JPS59194070A - Fuel injection controller of modified gas engine - Google Patents

Fuel injection controller of modified gas engine

Info

Publication number
JPS59194070A
JPS59194070A JP58070309A JP7030983A JPS59194070A JP S59194070 A JPS59194070 A JP S59194070A JP 58070309 A JP58070309 A JP 58070309A JP 7030983 A JP7030983 A JP 7030983A JP S59194070 A JPS59194070 A JP S59194070A
Authority
JP
Japan
Prior art keywords
injection
gas
liquid fuel
reformed gas
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58070309A
Other languages
Japanese (ja)
Inventor
Toshio Hirota
広田 寿男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP58070309A priority Critical patent/JPS59194070A/en
Publication of JPS59194070A publication Critical patent/JPS59194070A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0642Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0649Liquid fuels having different boiling temperatures, volatilities, densities, viscosities, cetane or octane numbers
    • F02D19/0652Biofuels, e.g. plant oils
    • F02D19/0655Biofuels, e.g. plant oils at least one fuel being an alcohol, e.g. ethanol
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0668Treating or cleaning means; Fuel filters
    • F02D19/0671Means to generate or modify a fuel, e.g. reformers, electrolytic cells or membranes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/081Adjusting the fuel composition or mixing ratio; Transitioning from one fuel to the other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent the occurrence of back fire caused by modified gas, by a method wherein, in a running condition in which both modified gas and liquid fuel are fed to an engine, control is effected so that liquid fuel is firstly injected, and after the injection is completed, modified gas is injected. CONSTITUTION:Liquid fuel, such as alcohol, is modified into gas, containing respective large amounts of hydrogen, and carbon monoxide, through the medium of a catalyst. An engine, which uses said modified gas in combination with unmodified liquid fuel, is provided with an engine condition detecting means 32 for detecting an engine running condition. According to the detected running condition, an injected amount setting means computes an amount of fuel injected and sets respective supply amount ratios of liquid fuel and modified gas to the injection amount. According to the set supply amount ratio, a liquid fuel injection means 33 such as an injector is firstly driven by an injection control means, and in response to the output of an injection completion detecting means 53 for detecting injection completion, a modified gas injecting means 34 such as gas valves is driven.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は改質ガスエンジンの燃料噴射制御装置、詳しく
は液体燃料と、この液体燃料を改質して得られる改質ガ
スとを併用して使用する改質ガスエンジンの燃料噴射制
御装置に関する。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a fuel injection control device for a reformed gas engine, and more specifically, to a fuel injection control device for a reformed gas engine, which uses a liquid fuel in combination with a reformed gas obtained by reforming this liquid fuel. The present invention relates to a fuel injection control device for a reformed gas engine.

〔従来技術〕[Prior art]

アルコール等の液体燃料は触媒を介して水素、−酸化炭
素を多量に含むガスに改質することができ、この改質ガ
スは燃焼性に優れ熱効率が高いため燃費特性が改善され
、しかも排気も清浄であることから、この改質ガスを燃
料とするエンジンが近年注目されている。ところが改質
ガスのみでは必ずしも充分な出力を得がたいので、改質
ガスの他に未改質の液体燃料を添加供給することが望ま
れる。このように、改質ガスと未改質の液体燃料とを併
用する場合は、工ンジンの運転状態に応じて混合気の空
燃比および供給される改質ガスと液体燃料との重量流量
比を制御してエンジンの熱効率、排気特性、出力特性を
良好に保持させるとともに、特に改質ガスによる吸気側
への逆火に考慮する必要がある。
Liquid fuels such as alcohol can be reformed through a catalyst into a gas containing large amounts of hydrogen and carbon oxides.This reformed gas has excellent combustibility and high thermal efficiency, improving fuel efficiency and reducing emissions. Engines that use this reformed gas as fuel have been attracting attention in recent years because it is clean. However, it is not always possible to obtain sufficient output with the reformed gas alone, so it is desirable to supply unreformed liquid fuel in addition to the reformed gas. In this way, when using reformed gas and unreformed liquid fuel together, the air-fuel ratio of the mixture and the weight flow rate ratio of the supplied reformed gas and liquid fuel must be adjusted depending on the operating conditions of the engine. It is necessary to control this in order to maintain good thermal efficiency, exhaust characteristics, and output characteristics of the engine, and to take into account especially backfire caused by reformed gas to the intake side.

このような従来の改質ガスエンジンの燃料噴射制御装置
としては、例えば特開昭55−104542号公報に記
載されたものがある。この装置を第1図に基づき説明す
ると、改質ガスはガス人口1より導入されてガス流量計
2を経7 カスバルブ3で流量を制御された後にエンジ
ン4に供給される。空気は、エアクリーナ5より導入さ
れて並行する一次空気供給路6と二次空気供給路7とに
流入する。−次空気供給路6には、該供給路6を流れる
。−次空気の流量を制御する一次空気バルブ8が設けら
れ、二次空気供給路7には同様の作用をする二次空気バ
ルブ9が設けられて、これら両バルブ8.9で流量制御
された一次空気と二次空気とが合流してエンジン4に供
給される。なお、改質ガス人口1及びエアクリーナ5人
口の圧力は大気圧でありエンジン4の吸入負圧で改質ガ
ス及び空気がそれぞれの供給路を流れる。そして、未改
質の燃料は、液体燃料供給装置10により流量を制御さ
れてエンジン4に供給される。
As such a conventional fuel injection control device for a reformed gas engine, there is one described, for example, in Japanese Patent Application Laid-open No. 104542/1983. This device will be explained based on FIG. 1. Reformed gas is introduced from a gas port 1, passes through a gas flow meter 2, and is supplied to an engine 4 after its flow rate is controlled by a gas valve 3. Air is introduced from the air cleaner 5 and flows into a primary air supply path 6 and a secondary air supply path 7 that are parallel to each other. - The air flows through the supply path 6 into the second air supply path 6. - A primary air valve 8 for controlling the flow rate of secondary air is provided, and a secondary air valve 9 for the same function is provided for the secondary air supply path 7, and the flow rate is controlled by these two valves 8.9. The primary air and the secondary air are combined and supplied to the engine 4. Note that the pressures of the reformed gas population 1 and the air cleaner 5 population are atmospheric pressure, and the reformed gas and air flow through their respective supply paths under the negative suction pressure of the engine 4. The unreformed fuel is then supplied to the engine 4 with its flow rate controlled by the liquid fuel supply device 10.

