaust gas flowing into the combustion chamber 75 is combusted by a combustion device 76 (gas burner or the like) and converted into purified gas. The purified gas passes through the second heat storage layer 72, supplies heat to the second heat storage layer 72, further passes through the switching damper 72b, and flows into the gas outlet 110.
Further, the purified gas flowing into the gas outlet 110 is forcibly sucked out by the exhaust means 80 (exhaust blower or the like), so that the gas follows the above path without stagnation.
[0014]
FIG. 3B (lower diagram) shows a state in which switching dampers (corresponding to path switching means) 71b and 72a are opened and switching dampers 71a and 72b are closed.
In this state, the exhaust gas flowing in from the exhaust gas inlet 100 passes through the switching damper 72a, further passes through the second heat storage layer 72, absorbs heat from the second heat storage layer 72, and enters the combustion chamber 75. Inflow. The exhaust gas flowing into the combustion chamber 75 is combusted by a combustion device 76 (gas burner or the like) and converted into purified gas. The purified gas passes through the first heat storage layer 71, supplies heat to the first heat storage layer 71, passes through the switching damper 71 b, and flows into the gas outlet 110.
For example, by performing the path switching operation shown in FIG. 3A and FIG. 3B every few minutes, heat exchange is performed between the exhaust gas and the purified gas and each heat storage layer, thereby effectively using the heat of the purified gas. To use.
[0015]
Next, an example of the heat storage member (the heat storage member used in the present embodiment) constituting the heat storage layer will be described with reference to FIGS. 4 and 5.
FIG. 4 shows the appearance of the heat storage member 77, and FIG. 5 shows a schematic diagram of the heat storage member 77 used in the present embodiment. The heat storage member 77 has a substantially rectangular parallelepiped shape, and FIG. 4 is a partially cut view for explanation. The heat storage member 77 used in the present embodiment has dimensions of D (vertical) approximately 150 mm, W (horizontal) approximately 150 mm, and H (height) approximately 300 mm, and parallel to the H (height) direction. A plurality of substantially straight gas passages 77a are provided. The pressure loss is reduced by making the gas passage 77a substantially straight. The exhaust gas that has passed through the switching damper 71 a from the inflow port 100 passes through the gas passage 77 a provided in the heat storage member 77 with a substantially uniform velocity distribution and flows into the combustion chamber 75. For this reason, since the variation in the amount of exhaust gas flowing into the combustion chamber 75 is small, it is easy to control the combustion energy of the combustion device 76 in order to keep the temperature in the combustion chamber at a predetermined temperature or higher, and stable high decomposition efficiency. (Purification rate) can be obtained. By keeping the temperature in the combustion chamber of the regenerative combustion means 70 at 800 ° C. or higher, a decomposition efficiency of about 97% can be stably obtained.
Further, the inner dimension of the gas passage 77a is set to 3 to 4 mm based on the pressure loss, the size of dust in the exhaust gas, the ease of removing deposits, and the like. In addition, you may change this dimension to arbitrary dimensions according to use conditions etc. Further, in the gas passage 77a of this size, SiO generated by dust and combustion. 2 Occlusion due to adhesion (deposition) of the like is difficult to occur. Moreover, even if clogging with dust or the like occurs, removal is easy (since it is a substantially straight hole with a width of 3 to 4 mm, it can be cleaned with a wire, a thin brush, etc.), and it is excellent in maintainability.
In addition, the heat storage member 77 is made of ceramic having a high heat storage effect as the composition hardly changes even at a high temperature (800 ° C. or higher).
With this heat storage member, the temperature of the purified gas at the outlet is cooled to + 30 ° C. to + 40 ° C. with respect to the exhaust gas temperature at the inlet.
[0016]
Next, the exhaust gas purification system of the “3-BED system” regenerative combustion means will be described.
◆ ["3-BED method"]
Next, the “3-BED system” will be described using the schematic diagram shown in FIG. In the “2-BED system” described above, the two heat storage layers are alternately switched between exhaust gas inflow and purified gas outflow. In contrast, in the “3-BED system”, three heat storage layers are used, and before the heat storage layer is used for outflow of the purified gas, it is once cleaned with air to further improve the decomposition efficiency (purification efficiency). It is a method.
