JP4827592B2 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP4827592B2
JP4827592B2 JP2006108894A JP2006108894A JP4827592B2 JP 4827592 B2 JP4827592 B2 JP 4827592B2 JP 2006108894 A JP2006108894 A JP 2006108894A JP 2006108894 A JP2006108894 A JP 2006108894A JP 4827592 B2 JP4827592 B2 JP 4827592B2
Authority
JP
Japan
Prior art keywords
engine
temperature
air
hydrogen
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006108894A
Other languages
Japanese (ja)
Other versions
JP2007278254A (en
Inventor
一 椛島
和夫 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006108894A priority Critical patent/JP4827592B2/en
Publication of JP2007278254A publication Critical patent/JP2007278254A/en
Application granted granted Critical
Publication of JP4827592B2 publication Critical patent/JP4827592B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関の制御装置に関し、特にアルコールにより運転可能な内燃機関の制御装置に関する。 The present invention relates to a control apparatus for an internal combustion engine, particularly to a control system for more operating an internal combustion engine capable to alcohol.

ガソリンに代えてアルコールを燃料として運転可能な内燃機関は、アルコールがガソリンより気化し難いため、特に始動性が悪いという課題がある。この課題を解決するために、特許文献1には、アルコールの一部を水素及び一酸化炭素を主成分とするガス燃料に改質し、該改質により得られるガス燃料を始動時に供給することにより、始動性を向上させたアルコール燃料エンジンの始動装置が示されている。   An internal combustion engine that can be operated using alcohol as fuel instead of gasoline has a problem that startability is particularly poor because alcohol is less likely to vaporize than gasoline. In order to solve this problem, Patent Document 1 discloses that a part of alcohol is reformed into a gas fuel mainly composed of hydrogen and carbon monoxide, and the gas fuel obtained by the reforming is supplied at start-up. Thus, an alcohol fuel engine starter having improved startability is shown.

特公昭62−59215号公報Japanese Examined Patent Publication No. 62-59215

しかしながら、ガス燃料を補助的に使用したとしても、始動時の機関温度あるいは周囲温度によっては、良好な始動性が得られないことがある。上記特許文献1は、ガス燃料をどの程度供給するかについては記載しておらず、前記始動装置は、加熱により確実な始動性を確保する手法を採用している。そのため、加熱用のヒータが必要になり、構造の複雑化及びコストの上昇を招いていた。   However, even if the gas fuel is used as an auxiliary, good startability may not be obtained depending on the engine temperature or the ambient temperature at the start. The above-mentioned Patent Document 1 does not describe how much gas fuel is supplied, and the starter employs a method for ensuring a reliable startability by heating. This necessitates a heater for heating, resulting in a complicated structure and an increase in cost.

本発明はこの点に着目してなされたものであり、アルコールにより運転可能な内燃機関を始動する際に、水素を燃料として使用し、かつヒータを用いることなく確実に始動性を向上させることができる内燃機関の制御装置を提供することを目的とする。 The present invention has been made in view of this point, when starting a more operable engine in alcohol, using hydrogen as fuel, and reliably improve the startability without using a heater An object of the present invention is to provide a control device for an internal combustion engine.

上記目的を達成するため請求項1に記載の発明は、アルコールにより運転可能な内燃機関の制御装置において、前記機関の温度(TW)または前記機関の雰囲気温度(TA)を検出する温度検出手段と、前記アルコールから水素を生成する水素生成手段と、前記機関の始動時に、前記水素生成手段にて生成された水素を前記機関に供給する水素供給手段と、前記機関の始動時に空気とアルコールの混合気の始動空燃比(AFST)を、前記機関の温度(TW)または前記機関の雰囲気温度(TA)に応じて設定する始動空燃比設定手段と、前記機関に供給する空気とアルコールの比率が前記始動空燃比(AFST)となるように、前記機関に前記アルコールを供給するアルコール供給手段とを備え、前記水素供給手段は、前記機関の温度(TW)または前記機関の雰囲気温度(TA)が所定温度より低いときにのみ、前記機関の温度(TW)または前記機関の雰囲気温度(TA)が低下するほど前記混合気中の水素濃度が高くなるように始動水素濃度(H2ST)を設定し、水素の供給を行うとともに、前記始動空燃比設定手段は、前記機関の温度(TW)または前記機関の雰囲気温度(TA)が前記所定温度より低いときにのみ、前記始動空燃比(AFST)を理論空燃比よりリーン側の空燃比に設定し、前記機関の温度(TW)または前記機関の雰囲気温度(TA)が低下するほどよりリーン側の空燃比に設定することを特徴とする。 In order to achieve the above object, according to a first aspect of the present invention, there is provided a control device for an internal combustion engine operable with alcohol, the temperature detecting means for detecting the temperature (TW) of the engine or the ambient temperature (TA) of the engine. A hydrogen generating means for generating hydrogen from the alcohol; a hydrogen supplying means for supplying hydrogen generated by the hydrogen generating means to the engine at the start of the engine; and a mixture of air and alcohol at the start of the engine The starting air-fuel ratio (AFST) of the engine is set according to the engine temperature (TW) or the atmospheric temperature (TA) of the engine, and the ratio of air and alcohol supplied to the engine is Alcohol supply means for supplying the alcohol to the engine so that the starting air-fuel ratio (AFST) is obtained, and the hydrogen supply means has a temperature (T ) Or the engine atmosphere temperature (TA) only when less than the predetermined temperature, the engine temperature (TW) or so that the engine of the ambient temperature (TA) becomes higher hydrogen concentration in the gas mixture as drops Is set to a starting hydrogen concentration (H2ST), hydrogen is supplied, and the starting air-fuel ratio setting means is configured to operate when the engine temperature (TW) or the engine ambient temperature (TA) is lower than the predetermined temperature. Only, the starting air-fuel ratio (AFST) is set to an air-fuel ratio leaner than the stoichiometric air-fuel ratio, and the leaner air-fuel ratio is set as the engine temperature (TW) or the atmospheric temperature (TA) of the engine decreases. It is characterized by setting.

請求項1に記載の発明によれば、機関始動時においては、空気とアルコールの比率が決定された始動空燃比となるように機関にアルコールが供給されるとともに、水素が供給される。具体的には、機関の温度または機関の雰囲気温度が所定温度より低いときにのみ、機関の温度または機関の雰囲気温度が低下するほど混合気中の水素濃度が高くなるように始動水素濃度が設定されるとともに、始動空燃比が理論空燃比よりリーン側の空燃比に設定され、しかも機関の温度または機関の雰囲気温度が低下するほどよりリーン側の空燃比に設定される。このような始動空燃比の設定により、冷間始動時において気化潜熱による燃焼室内温度の低下を抑制し、さらに水素濃度を機関温度または機関雰囲気温度が低下するほど混合気中の水素濃度が高くなるように設定することにより、始動性を一層向上させることができる。 According to the first aspect of the invention, when the engine is started, alcohol is supplied to the engine and hydrogen is supplied so that the ratio of air to alcohol becomes the determined starting air-fuel ratio. Specifically, the starting hydrogen concentration is set so that the hydrogen concentration in the mixture increases as the engine temperature or the engine ambient temperature decreases only when the engine temperature or the engine ambient temperature is lower than a predetermined temperature. In addition, the starting air-fuel ratio is set to a leaner air-fuel ratio than the stoichiometric air-fuel ratio, and is set to a leaner air-fuel ratio as the engine temperature or the engine ambient temperature decreases. By setting the starting air-fuel ratio in this way, the temperature of the combustion chamber is prevented from lowering due to latent heat of vaporization during cold starting, and the hydrogen concentration in the mixture increases as the engine temperature or engine atmosphere temperature decreases. By setting in this way, the startability can be further improved.