また、前記ガスバルブ3と一次空気バルブ8とは連動装
置11を介して連動され、運転者によって操作される操
作手段としてのアクセルペダル(図示省略)でアクセル
ワイヤ12を介して操作されるが、二次空気バルブ9は
ガス流量計2によって検出された改質ガスの流量に応じ
て制御される。なお、−次空気流量はアクセルペダル操
作量に対応しこの一次空気流量に比例して要求燃料流量
が設定される。そして、改質ガスの流量が充分である時
は、改質ガスで要求燃料流量の全量をまかなうと同時に
二次空気ノ\ルブ9を開いて混合気を希薄化(空気過剰
重大)する。逆に曵改質ガスの供給が不充分または制限
される時は、要求燃料流量に対する改質ガスの不足分を
液体燃料の供給で補償すると共に、二次空気バルブ9を
閉じて空気流量を減少させる(空気過剰重重)。13は
エンジン4の吸入空気流量と、改質ガス流量とから要求
燃料流量と改質ガス流量との差を演算して液体燃料供給
量を算出し、これにもとづいて液体燃料供給装置10を
制御する液体燃料供給量コントローラである。この液体
燃料供給量コントローラ13は改質ガスの供給が不充分
または制限されるときに液体燃料供給装置10を制御す
ることにより液体燃料を随時エンジン4に供給する。
Further, the gas valve 3 and the primary air valve 8 are interlocked via an interlocking device 11, and are operated via an accelerator wire 12 by an accelerator pedal (not shown) as an operating means operated by the driver. The secondary air valve 9 is controlled according to the flow rate of the reformed gas detected by the gas flow meter 2. Note that the -primary air flow rate corresponds to the accelerator pedal operation amount, and the required fuel flow rate is set in proportion to this primary air flow rate. When the flow rate of the reformed gas is sufficient, the reformed gas covers the entire required fuel flow rate and at the same time opens the secondary air valve 9 to dilute the air-fuel mixture (serious excess air). Conversely, when the supply of reformed gas is insufficient or limited, the shortage of reformed gas relative to the required fuel flow rate is compensated by the supply of liquid fuel, and the secondary air valve 9 is closed to reduce the air flow rate. (excess air weight). 13 calculates the liquid fuel supply amount by calculating the difference between the required fuel flow rate and the reformed gas flow rate from the intake air flow rate of the engine 4 and the reformed gas flow rate, and controls the liquid fuel supply device 10 based on this. This is a liquid fuel supply controller. The liquid fuel supply amount controller 13 supplies liquid fuel to the engine 4 as needed by controlling the liquid fuel supply device 10 when the supply of reformed gas is insufficient or limited.

しかしながら、このような従来の燃料噴射制御装置にあ
っては、改質ガスと液体燃料の供給時期が何ら相互に関
連性をもたせることなく、それぞれ独自に設定されてい
たため、改質ガスと液体燃料の両方をエンジンに供給す
る運転条件、特に高負荷運転条件において、インテーク
マニホールド内に滞留した改質ガスが吸気弁の開弁時に
液体燃料よりも先にシリンダ内に吸入されることがある
。このような高負荷運転条件においては、空気過剰率が
小さく改質ガスの空気に対する割合が大きくなっている
。また、シリンダ内が低負荷条件に比して一層高温とな
っている。したがって、水素を主成分とする改質ガスが
先にシリンダ内に吸入されると、混合気がすべて吸入さ
れないうちに改質ガスが燃焼してしまう。そのとき、改
質ガスは燃焼速度が極めて大きいことから、逆火(バツ
クファイヤ)が発生するという問題点があった。
However, in such conventional fuel injection control devices, the supply timings of reformed gas and liquid fuel are set independently without any correlation with each other. Under operating conditions, particularly under high-load operating conditions, in which both fuel and liquid fuel are supplied to the engine, the reformed gas retained in the intake manifold may be drawn into the cylinder before the liquid fuel when the intake valve is opened. Under such high-load operating conditions, the excess air ratio is small and the ratio of reformed gas to air is large. Furthermore, the temperature inside the cylinder is higher than that under the low load condition. Therefore, if the reformed gas containing hydrogen as a main component is drawn into the cylinder first, the reformed gas will be burned before all the air-fuel mixture is drawn in. At that time, since the reformed gas has an extremely high combustion speed, there was a problem in that backfire occurred.

〔発明の目的〕[Purpose of the invention]

そこで本発明は、改質ガスと液体燃料の両方をエンジン
に供給する運転条件では液体燃料を先に噴射し、この液
体燃料の噴射完了後に改質ガスを噴射することにより、
改質ガスによる逆火の発生を防止することを目的として
いる。
Therefore, the present invention injects the liquid fuel first under operating conditions in which both reformed gas and liquid fuel are supplied to the engine, and injects the reformed gas after the injection of this liquid fuel is completed.
The purpose is to prevent backfire caused by reformed gas.

〔発明の構成〕[Structure of the invention]

第2図は本発明の構成を明示するための全体構成図であ
る。エンジン21には未改質の液体燃料と液体燃料を改
質して得られる改質ガスとが噴射され、液体燃料の噴射
完了は噴射完了検山手段53により検出される。エンジ
ン21の運転状態を検出するエンジン状態検出手段32
からの信号に基づいて噴射量設定手段が燃料噴射量を演
算するとともに、該燃料噴射量に対する液体燃料と改質
ガスo−14給量割合を設定する。そして、噴射制御手
段が液体燃料供給量割合に対応する液体噴射信号を液体
燃料噴射手段33に出力すると、液体燃料噴射手段33
が液体燃料を噴射し、また噴射完了検出手段53の出力
に基づき液体燃料の噴射が完了した後に、改質ガス供給
量割合に対応するガス噴射信号を改質ガス噴射手段34
に出力すると、改質ガス噴射手段34が改質ガスを噴射
する。
FIG. 2 is an overall configuration diagram for clearly showing the configuration of the present invention. Unreformed liquid fuel and reformed gas obtained by reforming the liquid fuel are injected into the engine 21, and completion of injection of the liquid fuel is detected by an injection completion detection means 53. Engine state detection means 32 for detecting the operating state of the engine 21
The injection amount setting means calculates the fuel injection amount based on the signal from the fuel injection amount, and sets the liquid fuel and reformed gas O-14 supply ratio with respect to the fuel injection amount. Then, when the injection control means outputs a liquid injection signal corresponding to the liquid fuel supply amount ratio to the liquid fuel injection means 33, the liquid fuel injection means 33
injects liquid fuel, and after the liquid fuel injection is completed based on the output of the injection completion detection means 53, a gas injection signal corresponding to the reformed gas supply amount ratio is sent to the reformed gas injection means 34.
When the reformed gas is outputted, the reformed gas injection means 34 injects the reformed gas.

〔実施例〕〔Example〕

以下、本発明を図面に基づいて説明する。 Hereinafter, the present invention will be explained based on the drawings.

第3〜14図は本発明の一実施例を示す図である。3 to 14 are diagrams showing an embodiment of the present invention.