In the “3-BED system”, the first, second, and third heat storage layers 71, 72, and 73 are provided in the heat storage combustion means 70, and the first heat storage layer 71, the second heat storage layer 72, and the third The first heat storage layer 71 is used for the exhaust gas inflow, the second heat storage layer 72 is used for the purification gas outflow, and the third heat storage layer 73 is used for the air purge by the path switching means. A configuration in which the heat storage layer 71 is used for air purge, the second heat storage layer 72 is used for exhaust gas inflow, and the third heat storage layer 73 is used for purification gas outflow, and the first heat storage layer 71 is used for purification gas outflow, second heat storage In this method, the layer 72 is used for air purge, and the third heat storage layer 73 is used for exhaust gas inflow.
[0017]
FIG. 6A (upper view) shows a state in which switching dampers (corresponding to path switching means) 71a and 72b are opened and switching dampers 71b, 72a, 73a and 73b are closed. Further, the air inflow damper 73c is opened and the air inflow dampers 71c and 72c are closed.
In this state, the exhaust gas flowing in from the exhaust gas inlet 100 passes through the switching damper 71a, further passes through the first heat storage layer 71, absorbs heat from the first heat storage layer 71, and enters the combustion chamber 75. Inflow. The exhaust gas flowing into the combustion chamber 75 is combusted by a combustion device 76 (gas burner or the like) and converted into purified gas. The purified gas passes through the second heat storage layer 72, supplies heat to the second heat storage layer 72, further passes through the switching damper 72b, and flows into the gas outlet 110.
Further, the purified gas flowing into the gas outlet 110 is forcibly sucked out by the exhaust means 80 (exhaust blower or the like), so that the gas follows the above path without stagnation.
In addition, air flows in from the air inflow damper 73 c, and the air that has flowed in passes through the third heat storage layer 73, causing untreated exhaust gas remaining in the third heat storage layer 73 to flow into the combustion chamber 75. In this case, the third heat storage layer 73 corresponds to an air purge (cleaning with air).
[0018]
FIG. 6B (middle view) shows a state in which switching dampers (corresponding to path switching means) 72a and 73b are opened and switching dampers 71a, 71b, 72b and 73a are closed. Further, the air inflow damper 71c is opened and the air inflow dampers 72c and 73c are closed.
In this state, the exhaust gas flowing in from the exhaust gas inlet 100 passes through the switching damper 72a, further passes through the second heat storage layer 72, absorbs heat from the second heat storage layer 72, and enters the combustion chamber 75. Inflow. The exhaust gas flowing into the combustion chamber 75 is combusted by a combustion device 76 (gas burner or the like) and converted into purified gas. The purified gas passes through the third heat storage layer 73, supplies heat to the third heat storage layer 73, further passes through the switching damper 73b, and flows into the gas outlet 110.
In addition, air flows in from the air inflow damper 71 c, and the air that has flowed in passes through the first heat storage layer 71, causing untreated exhaust gas remaining in the first heat storage layer 71 to flow into the combustion chamber 75. In this case, the first heat storage layer 71 corresponds to an air purge (cleaning with air).
[0019]
FIG. 6C (lower figure) shows a state in which the switching dampers (corresponding to path switching means) 71b and 73a are opened and the switching dampers 71a, 72a, 72b and 73b are closed. In addition, the air inflow damper 72c is opened and the air inflow dampers 71c and 73c are closed.
In this state, the exhaust gas flowing in from the exhaust gas inlet 100 passes through the switching damper 73a, further passes through the third heat storage layer 73, absorbs heat from the third heat storage layer 73, and enters the combustion chamber 75. Inflow. The exhaust gas flowing into the combustion chamber 75 is combusted by a combustion device 76 (gas burner or the like) and converted into purified gas. The purified gas passes through the first heat storage layer 71, supplies heat to the first heat storage layer 71, passes through the switching damper 71 b, and flows into the gas outlet 110.
In addition, air flows in from the air inflow damper 72 c, and the air that has flowed in passes through the second heat storage layer 72, causing untreated exhaust gas remaining in the second heat storage layer 72 to flow into the combustion chamber 75. In this case, the second heat storage layer 72 corresponds to an air purge (cleaning with air).