以下本発明の実施の形態を図面を参照して説明する。
図1は本発明の一実施形態にかかる内燃機関及びその制御装置の構成を示す図である。内燃機関(以下「エンジン」という)1は、アルコールを燃料として運転可能な4気筒のエンジンである。エンジン1の吸気管2には、スロットル弁3が設けられている。スロットル弁3にはスロットル弁開度THを検出するスロットル弁開度センサ22が連結されており、スロットル弁開度THに応じた検出信号を電子制御ユニット(以下「ECU」という)5に供給する。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram showing a configuration of an internal combustion engine and a control device thereof according to an embodiment of the present invention. An internal combustion engine (hereinafter referred to as “engine”) 1 is a four-cylinder engine that can be operated using alcohol as a fuel. A throttle valve 3 is provided in the intake pipe 2 of the engine 1. A throttle valve opening sensor 22 for detecting the throttle valve opening TH is connected to the throttle valve 3, and a detection signal corresponding to the throttle valve opening TH is supplied to an electronic control unit (hereinafter referred to as "ECU") 5. .

燃料噴射弁6は、吸気管2の途中であってエンジン1とスロットル弁3との間の図示しない吸気弁の少し上流側に各気筒毎に設けられている。さらにエンジン1の始動時に水素を噴射する水素噴射弁7が、燃料噴射弁6の近傍に設けらている。燃料噴射弁6は燃料供給管8を介して燃料タンク9に接続されており、また水素噴射弁7は、水素供給管12を介して改質装置11に接続されている。改質装置11には、燃料通路10を介して燃料、すなわちアルコール(例えばエタノール)が供給される。改質装置11は、水及び空気中の酸素と、アルコールとを反応させて、水素を生成する。   The fuel injection valve 6 is provided for each cylinder in the middle of the intake pipe 2 and slightly upstream of an intake valve (not shown) between the engine 1 and the throttle valve 3. Further, a hydrogen injection valve 7 that injects hydrogen when the engine 1 is started is provided in the vicinity of the fuel injection valve 6. The fuel injection valve 6 is connected to a fuel tank 9 via a fuel supply pipe 8, and the hydrogen injection valve 7 is connected to a reformer 11 via a hydrogen supply pipe 12. Fuel, that is, alcohol (for example, ethanol) is supplied to the reformer 11 through the fuel passage 10. The reformer 11 reacts water and oxygen in the air with alcohol to generate hydrogen.

燃料噴射弁6及び水素噴射弁7はECU5に電気的に接続され、該ECU5からの信号により開弁時間が制御される。吸気管2のスロットル弁3の下流側には吸気管内絶対圧PBAを検出する吸気管内絶対圧センサ23、及び吸気温TAを検出する吸気温センサ24が装着されている。これらのセンサの検出信号は、ECU5に供給される。   The fuel injection valve 6 and the hydrogen injection valve 7 are electrically connected to the ECU 5, and the valve opening time is controlled by a signal from the ECU 5. An intake pipe absolute pressure sensor 23 for detecting the intake pipe absolute pressure PBA and an intake temperature sensor 24 for detecting the intake air temperature TA are mounted on the downstream side of the throttle valve 3 of the intake pipe 2. Detection signals from these sensors are supplied to the ECU 5.

エンジン1の図示しないカム軸周囲又はクランク軸周囲にはエンジン回転数(エンジン回転速度)を検出するエンジン回転数センサ25が取付けられている。エンジン回転数センサ25はエンジン1のクランク軸の180度回転毎に所定のクランク角度位置でパルス(TDCパルス)を出力する。エンジン1の本体にはエンジン冷却水温TWを検出するエンジン冷却水温センサ26が装着されており、その検出信号はECU5に供給される。   An engine speed sensor 25 for detecting the engine speed (engine speed) is attached around the camshaft or crankshaft (not shown) of the engine 1. The engine speed sensor 25 outputs a pulse (TDC pulse) at a predetermined crank angle position every 180 degrees rotation of the crankshaft of the engine 1. An engine cooling water temperature sensor 26 for detecting the engine cooling water temperature TW is mounted on the main body of the engine 1, and the detection signal is supplied to the ECU 5.