第3図において、21はエンジンであり、吸入空気は図
中白い矢印で示すようにエアクリーナ22よりエアフロ
メータ23、エアバルブuが設けられた吸気通路25を
経てインテークマニホールド26の各ブランチよりエン
ジン21の各シリンダに供給される。エンジン21に吸
入される吸入空気流量Gaはエアフロメータ23により
検出され、エアバルブ24によって制御される。エアバ
ルブ24の開度はバルブ開度設定器27により制御され
る。すなわち、バルブ開度設定器27はアクセルペダル
(図示略)に連動して(すなわち、アクセルペダルの操
作量PSに対応して)、まずエアバルブUの基本開度を
設定し、ついでバルブ開度比アクチュエータルにより改
質ガス(後述する)を含む混合気の空気過剰率が最適と
なるよう基本開度を補正する。そして、バルブ開度設定
器27に対するアクセルペダルの操作量PSはアクセル
操作量センサ29により検出される。また、エンジン2
1のクランク角(例えば180″あるいは1°)および
回転数NはディスI−リビュータ30に設けられたクラ
ンク角センサ31により検出される。なお、これらのア
クセル操作量センサ29、クランク角センサ31および
エアフロメータ23はエンジン21の運転状態を検出す
るエンジン状態検出手段32を構成する。前記インテー
クマニホールド26内にはインジェクタ(液体燃料噴射
手段)33により液体燃料(例えばメタノール)が、ま
たガスバルブ(改質ガス噴射手段)34により液体燃料
を改質して得られる改質ガスがそれぞれ所定の噴射タイ
ミングで噴射される。ガスバルブ34に供給される改質
ガスは燃料流量制御弁35を介装した液体燃料通路36
を通して排気通路37に設けられた改質器38に流入す
る液体燃料が、この改質器38において高温の排気ガス
(図中黒い矢印で示すように流れる)を利用した改質触
媒の作用によって改質されて作られ、改質されたガスは
ガス通路39に流出され冷却用のガスクーラ40、ガス
遮断弁41を経てガスバルブ34に供給される。ここで
、改質ガスは、例えばメタノールを改質した場合水素(
50%)、−酸化炭素(25%)等の可燃成分を主成分
としており、その燃焼速度はメタノールの混合気に比し
て極めて大きい。改質器38に流入する液体燃料流量は
燃料流量制御弁35により制御され、この燃料流量制御
弁35はパルス信号のデユーティ比に応じて、例えば周
波数20 Hz一定でデユーティ比が5〜100%と変
化した場合、燃料流量を0.5〜10kg/hの範囲で
制御する。また、ガス遮断弁41は、例えばエンジン2
1停止時等にガス通路39を遮断してガスバルブ34へ
の改質ガス供給を停止する。改質ガスの圧力Pc、はガ
ス通路39に設けられたガス圧力センサ42により検出
され、また改質ガスの温度P丁はガス温度センサ43に
より検出される。さらに、改質器38内の触媒温度Tc
atは触媒温度センサ44により検出される。排気通路
37には改質器38に排気ガスを流通させることなくバ
イパスさせる排気バイパス弁45と、これを駆動するア
クチュエータ46が設けられ、改質器38の下流側には
マフラ47が接続される。アクチュエータ46は排気バ
イパス弁45による排気ガスのバイパス量を制御して、
改質器3日内の触媒温度Teatを所定温度(例えば4
50℃)以下に保持する。前記各センサ23.29、3
1.42.43.44からの各信号はコントロールユニ
ット48に入力サレ、コントロールユニット48はこれ
らの信号に基づいてバルブ開度比アクチュエータ28、
燃料流量制御弁35、ガス遮断弁4】、およびアクチュ
エータ46をそれぞれ制御するとともに、互いに異なる
所定の噴射タイミングでインジェクタ33に液体噴射信
号SLを、またガスバルブ34にガス噴射信号Scrを
それぞれ出力する。インジェクタ33は液体噴射信号S
Lが入力されている時間だけ駆動され液体燃料を噴射し
、一方ガスバルプ34はガス噴射信具S(:Tが入力さ
れている時間だけ駆動され改質ガスを噴射する。
In FIG. 3, 21 is an engine, and intake air is supplied to the engine 21 from an air cleaner 22, through an air flow meter 23, an intake passage 25 provided with an air valve u, and from each branch of an intake manifold 26, as shown by the white arrow in the figure. supplied to each cylinder. The intake air flow rate Ga taken into the engine 21 is detected by an air flow meter 23 and controlled by an air valve 24. The opening degree of the air valve 24 is controlled by a valve opening degree setting device 27. That is, the valve opening setting device 27 first sets the basic opening of the air valve U in conjunction with the accelerator pedal (not shown) (that is, in response to the operation amount PS of the accelerator pedal), and then sets the valve opening ratio. The actuator corrects the basic opening so that the excess air ratio of the mixture containing reformed gas (described later) is optimized. The operation amount PS of the accelerator pedal relative to the valve opening setting device 27 is detected by the accelerator operation amount sensor 29. Also, engine 2
1 crank angle (for example, 180'' or 1°) and rotation speed N are detected by a crank angle sensor 31 provided in the disc I-rebuter 30. The air flow meter 23 constitutes an engine state detection means 32 that detects the operating state of the engine 21.Liquid fuel (for example, methanol) is injected into the intake manifold 26 by an injector (liquid fuel injection means) 33, and a gas valve (reformer) is injected into the intake manifold 26. The reformed gas obtained by reforming the liquid fuel is injected by the gas injection means 34 at predetermined injection timings.The reformed gas supplied to the gas valve 34 is the liquid fuel that is supplied to the gas valve 34 via the fuel flow control valve 35. aisle 36
The liquid fuel flowing into the reformer 38 provided in the exhaust passage 37 through the filter is reformed in the reformer 38 by the action of a reforming catalyst that utilizes high-temperature exhaust gas (flowing as shown by the black arrow in the figure). The reformed gas is discharged into the gas passage 39 and is supplied to the gas valve 34 via a cooling gas cooler 40 and a gas cutoff valve 41. Here, the reformed gas is hydrogen (for example, when methanol is reformed).
The main components are combustible components such as -50%) and carbon oxide (25%), and its combustion rate is extremely high compared to the methanol mixture. The flow rate of liquid fuel flowing into the reformer 38 is controlled by a fuel flow control valve 35, and this fuel flow control valve 35 has a duty ratio of 5 to 100% at a constant frequency of 20 Hz, for example, depending on the duty ratio of the pulse signal. If the fuel flow rate changes, the fuel flow rate is controlled within the range of 0.5 to 10 kg/h. Further, the gas cutoff valve 41 is, for example, an engine 2
When the gas valve 34 is stopped, the gas passage 39 is shut off and the supply of reformed gas to the gas valve 34 is stopped. The pressure Pc of the reformed gas is detected by a gas pressure sensor 42 provided in the gas passage 39, and the temperature Pc of the reformed gas is detected by a gas temperature sensor 43. Furthermore, the catalyst temperature Tc in the reformer 38
at is detected by the catalyst temperature sensor 44. The exhaust passage 37 is provided with an exhaust bypass valve 45 that allows exhaust gas to bypass the reformer 38 without flowing through it, and an actuator 46 that drives the valve, and a muffler 47 is connected to the downstream side of the reformer 38. . The actuator 46 controls the amount of exhaust gas bypassed by the exhaust bypass valve 45.
The catalyst temperature Treat within 3 days of the reformer is set to a predetermined temperature (for example, 4
50°C) or below. Each of the sensors 23, 29, 3
Each signal from 1.42.43.44 is input to the control unit 48, and the control unit 48 controls the valve opening ratio actuator 28 based on these signals.
It controls the fuel flow control valve 35, the gas cutoff valve 4], and the actuator 46, and outputs a liquid injection signal SL to the injector 33 and a gas injection signal Scr to the gas valve 34 at mutually different predetermined injection timings. The injector 33 has a liquid injection signal S
The gas valve 34 is driven only for the time that L is input to inject liquid fuel, while the gas valve 34 is driven for only the time that the gas injection device S(:T is input) to inject reformed gas.

