JPS5867941A - Method of adjusting engine basic air/fuel ratio - Google Patents

Method of adjusting engine basic air/fuel ratio

Info

Publication number
JPS5867941A
JPS5867941A JP16741181A JP16741181A JPS5867941A JP S5867941 A JPS5867941 A JP S5867941A JP 16741181 A JP16741181 A JP 16741181A JP 16741181 A JP16741181 A JP 16741181A JP S5867941 A JPS5867941 A JP S5867941A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
fuel
valve
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16741181A
Other languages
Japanese (ja)
Inventor
Yuzuru Tanaka
譲 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Toyo Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Toyo Kogyo Co Ltd filed Critical Mazda Motor Corp
Priority to JP16741181A priority Critical patent/JPS5867941A/en
Publication of JPS5867941A publication Critical patent/JPS5867941A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/0015Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for using exhaust gas sensors
    • F02D35/0046Controlling fuel supply
    • F02D35/0053Controlling fuel supply by means of a carburettor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of The Air-Fuel Ratio Of Carburetors (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To make the scattering of adjusted values of a basic air/fuel ratio small, by holding the adjustment of an air/fuel ratio setting mechanism in the vicinity of a range where the output of an oxygen concentration detector displayed under specific conditions are abruptly changed. CONSTITUTION:An oxygen concentration detector 7 in an air/fuel ratio feedback controlled type engine 1 is electrically connected to a solenoid valve 9 through a control circuit 8, and an idle port 23 opened to the downstream of a Venturi part 4 disposed in an intake passage 2, is adjusted in its open degree through a mixture adjusting screw 22 for controlling the flow of fuel. At first, a stationary duty oscillator 29 is started to be actuated for carrying out stationary duty control of the valve 9 after the valve 9 is connected to the oscillator 29 and the detector 7 is connected to a display unit 30 under the condition of deenergization of the circuit 8, and then the open degree of the port 23 is adjusted by rotating the screw 22 while the display unit 30 is observed for holding a desired air/fuel ratio.

Description

【発明の詳細な説明】 本発明は空燃比フィードバック制御式エンジンの基本空
燃比を所望値に調整する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for adjusting the basic air-fuel ratio of an air-fuel ratio feedback control type engine to a desired value.

一般に、エンジンの吸気系に設けた混合気供給装置(例
えば、気化器あるいは燃料噴射装置)によって、一定の
空燃比(以下、基本空燃比と呼ぶ)を設定し、エンジン
の排気系に設けた酸素濃度検出器か−、らの出力信号に
基づく空燃比補正信号により、空燃比補正装置を作動さ
せて空燃比を補正制御する空燃比フィードバック制御式
エンジンでは、前記基本空燃比を調整することが極めて
重要であることが知られている。
Generally, a fixed air-fuel ratio (hereinafter referred to as the basic air-fuel ratio) is set by a mixture supply device (for example, a carburetor or a fuel injection device) installed in the engine's intake system, and an oxygen In an air-fuel ratio feedback control engine that operates an air-fuel ratio correction device to correct the air-fuel ratio using an air-fuel ratio correction signal based on an output signal from a concentration detector, it is extremely difficult to adjust the basic air-fuel ratio. known to be important.

このような基本空燃比を調整する方法としては、例えば
特開昭5グー乙り乙77のように、空燃比のフィードバ
ック制御を行いつつ、その際の空燃比補正信号の電圧値
を電圧計で測定しながら、所望の基本空燃比(電圧値)
になるように基本空燃比設定機構を調整するものがある
As a method of adjusting the basic air-fuel ratio, for example, as shown in Japanese Patent Application Laid-Open No. 5-1977, while performing feedback control of the air-fuel ratio, the voltage value of the air-fuel ratio correction signal at that time is measured with a voltmeter. While measuring, set the desired basic air-fuel ratio (voltage value)
There is one that adjusts the basic air-fuel ratio setting mechanism so that

ところが、このような方法では、フィードバック制御中
には空燃比がリーン、リッチと変動するため、エンジン
の回転が不安定となり、また、電圧計も、振れが生ずる
。しだ力(つで、このような電圧計の針の振れを観視し
て調整すること力)ら、調整値の所望値に対するノくう
゛ンキカ(大きく、調整に時間を要するという不具合力
(ある。
However, with this method, the air-fuel ratio fluctuates between lean and rich during feedback control, making engine rotation unstable and causing the voltmeter to fluctuate. In addition to the force required to observe and adjust the voltmeter needle, there are also forces that affect the desired value of the adjustment value. be.