[0020]
For example, by performing the path switching operation shown in FIG. 6A, FIG. 6B, and FIG. 6C every several minutes in order, heat exchange is performed between the exhaust gas and the purified gas and each heat storage layer, thereby purifying. Effective use of gas heat.
In addition, the heat storage layer that allows the purified gas to pass through is used for air purge before it is used for outflow of the purified gas, so that the exhaust gas remaining inside is released into the combustion chamber. Contains almost no.
Further, the heat storage member, the heat storage layer formed using the heat storage member, and the like are the same as those in the “2-BED system”.
[0021]
The regenerative combustion means described in “2-BED method” and “3-BED method” has a high heat exchange rate (about 90% or more) and a high decomposition purification rate (about 97 to 99%). . In order to bring out this performance, it is necessary to stably maintain the temperature in the combustion chamber of the regenerative combustion means at about 850 ° C.
In the apparatus for purifying exhaust gas generated in the apparatus for producing a substrate having a photo process according to the present invention, the amount of exhaust gas (volume to be treated per unit time) and the concentration of the exhaust gas (MMP, PGMEA, ECA, EDM, etc.) The ratio is set to a predetermined range by the concentration means. For this reason, since the total volume of the exhaust gas per unit time can be reduced, the processing efficiency of the regenerative combustion means can be improved.
Further, the heat storage type combustion means effectively uses the heat of the burned purified gas to raise the temperature of the exhaust gas used for the next combustion, so that the fuel for combustion can be further reduced. For this reason, CO by combustion of fuel 2 Can also be reduced.
Deodorizing effect of specific components (organic solvents such as MMP, PGMEA, ECA, EDM, etc.) in the exhaust gas when the purification apparatus for exhaust gas generated in the manufacturing apparatus for a substrate having a photo process described in this embodiment is used ( (Odor purification rate) can achieve a purification rate of about 95.6%, and the decomposition and purification rate of specific components (organic solvents such as MMP, PGMEA, ECA, EDM, etc.) is stable at a purification rate of about 99% or more I was able to confirm that this could be achieved.
[0022]
The apparatus for purifying exhaust gas generated in the apparatus for producing a substrate having a photo process of the present invention is not limited to the configuration described in the embodiment, and various modifications, additions and deletions can be made without changing the gist of the present invention. Is possible.
Further, the pressure detecting means, temperature adjusting means, concentrating means, combustion fuel supply means, regenerative combustion means, exhaust means, etc. are not limited to the sensors, devices, structures, etc. described in this embodiment, and various Can be used.
In addition, the numerical values used in the description of the embodiments are merely examples, and are not limited to these numerical values.
Further, the above (≧), the following (≦), the greater (>), the less (<), etc. may or may not include an equal sign.
[0023]
【The invention's effect】
As explained above, Claim 1 By using the exhaust gas purification device, it is possible to provide a purification device for exhaust gas generated in a substrate manufacturing apparatus having a photo process with low running cost and good maintainability.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an embodiment of an apparatus for purifying exhaust gas generated in a substrate manufacturing apparatus having a photo process according to the present invention.
FIG. 2 is a schematic configuration diagram showing an example of a purification apparatus for exhaust gas generated in a substrate manufacturing apparatus having a conventional photo process.
FIG. 3 is a schematic diagram showing a heat storage combustion means “2-BED system”.
4 is an external view of a heat storage member 77. FIG.
FIG. 5 is a schematic view of a heat storage member.
FIG. 6 is a schematic diagram showing a heat storage type combustion means “3-BED system”.
[Explanation of symbols]
10a, 10b, 10c manufacturing equipment
20 Pressure detection means
30 Temperature control means
40 Control means
50 Concentration means
60 Fuel supply means for combustion
70 Thermal storage combustion means
74 Temperature detection means
76 Combustion device
80 Exhaust means
101, 102 Route switching means