コントロールユニット48は第4図に詳細を示すように
、MPL+ (中央演算装置)49と、RAM(@み出
し書き込みメモリ)50と、ROM(読み出し専用メモ
リ)51と、■10(入出力信号処理装置)52と、噴
射完了検出回路(噴射完了検出手段)53と、から構成
されており、前記各センサ23.29.31.42.4
3.44からの各信号がl1052に入力されている。
As shown in detail in FIG. 4, the control unit 48 includes an MPL+ (central processing unit) 49; device) 52, and an injection completion detection circuit (injection completion detection means) 53, each of the sensors 23.29.31.42.4
Each signal from 3.44 is input to l1052.

さらに、l1052はその入力側に上記以外の各種セン
サに接続される各種信号用入力端子、例えばエンジン冷
却水温センサ端子54、車速センサ端子55、イグニッ
ションスイッチ端子56、アイドルスイッチ端子57、
ニュートラルスイッチ端子58を備え、またその出力側
に上記以外の各種アクチュエータに接続される各種信号
出力用端子、例えば点火時期制御端子59、アイドル回
転制御端子60を備えている。噴射完了検出回路53は
抵抗R1、コンデンサC1、オペアンプOPIおよびダ
イオードD1を有しており、l1052から出力される
液体噴射信号SLの立下りエツジを抵抗R1とコンデン
サC1による微分回路で検出してオペアンプ○P1で増
幅した後、その立下りエツジにおいてのみダイオードD
Iを介してl1052の入力側に噴射完了を検出するパ
ルス信号を供給する。ROM51にはMPU49を制御
するプログラムが書き込まれており、またRAM50は
l1052からの外部データの一次記憶等を行う。MP
U49はROM51に書き込まれているプログラムに従
ってl1052に入力される各信号に基づいて前記バル
ブ開度比アクチュエータ28、燃料流量制御弁35、ガ
ス遮断弁41およびアクチュエータ46の各制御値を演
算してl1052を介して制御信号を出力するとともに
、液体燃料および改質ガスのそれぞれの噴射量や噴射タ
イミングを演算してl1052を介して液体噴射信号s
Lおよびガス噴射信号SCrをそれぞれ出力する。なお
、l1052に入力される信号は必要に応じてセンサア
ンプで増幅され、またl1052から出力される信号は
必要に応じてドライバで励振される。
Furthermore, the l1052 has input terminals for various signals connected to various sensors other than those mentioned above on its input side, such as an engine coolant temperature sensor terminal 54, a vehicle speed sensor terminal 55, an ignition switch terminal 56, an idle switch terminal 57,
A neutral switch terminal 58 is provided, and various signal output terminals connected to various actuators other than those mentioned above are provided on the output side thereof, such as an ignition timing control terminal 59 and an idle rotation control terminal 60. The injection completion detection circuit 53 includes a resistor R1, a capacitor C1, an operational amplifier OPI, and a diode D1.The falling edge of the liquid injection signal SL output from the l1052 is detected by a differentiating circuit consisting of the resistor R1 and the capacitor C1, and the operational amplifier is detected. ○After amplification at P1, diode D is applied only at the falling edge.
A pulse signal for detecting injection completion is supplied to the input side of I1052 via I. A program for controlling the MPU 49 is written in the ROM 51, and a RAM 50 temporarily stores external data from the l1052. M.P.
U49 calculates each control value of the valve opening ratio actuator 28, fuel flow control valve 35, gas cutoff valve 41, and actuator 46 based on each signal input to l1052 according to the program written in ROM51, and executes l1052. In addition to outputting a control signal via 1052, the injection amounts and injection timings of liquid fuel and reformed gas are calculated and a liquid injection signal s is output via l1052.
L and a gas injection signal SCr, respectively. Note that the signal input to the l1052 is amplified by a sensor amplifier as necessary, and the signal output from the l1052 is excited by a driver as necessary.

次に、ROM51に書き込まれた制御プログラムは第5
図、第10図および第12図に表示するフローチャート
で示すことができ、これらの図においてPユ〜P4.は
フローチャートの各ステップを示している。
Next, the control program written in the ROM 51 is
10 and 12, and in these figures Pyu to P4. shows each step of the flowchart.

最初に第5図を参照してエンジン吸入混合気制御につい
て説明する。プログラムがスタートすると、まず、P、
でアクセル操作、量PSおよび回転数Nに対応する低負
荷率Tpoを第6図に示すデータテーブルよりルックア
ップし、P2でこの低負荷率Tpoから基本ガス燃比α
go、基本空気過剰率λ0をそれぞれ第7図および第8
図に示すデータテーブルよりルックアップする。
First, engine intake mixture control will be explained with reference to FIG. When the program starts, first P,
Look up the low load factor Tpo corresponding to the accelerator operation, quantity PS, and rotation speed N from the data table shown in FIG. 6, and calculate the basic gas fuel ratio α from this low load factor Tpo in P2
go and the basic excess air ratio λ0 in Figures 7 and 8, respectively.
Look up from the data table shown in the figure.

すなわち、低負荷率Tpoはエンジンの運転状態に対応
して適切に設定され、この低負荷率’l’p。
That is, the low load factor Tpo is appropriately set according to the operating state of the engine, and this low load factor 'l'p.

に応じてエンジン21の運転状態に最適な改質ガス供給
量割合の基本値を示す基本ガス燃比αg。
The basic gas fuel ratio αg indicates the basic value of the reformed gas supply rate that is optimal for the operating state of the engine 21 according to the following.