本発明はかかる点に鑑みてなされたもので、111工記
フイ一ドバツク制御式エンジンにおG1て、生産ライン
で簡単にかつ短時間に基本空燃比の調整力(できるとと
−もに、エンジンの回転力(安定し、調整値のバラツキ
i小さくすることができるエンジンの基本空燃比調整方
法を提供することを主目的とする。
The present invention has been made in view of the above points, and uses a 111-day feedback control type engine to easily and quickly adjust the basic air-fuel ratio on the production line. The main object of the present invention is to provide a basic air-fuel ratio adjustment method for an engine that can stabilize engine rotational force and reduce variation in adjustment values.

先ず、本発明方法によって調整される空燃比フィードパ
、り制御式エンジンの全体構成について説明する。
First, the overall configuration of an air-fuel ratio feedper controlled engine that is adjusted by the method of the present invention will be described.

第1 図ニオいて、1はエンジン、2は吸気通路。In Figure 1, 1 is the engine and 2 is the intake passage.

6は排気通路である。吸気通路2は途中にベンチ二り部
4が介設され、該ベンチュリ部4の下流側にアクセルペ
ダル(図示せず)に連動しエンジン1に供給される混合
気量を制御する絞弁5が回動可能に軸支されている。一
方、排気通路3は途中に三元触媒6(触媒装置)が介設
され、その上流側に02センサ7(酸素濃度検出器)が
設けられている。この02センサ7は、空燃比フィード
バック制御回路8を介して、空燃比をデユーティ制御す
る電磁弁9(空燃比補正装置)に電気的に連係されてい
る。この空燃比フィードバック制御回路8の基本的構成
は、例えば、02センサ7の出力と理論空燃比に対応す
る設定値との偏差信号を出力する比較回路、該偏差信号
の比例信号を出力する比例回路、偏差信号の積分信号を
出力する積分回路、比例信号と積分信号とを加算した空
燃比iす御信号を出力する加算回路、空燃比制御信号に
応じてデユーティ比を制御するデユーティ比制御回路、
該デユーティ比制御回路にトリが信号を出力するトリが
信号発生回路、デユーティ比制御回路からのデユーティ
比に応じて電磁弁9を作動せしめる電磁弁作動回路から
なっている。
6 is an exhaust passage. A bench part 4 is interposed in the middle of the intake passage 2, and a throttle valve 5 is provided downstream of the venturi part 4 to control the amount of air-fuel mixture supplied to the engine 1 in conjunction with an accelerator pedal (not shown). Rotatably supported. On the other hand, a three-way catalyst 6 (catalyst device) is interposed in the exhaust passage 3, and an 02 sensor 7 (oxygen concentration detector) is provided upstream of the three-way catalyst 6 (catalyst device). This 02 sensor 7 is electrically linked via an air-fuel ratio feedback control circuit 8 to a solenoid valve 9 (air-fuel ratio correction device) that performs duty control of the air-fuel ratio. The basic configuration of the air-fuel ratio feedback control circuit 8 includes, for example, a comparison circuit that outputs a deviation signal between the output of the 02 sensor 7 and a set value corresponding to the stoichiometric air-fuel ratio, and a proportional circuit that outputs a proportional signal of the deviation signal. , an integration circuit that outputs an integral signal of the deviation signal, an addition circuit that outputs an air-fuel ratio control signal obtained by adding the proportional signal and the integral signal, a duty ratio control circuit that controls the duty ratio according to the air-fuel ratio control signal,
A signal generating circuit outputs a signal to the duty ratio control circuit, and a solenoid valve operating circuit operates the solenoid valve 9 in accordance with the duty ratio from the duty ratio control circuit.

