JP4827365B2 - 遮熱コーティング - Google Patents

遮熱コーティング Download PDF

Info

Publication number
JP4827365B2
JP4827365B2 JP2002362095A JP2002362095A JP4827365B2 JP 4827365 B2 JP4827365 B2 JP 4827365B2 JP 2002362095 A JP2002362095 A JP 2002362095A JP 2002362095 A JP2002362095 A JP 2002362095A JP 4827365 B2 JP4827365 B2 JP 4827365B2
Authority
JP
Japan
Prior art keywords
columnar particles
coating
substrate
primary
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002362095A
Other languages
English (en)
Other versions
JP2003239086A5 (ja
JP2003239086A (ja
Inventor
エス マーフィー ケネス
Original Assignee
ハウメット リサーチ コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ハウメット リサーチ コーポレイション filed Critical ハウメット リサーチ コーポレイション
Publication of JP2003239086A publication Critical patent/JP2003239086A/ja
Publication of JP2003239086A5 publication Critical patent/JP2003239086A5/ja
Application granted granted Critical
Publication of JP4827365B2 publication Critical patent/JP4827365B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/325Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with layers graded in composition or in physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component
    • Y10T428/12618Plural oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12931Co-, Fe-, or Ni-base components, alternative to each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12944Ni-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24033Structurally defined web or sheet [e.g., overall dimension, etc.] including stitching and discrete fastener[s], coating or bond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高温度に露出される構成部分における遮熱コーティングに関し、より詳細にはコーティングの構成の特徴による熱伝導率を減少した遮熱コーティングに関する。
【0002】
【従来の技術】
様々なタイプの遮熱コーティングシステムは、エンジンの作動中にタービンブレード及び翼などのニッケルとコバルトを基にする超合金の構成物を酸化及び腐食から保護するためのガスタービンエンジン工業において周知である。
【0003】
一つのタイプの遮熱コーティングシステムは、MCrlY合金のオーバーレイを含有するボンディングコートを保護する超合金構成物(基板)上の沈着を含み、ここでMは鉄、ニッケル、コバルト又はそれらの組み合わせであり、ボンディングコートの酸化はそこにアルミナ層インサイチューを形成し、次いでアルミナ層上に円柱状の形態を有するセラミックの遮熱コーティングを沈着する(例えば、特許文献1,2参照。)。
【0004】
別のタイプの遮熱コーティングシステムは、アルミニウム化ニッケル(NiAl)又はプラチナ修正型アルミニウム化ニッケル拡散層を含有するボンディングコートを保護する超合金構成物(基板)上の形成を含む(例えば、特許文献3参照。)。ボンディングコートは、そこに熱成長したアルミナ層インサイチューを形成するために酸化され、次いで円柱状の形態を有するセラミックの遮熱コーティングはアルミナ層上に沈着する。
【0005】
中間のNi−Al相を含有する外部の付加的な層を有する化学的に蒸気沈着されたプラチナ修正型拡散アルミニウム化物コーティングを含有するボンディングコートを保護する超合金構成物上の形成を含むものもある(例えば、特許文献4,5参照。)。ボンディングコートは、そこに熱成長したアルミナ層インサイチューを形成するために酸化され、次いで円柱状の形態を有するセラミックの遮熱コーティングはアルミナ層上に沈着する。
【0006】
ガスタービンエンジンの熱い部分である、例えばタービンブレードなどの構成部分を保護する航空機の適用における幅広く使用されるセラミックの遮熱コーティングは、7質量%のイットリアの安定化ジルコニア(7YSZ)を含む。このセラミックのコーティングを適用する二つの方法は幅広く使用される。電子ビームの物理的な蒸気沈着(EBPVD)は、大多数のコーティングポロシティが、基板/ボンディングコートに対して垂直に延在する、比較的濃度が高いセラミックのカラム間に位置する場合、円柱状構造のコーティングを生成するために使用される。
【0007】
エアープラズマ溶射はまた、沈着したコーティングでの約10%の質量ポロシティで生成する手法において7YSZを適用するために使用される。このポロシティは、セラミックの減少によるプラズマの“スプラット”層とミクロの深割れとの間のギャップの形態である。製造されたプラズマ溶射7YSZのセラミックコーティングの熱伝導率は、一般的にEBPVDによって適用された7YSZのセラミックコーティングの熱伝導率の約60%である。
【0008】
【特許文献1】
米国特許第4,321,310号明細書
【特許文献2】
米国特許第4,321,311号明細書
【特許文献3】
米国特許第5,238,752号明細書
【特許文献4】
米国特許第5,716,720号明細書
【特許文献5】
米国特許第5,856,027号明細書
【発明が解決しようとする課題】
本発明の目的は、改良された遮熱コーティング及びコーティング方法を提供することであり、ここでセラミックコーティングは形態的なコーティングの特徴による減少した熱伝導率を有する。
【0009】
【課題を解決するための手段】
本発明は基板上にセラミックの遮熱コーティングを提供し、ここでコーティングの少なくとも層の部分は基板表面上を横断して延在し、それぞれの円柱軸に関してそこから横に延在する不可欠な二次の円柱状粒子を含有する主要な円柱状粒子を含む。一般的に、二次の円柱状粒子は、主要な円柱状粒子の円柱軸に関して90度よりも小さい含まれた鋭角で主要な円柱状粒子から延在する。コーティング構造は、従来の遮熱コーティングと比較して、減少した熱伝導率を予期せずに表す。
【0010】
遮熱コーティングは多重層を含むことができ、ここで多重層の一つの層は本発明と一致するコーティング構造を含む。実施例のみにおいて、遮熱コーティングは、主要な円柱状粒子とそこから横に延在する二次の円柱状粒子を有する本発明と一致する従来の円柱状粒子構造と外層を有する基板の表面に隣接する内部の層を含むことができる。
【0011】
本発明はさらに遮熱コーティングを製造するEBPVD方法を提供し、ここで基板表面のセラミック物質の沈着は、コーティングの沈着中に主要な円柱状粒子の長さに沿って間隔が置かれ、主要な円柱状粒子から横に成長する二次の円柱状粒子を有する主要な円柱状粒子を成長するために制御される。
【0012】
本発明の利点と目的は、添付図と関係する下記の詳細な記載から容易に明らかとなるだろう。
【0013】
【発明の実施の形態】
本発明は、鍛造、押圧された超合金の粉末の構成部分、機械加工された構成部分、及びその他の形態などの他の形態の超合金と同様に、等軸のDS(指向的に凝固)とSC(単結晶)のインベストメント鋳造法を含むかもしれない、周知のニッケルとコバルトを基にした超合金基板を保護するために使用できる。例えば、代表的なニッケルを基にした超合金は、限定はしないが、SC並びに円柱状粒子タービンブレード及び翼を生成するために使用される、周知のRene´合金N5,MarM247,CMSX−4,PWA1422,PWA1480,PWA1484,Rene´80,Rene´142及びSC180を含む。遮熱コーティングシステムによって保護できるコバルトを基にした超合金は、限定しないが、FSX−414,X−40及びMarM509を含む。ニッケル又はコバルトを基にした超合金に制限されない本発明は、超高温度で保護するために様々な他の金属及び合金に適用できる。
【0014】
限定ではなく例示する目的において、図1は、本発明の実施態様と一致してインベストメント鋳造法によって生成でき、コーティングによって保護できる、ニッケル又はコバルトを基にした超合金のタービンブレード10を例示する。ブレード10は、燃焼器からの熱い燃焼ガスがガスタービンエンジンのタービン部分に導かれることに対する翼部分12を含む。ブレード10は、ブレードが周知である従来の手法のモミの木接続を用いてタービンディスク(示されていない)に接続されることによる土台部分14と先端部分16を含む。冷却する流気の通路(示されていない)は、周知の従来の手法で翼12の後縁12a及び/又は先端16の放電開口部(示されていない)による放電のための翼部分12により冷却空気を導くためにブレード10に形成できる。
【0015】
翼12は、本発明の実施態様と一致する遮熱コーティングシステムでコーティングすることによって、ガスタービンエンジンのタービン部分の熱い燃焼ガスから保護できる。本発明を限定するのではなく、例証する目的で提供される遮熱コーティング(TBC)システムは図2A及び2Bに示される。
【0016】
図2Aにおいて、TBCシステムは、好ましくは、ニッケル又はコバルトを基にした超合金の翼(基板)12に形成されるか又は適用される金属のボンディングコート24を含む。好ましくは、ボンディングコート24はそこに形成された薄い酸化アルミニウム(アルミナ)層28を有する。本発明の実施態様と一致する遮熱コーティング30は層28に沈着される。一般的にTBC30は、安定化ジルコニアのセラミック物質(例えば、7YSZのみ)を含み、ジルコニア相は、限定しないが、イットリアMgO,CaO,Sc,及びYbを含有する、例えば第二酸化物によって安定化する。本発明は7YSZなどの安定化ジルコニアに限定しないが、断熱相コーティングを形成するために採用される他のセラミック物質を用いて実行できる。
【0017】
金属のボンディングコート24は、修正型若しくは無修正型のアルミニウム化物拡散コーティング若しくは層、MCrAlYオーバーレイコーティングから選択でき、ここでMはニッケル及びコバルトからなるグループ、アルミニウムで処理されたMCrAlYオーバーレイ、及び他の従来のボンディングコートから選択される。好ましいボンディングコート24は、米国特許番号5,716,720号で記載されるような基板に化学蒸気沈着(CVD)及び周知の市販のMDC−150Lによって形成され、外部に向かって成長し、Ptで修正されたアルミニウム化物拡散コーティング24を含み、米国特許番号5,716,720号の教示はここに参照として組み入れられている。
【0018】
ボンディングコート24として使用できるMCrAlYオーバーレイは、米国特許番号4,321,310号及び4,321,311号に記載される。ボンディングコート24として使用できるCVDアルミニウムで処理されたMCrAlYオーバーレイは、教示がここに参照として組み入れられている、ワーンズ等の米国特許番号6,129,991号に記載されている。
【0019】
MDC−150LのPt修正型拡散アルミニウム化物ボンディングコート24は、超合金の翼(基板)12に近接の内部の拡散領域24aと、米国特許番号5,716,720に記載のようなアルミニウムとニッケル(超合金の組成に依存して又はコバルト)のプラチナ修正型(プラチナ保持)中間相を含有する外層の領域24bを含む。別の厚さが本発明で使用できるけれども、ボンディングコートの全体の厚さは一般的に約1.5乃至約3.0ミルである。
【0020】
ボンディングコート24は、ボンディングコート24へのTBC30及び層28の密着を促進する目的のために任意に仕上げされた表面であるかもしれない。MCrAlYボンディングコートは、米国特許番号4,321,310号に記載のような仕上げされた表面であるかもしれない。拡散型アルミニウム化物コーティングは、教示がここに参照として組み入れられている、共通の譲受人の同時係属出願番号09/511,857に記載のようなメディア・ボウルポリシングによって仕上げされた表面であるかもしれない。他の適切な表面の仕上げ技術は、本発明の実行のボンディングコートの表面の粗さを減少するために使用されるかもしれない。
【0021】
好ましくは、薄い粘着性の酸化アルミニウム(アルミナ)層28は、ボンディングコート24に熱成長する。酸化物層28は、セラミックの遮熱コーティング30の沈着に先だって、導かれた個々の酸化段階で形成できるか、又はコーティング30を沈着するために採用されたEBPVD処理の前処理段階で形成できるか、或いは酸化物層28を形成するために効果的な任意の別の技術を用いて形成できる。酸化アルミニウム層28は、基板からの拡散の結果としての、及び/又は酸化物層28のドーピングの結果としての別の要素を含むかもしれない。
【0022】
ボンディングコート24がMDC−150Lコーティングを含む場合、MDC−150Lコーティングは、米国特許番号5,716,720で記載されるようなアルミナ層28のインサイチュー形成を促進する約1800°Fよりも高い温度で10−4torr以下の真空などの低い分圧酸素大気、又は酸素の不純物を有するアルゴン若しくは水素の分圧大気において酸化される。限定ではなく例示する目的において、アルミナ層は、1x10−6torrまで真空炉を排気すること(1x10−4torrから1x10−3torrまで炉の脱気によって圧力レベルは実質的に上昇する)、そこに1975°FのMDC−150Lボンディングコートを有する基板のランピングによって、2時間その温度を維持することによって、及び炉から移動するために室温まで冷却することによってインサイチュー形成できる。生成された酸化物層28はアルミナの連続フィルムを含む。他の厚さが本発明の実行において使用できるが、アルミナ層の厚さは、約0.01乃至2ミクロンの範囲である。別の酸化処理は、ここに参照として組み入れられ、共通の譲受人の同時係属出願番号09/511,857号に記載されている。
【0023】
熱成長したアルミナ層28は、外部のセラミックの遮熱コーティング(TBC)を受ける。
【0024】
本発明の実施態様を例証する目的において、TBC30は、層28の表面を横断して延在する縦方向の軸AX、ボンディングコート24、及び基板12を有する主要な円柱状粒子PCを含有するものとして図2Aに示されている。横断によることは、主要な円柱状粒子PCの軸AXが構成部分(例えば、翼の基板12)の表面に対して一般的に垂直で延在するか、又は通常と比較して鋭角(例えば、35度まで)においてコーティングされた構成部分(表面に対して垂直であれば軸AXである)の表面まで延在する。
【0025】
重要なことには、主要な円柱状粒子PCは、図2AのEBPVD沈着期間の成長に関するそれぞれの主要な円柱軸AXに関する主要な円柱状粒子PCから横に延在する不可欠な二次の円柱状粒子SCを含む。二次の円柱状粒子SCはそれぞれの主要な円柱状粒子PCの長さに沿って間隔が置かれる。二次の円柱状粒子は、主要な円柱状粒子PCのそれぞれの円柱軸AXに関して90度よりも小さい鋭角ANで主要な円柱状粒子から延在する。円柱軸AXに沿った主要な円柱状粒子PCの成長は、TBC30が形成される特別のセラミックス物質の結晶格子の主要な成長方向とある程度まで関係のあるように見え、一方で鋭角ANはそのセラミックス物質の結晶格子の二次の成長方向とある程度まで関係のあるように見える。TBC30のコーティング構造は、円柱状粒子だけを有する従来の遮熱コーティングの熱伝導率と比較して、減少した熱伝導率を表す。出願人はこの説明によって拘束することを望まないし又は目的としないが、TBC30のコーティング構造の熱伝導率の減少は、ナノスケールの円柱状間のギャップと二次の円柱状粒子SCによって作られるポロシティに寄与する。
【0026】
TBC30は、図7に概略的に示されるEBPVD装置を用いて酸化物層28に電子ビームの物理的蒸気沈着(EBPVD)によって沈着でき、ここで遮熱コーティング物質のインゴットIは電子ビーム銃からの電子ビームによる加熱及び蒸発において示されるインゴットフィーダーによって供給され、蒸発したセラミック物質を含有する典型的には蒸気雲のインゴットIより上のコーティングチャンバーで位置し回転される翼基板12のアルミナ層28に圧縮される。
【0027】
コーティングチャンバーのガス圧は、基板12の表面の横に延在する主要な円柱状粒子PCを有し、加えてそれぞれの円柱軸AXに関して主要な円柱状粒子から横に延在する二次の円柱状粒子SCを有するTBC30を形成する効果を予期せずに発見されるコーティングチャンバーでのガス圧レベルを提供するために制御される。図7に示されるEBPVD装置において、コーティングチャンバーの背後ガスは一般的に酸素のみを含むが、しかしながら、他のEBPVDコーティング装置は不活性ガス(例えば、Ar,N,He,Ne,Kr,Xe,Rn,その他)などの一つ以上の他のガスと共に酸素を使用するかもしれない。加えて、コーティングチャンバーに存在するかもしれない他のガスは、HO,CO,CO,Hを含むかもしれない。特定のガス圧レベルは、図2Aとさらに図3C及び3Dで例示されるような“葉を備える茎”の円柱状形態を生成するように主要な円柱状粒子から横に成長する二次の円柱状粒子SCを備える主要な円柱状粒子PCの成長を促進するために発見され、ここで“茎”は主要な円柱状粒子PCであり、“葉”は二次の円柱状粒子SCである。TBC30を生成するために採用される特定のコーティング条件は、TBC30を形成するために使用されるセラミック物質と同様に採用されるEBPVD装置に依存するだろう。
【0028】
図7の装置を用いるEBPVDによって7YSZセラミック物質を含有するTBC30の形成において、15乃至30ミクロンの範囲における酸素のガス圧は、前述のように主要な円柱状粒子から横に成長する二次の円柱状粒子SCを有する主要な円柱状粒子PCを含有するTBC30を形成するために使用できる。
【0029】
本発明の別の実施態様を例証する目的において、TBC30は、本発明の実施態様と一致する内層部分30a及び外層部分30bを含有するものとして図2Bに示される。内層部分30aは、酸化物層28の表面を横断して延在する円柱状粒子を含有する従来の円柱状粒子のセラミックTBCを含む。内層部分30aの円柱Cは、前述のように基板12の表面を横断して延在するそれぞれの円柱軸AXを有する。
【0030】
外層部分30bは、図2AのTBC30における前述のタイプのコーティング構造を有するように本発明と一致して形成される。特に、外層部分30bは、基板12の表面を横断して延在し、図2BのEBPVD沈着中の成長に関するそれぞれの主要な円柱軸AXに関する主要な円柱状粒子PCから横に延在する不可欠な二次の円柱状粒子SCを含む、主要な円柱状粒子PCを含有する。二次の円柱状粒子SCは、それぞれの主要な円柱状粒子PCの長さに沿って間隔が置かれる。一般的に、二次の円柱状粒子は、前述のようにそれぞれの円柱軸AXに関して90度より小さい鋭角ANで主要な円柱状粒子から延在する。結果として、外層部分30bのコーティング構造は、内層部分30aによって表現される従来の遮熱コーティングの熱伝導率と比較して減少した熱伝導率を有する。
【0031】
内層部分30aと外層部分30bは、図7の装置を用いるのではなく、下記に記載の異なるコーティング条件を採用することで酸化物層28に電子ビームの物理的蒸気沈着(EBPVD)によって沈着できる。TBC30の内層部分30aは、ガスタービンエンジンのコーティングされた翼12の作動中のコーティング粘着及び破砕抵抗のための図2Bの実例となる実施態様での酸化物層28に第一に提供される。
【0032】
EBPVD装置のコーティングチャンバーでのガス圧は、酸化物層28で円柱状粒子Cを有する内層部分30aを生成するための手法で初期に制御され、次いで、コーティングチャンバーでのガス圧は、酸化物層28の表面を横断して延在する主要な円柱状粒子PCを有し、加えてそれぞれの円柱軸AXに関して主要な円柱状粒子から横に延在する二次の円柱状粒子SCを有する外層部分30bを形成するために効果的な予期せずに発見される高圧レベルまで上昇する。
【0033】
例えば、図7の装置を用いる7YSZのセラミック物質を含有する内層部分30aの形成において、6ミクロンの酸素のガス圧(±2ミクロン)は、酸化物層28に内層部分30aの円柱状粒子Cだけを形成するために初期に採用できる。内層部分30aは、そこに所望の厚さを提供する期間において沈着される。次いで、コーティングチャンバー内の酸素のガス圧は、7YSZのセラミック物質を含有し、前述のように主要な円柱状粒子から横に成長する二次の円柱状粒子SCを有する主要な円柱状粒子PCを有する外層部分30bを予期せず形成するために発見される15乃至30ミクロンの範囲まで調節(上昇)される。混合されたコーティング形態の遷移域30cは、コーティングの実行中に記載されるように酸素のガス圧の調節の結果として層30a、30bとの間に現れることができる。かかる範囲間の酸素のガス圧(例えば、13ミクロンの酸素のガス圧)は、主要な円柱状粒子から成長する二次の円柱状粒子を生成するが、しかし二次の成長した円柱状粒子の量は、酸素のガス圧20ミクロンでの二次の円柱状粒子の成長よりもより小さい。一般的に、二次の円柱状粒子の量が増大するにつれて、ガス圧も上昇する。代替として、内層部分30aは第一コーティング段階で生成でき、外層部分30bは“葉を備える茎”の円柱状形態を生成する前述のコーティング条件下で処理される個別の第二コーティング段階で生成できる。
【0034】
図2AのTBCの形態又は微細構造及び図2Bの外層部分30bは、下記に続く実施例で記載のように円柱状粒子のみを有する従来の遮熱コーティングと比較して減少された熱伝導率を表すために発見する。
【0035】
【実施例】
外層部分30bがEBPVDによって沈着されたことにおける前述の記載のように、サファイアのスペシメンは、二次の円柱状粒子SCを備える主要な円柱状粒子PCを含有するコーティング構造での基板として使用された。サファイアの基板は、20乃至25psi気圧で220メッシュよりも小さいアルミナ(鋼玉)でのグリットブラストによって生じた表面仕上げサファイアを含有した。
【0036】
例えば、図7のSで明示されたサファイア基板は、回転軸(マニプレータ部)に取り付けられ、ローディング/予熱チャンバーで1975°F(±25°F)まで加熱された。コーティングチャンバーは1x10−4torrより低く排気された。酸素は、20ミクロン±2ミクロンの安定した酸素圧に達するまでコーティングチャンバーに導入された。電子ビーム銃からの電子ビーム(出力レベルが75kW±10kW)は、蒸発するために7質量%のイットリア安定化ジルコニア(又は他の断熱層のセラミック物質)のインゴットIの末端上で走査(750Hertzの率)される。電子ビームは基板とビームの後ろへの反射を避けるための角度でインゴットを走査した。熱の欠損を最小限にするために、インゴットIのEB融解が開始した後、予熱されコーティングされた基板Sは、急速に軸上でローディング/予熱チャンバーからインゴットI上のコーティングチャンバーでの熱を反射する囲い込みEのコーティング位置まで移動した。囲い込みは電子ビームが入るための開口部を含んだ。間隔は約10乃至15インチであるが、基板はインゴットの約14インチ上を20rpm±2rpmの速度で軸によって回転された。沈着は、サファイアの基板に白色の化学量がほぼ7質量%イットリア安定化ジルコニアのセラミックコーティングを生成するための期間導かれた。セラミックコーティングの典型的な厚さは、5乃至20ミル(0.005乃至0.020インチ)の範囲であった。約12乃至15ミルのTBC30の厚さは、熱伝導率試験において沈着された。
【0037】
かかるEBPVDパラメータを用いて生成した代表的な7YSZのセラミックコーティングは、図3A,3B,3C及び3Dに示される。図3Aは、コーティング全体の厚さの160倍の顕微鏡写真である。図3B,3C及び3Dは、図3Aに描写された、内部エリア1、中間エリア2、及び外部エリア3の750倍の顕微鏡写真である。顕微鏡写真は、セラミックコーティングの破壊された表面が図3A乃至3Dに示されるようにスペシメンがそれらの厚さによって破壊された後で得られる。内部エリア1は、主要な円柱状粒子の長さに沿って主要な円柱状粒子から横に延在する不可欠な二次の円柱状粒子SCを有する主要な円柱状粒子PCのある量を備えるコーティング構造を現した。エリア2及び3は、サンプルエリア全体にわたって主要な円柱状粒子の長さに沿って主要な円柱状粒子から横に延在する不可欠な二次の円柱状粒子SCを有する主要な円柱状粒子PCを現した。二次の円柱状粒子SCは、約6乃至10ミクロンの繰り返し間隔(間隔)でそれぞれの主要な円柱状粒子の長さに沿って離れて置かれた。一般的に、二次の円柱状粒子は、EBPVD沈着中に成長する主要な円柱状粒子のそれぞれの円柱軸に関して25乃至30度の鋭角で主要な円柱状粒子から延在する。
【0038】
比較において、同様の基板のスペシメンは、従来の円柱状粒子だけを含有するコーティング構造を有するTBCを生成するために同様の条件でEBPVDコーティングされる。
【0039】
従来のコーティング構造を備えるTBCは、前述に記載のコーティングパラメータを用いるEBPVDによって沈着されたが、しかし、本発明のスペシメンの20ミクロン±2ミクロンの酸素圧とは対照的に、ほんの6ミクロン±2ミクロンで制御された酸素圧で沈着される。従来のセラミックコーティングの典型的な厚さは、5乃至20ミルの範囲であった。
【0040】
かかるEBPVDパラメータを用いて生成した代表的な7YSZの従来のセラミックコーティングは、図4A,4B,4C及び4Dに示される。図4Aは、コーティング全体の厚さの200倍の顕微鏡写真である。4B,4C及び4Dは、図4Aに描写された、内部エリア1、中間エリア2、及び外部エリア3の750倍の顕微鏡写真である。顕微鏡写真は、セラミックコーティングの破壊された表面が図4A乃至4Dに示されるようにスペシメンがそれらの厚さによって破壊された後で得られる。図4B,4C,4Dの内部エリア、中間エリア及び外部エリアは、円柱状粒子構造だけを備えるコーティング構造を現す。本発明のコーティング構造の図4C及び4D対図3C及び3Dを比較することによって明白なように、主要な円柱状粒子の長さに沿って主要な円柱状粒子から横に延在する不可欠な二次の円柱状粒子を有する主要な円柱状粒子は存在しなかった。
【0041】
図3A乃至3D及び4A乃至4Dによって示されたセラミックコーティングの熱伝導率は、大量規模のセラミックコーティングサンプルの生成が実際的ではないし、例えばガスタービンエンジンの作動における実際の構成部分で生成される比較的薄いセラミックのTBCコーティングの代表でもないため、ASTM E1461工程に準じるレーザーフラッシュ技術によって決定される。その技術は、基板とセラミックコーティング、つまり特定の熱、熱拡散率及び密度の3つのパラメータの測定を必要とする。代表的な基板(例えば、CMSX−4ニッケルを基にした超合金)とセラミックのコーティング物質(例えば、7YSZ)は、特定の熱の値に対する温度を提供するために測定された。コーティングされないディスク基板(例えば、CMSX−4ニッケルを基にした超合金で名目上0.5インチの直径で0.020インチ厚)は熱拡散率に対する温度を測定された。TBCがコーティングされた基板(名目上のコーティングの厚さは0.105インチ)は、熱拡散率に対する温度を測定された。基板の熱拡散性と基板のTBCコーティングを知ることで、コーティング独自の熱拡散性は決定できる。コーティング沈着中の熱拡散率サンプルの近くに位置する証明クーポンは、コーティング密度を測定するために使用された。コーティングの熱伝導率は、コーティングの特定の熱にコーティングの熱拡散率を掛けて、さらにコーティング密度を掛けることによって計算される。
【0042】
図6は、異なる温度での図3A乃至3Dの本発明のセラミックコーティング(正方形のデータポイントを参照)と図4A乃至4Dの従来のセラミックコーティング(ダイアモンド型のデータポイントを参照)の熱伝導率のグラフである。大量の6YSZ(6質量%イットリア、残部ジルコニア)及び8YSZ(8質量%イットリア、残部ジルコニア)の熱伝導率は比較目的のために示されており、S.ラグハベン等のACTA MATERIALIA、49、2001年、169頁から得られた。
【0043】
本発明に準じるセラミックコーティング(図3A乃至3D)は、従来のセラミックコーティングの熱伝導率と比較して、25℃から1150℃までのすべての温度で実質的に減少された熱伝導率を表すことは明らかである。例えば、一般的に、図3A乃至3Dのセラミックコーティングの熱伝導率は、試験温度において図4A乃至4Dの従来のセラミックコーティングの熱伝導率の32%であった。熱伝導率の多大で予期しない減少は、基板(例えば翼12)の温度をさらに減少する際に使用される遮熱コーティングを可能にし、又は同様に翼の温度を維持する一方で適用される薄い遮熱コーティングを可能にすることにおいて有利である。
【0044】
さらなる比較の目的において、基板のスペシメンの追加的なセット(図6の7Y46HfZrOで明示される)は、7質量%イットリア、46質量%ハフニア、及び残部ジルコニアを含有するTBCを生成するために記載されるような同様の状況下でコーティングされたEBPVDであった。20ミクロンの酸素ガス圧で得られたコーティング構造は図3A乃至3Dのコーティング構造と同様であり、一方で6ミクロンの酸素ガス圧で得られたコーティング構造は図4A乃至4Dのコーティング構造(つまり、円柱状粒子だけを有する)と同様であった。7Y46HFZrOセラミックコーティングの熱伝導率は図6に示され、ここで20ミクロンの酸素ガス圧で形成されたセラミックコーティングの熱伝導率は、6ミクロンの酸素のガス圧で生成され円柱状粒子だけを有するセラミックコーティングの熱伝導率より、すべての温度で実質的に小さい。
【0045】
さらにまた、さらなるサファイアの基板は、円柱状粒子及び主要な円柱状粒子と主要な円柱状粒子から横に成長する二次の円柱状粒子だけを含有する外層を有する図2Bで示されるTBC30のタイプを形成するためにコーティングされたEBPVDであった。内層は図4A乃至4Dのサファイアの基板をコーティングするための記載のような同様のTBCコーティングパラメータを用いて形成されて、一方で外層は図3A乃至3Dのサファイアの基板をコーティングするための記載のような同様のTBCコーティングパラメータを用いる、続く個別のコーティング段階で形成された。図5A乃至5Dは、かかる内層及び外層を備えて生成されたTBCを示す。図5Aは、内部の円柱状粒子層及び主要な円柱状粒子から横に延在する二次の円柱状粒子を備える主要な円柱状粒子を含有する外層を有する、断熱層がコーティングされたサファイアの基板が破壊されて130倍に拡大した走査型電子顕微鏡写真である。図5Bは、円柱状粒子だけを有する内層を667倍に拡大した走査型電子顕微鏡写真である。図5Cは、内層と外層との間の遷移域を667倍に拡大した走査型電子顕微鏡写真である。図5Dは、主要な円柱状粒子と主要な円柱状粒子から横に成長する二次の円柱状粒子を有する外層を667倍に拡大した走査型電子顕微鏡写真である。
【図面の簡単な説明】
【図1】本発明と一致する遮熱コーティングでコーティングできるガスタービンエンジンブレードの斜視図である。
【図2A】本発明の実施態様と一致するセラミックの遮熱コーティングを含有する遮熱コーティングシステムを概略する断面図である。
【図2B】本発明の別の実施態様と一致するセラミックの遮熱コーティングを含有する遮熱コーティングシステムを概略する断面図である。
【図3A】本発明の実施態様と一致する破壊されたセラミックの遮熱コーティングの160倍に拡大した走査型電子顕微鏡写真である。
【図3B】本発明の実施態様と一致する破壊されたセラミックの遮熱コーティングの750倍に拡大した走査型電子顕微鏡写真である。
【図3C】本発明の実施態様と一致する破壊されたセラミックの遮熱コーティングの750倍に拡大した走査型電子顕微鏡写真である。
【図3D】本発明の実施態様と一致する破壊されたセラミックの遮熱コーティングの750倍に拡大した走査型電子顕微鏡写真である。
【図4A】破壊された従来の遮熱コーティングの200倍に拡大した走査型電子顕微鏡写真である。
【図4B】破壊された従来の遮熱コーティングの750倍に拡大した走査型電子顕微鏡写真である。
【図4C】破壊された従来の遮熱コーティングの750倍に拡大した走査型電子顕微鏡写真である。
【図4D】破壊された従来の遮熱コーティングの750倍に拡大した走査型電子顕微鏡写真である。
【図5A】本発明の別の実施態様と一致する破壊されたセラミックの遮熱コーティングの130倍に拡大した走査型電子顕微鏡写真である。
【図5B】本発明の別の実施態様と一致する破壊されたセラミックの遮熱コーティングの667倍に拡大した走査型電子顕微鏡写真である。
【図5C】本発明の別の実施態様と一致する破壊されたセラミックの遮熱コーティングの667倍に拡大した走査型電子顕微鏡写真である。
【図5D】本発明の別の実施態様と一致する破壊されたセラミックの遮熱コーティングの667倍に拡大した走査型電子顕微鏡写真である。
【図6】7YSZの20ミクロン及び7Y46HfZrOの20ミクロンが明示された本発明のコーティングを含有する様々なセラミックのコーティングにおいて異なる温度での熱伝導率のグラフである。
【図7】本発明の実行のために使用することができるEBPVD装置の概略図である。
【符号の説明】
10 ブレード
12 翼
12a 後縁
14 土台部分
16 先端部分
24 ボンディングコート
24a 翼(基板)12に近接の内部の拡散領域
24b 外層の領域
28 酸化アルミニウム(アルミナ)層
30 遮熱コーティング
30a 内層部分
30b 外層部分
30c 遷移域
AN 円柱軸AXに関して90度よりも小さい鋭角
AX 円柱軸
PC 主要な円柱状粒子
SC 二次の円柱状粒子
C 円柱
E 熱を反射する囲い込み
I インゴット
S 基板

Claims (9)

  1. 基板表面にセラミックコーティングを形成する方法であって、
    前記セラミックコーティングは、複数の層を含有し、
    一つの層は、EBPVD法により構成され、
    前記一つの層を形成するため、
    (A)チャンバー内の少なくとも一つの供給源から、ジルコニアを主成分とするセラミック材料を蒸発させるステップと、
    (B)ジルコニアを主成分とするセラミック材料の成膜を制御して、前記基板の表面に対して実質的に垂直に延在する一次柱状粒子であって、該一次柱状粒子から、各柱軸に対して横方向に延在する二次柱状粒子を有する一次柱状粒子を形成するステップと、を有し、
    前記(B)のステップは、
    前記基板を、1950゜F〜2000゜Fまで加熱するステップと、
    前記基板を、回転させるステップと、
    前記チャンバー内のガス圧を、十分に高い圧力レベルに制御するステップであって、酸素分圧を15〜30ミクロンの範囲にするステップと
    を有し、これにより、前記一次柱状粒子であって、該一次柱状粒子から横方向に延在する前記二次柱状粒子を有する一次柱状粒子が形成され、
    前記二次柱状粒子は、前記基板から外側に向かう前記柱軸の方向との間に鋭角を形成するように、横方向に延在することを特徴とする方法。
  2. 前記ガスは、酸素と、酸素及び別のガスの混合物とから構成されるグループから選択されることを特徴とする請求項に記載の方法。
  3. 前記一次柱状粒子は、前記ジルコニアを主成分とするセラミック材料の主要な結晶成長方向に沿って成長することを特徴とする請求項1または2に記載の方法。
  4. 前記二次柱状粒子は、前記ジルコニアを主成分とするセラミック材料の二次結晶成長方向に沿って成長することを特徴とする請求項に記載の方法。
  5. 構成部品の表面に、セラミックコーティングを形成する方法であって、
    前記構成部品に金属のボンディングコートを形成するステップを有し、
    前記セラミックコーティングは、複数の層を含有し、一つの層を形成するため、当該方法は、
    (A)コーティングチャンバー内で、少なくとも一つの供給源から、該供給源に電子ビームを照射させることにより、ジルコニアを主成分とするセラミック材料を蒸発させるステップと、
    (B)前記表面上の前記ジルコニアを主成分とするセラミック材料の成膜を制御することにより、前記金属のボンディングコートの表面に対して実質的に垂直に延在する一次柱状粒子であって、前記一次柱状粒子の長手方向に沿って、前記一次柱状粒子から、各柱軸に対して、横方向に延在する二次柱状粒を有する一次柱状粒子を形成するステップと、
    を含有し、
    前記ステップ(B)は、
    前記構成部品を、1950゜F〜2000゜Fまで加熱するステップと、
    前記構成部品を、回転させるステップと、
    前記チャンバー内のガス圧を、十分に高い圧力レベルに制御するステップであって、酸素分圧を15〜30ミクロンの範囲にするステップと、
    を有し、これにより、前記一次柱状粒子であって、該一次柱状粒子から横方向に延在する前記二次柱状粒子を有する一次柱状粒子が形成され、
    前記二次柱状粒子は、前記基板から外側に向かう前記柱軸の方向との間に鋭角を形成するように、横方向に延在することを特徴とする方法。
  6. 基板及び該基板の表面のセラミックコーティングを含有する製品であって、
    前記セラミックコーティングは、請求項1乃至4のいずれか一つに記載の方法で形成されることを特徴とする製品。
  7. 前記基板は、該基板上の金属のボンディングコート及び該金属のボンディングコート上の酸化アルミニウム層を有する超合金を含み、前記セラミックコーティングは、前記酸化アルミニウム層上に設置されることを特徴とする請求項に記載の製品。
  8. 前記金属のボンディングコートは、アルミニウム化物拡散層及びMCrAlY層からなるグループから選択され、ここでMはNi及びCoからなるグループから選択されることを特徴とする請求項に記載の製品。
  9. 前記セラミックコーティングは、ジルコニアを安定化するための第二酸化物を含み、前記第二酸化物はイットリアを含むことを特徴とする請求項6乃至8のいずれか一つに記載の製品。
JP2002362095A 2001-12-21 2002-12-13 遮熱コーティング Expired - Lifetime JP4827365B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US024538 2001-12-21
US10/024,538 US6689487B2 (en) 2001-12-21 2001-12-21 Thermal barrier coating

Publications (3)

Publication Number Publication Date
JP2003239086A JP2003239086A (ja) 2003-08-27
JP2003239086A5 JP2003239086A5 (ja) 2006-02-02
JP4827365B2 true JP4827365B2 (ja) 2011-11-30

Family

ID=21821107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002362095A Expired - Lifetime JP4827365B2 (ja) 2001-12-21 2002-12-13 遮熱コーティング

Country Status (6)

Country Link
US (1) US6689487B2 (ja)
JP (1) JP4827365B2 (ja)
CA (1) CA2412265C (ja)
DE (1) DE10254209B4 (ja)
FR (1) FR2833971B1 (ja)
GB (1) GB2383338B (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6689422B1 (en) * 1994-02-16 2004-02-10 Howmet Research Corporation CVD codeposition of A1 and one or more reactive (gettering) elements to form protective aluminide coating
US20030118873A1 (en) * 2001-12-21 2003-06-26 Murphy Kenneth S. Stabilized zirconia thermal barrier coating with hafnia
US7029232B2 (en) * 2003-02-27 2006-04-18 Rolls-Royce Plc Abradable seals
US7413798B2 (en) * 2003-04-04 2008-08-19 Siemens Power Generation, Inc. Thermal barrier coating having nano scale features
US6982126B2 (en) * 2003-11-26 2006-01-03 General Electric Company Thermal barrier coating
US20050153160A1 (en) * 2004-01-12 2005-07-14 Yourong Liu Durable thermal barrier coating having low thermal conductivity
US7402347B2 (en) * 2004-12-02 2008-07-22 Siemens Power Generation, Inc. In-situ formed thermal barrier coating for a ceramic component
US7416788B2 (en) * 2005-06-30 2008-08-26 Honeywell International Inc. Thermal barrier coating resistant to penetration by environmental contaminants
US7632012B2 (en) * 2005-09-01 2009-12-15 Siemens Energy, Inc. Method of measuring in situ differential emissivity and temperature
JP2009539039A (ja) * 2006-06-01 2009-11-12 ライテンズ オートモーティブ パートナーシップ プーリ軸受用ダストシールドおよびダストシールド付プーリ
DE102006036520A1 (de) * 2006-08-04 2008-02-07 Mtu Aero Engines Gmbh Gasturbinenbauteil mit einer Wärmedämmschicht, Wärmedämmschicht für ein Gasturbinenbauteil sowie Verfahren zur Herstellung einer Wärmedämmschicht auf einem Gasturbinenbauteil
US20080274336A1 (en) * 2006-12-01 2008-11-06 Siemens Power Generation, Inc. High temperature insulation with enhanced abradability
US8257600B2 (en) 2010-03-01 2012-09-04 United Technologies Corporation Printed masking process
US20110250367A1 (en) * 2010-04-12 2011-10-13 Neal James W Deposition apparatus with preheating chamber having thermal hood
CN102557447B (zh) * 2011-11-07 2013-10-09 中南大学 一种镍合金基体表面热障涂层及制备方法
US10280770B2 (en) 2014-10-09 2019-05-07 Rolls-Royce Corporation Coating system including oxide nanoparticles in oxide matrix
US10047614B2 (en) 2014-10-09 2018-08-14 Rolls-Royce Corporation Coating system including alternating layers of amorphous silica and amorphous silicon nitride
US20170101874A1 (en) * 2015-10-12 2017-04-13 United Technologies Corporation Multi-layered coating with columnar microstructure and branched columnar microstructure
US10106882B2 (en) * 2015-10-12 2018-10-23 United Technologies Corporation Method of forming a multi-layered coating with columnar microstructure and branched columnar microstructure
DE102017206063A1 (de) * 2017-04-10 2018-10-11 Siemens Aktiengesellschaft Teil- und vollstabilisiertes Zirkonoxidpulver als keramische Schicht
DE102018215223A1 (de) * 2018-09-07 2020-03-12 Siemens Aktiengesellschaft Keramisches Material auf der Basis von Zirkonoxid mit weiteren Oxiden und Schichtsystem
GB201918278D0 (en) * 2019-12-12 2020-01-29 Rolls Royce Plc Thermal barrier coating

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4006268A (en) 1975-03-17 1977-02-01 Airco, Inc. Vapor collimation in vacuum deposition of coatings
US4321311A (en) 1980-01-07 1982-03-23 United Technologies Corporation Columnar grain ceramic thermal barrier coatings
US4321310A (en) 1980-01-07 1982-03-23 United Technologies Corporation Columnar grain ceramic thermal barrier coatings on polished substrates
US4676994A (en) * 1983-06-15 1987-06-30 The Boc Group, Inc. Adherent ceramic coatings
US4576874A (en) 1984-10-03 1986-03-18 Westinghouse Electric Corp. Spalling and corrosion resistant ceramic coating for land and marine combustion turbines
US4874664A (en) 1986-11-21 1989-10-17 Toyota Jidosha Kabushiki Kaisha Birefringent plate and manufacturing method for the same
US4880614A (en) 1988-11-03 1989-11-14 Allied-Signal Inc. Ceramic thermal barrier coating with alumina interlayer
WO1993005194A1 (en) 1991-09-05 1993-03-18 Technalum Research, Inc. Method for the production of compositionally graded coatings
DE69406963T2 (de) 1993-03-15 1998-05-20 Inoue, Akihisa, Sendai, Miyagi Hochharte Dünnschicht, sowie Verfahren zu deren Herstellung
US5562998A (en) * 1994-11-18 1996-10-08 Alliedsignal Inc. Durable thermal barrier coating
US5716720A (en) 1995-03-21 1998-02-10 Howmet Corporation Thermal barrier coating system with intermediate phase bondcoat
US6102656A (en) 1995-09-26 2000-08-15 United Technologies Corporation Segmented abradable ceramic coating
US6117560A (en) 1996-12-12 2000-09-12 United Technologies Corporation Thermal barrier coating systems and materials
DE19758751B4 (de) 1997-04-16 2010-12-02 Deutsches Zentrum für Luft- und Raumfahrt e.V. Keramische Wärmedämmschichten mit Keulenstruktur
US5912087A (en) 1997-08-04 1999-06-15 General Electric Company Graded bond coat for a thermal barrier coating system
US6114003A (en) 1997-09-04 2000-09-05 No Fire Technologies, Inc. Insulation blanket having an inner metal core air cell and adjoining outer insulation layers
US5817372A (en) 1997-09-23 1998-10-06 General Electric Co. Process for depositing a bond coat for a thermal barrier coating system
US5876860A (en) 1997-12-09 1999-03-02 N.V. Interturbine Thermal barrier coating ceramic structure
GB9800511D0 (en) 1998-01-13 1998-03-11 Rolls Royce Plc A metallic article having a thermal barrier coating and a method of application thereof
GB9811456D0 (en) * 1998-05-29 1998-07-29 Rolls Royce Plc A metallic article having a thermal barrier coating and a method of application thereof
FR2779448B1 (fr) 1998-06-04 2000-12-15 Snecma Revetement ceramique a faible conductivite thermique et de type barriere thermique, procede de depot d'un tel revetement ceramique, et piece metallique protegee par ce revetement ceramique
JP2000096216A (ja) * 1998-07-01 2000-04-04 General Electric Co <Ge> 断熱皮膜系を形成する方法
US6071628A (en) 1999-03-31 2000-06-06 Lockheed Martin Energy Systems, Inc. Thermal barrier coating for alloy systems
WO2001043965A1 (en) 1999-12-14 2001-06-21 The Penn State Research Foundation Thermal barrier coatings and electron-beam, physical vapor deposition for making same
US6586115B2 (en) 2001-04-12 2003-07-01 General Electric Company Yttria-stabilized zirconia with reduced thermal conductivity

Also Published As

Publication number Publication date
US6689487B2 (en) 2004-02-10
GB2383338B (en) 2004-01-21
FR2833971A1 (fr) 2003-06-27
US20030118874A1 (en) 2003-06-26
GB2383338A (en) 2003-06-25
JP2003239086A (ja) 2003-08-27
CA2412265C (en) 2012-02-21
GB0230011D0 (en) 2003-01-29
DE10254209A1 (de) 2003-07-03
DE10254209B4 (de) 2016-09-15
FR2833971B1 (fr) 2006-05-26
CA2412265A1 (en) 2003-06-21

Similar Documents

Publication Publication Date Title
JP4827365B2 (ja) 遮熱コーティング
US4916022A (en) Titania doped ceramic thermal barrier coatings
US6057047A (en) Ceramic coatings containing layered porosity
Richer et al. Oxidation behaviour of CoNiCrAlY bond coats produced by plasma, HVOF and cold gas dynamic spraying
RU2228389C2 (ru) Способ обеспечения тепловой защиты и металлическое изделие с керамическим покрытием (варианты)
US5015502A (en) Ceramic thermal barrier coating with alumina interlayer
US4880614A (en) Ceramic thermal barrier coating with alumina interlayer
EP0824606B1 (en) Porous thermal barrier coating
US6365236B1 (en) Method for producing ceramic coatings containing layered porosity
US6447854B1 (en) Method of forming a thermal barrier coating system
EP1327704B1 (en) Thermal barrier coating and process therefor
EP1829984B1 (en) Process for making a high density thermal barrier coating
US6960395B2 (en) Ceramic compositions useful for thermal barrier coatings having reduced thermal conductivity
EP0987347A1 (en) Thermal barrier coating system and method therefor
EP1550644A1 (en) Ceramic compositions useful in thermal barrier coatings having reduced thermal conductivity
EP3708694A1 (en) Laser induced, fine grained, gamma phase surface for nicocraiy coatings prior to ceramic coat
EP1209321B1 (en) Thermally-stabilized thermal barrier coating and process therefor
CN111194359A (zh) 超级合金溅射靶
US20030118873A1 (en) Stabilized zirconia thermal barrier coating with hafnia
EP1327698B1 (en) Thermally-stabilized thermal barrier coating and process therefor
JP2007239101A (ja) 遮熱コーティングのためのボンドコーティング法
US20220298645A1 (en) LASER INDUCED, FINE GRAINED, GAMMA PHASE SURFACE FOR NiCoCrAlY COATINGS PRIOR TO CERAMIC COAT

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080704

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090218

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090407

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090508

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110119

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110124

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110217

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110222

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110315

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110704

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4827365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term