がルックアップされる。なお、基本ガス燃比αg。is looked up. In addition, the basic gas fuel ratio αg.

とは全燃料に対する改質ガスの重量割合を示す。indicates the weight ratio of reformed gas to the total fuel.

また、基本空気過剰率λ0は改質ガスの燃焼に必要な理
論空気流量に対する実際の空気流量の比を示し、低負荷
率Tpoに応じてルックアンプされる。この場合、基本
空気過剰率λ0は部分負荷ではλo=1.7に設定され
、また高負荷ではλO=0,9〜1.7の範囲に設定さ
れ負荷が高くなる程小さい値(0,9)に近づく。次に
、P3で改質器38の暖機状態を判別し、暖機時であれ
ばp−+で改質器38の触媒温度Tcatに応じたガス
燃比限界αglimを決定しくαglimは、その触媒
温度Tcatで改質器38が供給できる改質ガスの上限
値に相当)、冷態時であればP、でエンジン21が始動
時であるか否かを判別する。そして、始動時であればP
。で改質ガスの圧力P4に基づいてガス燃比限界αgl
imを決定し、また始動時以外(停止時片あればP9で
ガス燃比限界αgl imを零とする。P8で改質器3
8の暖機状態に応じて決定したガス燃比限界αglim
を前記基本ガス燃比αgoと比較し、これらの値のうち
小さい方をガス燃比αgとし、さらにこのガス燃比αg
に基づいて空気過剰率λを設定する。
Further, the basic excess air ratio λ0 indicates the ratio of the actual air flow rate to the theoretical air flow rate required for combustion of the reformed gas, and is look-amplified according to the low load ratio Tpo. In this case, the basic excess air ratio λ0 is set to λo = 1.7 at partial load, and set to λo = 0.9 to 1.7 at high load, and the higher the load, the smaller the value (0.9 ) approach. Next, the warm-up state of the reformer 38 is determined in P3, and if it is warm-up, the gas fuel ratio limit αglim corresponding to the catalyst temperature Tcat of the reformer 38 is determined in p-+. It is determined whether the engine 21 is starting or not based on the temperature Tcat (corresponding to the upper limit of the reformed gas that can be supplied by the reformer 38), and P if it is in a cold state. And when starting, P
. Based on the reformed gas pressure P4, the gas fuel ratio limit αgl
Determine im, and set the gas fuel ratio limit αgl im to zero in P9 if there is a difference other than when starting (at stop).In P8, set the gas fuel ratio limit αgl im to zero.
Gas fuel ratio limit αglim determined according to the warm-up condition of 8.
is compared with the basic gas fuel ratio αgo, the smaller of these values is taken as the gas fuel ratio αg, and this gas fuel ratio αg
Set the excess air ratio λ based on .

空気過剰率λは、例えばαglim>αgoのときには
λ−λ0とし、一方αglim<αgoのときにはオー
1.1+αgとする。すなわち、P8においてエンジン
21の要求値である基本ガス燃比αg。
For example, the excess air ratio λ is set to λ-λ0 when αglim>αgo, and is set to O1.1+αg when αglim<αgo. That is, the basic gas fuel ratio αg is the required value of the engine 21 in P8.

と改質ガスの供給可能値であるガス燃比限界αglim
とを比較し、実際に供給できる範囲内で最適の値を選択
する。そして、P、で吸入空気量Ga、空気過剰率Aお
よび回転数Nに基づいて基本噴射量’rpをT p =
 K x ’IjL x ’ (タタL、KはN人 定数)なる関係式で演算する。以下、上記のように演算
した基本噴射量’rp、ガス燃比αgに基づいてガスバ
ルブ34およびインジェクタ33の各開弁時間Ti6.
TiLをそれぞれ設定するとともに、空気過剰率λに基
づいてバルブ開度設定信号Svを出力する。すなわち、
Pつで基本噴射量’rpに対する改質ガスの供給量割合
、すなわちガス基本噴射量T p(qOをT pro−
αg”rpとして演算し、pHでこのガス基本噴射量T
p(。
and the gas fuel ratio limit αglim, which is the value at which reformed gas can be supplied.
and select the optimal value within the range that can actually be supplied. Then, at P, the basic injection amount 'rp is determined based on the intake air amount Ga, excess air ratio A, and rotational speed N as T p =
It is calculated using the relational expression K x 'IjL x' (Tata L and K are constants for N people). Hereinafter, each valve opening time Ti6 of the gas valve 34 and the injector 33 is calculated based on the basic injection amount 'rp and the gas fuel ratio αg calculated as described above.
TiL is set, and a valve opening setting signal Sv is output based on the excess air ratio λ. That is,
P is the supply amount ratio of reformed gas to the basic injection amount 'rp, that is, the gas basic injection amount T p (qO is T pro-
Calculated as αg”rp, and the basic injection amount T of this gas is calculated using pH.
p(.

をガスバルブ流量係数KV、圧力補正係数に、PG、温
度補正係数KTGおよび作動補正係数TSによって補正
しガス噴射量Tpqを演算する。
is corrected by the gas valve flow coefficient KV, pressure correction coefficient, PG, temperature correction coefficient KTG, and operation correction coefficient TS to calculate the gas injection amount Tpq.

そして、P+2でガス噴射量T p(、に対応するガス
バルブ34の開弁時間T+(qを設定する。一方、基本
噴射量Tpに対する液体燃料の供給量割合、すなわち液
体基本噴射量T I)LOはP+3でTpl。
Then, at P+2, the opening time T+(q) of the gas valve 34 corresponding to the gas injection amount Tp(, is set. On the other hand, the supply amount ratio of liquid fuel to the basic injection amount Tp, that is, the basic liquid injection amount T I)LO is P+3 and Tpl.