また、電磁弁9は、本体9aの上側に取付けられたコイ
ル9b内を移動し、かつ第1弁部9Cと第2弁部9dと
を有する弁体9eを具備している。
Further, the electromagnetic valve 9 includes a valve body 9e that moves within a coil 9b attached to the upper side of the main body 9a and has a first valve portion 9C and a second valve portion 9d.

この電磁弁9の本体9a下端1こζま補助ジェット10
が螺着され、また、弁体9eの第2弁部9dと等市助ジ
ェット10との間にはスプリング9f力f介装されて弁
体9eが上方向に(図面におむ)て)常時付勢サレ、さ
らに、補助ジェット10の上流fll11部分(第2弁
部9dの下端部が位置する空間)−と、フロート室11
とが連通口9qlこて連通されてG)る。12は筒状の
支持部材で、弁体9Cの第1弁部9Cと若干の間隙を存
してその外側番こ配設さit、上部内側には第1弁部9
C上端の円盤部9hカ(当接する円筒状部材16が螺着
されてGする。また、支持部材12内の空所は、連通口
12aを通じて、吸気通路2に一端が開口するスローエ
アブリ−ド通路14に連通している。
One auxiliary jet 10 at the lower end of the main body 9a of this solenoid valve 9
is screwed on, and a spring 9f is interposed between the second valve part 9d of the valve body 9e and the auxiliary jet 10, so that the valve body 9e is directed upward (as seen in the drawing). In addition, the upstream fl11 portion of the auxiliary jet 10 (the space where the lower end of the second valve portion 9d is located) and the float chamber 11 are constantly energized.
G) is communicated with the trowel through the communication port 9ql. Reference numeral 12 denotes a cylindrical support member, which is disposed on the outside with a slight gap between it and the first valve part 9C of the valve body 9C, and on the inside of the upper part.
The disk portion 9h at the upper end of C (the cylindrical member 16 that comes into contact with it is screwed into G. It is connected to 14.

15はベンチュリ部4の上流側の吸気通路2(こ開口す
るメインエアブリード、16はさら薔こその上流側で開
孔17を通じて吸気通路21こ開口するスローエアブリ
ードで、それぞれ高負荷時および低負荷時において燃料
の霧化促進および空燃比の設定を図るものである。スロ
ーエアブリード16の下流側部分は、連通路18を通じ
て円筒状部材13の上流側空間に連通されるとともに、
全開時の絞弁5付近に開口−されたスローポート19に
、通路20を通じて連通されている。
15 is a main air bleed that opens in the intake passage 2 on the upstream side of the venturi part 4, and 16 is a slow air bleed that opens in the intake passage 21 through an opening 17 on the upstream side of the rib. This is intended to promote fuel atomization and set the air-fuel ratio during load.The downstream portion of the slow air bleed 16 is communicated with the upstream space of the cylindrical member 13 through the communication passage 18, and
It communicates through a passage 20 with a slow port 19 that is opened near the throttle valve 5 when it is fully open.

21はベンチュリ部4の中央部に突出するように支持さ
れたメインノズルで、ベンチュリ部4に発生する負圧に
よってフロート室11より燃料が吸い出される。22は
ミクスチャアジャストスクリュで、その先端部がアイド
ルポート23の開口量を調整し、それによって燃料の流
出匿したがって空燃比を制御する。
A main nozzle 21 is supported so as to protrude from the center of the venturi section 4, and fuel is sucked out from the float chamber 11 by the negative pressure generated in the venturi section 4. 22 is a mixture adjustment screw, the tip of which adjusts the opening amount of the idle port 23, thereby controlling the outflow and containment of fuel and thus the air-fuel ratio.

24は主燃料通路25に介設されたメインジェットで、
その上流側は連通路26を通じてフロート室11に接続
される一方、下流側においてはメインエアブリード15
より吸入されるエアと燃料とが混合され、メインノズル
21を通じて吸気通路2へ流出するように構成されてい
る。27は補助燃料通路で、補助ジェット10の下流側
部分が、連通路28を通じて、メインジェット24下流
側の主燃料通路25に連通されている。
24 is a main jet installed in the main fuel passage 25;
Its upstream side is connected to the float chamber 11 through a communication passage 26, while its downstream side is connected to the main air bleed 15.
The fuel is mixed with the air that is taken in, and the mixture is configured to flow out into the intake passage 2 through the main nozzle 21. Reference numeral 27 denotes an auxiliary fuel passage, and the downstream portion of the auxiliary jet 10 is communicated with the main fuel passage 25 downstream of the main jet 24 through a communication passage 28 .