Claims (1)

燃焼室と、第1蓄熱層と、第2蓄熱層と、第3蓄熱層と、を備え、
それぞれの前記蓄熱層は、一方の端部と他方の端部を有しており、一方の端部から気体を流入させた場合は当該気体が他方の端部から流出し、他方の端部から気体を流入させた場合は当該気体が一方の端部から流出し、通過する気体から熱を吸収または通過する気体を昇温することが可能であり、
それぞれの前記蓄熱層の一方の端部には、浄化前の排ガスの流入経路を開閉可能な排ガス流入ダンパを備えた排ガス流入口と、浄化後の排ガスの流出経路を開閉可能な浄化ガス流出ダンパを備えた浄化ガス流出口と、清掃用空気の流入経路を開閉可能な空気流入ダンパを備えた空気流入口と、が接続されており、
それぞれの前記蓄熱層の他方の端部は、前記燃焼室に接続されており、
前記第1蓄熱層における前記排ガス流入ダンパを開いて前記浄化ガス流出ダンパを閉じて前記空気流入ダンパを閉じ、且つ前記第2蓄熱層における前記排ガス流入ダンパを閉じて前記浄化ガス流出ダンパを開いて前記空気流入ダンパを閉じ、且つ前記第3蓄熱層における前記排ガス流入ダンパを閉じて前記浄化ガス流出ダンパを閉じて前記空気流入ダンパを開き、浄化前の排ガスを、前記排ガス流入口から前記第1蓄熱層を経由させて前記燃焼室に導いて浄化し、前記第3蓄熱層を空気で清掃して使用した空気を前記燃焼室に導いて浄化し、浄化した排ガスと空気を、前記第2蓄熱層を経由させて前記浄化ガス流出口から排出する第1排ガス浄化経路と、
前記第2蓄熱層における前記排ガス流入ダンパを開いて前記浄化ガス流出ダンパを閉じて前記空気流入ダンパを閉じ、且つ前記第3蓄熱層における前記排ガス流入ダンパを閉じて前記浄化ガス流出ダンパを開いて前記空気流入ダンパを閉じ、且つ前記第1蓄熱層における前記排ガス流入ダンパを閉じて前記浄化ガス流出ダンパを閉じて前記空気流入ダンパを開き、浄化前の排ガスを、前記排ガス流入口から前記第2蓄熱層を経由させて前記燃焼室に導いて浄化し、前記第1蓄熱層を空気で清掃して使用した空気を前記燃焼室に導いて浄化し、浄化した排ガスと空気を、前記第3蓄熱層を経由させて前記浄化ガス流出口から排出する第2排ガス浄化経路と、
前記第3蓄熱層における前記排ガス流入ダンパを開いて前記浄化ガス流出ダンパを閉じて前記空気流入ダンパを閉じ、且つ前記第1蓄熱層における前記排ガス流入ダンパを閉じて前記浄化ガス流出ダンパを開いて前記空気流入ダンパを閉じ、且つ前記第2蓄熱層における前記排ガス流入ダンパを閉じて前記浄化ガス流出ダンパを閉じて前記空気流入ダンパを開き、浄化前の排ガスを、前記排ガス流入口から前記第3蓄熱層を経由させて前記燃焼室に導いて浄化し、前記第2蓄熱層を空気で清掃して使用した空気を前記燃焼室に導いて浄化し、浄化した排ガスと空気を、前記第1蓄熱層を経由させて前記浄化ガス流出口から排出する第3排ガス浄化経路と、を順次切替えて排ガスを浄化し、
排ガスを燃焼させて浄化する燃焼装置は前記燃焼室内かつ前記第1蓄熱層と前記第2蓄熱層と前記第3蓄熱層から離れた位置に設けられており、前記燃焼装置を切替えることなく前記第1排ガス浄化経路と前記第2排ガス浄化経路と前記第3排ガス浄化経路とを順次切替える、
フォト工程を有する基板の製造装置で発生する排ガスの浄化装置。
A combustion chamber, a first heat storage layer, a second heat storage layer, and a third heat storage layer;
Each of the heat storage layers has one end and the other end, and when gas flows in from one end, the gas flows out from the other end and from the other end. When gas is introduced, the gas flows out from one end, and it is possible to raise the temperature of the gas that absorbs or passes heat from the passing gas,
An exhaust gas inlet having an exhaust gas inflow damper capable of opening and closing an exhaust gas inflow path before purification, and a purified gas outflow damper capable of opening and closing an exhaust gas outflow path after purification are provided at one end of each of the heat storage layers. And a purified gas outlet provided with an air inlet provided with an air inlet damper capable of opening and closing an inflow path for cleaning air, and
The other end of each of the heat storage layers is connected to the combustion chamber,
Open the exhaust gas inflow damper in the first heat storage layer and close the purification gas outflow damper to close the air inflow damper, and close the exhaust gas inflow damper in the second heat storage layer and open the purification gas outflow damper. The air inflow damper is closed, the exhaust gas inflow damper in the third heat storage layer is closed, the purified gas outflow damper is closed, the air inflow damper is opened, and the exhaust gas before purification is sent from the exhaust gas inlet to the first exhaust gas inlet. The exhaust gas and air purified through the heat storage layer are guided to the combustion chamber for purification, the third heat storage layer is cleaned with air, and the used air is purified through the combustion chamber. A first exhaust gas purification path for discharging from the purified gas outlet through a layer;