=(1−αg)・”rpとして演算し、pH4でこの液
体基本噴射量TpLoをエンジン21の運転状態に基づ
く各種増量補正係数C0EF (、例えば、始動時増量
補正、アイドル後増量補正等による各種増W補正を指す
)および作動補正係数TSによって補正し液体噴射量T
pLを演算する。そして、P+5で液体噴射量Tptに
対応するインジェクタ33の開弁時間TiLを設定する
。さらに、Pl、で既に設定した空気過剰率λに対する
最適なエアバルブ開度AVを第9図に示すデータテーブ
ルよりルックアンプし、P+7で実際のエアバルブ開度
Apを入力する。p19でこのエアバルブ開度Avと実
際のエアバルブ開度Apとの比較を行い、バルブ開度設
定器27に対する制御量Cvを演算する。この場合、A
 p > A Vのときはエアバルブ24を閉とする制
御iCvを、Ap〈Avのときは開、またAp=Avの
ときは停止とする制御iCvを演、算する。そして、P
l’1でこの制御量Cvに対応するバルブ開度設定信号
Svをエアバルブ開度比アクチュエータ28に出力する
。したがって、アクセルペダルに連動して変化するエア
バルブ24の開度が吸入混合気の空気過剰率λを常に最
適とするように補正され、エンジン21の燃焼性能を良
好に保つことができる。
= (1-αg)・”rp, and at pH 4, this liquid basic injection amount TpLo is adjusted to various increase correction coefficients C0EF based on the operating state of the engine 21 (for example, various increase correction coefficients such as start-up increase correction, post-idle increase correction, etc.) ) and the operation correction coefficient TS to adjust the liquid injection amount T.
Calculate pL. Then, the valve opening time TiL of the injector 33 corresponding to the liquid injection amount Tpt is set at P+5. Furthermore, the optimum air valve opening AV for the excess air ratio λ already set at Pl is look-amplified from the data table shown in FIG. 9, and the actual air valve opening Ap is input at P+7. At step p19, this air valve opening degree Av is compared with the actual air valve opening degree Ap, and a control amount Cv for the valve opening degree setter 27 is calculated. In this case, A
A control iCv that closes the air valve 24 when p>AV, a control iCv that opens the air valve 24 when Ap<Av, and stops it when Ap=Av is calculated. And P
At l'1, a valve opening setting signal Sv corresponding to this control amount Cv is output to the air valve opening ratio actuator 28. Therefore, the opening degree of the air valve 24, which changes in conjunction with the accelerator pedal, is corrected so that the excess air ratio λ of the intake air-fuel mixture is always optimized, and the combustion performance of the engine 21 can be maintained at a good level.

次に、上記のように設定したガス噴射量Tpqおよび液
体噴射量TpLに対応する改質ガスおよび液体燃料は第
10図に示すフローチャートに従ってそれぞれインテー
クマニホールド26内に噴射され、この噴射タイミング
は第11図B−eに表示するタイミングチャートのよう
に示される。
Next, the reformed gas and liquid fuel corresponding to the gas injection amount Tpq and liquid injection amount TpL set as described above are respectively injected into the intake manifold 26 according to the flowchart shown in FIG. This is shown in the timing chart shown in Figures B-e.

第10図において、P21でクランク角センサ31がら
のクランク角θを入力し、P22でクランク角θが所定
角度lN1T (例えば、エンジン21の1回転に相当
するクランク角で36o°毎の角度)にあるか否かを判
別する。クランク角θが所定角度lN1Tであれば(第
11図a参照)、P23でガス燃費αgがαg=1であ
るが否が、すなわちエンジン21に供給される燃料がす
べて改質ガスであるか否かを判別し、αg=1でなけれ
ば(例えば、高負荷で改質ガスと液体燃料とを共に噴射
するとき)P2+で液体噴射信号sLをインジェクタ3
3に出力する。これにより、インジェクタ33が前記開
弁時間TiLだけ駆動され(第1111fflb参照)
、インテークマニホールド26内に液体噴射量TpLに
応じた液体燃料を噴射する。
In FIG. 10, the crank angle θ from the crank angle sensor 31 is input at P21, and at P22 the crank angle θ is set to a predetermined angle lN1T (for example, every 36° at the crank angle corresponding to one rotation of the engine 21). Determine whether it exists or not. If the crank angle θ is a predetermined angle lN1T (see FIG. 11a), it is determined in P23 whether the gas fuel consumption αg is αg=1, that is, whether all the fuel supplied to the engine 21 is reformed gas or not. If αg=1 (for example, when injecting reformed gas and liquid fuel together under high load), the liquid injection signal sL is sent to the injector 3 at P2+.
Output to 3. As a result, the injector 33 is driven for the valve opening time TiL (see No. 1111fflb).
, liquid fuel is injected into the intake manifold 26 according to the liquid injection amount TpL.

この液体燃料は吸気弁の近傍で蒸発しその周囲を冷却す
るとともに、該吸気弁近傍に滞留する。
This liquid fuel evaporates near the intake valve, cools the surrounding area, and stays near the intake valve.

次いで、P25で液体燃料の噴射が完了したか否かを判
別し、完了していなければP21にリターンし、完了す
れば(第11図C参照)P、bでガス噴射信号S。をガ
スバルブ34に出力する。これにより、ガスバルブ34
が前記開弁時間Ti6だけ駆動され(第11図C参照)
、インテークマニホールド26内にガス噴射量Tp4に
応じた改質ガスを噴射する。このとき、インテークマニ
ホールド26内の吸気弁近傍には液体燃料の蒸気が滞留
しており、改質ガスはこの蒸気によって冷却された後、
液体燃料と共に(第11図C参照)所定のタイミングで
シリンダ内に吸入され燃焼する。
Next, in P25, it is determined whether or not the injection of liquid fuel has been completed. If it has not been completed, the process returns to P21, and if it has been completed (see FIG. 11C), a gas injection signal S is generated at P and b. is output to the gas valve 34. As a result, the gas valve 34
is driven for the valve opening time Ti6 (see FIG. 11C).
, the reformed gas is injected into the intake manifold 26 according to the gas injection amount Tp4. At this time, liquid fuel vapor remains near the intake valve in the intake manifold 26, and after the reformed gas is cooled by this vapor,
Together with the liquid fuel (see FIG. 11C), it is sucked into the cylinder at a predetermined timing and combusted.

このように、高負荷条件においては改質ガスのみが液体
燃料よりも先にシリンダ内に吸入されるという現象を回
避することができるとともに、シリンダ内に吸入される
際の改質ガスの温度を液体燃料の蒸気によって低下させ
ることができるため、改質ガスによる逆火の発生を防止
することができる。一方、pzaでαg=1であると判
別されたとき(例えば、低負荷で改質ガスのみを噴射す
るとき)は、P2うで直ちにガス噴射信号34をガスバ
ルブ34に出力し、インテークマニホールド26内に改
質ガスを噴射する。この低負荷条件においては、改質ガ
スに対する空気過剰率λが大きく (λ−1,7)設定
サレテおり、改質ガスによる吸入混合気が稀薄状態にあ
る。
In this way, it is possible to avoid the phenomenon that only the reformed gas is drawn into the cylinder before the liquid fuel under high load conditions, and also to reduce the temperature of the reformed gas when it is drawn into the cylinder. Since the temperature can be lowered by the vapor of the liquid fuel, it is possible to prevent backfire from occurring due to the reformed gas. On the other hand, when pza determines that αg = 1 (for example, when injecting only reformed gas at low load), P2 immediately outputs the gas injection signal 34 to the gas valve 34, and the gas inside the intake manifold 26 is Inject reformed gas to. Under this low load condition, the excess air ratio λ to the reformed gas is set to a large value (λ-1, 7), and the intake air-fuel mixture due to the reformed gas is in a lean state.

したがって、改質ガスの濃度が薄いことがらその燃焼速
度が遅くまた、シリンダ内が高負荷条件に比して比較的
低温であり、逆火の発生はない。
Therefore, since the concentration of the reformed gas is low, its combustion rate is slow, and the temperature inside the cylinder is relatively low compared to the high load condition, so no flashback occurs.

次に、改質器38の制御プログラムを第12図で説明す
る。Pa1で改質ガスの基本流量Ticat(すなわち
、ガスバルブ34がら噴射される単位時間当りの噴射量
)を入力し、Pa2で改質ガス圧力PcTを入力する。
Next, a control program for the reformer 38 will be explained with reference to FIG. At Pa1, the basic flow rate Ticat of the reformed gas (that is, the injection amount per unit time injected from the gas valve 34) is input, and at Pa2, the reformed gas pressure PcT is input.

P33で改質ガス圧力P(。At P33, the reformed gas pressure P(.

を所定基準圧力(例えば3に+r/d)と比較して基本
流量Ticatを比例補正し、さらにP3+で積分補正
する。そして、P35でこの補正した改質ガス流量に対
応する流量制御信号312を燃料流量制御弁35に出力
して、改質器38への液体燃料流入量を適切に制御する
。次いで、P3.で触媒温度Tcatを入力し、P3’
?で触媒温度Tcatに対する最適な排気バイパス弁4
5の閉じIBV丁を第13図に示すデータテーブルより
ルックアンプする。また、Pa1?で運転状態、すなわ
ち回転数Nと基本噴射量Tpとによって決定されるエン
ジン21の運転状態に対する最適な排気バイパス弁45
の閉じ量BVεを第14図に示すデータテーブルよりル
ックアンプし、P3(lでこれらの閉じ量BVT、BV
日のうち小さい方を制御閉じ量B vsとして設定する
。これは、排気温度の急激な変化に対する触媒の過熱を
防止するためである。次いで、P2Oで制御閉じ量BV
sと実際の閉じ量Bvpとの比較を行い、排気バイパス
弁45駆動用のアクチュエータ46に対する制御量C,
を演算する。この場合、BVp>BVsのときは排気バ
イパス弁45を閉とする制御量Cl−1を、BVp<B
Vs(Dときは開、またBVp=BVsのときは停止と
する制御量C)lを演算する。そして、P41でこの制
御量Cl−1に対応する閉じ量制御信号SI3を排気バ
イパス弁45駆動用のアクチュエータ46に出力する。
is compared with a predetermined reference pressure (for example, 3+r/d), the basic flow rate Ticat is proportionally corrected, and further integrally corrected with P3+. Then, in P35, the flow control signal 312 corresponding to the corrected reformed gas flow rate is output to the fuel flow control valve 35 to appropriately control the amount of liquid fuel flowing into the reformer 38. Next, P3. Enter the catalyst temperature Tcat in P3'
? The optimal exhaust bypass valve 4 for the catalyst temperature Tcat in
Look-amplify the closing IBV of No. 5 from the data table shown in FIG. Also, Pa1? The optimum exhaust bypass valve 45 for the operating state of the engine 21 determined by the operating state, that is, the rotation speed N and the basic injection amount Tp.
Look-amp the closing amount BVε from the data table shown in FIG.
The smaller of the two days is set as the controlled closing amount B vs. This is to prevent the catalyst from overheating due to sudden changes in exhaust gas temperature. Next, the control closing amount BV is set at P2O.
s and the actual closing amount Bvp are compared, and the control amount C, for the actuator 46 for driving the exhaust bypass valve 45 is determined.
Calculate. In this case, when BVp>BVs, the control amount Cl-1 for closing the exhaust bypass valve 45 is changed to BVp<B
Calculate Vs (control amount C)l which opens when D and stops when BVp=BVs. Then, in P41, the closing amount control signal SI3 corresponding to this control amount Cl-1 is output to the actuator 46 for driving the exhaust bypass valve 45.

したがって、改質器38内の触媒は所定温度(例えば、
450°C)以下で(すなわち、過熱が防止され)、か
つ液体燃料を効率よく改質ガスに改質できる温度に保持
される。
Therefore, the catalyst in the reformer 38 is at a predetermined temperature (e.g.
450° C.) (that is, overheating is prevented) and maintained at a temperature at which liquid fuel can be efficiently reformed into reformed gas.

〔効果〕〔effect〕

本発明によれば、改質ガスと液体燃料の両方をエンジン
に供給する運転条件において、液体燃料を先に噴射し、
この液体燃料の噴射完了後に改質ガスを噴射することが
でき、改質ガスのみが液体燃料よりも先にシリンダ内に
吸入されるという現象を避けることができるとともに、
シリンダ内に吸入される改質ガスの温度を液体燃料の蒸
気によって低下させることができる。
According to the present invention, under operating conditions in which both reformed gas and liquid fuel are supplied to the engine, the liquid fuel is injected first,
The reformed gas can be injected after the injection of this liquid fuel is completed, and it is possible to avoid the phenomenon that only the reformed gas is sucked into the cylinder before the liquid fuel, and
The temperature of the reformed gas drawn into the cylinder can be lowered by the vapor of the liquid fuel.

その結果、改質ガスによる逆火の発生を防止することが
できる。
As a result, occurrence of flashback due to the reformed gas can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の改質ガスエンジンの燃料噴射制御装置を
示す構成図、第2図は本発明の全体構成図、第3〜14
図は本発明の一実施例を示す図であり、第3図はその概
略構成図、第4図はそのコントロールユニットの詳細を
示す構成図、第5図はその吸入混合気を制御するプログ
ラムのフローチャート、第6図はそのアクセルペダル操
作量および回転数と仮負荷率との関係を示す図、第7図
はその仮負荷率と基本ガス燃費との関係を示す図、第8
図はその仮負荷率と基本空気過剰率との関係を示す図、
第9図はその空気過剰率とエアバルブ開度との関係を示
す図、第10図はその液体燃料および改質ガスの噴射を
制御するプログラムのフローチャート、第11図a −
eはその噴射制御の作用を説明するためのタイミングチ
ャートを示す図、第12図はその改質器を制御するプロ
グラムのフローチャート、第13図はその触媒温度と排
気バイパス弁閉じ量との関係を示す図、第14図はその
回転数および基本噴射量と排気バイパス弁閉じ量との関
係を示す図である。 21−−−−・−エンジン、 32−−−−−一エンジン状態検出手段、33−・−・
−インジェクタ(液体燃料噴射手段)、34−・−ガス
バルブ(改質ガス噴射手段)、53−−−−−一噴射完
了検出回路(噴射完了検出手段)。 特許出願人      日産自動車株式会社代理人弁理
士 有我軍一部 第6図 第7図 イ瓦9所牢(Tr。) 第8図 第9図 ・カータV山安ト剰剖さくλノ 第10図 第11図
Fig. 1 is a block diagram showing a conventional fuel injection control device for a reformed gas engine, Fig. 2 is an overall block diagram of the present invention, and Figs.
The figures are diagrams showing one embodiment of the present invention, FIG. 3 is a schematic configuration diagram thereof, FIG. 4 is a configuration diagram showing details of its control unit, and FIG. 5 is a diagram of a program for controlling the intake air-fuel mixture. Flowchart, FIG. 6 is a diagram showing the relationship between the accelerator pedal operation amount and rotation speed, and the temporary load factor, FIG. 7 is a diagram showing the relationship between the temporary load factor and the basic gas fuel consumption, and FIG.
The figure shows the relationship between the provisional load rate and the basic excess air rate.
Fig. 9 is a diagram showing the relationship between the excess air ratio and the air valve opening degree, Fig. 10 is a flowchart of the program that controls the injection of liquid fuel and reformed gas, and Fig. 11 a-
e is a diagram showing a timing chart for explaining the action of the injection control, FIG. 12 is a flowchart of a program that controls the reformer, and FIG. 13 is a diagram showing the relationship between the catalyst temperature and the exhaust bypass valve closing amount. The figure shown in FIG. 14 is a diagram showing the relationship between the rotation speed, the basic injection amount, and the exhaust bypass valve closing amount. 21-------Engine, 32----Engine state detection means, 33---
- Injector (liquid fuel injection means), 34 - Gas valve (reformed gas injection means), 53 - Injection completion detection circuit (injection completion detection means). Patent Applicant Nissan Motor Co., Ltd. Representative Patent Attorney Yuga Army Part Figure 6 Figure 7 A Kawara 9 Jail (Tr.) Figure 8 Figure 9 Kata V Yamato Surrender Section λ No. 10 Figure 11

Claims (1)

【特許請求の範囲】 液体燃料錦改質して得られる改質ガスと未改質の液体燃
料とをエンジンの運転状態に応じて供給量割合を変えて
使用するようにした改質ガスエンジンの燃料噴射制御装
置において、液体燃料を噴射する液体燃料噴射手段と、
改質ガ/ スを噴射する改質ガス噴射手段り、液体燃料の噴射完了
を検出する噴射完了検出手段と、エンジンの運転状態を
検出するエンジン状態検出手段とンエンジンの運転状態
に基づいて燃料噴射量を演算するとともに該燃料噴射量
に対する液体燃料と改質ガスの供給量割合を設定する噴
射量設定手段と、液体燃料供給量割合に対応して液体燃
料噴射手段を駆動する液体噴射信号を出力するとともに
、液体燃料の噴射完了が検出されるとガス供給量割合に
対応して改質ガス噴射手段を駆動するガス噴射信号を出
力する噴射制御手段と、を備えたことを特徴とする改質
ガスエンジンの燃料噴射制御装置。
[Scope of Claims] A reformed gas engine that uses reformed gas obtained by reforming liquid fuel Nishiki and unreformed liquid fuel by changing the supply amount ratio according to the operating condition of the engine. In the fuel injection control device, liquid fuel injection means for injecting liquid fuel;
A reformed gas injection means for injecting reformed gas, an injection completion detection means for detecting completion of injection of liquid fuel, and an engine state detection means for detecting the operating state of the engine. An injection amount setting means that calculates the injection amount and sets a supply amount ratio of liquid fuel and reformed gas to the fuel injection amount, and a liquid injection signal that drives the liquid fuel injection means in accordance with the liquid fuel supply amount ratio. and injection control means for outputting a gas injection signal that drives the reformed gas injection means in accordance with the gas supply amount ratio when completion of injection of liquid fuel is detected. Fuel injection control device for quality gas engines.
JP58070309A 1983-04-20 1983-04-20 Fuel injection controller of modified gas engine Pending JPS59194070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58070309A JPS59194070A (en) 1983-04-20 1983-04-20 Fuel injection controller of modified gas engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58070309A JPS59194070A (en) 1983-04-20 1983-04-20 Fuel injection controller of modified gas engine

Publications (1)

Publication Number Publication Date
JPS59194070A true JPS59194070A (en) 1984-11-02

Family

ID=13427728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58070309A Pending JPS59194070A (en) 1983-04-20 1983-04-20 Fuel injection controller of modified gas engine

Country Status (1)

Country Link
JP (1) JPS59194070A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278254A (en) * 2006-04-11 2007-10-25 Honda Motor Co Ltd Control device of internal combustion engine
JP2013057260A (en) * 2011-09-07 2013-03-28 Toyota Motor Corp Fuel injection device for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278254A (en) * 2006-04-11 2007-10-25 Honda Motor Co Ltd Control device of internal combustion engine
JP2013057260A (en) * 2011-09-07 2013-03-28 Toyota Motor Corp Fuel injection device for internal combustion engine

Similar Documents

Publication Publication Date Title
US6725829B2 (en) Combustion control apparatus of diesel engine
US6782696B2 (en) Control device and method for a diesel engine and diesel engine
KR101704064B1 (en) Variable ignition type engine for complex combustion using diesel and gasoline, method for controlling of the same and complex combustion system using diesel and gasoline
EP0987419B1 (en) Internal combustion engine
US20060086083A1 (en) In-cylinder method for air/fuel ratio control
JP2007211612A (en) Engine control method and engine control system
JP2008128029A (en) Control device for internal combustion engine
JP2005023850A (en) Air-fuel ratio proportional control system of internal combustion engine
JP2009047014A (en) Control device for diesel engine
JP2009156090A (en) Exhaust recirculating device of variable cylinder internal combustion engine
JP3539238B2 (en) Internal combustion engine
JP3356075B2 (en) Internal combustion engine
JP4524966B2 (en) Diesel engine control system
JPS59194070A (en) Fuel injection controller of modified gas engine
JP4924280B2 (en) Diesel engine control device.
JP2008128118A (en) Control system of compression ignition type internal combustion engine
JP2002317640A (en) Supercharged gas engine
JPH07166973A (en) Exhaust gas recycling device for engine
JP4775225B2 (en) Control system for compression ignition internal combustion engine
JP3331991B2 (en) Internal combustion engine
JP2008128106A (en) Control system of compression ignition type internal combustion engine
JP4057984B2 (en) Fuel injection control device for internal combustion engine
JP2008195109A (en) Control system for compression ignition type internal combustion engine
JPH10274104A (en) Exhaust gas purifying device for cylinder injection type engine
JP3551744B2 (en) Exhaust gas recirculation control device for in-cylinder injection type internal combustion engine