図2は、改質装置11の構成を示すブロック図である。改質装置11は、低温プラズマ反応器33と、ガス回収部34とを備えている。
低温プラズマ反応器33は、低温プラズマにより、下記式(1)〜(3)で示す化学反応を促進し、水素、二酸化炭素、水、及び一酸化炭素の混合ガスを生成する。式(1)〜(3)は、部分酸化反応、完全酸化反応、ガスシフト反応を示す。低温プラズマを発生する装置は、従来公知のものがすべて使用可能であり、例えばパルスコロナ型、無声放電型、パックドベット型などがある。
FIG. 2 is a block diagram showing a configuration of the reformer 11. The reformer 11 includes a low temperature plasma reactor 33 and a gas recovery unit 34.
The low temperature plasma reactor 33 promotes the chemical reaction represented by the following formulas (1) to (3) by the low temperature plasma, and generates a mixed gas of hydrogen, carbon dioxide, water, and carbon monoxide. Formulas (1) to (3) show a partial oxidation reaction, a complete oxidation reaction, and a gas shift reaction. Any conventionally known apparatus that generates low-temperature plasma can be used, such as a pulse corona type, a silent discharge type, and a packed bed type.

25OH+1/2O2 → 2CO+3H2 (1)
25OH+3O2 → 2CO2+3H2O (2)
CO+H2O → CO2+H2 (3)
ガス回収部34は、上記混合ガスから水素を回収して出力する。
C 2 H 5 OH + 1 / 2O 2 → 2CO + 3H 2 (1)
C 2 H 5 OH + 3O 2 → 2CO 2 + 3H 2 O (2)
CO + H 2 O → CO 2 + H 2 (3)
The gas recovery unit 34 recovers and outputs hydrogen from the mixed gas.

図3は、エンジンの冷間始動時のアルコール供給制御を行う処理のフローチャートであり、この処理はECU5のCPUでTDCパルスに同期して実行される。
ステップS11では、吸気温TAに応じて図5(a)に示すAFSTテーブルを検索し、始動空燃比AFSTを算出する。AFSTテーブルは、吸気温TAが低下するほど、始動空燃比AFSTが増加する(リーン化する)ように設定されている。図5(a)において吸気温TA1、TA2、及びTA3は、例えば−25℃、10℃、及び25℃であり、空燃比AF1、AF2、及びAF3は、例えば20、10、及び9(アルコール燃料の理論空燃比に相当する)である。
FIG. 3 is a flowchart of a process for performing alcohol supply control when the engine is cold-started. This process is executed by the CPU of the ECU 5 in synchronization with the TDC pulse.
In step S11, the AFST table shown in FIG. 5A is retrieved according to the intake air temperature TA, and the starting air-fuel ratio AFST is calculated. The AFST table is set so that the starting air-fuel ratio AFST increases (leanes) as the intake air temperature TA decreases. In FIG. 5A, intake air temperatures TA1, TA2, and TA3 are, for example, −25 ° C., 10 ° C., and 25 ° C., and air-fuel ratios AF1, AF2, and AF3 are, for example, 20, 10, and 9 (alcohol fuel). Is equivalent to the theoretical air-fuel ratio).

ステップS12では、始動空燃比AFST及びエンジン回転数NEに応じて、燃料噴射弁6の開弁時間TALを算出する。すなわち、開弁時間TALは、エンジン1に供給される混合気中のアルコールと空気の質量比(空燃比)が始動空燃比AFSTとなるように、エンジン回転数NEに応じて決定される。
ステップS13では、算出された開弁時間TALに応じた燃料噴射弁6の駆動制御を行う。
In step S12, the valve opening time TAL of the fuel injection valve 6 is calculated according to the starting air-fuel ratio AFST and the engine speed NE. That is, the valve opening time TAL is determined according to the engine speed NE so that the mass ratio (air-fuel ratio) of alcohol and air in the air-fuel mixture supplied to the engine 1 becomes the starting air-fuel ratio AFST.
In step S13, drive control of the fuel injection valve 6 is performed according to the calculated valve opening time TAL.

図4は、エンジンの冷間始動時の水素供給制御を行う処理のフローチャートであり、この処理もECU5のCPUでTDCパルスの発生に同期して実行される。
ステップS21では、吸気温TAに応じて図5(b)に示すH2STテーブルを検索し、始動水素濃度H2STを算出する。H2STテーブルは、吸気温TAが低下するほど、始動水素濃度H2STが増加するように設定されている。図5(b)において吸気温TA1、TA2、及びTA3は、同図(a)と同一であり、、水素濃度H2N1及びH2N2は、例えば8%及び2%(体積濃度)である。吸気温TAが温度TA3以上であるときは、水素を供給しなくても始動できるので、始動水素濃度H2STは「0」としている。
FIG. 4 is a flowchart of a process for performing hydrogen supply control at the time of cold start of the engine. This process is also executed by the CPU of the ECU 5 in synchronization with the generation of the TDC pulse.
In step S21, the H2ST table shown in FIG. 5B is retrieved according to the intake air temperature TA, and the starting hydrogen concentration H2ST is calculated. The H2ST table is set so that the starting hydrogen concentration H2ST increases as the intake air temperature TA decreases. In FIG. 5B, the intake air temperatures TA1, TA2, and TA3 are the same as those in FIG. 5A, and the hydrogen concentrations H2N1 and H2N2 are, for example, 8% and 2% (volume concentration). When the intake air temperature TA is equal to or higher than the temperature TA3, the engine can be started without supplying hydrogen, so the starting hydrogen concentration H2ST is set to “0”.

ステップS22では、始動水素濃度H2ST及びエンジン回転数NEに応じて、水素噴射弁7の開弁時間TH2を算出する。すなわち、開弁時間TH2は、エンジン1に供給される混合気中の水素濃度H2Nが始動水素濃度H2STとなるように、エンジン回転数NEに応じて決定される。
ステップS23では、算出された開弁時間TH2に応じた水素噴射弁7の駆動制御を行う。
In step S22, the valve opening time TH2 of the hydrogen injector 7 is calculated according to the starting hydrogen concentration H2ST and the engine speed NE. That is, the valve opening time TH2 is determined according to the engine speed NE so that the hydrogen concentration H2N in the air-fuel mixture supplied to the engine 1 becomes the starting hydrogen concentration H2ST.
In step S23, drive control of the hydrogen injector 7 is performed according to the calculated valve opening time TH2.

図3及び図4に示す処理によれば、空気とアルコールの比率(空燃比)AFが決定された始動空燃比AFSTとなるようにアルコールが供給されるとともに、吸気温TAが低いときは(TA<TA3)、水素が供給される。そして、吸気温TAが低くなるほど、始動空燃比AFSTがリーン側に設定されるとともに、始動水素濃度H2STが高くなるように設定される。これにより、機関温度が低い冷間始動時には、アルコールの気化潜熱による燃焼室内温度の低下を抑制しつつ、水素供給によって、エンジン始動性を一層向上させることができる。   According to the processing shown in FIGS. 3 and 4, alcohol is supplied so that the ratio of air to alcohol (air-fuel ratio) AF becomes the determined starting air-fuel ratio AFST, and when the intake air temperature TA is low (TA <TA3), hydrogen is supplied. As the intake air temperature TA becomes lower, the starting air-fuel ratio AFST is set to the lean side, and the starting hydrogen concentration H2ST is set to be higher. Thereby, at the time of cold start with a low engine temperature, the engine startability can be further improved by supplying hydrogen while suppressing a decrease in the temperature in the combustion chamber due to the latent heat of vaporization of alcohol.

本実施形態では、吸気温センサ24またはエンジン冷却水温センサ26が温度検出手段に相当し、改質装置11が水素生成手段に相当し、燃料噴射弁6、燃料供給管8、及びECU5がアルコール供給手段を構成し、水素噴射弁7、水素供給管12、及びECU5が水素供給手段を構成し、ECU5が始動空燃比定手段を構成する。具体的には、図3の処理がアルコール供給手段の一部及び始動空燃比定手段に相当し、図4の処理が水素供給手段の一部に相当する。 In the present embodiment, the intake air temperature sensor 24 or the engine coolant temperature sensor 26 corresponds to the temperature detection means, the reformer 11 corresponds to the hydrogen generation means, and the fuel injection valve 6, the fuel supply pipe 8, and the ECU 5 supply alcohol. constitute means hydrogen injection valve 7, the hydrogen supply pipe 12, and ECU5 constitutes the hydrogen supply means, constituting the ECU5 GaHajime Dosora ratio setting means. Specifically, the process of FIG. 3 corresponds to a part and the starting air-fuel ratio setting means alcohol supply means, the process of FIG. 4 corresponds to part of the hydrogen supply means.

なお本発明は上述した実施形態に限るものではなく、種々の変形が可能である。例えば、上述した実施形態では、図5に示すテーブルを用いてエンジン1の雰囲気温度としての吸気温TAに応じて、始動空燃比AFST及び始動水素濃度H2STを決定するようにしたが、エンジン温度を示すエンジン冷却水温TWに応じて始動空燃比AFST及び始動水素濃度H2STを決定するようにしてもよい。この場合に使用するテーブルは、図5の横軸をエンジン冷却水温TWに変更したものをほぼそのまま使用することができる。   The present invention is not limited to the embodiment described above, and various modifications can be made. For example, in the above-described embodiment, the starting air-fuel ratio AFST and the starting hydrogen concentration H2ST are determined according to the intake air temperature TA as the ambient temperature of the engine 1 using the table shown in FIG. The starting air-fuel ratio AFST and the starting hydrogen concentration H2ST may be determined according to the indicated engine coolant temperature TW. As the table used in this case, a table in which the horizontal axis in FIG. 5 is changed to the engine cooling water temperature TW can be used almost as it is.

また上述した実施形態では、アルコール100%の燃料を使用するエンジンの始動制御を示したが、アルコールとガソリンの混合燃料を使用するエンジンについても同様の制御を行うことができる。ただし、混合燃料の理論空燃比はガソリンの理論空燃比(14.7)と、アルコールの理論空燃比(9)との中間となり、両燃料の混合比RMIXによって変化するので、図5(a)に示すテーブルを混合比RMIXに応じて修正し、修正したテーブルを用いて始動空燃比AFSTを決定する。   In the above-described embodiment, the engine start control using 100% alcohol fuel is shown. However, the same control can be performed for an engine using a mixed fuel of alcohol and gasoline. However, the stoichiometric air-fuel ratio of the mixed fuel is intermediate between the stoichiometric air-fuel ratio (14.7) of gasoline and the stoichiometric air-fuel ratio (9) of alcohol, and changes depending on the mixing ratio RMIX of both fuels. Is corrected according to the mixture ratio RMIX, and the starting air-fuel ratio AFST is determined using the corrected table.

本発明の一実施形態にかかる内燃機関及びその制御装置の構成を示す図である。It is a figure which shows the structure of the internal combustion engine and its control apparatus concerning one Embodiment of this invention. 図1に示す改質装置の構成を示すブロック図である。It is a block diagram which shows the structure of the reformer shown in FIG. エンジン始動時の燃料供給制御を行う処理のフローチャートである。It is a flowchart of the process which performs fuel supply control at the time of engine starting. エンジン始動時の水素供給制御を行う処理のフローチャートである。It is a flowchart of the process which performs hydrogen supply control at the time of engine starting. 図3または図4の処理で参照されるテーブルを示す図である。It is a figure which shows the table referred by the process of FIG. 3 or FIG.

符号の説明Explanation of symbols

1 内燃機関
5 電子制御ユニット(アルコール供給手段、水素供給手段、始動空燃比定手段
6 燃料噴射弁(アルコール供給手段)
7 水素噴射弁(水素供給手段)
8 燃料供給管(アルコール供給手段)
9 燃料タンク
10 燃料通路
11 改質装置(水素生成手段)
12 水素供給管(水素供給手段)
24 吸気温センサ(温度検出手段)
26 エンジン冷却水温センサ(温度検出手段)
1 an internal combustion engine 5 Electronic control unit (alcohol supply means, the hydrogen supply means, beginning Dosora ratio setting means)
6 Fuel injection valve ( alcohol supply means)
7 Hydrogen injection valve (hydrogen supply means)
8 Fuel supply pipe ( alcohol supply means)
9 Fuel tank 10 Fuel passage 11 Reformer (hydrogen generating means)
12 Hydrogen supply pipe (hydrogen supply means)
24 Intake air temperature sensor (temperature detection means)
26 Engine coolant temperature sensor (temperature detection means)

Claims (1)

アルコールにより運転可能な内燃機関の制御装置において、
前記機関の温度または前記機関の雰囲気温度を検出する温度検出手段と、
前記アルコールから水素を生成する水素生成手段と、
前記機関の始動時に、前記水素生成手段にて生成された水素を前記機関に供給する水素供給手段と、
前記機関の始動時に空気とアルコールの混合気の始動空燃比を、前記機関の温度または前記機関の雰囲気温度に応じて設定する始動空燃比設定手段と、
前記機関に供給する空気とアルコールの比率が前記始動空燃比となるように、前記機関に前記アルコールを供給するアルコール供給手段とを備え、
前記水素供給手段は、前記機関の温度または前記機関の雰囲気温度が所定温度より低いときにのみ、前記機関の温度または前記機関の雰囲気温度が低下するほど前記混合気中の水素濃度が高くなるように始動水素濃度を設定し、水素の供給を行うとともに、
前記始動空燃比設定手段は、前記機関の温度または前記機関の雰囲気温度が前記所定温度より低いときにのみ、前記始動空燃比を理論空燃比よりリーン側の空燃比に設定し、前記機関の温度または前記機関の雰囲気温度が低下するほどよりリーン側の空燃比に設定することを特徴とする内燃機関の制御装置。
In a control device for an internal combustion engine operable by alcohol,
Temperature detecting means for detecting the temperature of the engine or the ambient temperature of the engine;
Hydrogen generating means for generating hydrogen from the alcohol;
Hydrogen supply means for supplying hydrogen generated by the hydrogen generation means to the engine at the time of starting the engine;
A starting air-fuel ratio setting means for setting a starting air-fuel ratio of a mixture of air and alcohol at the time of starting the engine according to the temperature of the engine or the atmospheric temperature of the engine;
Alcohol supply means for supplying the alcohol to the engine so that a ratio of air and alcohol supplied to the engine becomes the starting air-fuel ratio;
The hydrogen supply means increases the hydrogen concentration in the mixture as the engine temperature or the engine ambient temperature decreases only when the engine temperature or the engine ambient temperature is lower than a predetermined temperature. Set the starting hydrogen concentration to, supply hydrogen,
The starting air-fuel ratio setting means sets the starting air-fuel ratio to an air-fuel ratio leaner than the stoichiometric air-fuel ratio only when the temperature of the engine or the atmospheric temperature of the engine is lower than the predetermined temperature , and the temperature of the engine Alternatively, the control device for an internal combustion engine is characterized in that the leaner air-fuel ratio is set as the atmospheric temperature of the engine decreases.
JP2006108894A 2006-04-11 2006-04-11 Control device for internal combustion engine Expired - Fee Related JP4827592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006108894A JP4827592B2 (en) 2006-04-11 2006-04-11 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006108894A JP4827592B2 (en) 2006-04-11 2006-04-11 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2007278254A JP2007278254A (en) 2007-10-25
JP4827592B2 true JP4827592B2 (en) 2011-11-30

Family

ID=38679931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006108894A Expired - Fee Related JP4827592B2 (en) 2006-04-11 2006-04-11 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4827592B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4686526B2 (en) * 2007-10-30 2011-05-25 本田技研工業株式会社 Throttle valve control device for internal combustion engine
US9074555B2 (en) * 2012-03-21 2015-07-07 MayMaan Research, LLC Internal combustion engine using a water-based mixture as fuel and method for operating the same
WO2015048187A1 (en) 2013-09-25 2015-04-02 Yehuda Shmueli Internal combustion engine using a water-based mixture as fuel and method for operating the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5867941A (en) * 1981-10-19 1983-04-22 Mazda Motor Corp Method of adjusting engine basic air/fuel ratio
JPS58200049A (en) * 1982-05-17 1983-11-21 Nippon Jidosha Kenkyusho Starting device for engine using alcohol as fuel
JPS59194070A (en) * 1983-04-20 1984-11-02 Nissan Motor Co Ltd Fuel injection controller of modified gas engine
JPS6259215A (en) * 1985-09-09 1987-03-14 Ihara Chem Ind Co Ltd Liposome containing chitin oligomer or chitosan oligomer
JPH01253535A (en) * 1988-04-01 1989-10-09 Mazda Motor Corp Control device for multi-cylinder engine
JPH02181047A (en) * 1988-12-29 1990-07-13 Toyota Central Res & Dev Lab Inc Operation control device for internal combustion engine
JP2857914B2 (en) * 1990-07-17 1999-02-17 株式会社デンソー Fuel injection amount control device for internal combustion engine
JP3251080B2 (en) * 1992-12-28 2002-01-28 マツダ株式会社 Air-fuel ratio control device for hydrogen engine
JP3817977B2 (en) * 1999-07-06 2006-09-06 株式会社日立製作所 Control method of compression ignition engine
JP2002295288A (en) * 2001-03-29 2002-10-09 Toyota Motor Corp Engine control device
JP4161772B2 (en) * 2003-04-02 2008-10-08 日産自動車株式会社 Control device for internal combustion engine
JP4103867B2 (en) * 2004-08-04 2008-06-18 トヨタ自動車株式会社 Control device for hydrogenated internal combustion engine

Also Published As

Publication number Publication date
JP2007278254A (en) 2007-10-25

Similar Documents

Publication Publication Date Title
JP4449956B2 (en) Internal combustion engine
JP5310945B2 (en) Ammonia combustion internal combustion engine
JP4337786B2 (en) Internal combustion engine and start control device for internal combustion engine
JP4274279B2 (en) Internal combustion engine
JP2007146831A (en) Control device for internal combustion engine
JP2007009903A (en) Fuel injection quantity control device for internal combustion engine
JP4370238B2 (en) Exhaust gas purification device for internal combustion engine
JP4827592B2 (en) Control device for internal combustion engine
JP2008215322A (en) Engine system
JP2007187111A (en) Internal combustion engine by use of hydrogen
JP2009270549A (en) Exhaust emission control device for internal combustion engine
JP2009281216A (en) Control device for internal combustion engine
JP2007113421A (en) Control device of internal combustion engine
JP2006242076A (en) Control device for internal combustion engine using hydrogen
JP2002339772A (en) Engine system
JP2009144612A (en) Fuel reforming device of internal combustion engine
JP4548344B2 (en) Exhaust reformer system control device for internal combustion engine
JP4427788B2 (en) Fuel reformer and operation method thereof
JP2006125267A (en) Hydrogen-added internal combustion engine
JP2009121296A (en) Control device for internal combustion engine
JP2009299520A (en) Controller of internal combustion engine
JP2007278121A (en) Control device for internal combustion engine
JP2008202494A (en) Exhaust gas reformer system for internal combustion engine
JP2016153613A (en) Fuel reforming control device
JP2008232067A (en) Exhaust emission control system for engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees