JPS584183B2 - Mixing ratio control device for LPG engine - Google Patents

Mixing ratio control device for LPG engine

Info

Publication number
JPS584183B2
JPS584183B2 JP53071553A JP7155378A JPS584183B2 JP S584183 B2 JPS584183 B2 JP S584183B2 JP 53071553 A JP53071553 A JP 53071553A JP 7155378 A JP7155378 A JP 7155378A JP S584183 B2 JPS584183 B2 JP S584183B2
Authority
JP
Japan
Prior art keywords
fuel
control device
passage
negative pressure
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53071553A
Other languages
Japanese (ja)
Other versions
JPS54163221A (en
Inventor
横田昌一郎
松村良一
堀江正和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP53071553A priority Critical patent/JPS584183B2/en
Publication of JPS54163221A publication Critical patent/JPS54163221A/en
Publication of JPS584183B2 publication Critical patent/JPS584183B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

【発明の詳細な説明】 本発明はLPG機関の混合比制御装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a mixture ratio control device for an LPG engine.

従来のLPG機関のLPG混合器は主燃料供給系(メイ
ン系)のみであり、アイドリング運転時にはベンチュリ
負圧(メインノズル負圧)が低下するため、混合比のバ
ラツキが大きいという欠点があった。
The LPG mixer of a conventional LPG engine has only a main fuel supply system (main system), and has the disadvantage that the mixture ratio varies widely because the venturi negative pressure (main nozzle negative pressure) decreases during idling operation.

このため近年では、低速燃料供給系(スロー系)を設け
て、絞り弁下流の負圧により燃料を供給したり、絞り弁
上流に正圧を加えた燃料を供給するようにしている。
For this reason, in recent years, a low-speed fuel supply system (slow system) has been provided to supply fuel using negative pressure downstream of the throttle valve, or to supply fuel with positive pressure applied upstream of the throttle valve.

ところが、これらの方法ではスロー燃料が機関運転条件
の全域においてほぼ一定の流量で供給されるので、メイ
ン系の燃料によって決定される混合比(理論的には一定
)に比してメイン系とスロ一系とを総合した混合比は機
関運転条件により濃い部分と薄い部分とがでてくる。
However, in these methods, slow fuel is supplied at a nearly constant flow rate over the entire range of engine operating conditions, so the ratio between the main system and the slow fuel is greater than the mixture ratio determined by the main system fuel (theoretically constant). The total mixture ratio of the two systems will have a richer part and a thinner part depending on the engine operating conditions.

なぜなら、ベンチュリ部を流れる空気流量をQas メ
イン系の燃料流量をQ f m , スロー系の燃料
流量をQfsとすると、ベンチュリ部の負圧はQaによ
り決定されるので、おおよそQaヴQfmとなり、従っ
て混合比(X)は次式となる。
This is because if the air flow rate flowing through the venturi section is Qas, the fuel flow rate of the main system is Qfm, and the fuel flow rate of the slow system is Qfs, the negative pressure in the venturi section is determined by Qa, so it is approximately QavQfm, and therefore The mixing ratio (X) is expressed by the following formula.

ここで、Qfsはほぼ一定であるから、空気流量Qaが
大きくなると混合比が薄くなる傾向がある。
Here, since Qfs is approximately constant, as the air flow rate Qa increases, the mixture ratio tends to become thinner.

従って、理論混合比運転を狙いとするシステムとしては
極めて不利であった。
Therefore, it was extremely disadvantageous as a system aiming at stoichiometric mixing ratio operation.

本発明はこのような実情に鑑み、メイン系と、スロー系
とを備えると共に、メイン系の燃料流量を補正する補正
燃料通路と、LPG混合器の吸気通路のベンチュリ部上
流に連通し絞り弁部下流に開口する補正空気通路とを備
え、更に補正燃料通路及び補正空気通路にそれぞれ燃料
及び空気流量制御装置を備え、排気系に設けられた排気
センサの信号に基づいて共通の電磁弁を介して前記各制
御装置の作動を制御することにより機関に供給される混
合気を所定の混合比に制御すべく構成したLPG機関の
混合比制御装置を提供するものである。
In view of these circumstances, the present invention includes a main system and a slow system, a correction fuel passage that corrects the fuel flow rate of the main system, and a throttle valve part that communicates with the upstream of the venturi part of the intake passage of the LPG mixer. The correction air passage opens downstream, and the correction fuel passage and the correction air passage each include a fuel and air flow rate control device, and the air flow is controlled via a common solenoid valve based on a signal from an exhaust sensor installed in the exhaust system. The present invention provides a mixture ratio control device for an LPG engine configured to control the mixture supplied to the engine to a predetermined mixture ratio by controlling the operations of the respective control devices.

以下、本発明を図面に示す一実施例に従って説明する。Hereinafter, the present invention will be explained according to an embodiment shown in the drawings.

第1図において、1はLPG混合器の吸気通路であって
、ベンチュリ部2と一次側及び二次側絞り弁3,4を備
え、空気とLPG燃料とを混合する。
In FIG. 1, reference numeral 1 denotes an intake passage of an LPG mixer, which includes a venturi section 2 and primary and secondary throttle valves 3 and 4, and mixes air and LPG fuel.

尚、5は吸気管、6は機関の燃焼室、7は排気管である
Note that 5 is an intake pipe, 6 is a combustion chamber of the engine, and 7 is an exhaust pipe.

8はペーパライザーであって、LPG燃料の圧力を一定
として供給する装置で、一次圧室8aの圧力は1.3気
圧、二次圧室8bの圧力は1.0気圧付近に自動的に調
整される。
Reference numeral 8 denotes a paperizer, which is a device that supplies LPG fuel at a constant pressure, and automatically adjusts the pressure in the primary pressure chamber 8a to 1.3 atm and the pressure in the secondary pressure chamber 8b to around 1.0 atm. be done.

9はメイン燃料供給系のメイン通路であって、ペーパラ
イザー8の二次圧室8bと連通し、一側端が吸気通路1
のベンチュリ部2に開口している。
Reference numeral 9 denotes a main passage of the main fuel supply system, which communicates with the secondary pressure chamber 8b of the paper riser 8, and has one end connected to the intake passage 1.
It opens into the venturi section 2 of.

このメイン通路9にはメインジェット10を備えている
This main passage 9 is equipped with a main jet 10.

11は補正燃料通路であって、メイン通路9のメインジ
ェット10の上流から分岐してメインジェット10の下
流に連通しており、この通路11には燃料流量制御装置
(可変ジェット)が設けられている。
A correction fuel passage 11 branches from the main passage 9 upstream of the main jet 10 and communicates downstream of the main jet 10, and this passage 11 is provided with a fuel flow rate control device (variable jet).

この燃料流量制御装置は、負圧室12a内の負圧とスプ
リング12bの弾撥力との釣合いによりダイアフラム1
2cを介して弁体12dが図で上下動し、作動制御負圧
の増大時に弁開度が減少するよう構成された制御弁12
からなる。
This fuel flow control device uses a diaphragm 1 by balancing the negative pressure in the negative pressure chamber 12a and the elastic force of the spring 12b.
The control valve 12 is configured such that the valve body 12d moves up and down through the valve 2c, and the valve opening decreases when the operation control negative pressure increases.
Consisting of

13はスロー燃料供給系のスロー通路であって、ペーパ
ライザ8の一次圧室8aと連通し、一側端が吸気通路1
の一次側絞り弁3の下流に開口している。
Reference numeral 13 denotes a slow passage of the slow fuel supply system, which communicates with the primary pressure chamber 8a of the paperizer 8, and has one end connected to the intake passage 1.
It opens downstream of the primary throttle valve 3.

このスロー通路13にはスロージェット即ちスロー用燃
料調整ネジ14を備えている。
This slow passage 13 is provided with a slow jet, that is, a slow fuel adjustment screw 14.

15は補正空気通路であって、吸気通路1のベンチュリ
部2上流と連通し、一側端が吸気通路1の二次側絞り弁
4下流に開口している。
Reference numeral 15 denotes a correction air passage, which communicates with the upstream side of the venturi portion 2 of the intake passage 1, and has one end opening downstream of the secondary throttle valve 4 of the intake passage 1.

この空気通路15には空気流量制御装置が設けられてい
る。
This air passage 15 is provided with an air flow rate control device.

この空気流量制御装置は、負圧室16a内の負圧とスプ
リング16bの弾撥力との釣合いによりダイアフラム1
6cを介して弁体16dが図で上下動し、作動制御負圧
の増大時に弁開度が増大するように構成された制御弁1
6からなる。
This air flow control device uses a balance between the negative pressure in the negative pressure chamber 16a and the elastic force of the spring 16b to
The control valve 1 is configured such that the valve body 16d moves up and down as shown in the figure via the valve body 6c, and the valve opening degree increases when the operation control negative pressure increases.
Consists of 6.

前記2つの制御弁12,16の各負圧室12a,16a
へ導かれる作動制御負圧は同じものであり、その負圧通
路17はオリフイス18及び定圧弁119を介して吸入
負圧源と連通ずると共に、オリフイス20及び電磁弁2
1を介して大気に開放されている。
Each negative pressure chamber 12a, 16a of the two control valves 12, 16
The operation control negative pressure led to is the same, and the negative pressure passage 17 communicates with the suction negative pressure source via the orifice 18 and the constant pressure valve 119, and also communicates with the suction negative pressure source through the orifice 20 and the solenoid valve 2.
1 to the atmosphere.

従って、作動制御負圧は、吸入負圧を負圧源として定圧
弁19で得た一定の負圧を電侮弁21により大気で希釈
制御して得られる。
Therefore, the operation control negative pressure is obtained by controlling the constant negative pressure obtained by the constant pressure valve 19 to be diluted with the atmosphere by the electric valve 21 using the suction negative pressure as the negative pressure source.

この電磁弁21は電子制御回路22から出力される駆動
パルスにより作動し、電子制御回路22は排気中の酸素
濃度を検出する02センサ23からの信号を受けて混合
気が理論混合比となるように演算を行ない駆動パルスを
出力する。
This solenoid valve 21 is operated by a drive pulse output from an electronic control circuit 22, and the electronic control circuit 22 receives a signal from an 02 sensor 23 that detects the oxygen concentration in the exhaust gas, and adjusts the air-fuel mixture to the stoichiometric mixing ratio. It performs calculations and outputs drive pulses.

混合比制御の態様について第2図を参照して説明すれば
、排気中の酸素濃度に応じた02センサ23の出力電圧
を電子制御回路22において理論混合比に相当する比較
電圧と比較して比較出力を得、これを比例及び積分操作
して駆動パルスのテユーテイ比(パルス周期に対するパ
ルス巾の比)を演算し、これに基づいて電磁弁21へ駆
動パルスを出力する。
To explain the mode of mixture ratio control with reference to FIG. 2, the output voltage of the 02 sensor 23 according to the oxygen concentration in the exhaust gas is compared with a comparison voltage corresponding to the theoretical mixture ratio in the electronic control circuit 22. An output is obtained, which is subjected to proportional and integral operations to calculate the duty ratio (ratio of pulse width to pulse period) of the drive pulse, and based on this, the drive pulse is output to the electromagnetic valve 21.

この結果、電磁弁21の作動により作動制御負圧が得ら
れ、この負圧の減少時即ち排気中の酸素濃度が薄い希薄
混合比のときには、補正空気通路15の制御弁16の開
度が減少し、同時に補正燃料通路11の制御弁12の開
度が増大し、混合比を濃厚化して理論混合比に近づける
As a result, an operation control negative pressure is obtained by operating the solenoid valve 21, and when this negative pressure decreases, that is, when the oxygen concentration in the exhaust gas is low and the mixture ratio is lean, the opening degree of the control valve 16 of the correction air passage 15 decreases. At the same time, the opening degree of the control valve 12 of the correction fuel passage 11 increases, enriching the mixture ratio and bringing it closer to the stoichiometric mixture ratio.

尚、この場合の混合比制御は制御周期の寺時間だけ時間
遅れを生じる。
Note that the mixture ratio control in this case causes a time delay by the length of the control period.

かくして、メイン系は補正燃料通路11の制御弁12に
より燃料流量を制御し、またスロー系は補正空気通路1
5の制御弁16により空気流量を制御するわけである。
Thus, the main system controls the fuel flow rate by the control valve 12 of the correction fuel passage 11, and the slow system controls the fuel flow rate by the control valve 12 of the correction fuel passage 11.
The air flow rate is controlled by the control valve 16 of No. 5.

そして特にアイドリンク運転時の混合比制御についてみ
れば、スロー通路13を通じて供給される正圧の燃料に
対し、補正空気通路15を通じて制御弁16により流量
制御された空気を供給するわけである。
Particularly regarding the mixture ratio control during idle-link operation, air whose flow rate is controlled by the control valve 16 is supplied through the correction air passage 15 to the positive pressure fuel supplied through the slow passage 13.

ここで、メインジェット10および補正燃料通路11を
流れる燃料流量をそれぞれQ’fm,Q″fm,補正空
気通路15を流れる空気流量をQasとすると、混合比
(−)は次式となる。
Here, if the fuel flow rates flowing through the main jet 10 and the correction fuel passage 11 are respectively Q'fm and Q''fm, and the air flow rate flowing through the correction air passage 15 is Qas, the mixture ratio (-) is expressed by the following equation.

従って、要求燃料量の少ないアイドリンク運転時はスロ
ー系の補正空気量Qasを制御し、その他の要求燃料量
の多い運転時はメイン系の補正燃料量Q″fmを制御す
れば混合比は常に一定にでき、機関運転条件の全域にわ
たって均一な混合比を取り易いため理論混合比に制御し
易い。
Therefore, if the slow system correction air amount Qas is controlled during idle link operation where the required fuel amount is small, and the main system correction fuel amount Q″fm is controlled during other operations where the required fuel amount is large, the mixture ratio will always be maintained. It is easy to maintain a constant mixing ratio and maintain a uniform mixing ratio over the entire range of engine operating conditions, so it is easy to control the mixing ratio to the stoichiometric ratio.

また、アイドリング運転時スロー系の燃料流量の制御は
、微少の燃料流量を制御することになり、制御が難しい
と共に、燃料通路の面積が非常に小さいため、タール等
の不純物が堆積して制御精度に劣る欠点があるが、本考
案においては混合比の制御を流量の大きい空気流量を制
御することにより行なうので、これらの欠点が解消され
る。
In addition, controlling the fuel flow rate in the slow system during idling is difficult because it involves controlling a very small fuel flow rate, and since the area of the fuel passage is extremely small, impurities such as tar may accumulate, resulting in poor control accuracy. However, in the present invention, since the mixing ratio is controlled by controlling the air flow rate, which has a large flow rate, these drawbacks can be overcome.

尚、補正空気通路15の空気流量制御装置をアイドリン
グ運転時のみ作動させるべく構成してもよい。
Note that the air flow rate control device for the correction air passage 15 may be configured to operate only during idling.

また、燃料流量制御装置及び空気流量制御装置を電子制
御回路により作動する電磁弁で構成してもよい。
Further, the fuel flow rate control device and the air flow rate control device may be configured with electromagnetic valves operated by an electronic control circuit.

更に、スロー通路13の一側端を第1図に破線に示す如
くメイン通路9の吸気通路1への出口近傍に連通させて
もよい。
Furthermore, one end of the slow passage 13 may be communicated with the vicinity of the outlet of the main passage 9 to the intake passage 1, as shown by the broken line in FIG.