続いて、上記エンジン1の基本空燃比を調整する方法を
説明すると、先ず、例えば生産ラインにおいて、空燃比
フィードバック制御回路8が取外された状態、あるいは
空燃比フィードバック制御回路8が取付けられている場
合には該空燃比フィードバック制御回路8の作動を停止
せしめた状態で、電磁弁9に固定デユーティ発振器29
(例えば固定デユーティ比3.5%に設定されている)
を、02センサ7に表示ランプを備えた表示器30をそ
れぞれ電気的に接続する(第1図参照)。この表示器3
0の表示ランプは、第2図に示すように、02センサ7
の出力電圧が理論空燃比(/X7)付近で急激に変化し
、かつ02センサの出力電圧がほぼθpvに対応してい
ることから、前記出力電圧がθyv以上で点灯し、θp
v未満で消灯するように構成されている。したがって、
前記表示ランプの点滅により、空燃比が理論空燃比に調
整されたことが容易にわかる。
Next, a method for adjusting the basic air-fuel ratio of the engine 1 will be explained. First, for example, on a production line, the air-fuel ratio feedback control circuit 8 is removed, or the air-fuel ratio feedback control circuit 8 is installed. In this case, the fixed duty oscillator 29 is connected to the solenoid valve 9 while the air-fuel ratio feedback control circuit 8 is stopped.
(For example, the fixed duty ratio is set to 3.5%)
and a display 30 equipped with a display lamp are electrically connected to the 02 sensor 7 (see FIG. 1). This display 3
The 0 indicator lamp indicates the 02 sensor 7 as shown in FIG.
Since the output voltage of the 02 sensor changes rapidly near the stoichiometric air-fuel ratio (/X7) and the output voltage of the 02 sensor approximately corresponds to θpv, the light turns on when the output voltage is θyv or higher, and θp
It is configured to turn off when the voltage is less than v. therefore,
By blinking the indicator lamp, it can be easily seen that the air-fuel ratio has been adjusted to the stoichiometric air-fuel ratio.

しかる後、固定デユーティ発振器29を作動させ、該発
振器29から発せられる、固定デユーティ比3j噂に対
応する一定の制御信号によって、電磁弁9の作動を固定
デニーティ制御する。
Thereafter, the fixed duty oscillator 29 is activated, and the operation of the electromagnetic valve 9 is controlled with a fixed duty by a constant control signal generated from the oscillator 29 corresponding to the fixed duty ratio 3j.

この状態において、02センサ7の出力変化を、表示器
30を通じて検出しつつ、ミクスチャアジャストスクリ
ュ22を回転させてアイドルポート23の開口量を調整
し、それによって空燃比が所望値(理論空燃比に対応す
る基本空燃比)になると、表示器3oの表示ランプが点
灯から消灯へまたは消灯から点灯へと変化し、この変化
時にミクスチャアジャストスクリュ22の調整が保持さ
れ、アイドル運転状態における基本空燃比の調整作業が
終了する。
In this state, while detecting the output change of the 02 sensor 7 through the display 30, the mixture adjustment screw 22 is rotated to adjust the opening amount of the idle port 23, thereby bringing the air-fuel ratio to the desired value (the stoichiometric air-fuel ratio). When the corresponding basic air-fuel ratio is reached, the indicator lamp on the display 3o changes from lighting to turning off or from turning off to lighting, and during this change, the adjustment of the mixture adjustment screw 22 is maintained, and the basic air-fuel ratio in the idling operating state is maintained. Adjustment work is completed.