Open the exhaust gas inflow damper in the second heat storage layer, close the purification gas outflow damper and close the air inflow damper, and close the exhaust gas inflow damper in the third heat storage layer and open the purification gas outflow damper. The air inflow damper is closed, the exhaust gas inflow damper in the first heat storage layer is closed, the purified gas outflow damper is closed, the air inflow damper is opened, and the exhaust gas before purification is sent from the exhaust gas inlet to the second The exhaust gas and air purified through the heat storage layer are guided to the combustion chamber for purification, the first heat storage layer is cleaned with air, and the used air is purified through the combustion chamber. A second exhaust gas purification path for discharging from the purified gas outlet through a layer;
Open the exhaust gas inflow damper in the third heat storage layer and close the purified gas outflow damper to close the air inflow damper, and close the exhaust gas inflow damper in the first heat storage layer and open the purified gas outflow damper. The air inflow damper is closed, the exhaust gas inflow damper in the second heat storage layer is closed, the purified gas outflow damper is closed, the air inflow damper is opened, and the exhaust gas before purification is sent from the exhaust gas inlet to the third The exhaust gas and air purified through the heat storage layer are guided to the combustion chamber for purification, the second heat storage layer is cleaned with air, and the used air is purified through the combustion chamber. The exhaust gas is purified by sequentially switching the third exhaust gas purification path for discharging from the purified gas outlet through the layer,
A combustion device that burns and purifies exhaust gas is provided in the combustion chamber and at a position away from the first heat storage layer, the second heat storage layer, and the third heat storage layer, and without changing the combustion device, 1 exhaust gas purification path, the second exhaust gas purification path, and the third exhaust gas purification path are sequentially switched,
An apparatus for purifying exhaust gas generated in a substrate manufacturing apparatus having a photo process.
JP2001202756A 2001-07-03 2001-07-03 Apparatus for purifying exhaust gas generated in a substrate manufacturing apparatus having a photo process Expired - Fee Related JP4828047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001202756A JP4828047B2 (en) 2001-07-03 2001-07-03 Apparatus for purifying exhaust gas generated in a substrate manufacturing apparatus having a photo process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001202756A JP4828047B2 (en) 2001-07-03 2001-07-03 Apparatus for purifying exhaust gas generated in a substrate manufacturing apparatus having a photo process