以上説明したように本発明によれば、主としてアイドリ
ング運転時の空気量を補正する空気流量制御装置と、ア
イドリング以外の運転時の燃料を補正する燃料流量制御
装置と、該両流量制御装置に連通する共通の負圧源と、
該負圧源と両流量制御装置間に介在し作動負圧を制御す
る共通の電磁弁と、を設けたので、制御負圧が1個の電
磁弁により制御できるとともに、両流量制御装置の制御
信号負圧が統一されて、スロー系からメイン系へのつな
がりが同期性良く連続してなされ、かつ広範囲にわたっ
て混合比を排気センサ、制御手段を介して所定値に精度
よく保持でき、また制御系の簡素化が計れる。
As explained above, according to the present invention, there is an air flow control device that mainly corrects the air amount during idling operation, a fuel flow control device that corrects the fuel amount during non-idling operation, and communication between the two flow rate control devices. a common negative pressure source to
Since a common solenoid valve that is interposed between the negative pressure source and both flow rate control devices and controls the operating negative pressure is provided, the control negative pressure can be controlled by one solenoid valve, and the control of both flow rate control devices can be controlled by one solenoid valve. The signal negative pressure is unified, the connection from the slow system to the main system is made continuously with good synchronization, and the mixture ratio can be accurately maintained at a predetermined value over a wide range via the exhaust sensor and control means. can be simplified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の一実施例を示す構成図、第2図は
混合比制御の態様を説明するタイミングチャートである
。 1・・・・・・吸気通路、2・・・・・・ベンチュリ部
、3,4・・・・・・一次側及び二次側絞り弁、8・・
・・・・ペーパライザー、9・・・・・・メイン通路、
10・・・・・・メインジェット、11・・・・・・補
正燃料通路、12.16・・・・・・制御弁、13・・
・・・・スロー通路、15・・・・・・補正空気通路、
16・・・・・・制御弁、19・・・・・・定圧弁、2
1・・・・・・電磁弁、22・・・・・・電子制御回路
、23・・・・・・02センサ。
FIG. 1 is a configuration diagram showing an embodiment of the apparatus of the present invention, and FIG. 2 is a timing chart illustrating aspects of mixing ratio control. 1... Intake passage, 2... Venturi section, 3, 4... Primary side and secondary side throttle valve, 8...
...Paperizer, 9...Main passage,
10...Main jet, 11...Correction fuel passage, 12.16...Control valve, 13...
... Slow passage, 15... Correction air passage,
16... Control valve, 19... Constant pressure valve, 2
1...Solenoid valve, 22...Electronic control circuit, 23...02 sensor.

Claims (1)

【特許請求の範囲】[Claims] I LPG機関のLPG混合器において、主燃料供給
系と、低速燃料供給系と、補正燃料通路と、該補正燃料
通路に設けられた燃料流量制御装置と、前記LPG混合
器の吸気通路のベンチュリ部上流に連通し絞り弁部下流
に開口する補正空気通路と、該補正空気通路に設けられ
た空気流量制御装置と、主としてアイドリング運転時の
空気量を補正する前記空気流量制御装置およびアイドリ
ンク以外の運転時の燃料量を補正する前記燃料流量制御
装置に連通する共通の負圧源と、該負圧源と前記両流量
制御装置間に介在し作動負圧を制御する共通の電磁弁と
、排気系に設けられた排気センサと、該センサの信号に
基づき制御出力を発する制御手段と、を有し、該制御手
段により前記電磁弁を介して前記各流量制御装置のそれ
ぞれの作動を制御することにより機関に供給される混合
気を所定の混合比に制御すべく構成されたことを特徴と
するLPG機関の混合比制御装置。
I. The LPG mixer of the LPG engine includes a main fuel supply system, a low-speed fuel supply system, a correction fuel passage, a fuel flow control device provided in the correction fuel passage, and a venturi section of the intake passage of the LPG mixer. A correction air passage that communicates upstream and opens downstream of the throttle valve portion, an air flow control device provided in the correction air passage, and a device other than the air flow control device and idle link that mainly corrects the air amount during idling operation. a common negative pressure source communicating with the fuel flow control device that corrects the amount of fuel during operation; a common solenoid valve interposed between the negative pressure source and both flow rate control devices to control the operating negative pressure; and an exhaust gas flow control device. The system includes an exhaust sensor provided in the system, and a control means that issues a control output based on a signal from the sensor, and the control means controls the operation of each of the flow rate control devices via the solenoid valve. A mixture ratio control device for an LPG engine, characterized in that it is configured to control the mixture supplied to the engine to a predetermined mixture ratio.
JP53071553A 1978-06-15 1978-06-15 Mixing ratio control device for LPG engine Expired JPS584183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53071553A JPS584183B2 (en) 1978-06-15 1978-06-15 Mixing ratio control device for LPG engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53071553A JPS584183B2 (en) 1978-06-15 1978-06-15 Mixing ratio control device for LPG engine

Publications (2)

Publication Number Publication Date
JPS54163221A JPS54163221A (en) 1979-12-25
JPS584183B2 true JPS584183B2 (en) 1983-01-25

Family

ID=13464030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53071553A Expired JPS584183B2 (en) 1978-06-15 1978-06-15 Mixing ratio control device for LPG engine

Country Status (1)

Country Link
JP (1) JPS584183B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310369Y2 (en) * 1984-11-26 1991-03-14
US5784881A (en) * 1996-01-11 1998-07-28 Hitachi Metals, Ltd. Multi-part exhaust manifold assembly with welded connections

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51108130A (en) * 1975-03-20 1976-09-25 Nissan Motor lpg nainenkikannokunenhiseigyosochi
JPS52101316A (en) * 1976-02-19 1977-08-25 Nissan Motor Co Ltd Purifying exhaust gas lpg engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51108130A (en) * 1975-03-20 1976-09-25 Nissan Motor lpg nainenkikannokunenhiseigyosochi
JPS52101316A (en) * 1976-02-19 1977-08-25 Nissan Motor Co Ltd Purifying exhaust gas lpg engine

Also Published As

Publication number Publication date
JPS54163221A (en) 1979-12-25

Similar Documents

Publication Publication Date Title
US3960118A (en) Air-fuel ratio adjusting device in an internal combustion engine having a carburetor
US3977375A (en) Arrangement for correcting the proportions of air and fuel supplied to an internal combustion engine
US4363209A (en) Air-fuel control method and apparatus for internal combustion engine
US4091781A (en) Air-fuel ratio control system in an internal combustion engine
JPS584183B2 (en) Mixing ratio control device for LPG engine
US4364357A (en) Air-fuel ratio control system
US4291658A (en) Automotive engine carburetor
JPS6053653A (en) Supply device of secondary intake air internal- combustion engine
JPS5846648B2 (en) Secondary air control device
US4617891A (en) Secondary air supply for internal combustion engine
JPS6321018B2 (en)
JP2621032B2 (en) Fuel injection control device
JPS6123857A (en) Air-fuel ratio controlling method and system for lpg engine
JPS6230290B2 (en)
JPS59170456A (en) Fluid supply feedback controller
JPH0330615Y2 (en)
JPS6030456Y2 (en) Air bypass type air fuel ratio control device
JP2614766B2 (en) Air-fuel ratio control device for gas engine
JPH04330320A (en) Air suction system
JPS62131958A (en) Air-fuel ratio control device for carburettor of internal combustion engine
JPS5852355Y2 (en) Exhaust recirculation control device
JP3260505B2 (en) Gas-fuel mixture mixture formation device
JPS62131959A (en) Air-fuel ratio control device for carburetor of internal combustion engine
JPS60249655A (en) Air-fuel ratio compensator
JPH05215045A (en) Auxiliary air supply device for engine