カくシて、基本空燃比が調整されたエンジン1は、固定
デユーティ発振器29と表示器3oとの接続が解除され
、その後、電磁弁9の制御は、空燃比フィードバック制
御回路8によって行われることになる。
In the engine 1 whose basic air-fuel ratio has been adjusted, the fixed duty oscillator 29 and the display device 3o are disconnected, and the solenoid valve 9 is then controlled by the air-fuel ratio feedback control circuit 8. become.

上記実施例では、表示器としては、表示ランプを備えた
ものを採用したが、そのほか電圧計そのものを用いるこ
ともでき、また理論空燃比の電圧(θ<tV)と02セ
ンサの出力電圧とを比較して調整時に理論空燃比となっ
た時表示ランプを点灯する表示器を用いることもできる
In the above embodiment, an indicator equipped with an indicator lamp was used as the indicator, but a voltmeter itself could also be used, and the voltage of the stoichiometric air-fuel ratio (θ<tV) and the output voltage of the 02 sensor could be used. It is also possible to use an indicator that lights up an indicator lamp when the stoichiometric air-fuel ratio is reached during comparison and adjustment.

また、上記実施例では、固定デユーティ発振器29の固
定デユーティ比を3j%としたが、このように固定デユ
ーティ比をリーン側に、例えば30〜グθ%に調整して
おけば、電磁弁9が故障してデユーティ比θ%となった
場合においても空燃比のリッチ度合が少ないため燃費の
面で有利である。
Further, in the above embodiment, the fixed duty ratio of the fixed duty oscillator 29 was set to 3j%, but if the fixed duty ratio is adjusted to the lean side, for example, 30 to θ%, the solenoid valve 9 Even when a failure occurs and the duty ratio is reduced to θ%, the degree of richness of the air-fuel ratio is small, which is advantageous in terms of fuel efficiency.

本発明は、上記のように、空燃比フィードバック制御の
作動を停止して、空燃比補正装置を固定した制御信号で
作動させた状態で行うため、エンジン回転が安定し、基
本空燃比の調整値のバラツキが小さくなる。また、酸素
濃度検出器の出力が理論空燃比付近で急激に変化するこ
とを利用しているため、製造ラインでの、基本空燃比の
調整が簡単にかつ短時間に行うことができる等の種々の
優れた効果を有する。
As described above, in the present invention, the operation of the air-fuel ratio feedback control is stopped and the air-fuel ratio correction device is operated with a fixed control signal, so that the engine rotation is stabilized and the adjusted value of the basic air-fuel ratio is The variation becomes smaller. In addition, since the output of the oxygen concentration detector takes advantage of the fact that the output changes rapidly near the stoichiometric air-fuel ratio, it is possible to easily and quickly adjust the basic air-fuel ratio on the production line, etc. It has excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が適用される空燃比フィードバック制御
式エンジンの全体構成図、第、2図は空燃比と02セン
サの出力電圧との関係を示すグラフである。 1・・・・・・エンジン、2・・・・・・吸気通路、3
・・・・・・r11気通路、5・・・・・・絞弁、7・
・・・・・0,1センサ、8・・・・・・空燃比フィー
ドバック、9・・・・・・電磁弁、22・・・・・・ミ
クスチャアジャストスクリュ、23・・・・・・アイド
ルボーl−,29−・・・・・固定デユーティ発振器、
60・・・・・・表示器
FIG. 1 is an overall configuration diagram of an air-fuel ratio feedback control type engine to which the present invention is applied, and FIGS. 2 and 2 are graphs showing the relationship between the air-fuel ratio and the output voltage of the 02 sensor. 1...Engine, 2...Intake passage, 3
......r11 air passage, 5...throttle valve, 7.
...0,1 sensor, 8...Air-fuel ratio feedback, 9...Solenoid valve, 22...Mixture adjustment screw, 23...Idle Baud l-, 29-...Fixed duty oscillator,
60... Display unit

Claims (1)

【特許請求の範囲】[Claims] (カ エンジンの吸気系に設けた混合気供給装置によっ
て基本空燃比を設定し、エンジンの?JI気系に設けた
酸素濃度検出器からの出力1バ号に基づ(空燃比補正信
号により、空燃比補正装置を作動させて空燃比を補正制
御する空燃比フィードバック制御式エンジンの前記基本
空燃比を調整する方法において、前記空燃比フィードバ
ック制御の作動を停止し、前記空燃比補正装置を固定し
た制御信号で作動させた状態にして前記゛酸素濃度検出
器の出力変化を表示し、該表示した酸素濃度検出器の出
力が急激に変化する付近で前記混合気供給装置の空燃比
設定機構の調整を保持することを特徴とするエンジンの
基本空燃比調整方法。
(F) The basic air-fuel ratio is set by the air-fuel mixture supply device installed in the engine's intake system, and based on the output No. 1 from the oxygen concentration detector installed in the engine's ? In the method for adjusting the basic air-fuel ratio of an air-fuel ratio feedback control engine, which operates an air-fuel ratio correction device to correct and control the air-fuel ratio, the operation of the air-fuel ratio feedback control is stopped and the air-fuel ratio correction device is fixed. Displaying a change in the output of the oxygen concentration detector while activated by a control signal, and adjusting the air-fuel ratio setting mechanism of the air-fuel mixture supply device in the vicinity where the displayed output of the oxygen concentration detector suddenly changes. A basic air-fuel ratio adjustment method for an engine characterized by maintaining the following.
JP16741181A 1981-10-19 1981-10-19 Method of adjusting engine basic air/fuel ratio Pending JPS5867941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16741181A JPS5867941A (en) 1981-10-19 1981-10-19 Method of adjusting engine basic air/fuel ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16741181A JPS5867941A (en) 1981-10-19 1981-10-19 Method of adjusting engine basic air/fuel ratio

Publications (1)

Publication Number Publication Date
JPS5867941A true JPS5867941A (en) 1983-04-22

Family

ID=15849192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16741181A Pending JPS5867941A (en) 1981-10-19 1981-10-19 Method of adjusting engine basic air/fuel ratio

Country Status (1)

Country Link
JP (1) JPS5867941A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278254A (en) * 2006-04-11 2007-10-25 Honda Motor Co Ltd Control device of internal combustion engine
JP2009074439A (en) * 2007-09-20 2009-04-09 Toyota Central R&D Labs Inc Engine system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278254A (en) * 2006-04-11 2007-10-25 Honda Motor Co Ltd Control device of internal combustion engine
JP2009074439A (en) * 2007-09-20 2009-04-09 Toyota Central R&D Labs Inc Engine system

Similar Documents

Publication Publication Date Title
US3942493A (en) Fuel metering system
US4308835A (en) Closed-loop fluidic control system for internal combustion engines
JPH0610768A (en) Method and device for controlling carbureter
JPS5867941A (en) Method of adjusting engine basic air/fuel ratio
US3951121A (en) Fuel injection system
FR2463288A1 (en) DEVICE FOR CONTROLLING THE AIR-FUEL RATIO FOR AN INTERNAL COMBUSTION ENGINE
JP2002155787A (en) Fuel control device of lpg engine
JPS6217111B2 (en)
JPS6146198Y2 (en)
JPH0921355A (en) Air-fuel ratio control device of gas engine
JPS6123857A (en) Air-fuel ratio controlling method and system for lpg engine
JPS6394039A (en) Method of controlling fuel for internal combustion engine and device therefor
JP3333808B2 (en) Gas fueled engine with pressure regulator
KR910007156Y1 (en) Lpg control device in automobile
JPS62288355A (en) High responsive electronically controlled carburetor
JPS61123752A (en) Fuel or combustion assisting agent feeder
JPH0330615Y2 (en)
JPS5840284Y2 (en) Carburetor with air-fuel ratio control device
JPS62199958A (en) Control method for oxygen concentration
JPS57131853A (en) Air fuel ratio control process and device for internal combustion engine of low temperature liquefied gas
JPS5933885Y2 (en) Internal combustion engine fuel supply system
JPS63243444A (en) Liquefied gas controlling method for engine
JPH0733813B2 (en) Gas pressure control method for sub chamber of gas engine
JPS61185665A (en) Air-fuel ratio control device of variable venturi carburetor
JPS584183B2 (en) Mixing ratio control device for LPG engine