Publications (2)

Publication Number Publication Date
JP2003021316A JP2003021316A (en) 2003-01-24
JP4828047B2 true JP4828047B2 (en) 2011-11-30

Family

ID=19039504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001202756A Expired - Fee Related JP4828047B2 (en) 2001-07-03 2001-07-03 Apparatus for purifying exhaust gas generated in a substrate manufacturing apparatus having a photo process

Country Status (1)

Country Link
JP (1) JP4828047B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103868080A (en) * 2012-12-11 2014-06-18 北京航天动力研究所 Large-flow and low-heat-value harmful waste gas incineration disposal process

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100663203B1 (en) 2004-11-30 2007-01-02 한국타이어 주식회사 Interior exhaust system using an incinerator
JP5074352B2 (en) * 2008-10-31 2012-11-14 中部電力株式会社 Gas treatment system
JP5675508B2 (en) * 2011-06-15 2015-02-25 カンケンテクノ株式会社 VOC abatement equipment
WO2017068609A1 (en) * 2015-10-19 2017-04-27 カンケンテクノ株式会社 Exhaust gas treatment device
CN106871139A (en) * 2017-03-14 2017-06-20 宜兴市智博环境设备有限公司 A kind of burned waste gas convey explosion-proof anti-backfire security system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5515657A (en) * 1978-07-21 1980-02-02 Mitsubishi Heavy Ind Ltd Method of removing mal-odorous component in exhaust gas
JPH08139085A (en) * 1994-11-04 1996-05-31 Nippon Steel Corp Semiconductor manufacturing equipment
JP3673060B2 (en) * 1997-07-28 2005-07-20 トリニティ工業株式会社 Thermal storage type exhaust gas treatment device and operation method thereof
JP2001012717A (en) * 1999-06-30 2001-01-19 Ngk Insulators Ltd Combustion deodorizing furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103868080A (en) * 2012-12-11 2014-06-18 北京航天动力研究所 Large-flow and low-heat-value harmful waste gas incineration disposal process

Also Published As

Publication number Publication date
JP2003021316A (en) 2003-01-24

Similar Documents

Publication Publication Date Title
US8051643B2 (en) Exhaust gas purification system utilizing ozone
TWI599747B (en) Regenerative exhaust gas purifying apparatus
US20090017206A1 (en) Methods and apparatus for reducing the consumption of reagents in electronic device manufacturing processes
JP5973249B2 (en) Organic solvent-containing gas treatment system
JP4828047B2 (en) Apparatus for purifying exhaust gas generated in a substrate manufacturing apparatus having a photo process
WO2021129009A1 (en) Integrated heat storage oxidation device
CN104487153A (en) Exhaust gas-purifying equipment and operation control method therefor
JP4772223B2 (en) Exhaust gas abatement apparatus and method
JP2006307802A (en) Exhaust emission control device
KR102073389B1 (en) Two track vacuum powder collection system
JPH09909A (en) Exhauster
KR20170110223A (en) A package system of at least two air cleaning abatement systems allowed to use in series or in parallel to improve destruction efficiency
JP2012136761A (en) Vacuum deposition device
JP2009082797A (en) Organic solvent-containing gas treatment system
JP2007311305A (en) Fuel cell system and fuel cell vehicle
CN215692993U (en) Exhaust gas treatment system
JP3564194B2 (en) Regeneration method of catalyzed ceramic filter
JP2024044648A (en) Refining method of electronic gases
JPH0635650B2 (en) Ultra high purity gas supply device
JP2002048325A (en) Control method for volatile organic compound processing apparatus
JP2012106877A (en) Gas discharge apparatus of reaction chamber
JP2012045527A (en) Deodorization treatment device and deodorization treatment method
TW202423520A (en) Process stop loss reduction system through rapid replacement of apparatus for trapping of reaction by-product for semiconductor process
JP2008031884A (en) Exhaust emission control device and exhaust emission control method
KR0181904B1 (en) Exhausting system of chemical vapour deposition equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4828047

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees