JP4827117B2 - Nonaqueous battery and manufacturing method thereof - Google Patents

Nonaqueous battery and manufacturing method thereof Download PDF

Info

Publication number
JP4827117B2
JP4827117B2 JP2004327326A JP2004327326A JP4827117B2 JP 4827117 B2 JP4827117 B2 JP 4827117B2 JP 2004327326 A JP2004327326 A JP 2004327326A JP 2004327326 A JP2004327326 A JP 2004327326A JP 4827117 B2 JP4827117 B2 JP 4827117B2
Authority
JP
Japan
Prior art keywords
fine particles
separator
battery
negative electrode
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004327326A
Other languages
Japanese (ja)
Other versions
JP2006139978A (en
Inventor
敏浩 阿部
光浩 岸見
秀昭 片山
徹夫 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2004327326A priority Critical patent/JP4827117B2/en
Publication of JP2006139978A publication Critical patent/JP2006139978A/en
Application granted granted Critical
Publication of JP4827117B2 publication Critical patent/JP4827117B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、非水電池に関し、さらに詳しくは、特に携帯用電子機器、電気自動車、ロードレベリングなどの電源として使用するのに適した非水電池に関するものである。   The present invention relates to a non-aqueous battery, and more particularly to a non-aqueous battery particularly suitable for use as a power source for portable electronic devices, electric vehicles, road leveling and the like.

非水電池の一種であるリチウムイオン電池は、エネルギー密度が高いという特徴から、携帯電話やノート型パーソナルコンピューターなどの携帯機器の電源として広く用いられている。携帯機器の高性能化に伴ってリチウムイオン電池の高容量化が更に進む傾向にあり、安全性の確保が重要となっている。   Lithium ion batteries, which are a type of non-aqueous battery, are widely used as power sources for portable devices such as mobile phones and notebook personal computers because of their high energy density. As the performance of portable devices increases, the capacity of lithium ion batteries tends to increase further, and ensuring safety is important.

現行のリチウムイオン電池では、正極と負極の間に介在させるセパレータ(隔離材)として、例えば厚みが20〜30μm程度のポリオレフィン系の多孔性フィルムが使用されている。また、セパレータの素材としては、電池の熱暴走温度以下で隔離材の構成樹脂を溶融させて空孔を閉塞させ、これにより電池の内部抵抗を上昇させて短絡の際などに電池の安全性を向上させる所謂シャットダウン効果を確保するため、融点の低いポリエチレンが適用されることがある。   In the current lithium ion battery, as a separator (separating material) interposed between the positive electrode and the negative electrode, for example, a polyolefin-based porous film having a thickness of about 20 to 30 μm is used. In addition, as a separator material, the constituent resin of the separator is melted below the thermal runaway temperature of the battery to close the pores, thereby increasing the internal resistance of the battery and improving the safety of the battery in the event of a short circuit. In order to secure a so-called shutdown effect that improves, polyethylene having a low melting point may be applied.

ところで、ポリオレフィン系多孔性フィルムのセパレータは単独で存在する膜であるため、電池製造の際に取り扱いが可能な程度に、強度が要求される。特に電極を巻回体とする場合には、その製造時(巻回時)に、セパレータにテンションがかかるため、引張強度が十分に高い必要がある。   By the way, since the separator of a polyolefin-type porous film is a film | membrane which exists independently, intensity | strength is requested | required to such an extent that it can handle at the time of battery manufacture. In particular, when an electrode is used as a wound body, a tension is applied to the separator at the time of manufacturing (winding), so that the tensile strength needs to be sufficiently high.

こうしたセパレータとしては、例えば、多孔化と強度向上のために一軸延伸あるいは二軸延伸したフィルムが用いられているが、かかる延伸によってフィルムにはひずみが生じており、これが高温に曝されると、残留応力によって収縮が起こるという問題がある。収縮温度は、融点、すなわちシャットダウン温度と非常に近いところに存在する。このため、ポリオレフィン系の多孔性フィルムセパレータを使用するときには、充電異常時などに電池の温度がシャットダウン温度に達すると、電流を直ちに減少させて電池の温度上昇を防止しなければならない。空孔が十分に閉塞せず電流を直ちに減少できなかった場合には、電池の温度は容易にセパレータの収縮温度にまで上昇するため、内部短絡による発火の危険性があるからである。   As such a separator, for example, a uniaxially stretched or biaxially stretched film is used to increase the porosity and strength, but the film is distorted by such stretching, and when this is exposed to a high temperature, There is a problem that shrinkage occurs due to residual stress. The shrinkage temperature is very close to the melting point, ie the shutdown temperature. For this reason, when a polyolefin-based porous film separator is used, when the battery temperature reaches the shutdown temperature in the case of abnormal charging, the current must be immediately decreased to prevent the battery temperature from rising. This is because if the pores are not sufficiently closed and the current cannot be reduced immediately, the battery temperature easily rises to the contraction temperature of the separator, and there is a risk of ignition due to an internal short circuit.

また、上記のような単層構成の単独膜ではなく複合膜をセパレータに用いて、電池が高温となった場合のセパレータの収縮による内部短絡の問題の解決を図ることもなされているが、こうした複合膜では薄膜化が困難なため、負荷特性改善への阻害要因となる他、製造工程が複雑になり製造コストの増大を引き起こすといった問題がある。   In addition, a composite film is used as a separator instead of a single film having a single layer structure as described above to solve the problem of internal short circuit due to the shrinkage of the separator when the battery becomes hot. Since it is difficult to reduce the thickness of the composite film, there is a problem that the manufacturing process is complicated and the manufacturing cost is increased in addition to an obstacle to improving the load characteristics.

こうした事情を受けて、上記の如く単独で存在し得る膜をセパレータとして用いるのではなく、正極と負極を隔離するための隔離材を電極表面に直接形成することで、セパレータに要求される引張強度(電池製造時の取り扱い性を確保するための引張強度)やセパレータの熱収縮に関する上記の問題の解決を図る試みがなされている(特許文献1〜3)。特許文献1〜3に開示の電池では、種々の有機微粒子や無機微粒子とバインダー樹脂を用いて形成された隔離材を有している。   In view of these circumstances, the tensile strength required for the separator is formed by directly forming the separator on the electrode surface to separate the positive electrode and the negative electrode, instead of using a film that can exist alone as described above. Attempts have been made to solve the above-mentioned problems relating to (tensile strength for ensuring handleability during battery production) and thermal contraction of the separator (Patent Documents 1 to 3). The batteries disclosed in Patent Documents 1 to 3 have a separator formed using various organic fine particles and inorganic fine particles and a binder resin.

特開平1−167948号公報Japanese Patent Laid-Open No. 1-167948 国際公開第98/38688号パンフレットWO 98/38688 pamphlet 特開2000−149906号公報JP 2000-149906 A

ところが、上記特許文献1〜3に開示の電池では、例えば電池内温度が高温になった場合に内部短絡が生じやすかったり、上記のシャットダウン効果が得られないなど、信頼性の面で満足できるものではない。   However, the batteries disclosed in Patent Documents 1 to 3 are satisfactory in terms of reliability, for example, an internal short circuit is likely to occur when the temperature inside the battery becomes high, and the above-described shutdown effect cannot be obtained. is not.

本発明は、上記事情に鑑みてなされたものであり、高温での安全性を確保し得る非水電池を提供すると共に、特にセパレータの薄型化による負荷特性の向上も実現した非水電池と、これらの非水電池の製造方法を提供することを課題とする。   The present invention has been made in view of the above circumstances, and provides a non-aqueous battery that can ensure safety at high temperatures, and in particular, a non-aqueous battery that also realizes improved load characteristics due to a thinner separator, It is an object to provide a method for manufacturing these nonaqueous batteries.

高温での安全性を確保し得た本発明の非水電池は、正極と、リチウム、リチウム合金またはリチウムイオンを吸蔵、放出可能な材料を負極活物質とする負極と、前記正極と負極との間に多孔性の隔離材を有するものであって、前記隔離材は、正極および負極の少なくとも一方の電極の表面に形成されており、かつ融点が80〜150℃の有機微粒子(A)と、160℃以上の耐熱温度を有する耐熱微粒子(B)含む少なくとも2種類の微粒子が、バインダー樹脂(C)により結着されて構成されており、前記隔離材を構成する全材料中、前記耐熱微粒子(B)の割合が4質量%以上で、前記バインダー樹脂(C)の割合が1.6質量%以上13.3質量%以下であり、当該電池を30℃から150℃まで1℃/分の速度で昇温させたときに、30℃、80℃および130℃での電池の内部抵抗を、それぞれR30、R80およびR130としたときに、R80/R30≦1、かつ、R130/R30≧5となることを特徴とする非水電池である。
The non-aqueous battery of the present invention capable of ensuring safety at high temperature includes a positive electrode, a negative electrode using a material capable of occluding and releasing lithium, lithium alloy or lithium ion as a negative electrode active material, and the positive electrode and the negative electrode. Having a porous separator in between, the separator is formed on the surface of at least one of a positive electrode and a negative electrode, and organic fine particles (A) having a melting point of 80 to 150 ° C .; At least two kinds of fine particles including a heat resistant fine particle (B) having a heat resistant temperature of 160 ° C. or higher are bound by a binder resin (C), and the heat resistant fine particles ( B) is 4% by mass or more, the binder resin (C) is 1.6% by mass to 13.3% by mass, and the battery is supplied at a rate of 1 ° C./min from 30 ° C. to 150 ° C. When the temperature is raised at 0 ° C., the internal resistance of the battery at 80 ° C. and 130 ° C., when the R 30, R 80 and R 130, respectively, R 80 / R 30 ≦ 1 and, to a R 130 / R 30 ≧ 5 It is a nonaqueous battery characterized by.

更に本発明には、上記本発明の非水電池を製造するに当たり、正極および負極の少なくとも一方の電極の表面に、融点が80〜150℃の有機微粒子(A)と、160℃以上の耐熱温度を有する耐熱微粒子(B)とバインダー樹脂(C)とを含む液状組成物を塗布、乾燥することにより、正極と負極の間に、多孔性の隔離材を形成することを特徴とする製造方法も包含される。
Furthermore, in the present invention, in producing the nonaqueous battery of the present invention, the organic fine particles (A) having a melting point of 80 to 150 ° C. and a heat resistant temperature of 160 ° C. or higher are formed on the surface of at least one of the positive electrode and the negative electrode. A manufacturing method characterized by forming a porous separator between the positive electrode and the negative electrode by applying and drying a liquid composition containing the heat-resistant fine particles (B) having a binder and the binder resin (C) Is included.

本発明では、正極と負極の間に介在させるための隔離材を、特定の温度範囲において内部抵抗が明確に変化してシャットダウンを生じる構成とすることにより、高温での電池の安全性を確保することができる。   In the present invention, the separator for interposing between the positive electrode and the negative electrode has a configuration in which the internal resistance clearly changes in a specific temperature range and causes a shutdown, thereby ensuring the safety of the battery at a high temperature. be able to.

特に、融点が80〜150℃の有機微粒子(A)と、160℃以上の耐熱温度を有する耐熱微粒子(B)の少なくとも2種類の微粒子で構成するか、または、耐熱微粒子(B)の表面に融点が80〜150℃の樹脂の被覆層が形成されてなるコアシェル構造の微粒子を含む少なくとも1種類の微粒子で構成することにより、従来の単独膜のセパレータのような強度(引張強度など)が要求されないため、その厚みを薄くして電池の負荷筑性を向上させることが可能となる。   In particular, it is composed of at least two kinds of fine particles of organic fine particles (A) having a melting point of 80 to 150 ° C. and heat resistant fine particles (B) having a heat resistant temperature of 160 ° C. or higher, or on the surface of the heat resistant fine particles (B). Strength (such as tensile strength) of a conventional single membrane separator is required by comprising at least one kind of fine particles including fine particles of a core-shell structure in which a coating layer of a resin having a melting point of 80 to 150 ° C. is formed. Therefore, the thickness of the battery can be reduced to improve the load balance of the battery.

電池内温度が上昇した場合、上記有機微粒子(A)またはコアシェル構造の微粒子の表面被覆層が溶融して空孔を閉塞するため、シャットダウン機能が発現する一方、耐熱微粒子(B)の存在により上記隔離材は収縮しにくいため、電池の内部短絡を防止することができる。   When the temperature in the battery rises, the surface coating layer of the organic fine particles (A) or the core-shell structured fine particles melts and closes the pores, so that a shutdown function is exhibited, while the presence of the heat-resistant fine particles (B) Since the separator is difficult to shrink, internal short circuit of the battery can be prevented.

また、正極および負極の少なくとも一方の電極の表面に直接隔離材を形成することにより、一層の薄型化を実現することができる。   Further, by forming the separator directly on the surface of at least one of the positive electrode and the negative electrode, a further reduction in thickness can be realized.

本発明の非水電池に係る隔離材は、融点が80〜150℃の有機微粒子(A)と、160℃以上の耐熱温度を有する耐熱微粒子(B)の少なくとも2種類の微粒子で構成されている。図1に本発明に係る隔離材の図面代用写真(走査型電池顕微鏡写真)を、図2に図1の隔離材の一部を拡大した写真を示す。図1および図2中、1が有機微粒子(A)、2が耐熱微粒子(B)、3がバインダー樹脂(C)、4が電極、5が隔離材である。図1および図2から分かるように、隔離材においては、有機微粒子(A)1および耐熱微粒子(B)2が、微粒子の形態で存在している。詳しくは後述するが、図1および図2に示す隔離材は、有機微粒子(A)と耐熱微粒子(B)を含む液状組成物(溶液または分散液)を用いて形成するのが望ましい。   The separator according to the nonaqueous battery of the present invention is composed of at least two kinds of fine particles, that is, organic fine particles (A) having a melting point of 80 to 150 ° C. and heat resistant fine particles (B) having a heat resistant temperature of 160 ° C. or higher. . FIG. 1 shows a drawing-substituting photograph (scanning cell micrograph) of the separator according to the present invention, and FIG. 2 shows an enlarged photograph of a part of the separator shown in FIG. 1 and 2, 1 is an organic fine particle (A), 2 is a heat-resistant fine particle (B), 3 is a binder resin (C), 4 is an electrode, and 5 is a separator. As can be seen from FIGS. 1 and 2, in the separator, organic fine particles (A) 1 and heat-resistant fine particles (B) 2 are present in the form of fine particles. As will be described in detail later, the separator shown in FIGS. 1 and 2 is preferably formed using a liquid composition (solution or dispersion) containing organic fine particles (A) and heat-resistant fine particles (B).

有機微粒子(A)は、融点が80℃〜150℃の有機樹脂の微粒子である。この有機微粒子(A)は、電池内温度が上昇した際に溶融して、隔離材の空孔を閉塞し、電池の内部抵抗を増大させるといったシャットダウン効果を確保するための成分である。   The organic fine particles (A) are fine particles of an organic resin having a melting point of 80 ° C to 150 ° C. The organic fine particles (A) are components for ensuring a shutdown effect such as melting when the temperature in the battery rises, closing the pores of the separator, and increasing the internal resistance of the battery.

詳しくは後述するが、隔離材は、有機微粒子(A)と耐熱微粒子(B)を含む液状組成物(溶液または分散液)を用いて形成する。よって、有機微粒子(A)としては、融点が上記範囲内にあり、且つ電気化学的に安定で、更に電解液や上記液状組成物に用いる溶媒(分散媒)に対して安定であれば特に限定されないが、例えば、ポリオレフィン系の微粒子が好適である。より具体的には、ポリエチレン、エチレン−酢酸ビニル共重合体(酢酸ビニル由来の構造単位が15モル%未満)、あるいはこれらの誘導体などの微粒子が好ましく、これらを1種単独で用いる他、2種以上を混合して使用してもよい。また、シャットダウン温度を、電池の実使用温度よりある程度高く設定するためには、有機微粒子(A)の融点は90℃以上であることがより好ましく、また、より安全な温度領域、例えば130℃以下の温度でシャットダウンを生じさせるためには、有機微粒子(A)の融点は125℃以下であることがより好ましい。このような材料として、上記材料が好適に用いられる。なお、ここでいう有機微粒子(A)の融点は、JIS−K7121の規定に準じて、示差走査熱量計(DSC)を用いて測定される融解温度を意味している。   As will be described in detail later, the separator is formed using a liquid composition (solution or dispersion) containing organic fine particles (A) and heat-resistant fine particles (B). Therefore, the organic fine particles (A) are particularly limited as long as the melting point is within the above range, is electrochemically stable, and is stable with respect to the solvent (dispersion medium) used in the electrolytic solution and the liquid composition. For example, polyolefin fine particles are suitable. More specifically, fine particles such as polyethylene, ethylene-vinyl acetate copolymer (vinyl acetate-derived structural unit is less than 15 mol%), or derivatives thereof are preferable. You may mix and use the above. Further, in order to set the shutdown temperature to be somewhat higher than the actual use temperature of the battery, the melting point of the organic fine particles (A) is more preferably 90 ° C. or higher, and a safer temperature range, for example, 130 ° C. or lower. In order to cause shutdown at a temperature of 1, the melting point of the organic fine particles (A) is more preferably 125 ° C. or lower. As such a material, the said material is used suitably. In addition, melting | fusing point of organic fine particle (A) here means the melting temperature measured using a differential scanning calorimeter (DSC) according to the prescription | regulation of JIS-K7121.

有機微粒子(A)の大きさとしては、粒径が隔離材の厚みよりも小さいのが望ましいが、例えば隔離材の厚みの3/4〜1/100の平均粒径を有していることが好ましく、より具体的には、数平均粒子径で0.1〜20μmであることが望ましい。有機微粒子(A)が小さすぎると、微粒子同士の隙間が小さくなるために、イオン伝導度が低下して電池特性低下の原因となることがある。他方、有機微粒子(A)が大きすぎると、隔離材を薄くすることが困難となり、やはり電池特性低下(容量低下)の原因となることがある。   As the size of the organic fine particles (A), it is desirable that the particle size is smaller than the thickness of the separator, but for example, it has an average particle size of 3/4 to 1/100 of the thickness of the separator. More specifically, it is desirable that the number average particle diameter is 0.1 to 20 μm. If the organic fine particles (A) are too small, the gaps between the fine particles are small, so that the ionic conductivity may be reduced and the battery characteristics may be deteriorated. On the other hand, if the organic fine particles (A) are too large, it is difficult to make the separator thin, and this may also cause a decrease in battery characteristics (capacity reduction).

また、有機微粒子(A)は、その粒径が、できる限り揃っていることが好ましい。粒径が不揃いであると、大粒径の粒子同士の間に小粒径の粒子が入り込んでしまって空孔率が低下しやすいからである。具体的には、粒径が0.1〜20μmの範囲にあり、平均粒径が0.3〜15μmであることが好ましい。なお、本明細書で記載する有機微粒子(A)、並びに後記の耐熱微粒子(B)およびコアシェル構造の微粒子に係る数平均粒子径および粒度分布は、レーザー散乱粒度分布径(HORIBA社製「LA−920」)を用い、微粒子をトルエンに分散させて測定した値である。   Moreover, it is preferable that the particle size of the organic fine particles (A) is as uniform as possible. This is because if the particle sizes are not uniform, small particles are likely to enter between the large particles and the porosity tends to decrease. Specifically, the particle diameter is preferably in the range of 0.1 to 20 μm, and the average particle diameter is preferably 0.3 to 15 μm. In addition, the number average particle diameter and the particle size distribution relating to the organic fine particles (A) described in the present specification, the heat-resistant fine particles (B) described later, and the fine particles of the core-shell structure are laser scattering particle size distribution diameters (“LA-” manufactured by HORIBA) 920 ") and measured by dispersing fine particles in toluene.

耐熱微粒子(B)は、耐熱温度が160℃以上の微粒子であり、例えば、JIS−K7191法で測定した場合の熱変形温度が160℃以上もしくは熱変形温度が存在しない微粒子であり、主に、高温下での隔離材の形状を維持し、電池内温度が上昇した場合の内部短絡を防止する役割を担う成分である。耐熱微粒子(B)としては、160℃より低い温度で流動せず、非電気伝導性で、且つ電気化学的に安定で、更に電解液や上記液状組成物に用いる溶媒(分散媒)に対して安定であれば特に限定されない。例えば、非電気伝導性の無機微粒子(無機粉末)や、160℃以上の融点を有する有機微粒子(有機粉末)、架橋高分子微粒子などが挙げられる。なお、ここでいう「160℃以上の融点を有する有機微粒子」とは、JIS−K7121の規定に準じて、DSCを用いて測定される融解温度が160℃以上となる有機微粒子を意味している。   The heat-resistant fine particles (B) are fine particles having a heat-resistant temperature of 160 ° C. or higher, for example, fine particles having a heat deformation temperature of 160 ° C. or higher when measured by the JIS-K7191 method or having no heat deformation temperature. It is a component that plays the role of maintaining the shape of the separator at a high temperature and preventing internal short circuit when the temperature in the battery rises. The heat-resistant fine particles (B) do not flow at a temperature lower than 160 ° C., are non-electrically conductive, and are electrochemically stable, and further with respect to the solvent (dispersion medium) used in the electrolytic solution and the liquid composition. There is no particular limitation as long as it is stable. For example, non-electrically conductive inorganic fine particles (inorganic powder), organic fine particles (organic powder) having a melting point of 160 ° C. or higher, and crosslinked polymer fine particles are exemplified. Here, “organic fine particles having a melting point of 160 ° C. or higher” means organic fine particles having a melting temperature measured using DSC of 160 ° C. or higher in accordance with JIS-K7121. .

非電気伝導性(電気絶縁性)の無機微粒子としては、例えば、酸化鉄、SiO、Al、TiO、BaTiOなどの酸化物微粒子;窒化アルミニウム、窒化ケイ素などの窒化物微粒子;フッ化カルシウム、フッ化バリウム、硫酸バリウムなどの難溶性のイオン結晶微粒子;シリコン、ダイヤモンドなどの共有結合性結晶微粒子;モンモリロナイトなどの粘土微粒子;などが挙げられる。また、金属微粒子;SnO、スズ−インジウム酸化物(ITO)などの酸化物微粒子;カーボンブラック、グラファイトなどの炭素質微粒子;などの導電性微粒子の表面を、電気絶縁性を有する材料(例えば、上記の非電気伝導性の無機微粒子を構成する材料や、後記の、160℃以上の融点を有する有機微粒子や架橋高分子微粒子を構成する材料など)で表面処理することで、電気絶縁性を持たせた微粒子であってもよい。 Examples of non-electrically conductive (electrically insulating) inorganic fine particles include oxide fine particles such as iron oxide, SiO 2 , Al 2 O 3 , TiO 2 , and BaTiO 2 ; nitride fine particles such as aluminum nitride and silicon nitride; Insoluble ion crystal fine particles such as calcium fluoride, barium fluoride and barium sulfate; Covalent crystal fine particles such as silicon and diamond; Clay fine particles such as montmorillonite; Further, the surface of conductive fine particles such as metal fine particles; oxide fine particles such as SnO 2 and tin-indium oxide (ITO); carbon fine particles such as carbon black and graphite; Surface treatment with the above-mentioned materials constituting non-conductive inorganic fine particles, organic fine particles having a melting point of 160 ° C. or higher, and materials constituting cross-linked polymer fine particles, etc. Fine particles may be used.

また、160℃以上の融点を有する有機微粒子としては、ポリプロピレン、ポリスチレン、ポリアミド、ポリエステルなどの微粒子が挙げられ、架橋高分子微粒子としては、架橋ポリメタクリル酸メチル、架橋ポリスチレン、架橋ポリジビニルベンゼン、スチレン−ジビニルベンゼン共重合体架橋物、ポリイミド、メラミン樹脂、フェノール樹脂、ベンゾグアナミン−ホルムアルデヒド縮合物などの微粒子が例示できる。また、これらの有機微粒子、架橋高分子微粒子を構成する有機樹脂(高分子)は、上記例示の材料の混合物、変性体、誘導体、共重合体(ランダム共重合体、交互共重合体、ブロック共重合体、グラフト共重合体)、架橋体(上記架橋高分子以外の材料について)であってもよい。   Examples of the organic fine particles having a melting point of 160 ° C. or higher include fine particles of polypropylene, polystyrene, polyamide, polyester, etc., and the crosslinked polymer fine particles include crosslinked polymethyl methacrylate, crosslinked polystyrene, crosslinked polydivinylbenzene, styrene. -Fine particle | grains, such as a divinylbenzene copolymer crosslinked material, a polyimide, a melamine resin, a phenol resin, a benzoguanamine-formaldehyde condensate, can be illustrated. In addition, the organic resin (polymer) constituting these organic fine particles and crosslinked polymer fine particles may be a mixture, modified product, derivative, or copolymer (random copolymer, alternating copolymer, block copolymer) of the materials exemplified above. Polymer, graft copolymer), and crosslinked body (for materials other than the above-mentioned crosslinked polymer).

耐熱微粒子(B)としては、上記各例示の微粒子を1種単独で用いてもよく、2種以上を混合して用いてもかまわない。   As the heat-resistant fine particles (B), the fine particles exemplified above may be used singly or as a mixture of two or more.

耐熱微粒子(B)の大きさは、有機微粒子(A)の大きさと同様に、粒径が隔離材の厚みよりも小さいのが望ましいが、例えば、数平均粒子径で0.001μm以上、より好ましくは0.1μm以上であって、15μm以下、より好ましくは1μm以下であることが望ましい。耐熱微粒子(B)が小さすぎると、微粒子同士の隙間が小さくなるために、イオン伝導度が低下して電池特性低下の原因となることがある。他方、耐熱微粒子(B)が大きすぎると、隔離材を薄くすることが困難となり、やはり電池特性低下(容量低下)の原因となることがある。   The size of the heat-resistant fine particles (B) is preferably smaller than the thickness of the separator, as with the size of the organic fine particles (A). For example, the number average particle size is preferably 0.001 μm or more. Is 0.1 μm or more, 15 μm or less, more preferably 1 μm or less. If the heat-resistant fine particles (B) are too small, the gaps between the fine particles are small, so that the ionic conductivity is lowered, which may cause deterioration of battery characteristics. On the other hand, if the heat-resistant fine particles (B) are too large, it is difficult to make the separator thin, which may cause a decrease in battery characteristics (capacity reduction).

また、耐熱微粒子(B)の粒径も、有機微粒子(A)と同じ理由から、できる限り揃っていることが好ましい。具体的には、粒径が0.1〜20μmの範囲にあり、平均粒径が0.3〜15μmであることがより好ましい。   Moreover, it is preferable that the heat resistant fine particles (B) have the same particle diameter as possible for the same reason as the organic fine particles (A). Specifically, the particle size is in the range of 0.1 to 20 μm, and the average particle size is more preferably 0.3 to 15 μm.

隔離材を構成する有機微粒子(A)、耐熱微粒子(B)の組成としては、隔離材の材料全量中、耐熱微粒子(B)を4質量%以上、より好ましくは10質量%以上であって、74質量%以下、より好ましくは50質量%以下とすることが望ましい。   As the composition of the organic fine particles (A) and the heat-resistant fine particles (B) constituting the separator, the heat-resistant fine particles (B) are 4% by mass or more, more preferably 10% by mass or more in the total amount of the material of the separator, It is desirable that the content be 74% by mass or less, more preferably 50% by mass or less.

耐熱微粒子(B)を4質量%以上含むことにより、電池内が高温となった際の内部短絡の発生を防ぐ効果が高まり、一方、耐熱微粒子(B)の割合を74質量%以下とすることにより、シャットダウン機能がより短時間で発現しやすくなるからである。   By containing 4% by mass or more of the heat-resistant fine particles (B), the effect of preventing the occurrence of an internal short circuit when the temperature inside the battery becomes high is enhanced, while the ratio of the heat-resistant fine particles (B) is 74% by mass or less. This is because the shutdown function is easily developed in a shorter time.

なお、本発明の隔離材では、有機微粒子(A)と耐熱微粒子(B)の結着を強固に行う目的で、第3成分のバインダー樹脂(C)を使用する。バインダー樹脂(C)としては、上記の微粒子を良好に接着でき、電気化学的に安定で、且つ電解液や上記液状組成物に用いる溶媒(分散媒)に対して安定であれば特に限定されないが、例えば、有機微粒子(A)としてポリオレフィン系の微粒子が好適であることから、接着性向上の観点からは、分子内に、ポリエチレン構造(メチレン鎖)を有する樹脂が好適である。具体的には、エチレン−酢酸ビニル共重合体(酢酸ビニル由来の構造単位が15モル%以上で、より好ましくは30モル%以下)、エチレン−アクリレート共重合体(エチレン−メチルアクリレート共重合体、エチレン−エチルアクリレート共重合体など)などが挙げられる。また、フッ素系ゴムも用いることができる。バインダー樹脂(C)には、これらの樹脂を1種単独で、または2種以上を混合して用いることができる。
In the separator of the present invention, the third component binder resin (C) is used for the purpose of firmly binding the organic fine particles (A) and the heat-resistant fine particles (B). The binder resin (C) is not particularly limited as long as the fine particles can be satisfactorily adhered, is electrochemically stable, and is stable with respect to the solvent (dispersion medium) used in the electrolytic solution and the liquid composition. For example, polyolefin fine particles are suitable as the organic fine particles (A). Therefore, from the viewpoint of improving adhesiveness, a resin having a polyethylene structure (methylene chain) in the molecule is suitable. Specifically, ethylene-vinyl acetate copolymer (the structural unit derived from vinyl acetate is 15 mol% or more, more preferably 30 mol% or less), ethylene-acrylate copolymer (ethylene-methyl acrylate copolymer, Ethylene-ethyl acrylate copolymer, etc.). Fluorine rubber can also be used. These binder resins can be used alone or in admixture of two or more for the binder resin (C).

また、バインダー樹脂(C)の量は、隔離材を構成する全材料中、2質量%以上、より好ましくは5質量%以上であって、30質量%以下、より好ましくは20質量%以下とすることが望ましい。バインダー樹脂(C)を2質量%以上含むことにより、隔離材を構成する微粒子の結着効果が高まり、一方、30質量%以下とすることにより、隔離材の空孔をふさいで電池特性が損なわれるという問題が生じるのを防ぐことができる。   Further, the amount of the binder resin (C) is 2% by mass or more, more preferably 5% by mass or more, and 30% by mass or less, more preferably 20% by mass or less, in all materials constituting the separator. It is desirable. By containing 2% by mass or more of the binder resin (C), the binding effect of the fine particles constituting the separator is enhanced. On the other hand, by setting it to 30% by mass or less, the pores of the separator are blocked and the battery characteristics are impaired. Can be prevented from occurring.

非水電池に係る隔離材の別の形態として、前記有機微粒子(A)および耐熱微粒子(B)に代えて、または、前記有機微粒子(A)または耐熱微粒子(B)とともに、160℃以上の耐熱温度を有する耐熱微粒子(B)の表面に融点が80〜150℃の樹脂の被覆層が形成されてなるコアシェル構造の微粒子を用いることもできる。
As another form of the separator related to the nonaqueous battery, a heat resistance of 160 ° C. or higher is used instead of the organic fine particles (A) and the heat resistant fine particles (B), or together with the organic fine particles (A) or the heat resistant fine particles (B). Fine particles having a core-shell structure in which a resin coating layer having a melting point of 80 to 150 ° C. is formed on the surface of the heat-resistant fine particles (B) having a temperature can also be used.

上記被覆層を構成する材料としては、上記有機微粒子(A)と同じものを用いることができ、融点は90℃以上であることが好ましく、また、125℃以下であることが好ましい。   As the material constituting the coating layer, the same material as the organic fine particles (A) can be used, and the melting point is preferably 90 ° C. or higher, and preferably 125 ° C. or lower.

上記コアシェル構造の微粒子は、耐熱微粒子(B)と、融点が80〜130℃である樹脂を、当該樹脂を溶解できる溶媒中にて、樹脂の融点以上で混合し、冷却後、噴霧乾燥により前記溶媒を除去することにより得ることができる。   The core-shell structured fine particles are prepared by mixing the heat-resistant fine particles (B) and a resin having a melting point of 80 to 130 ° C. in a solvent capable of dissolving the resin at a temperature equal to or higher than the melting point of the resin, cooling, and spray drying. It can be obtained by removing the solvent.

上記樹脂を溶解できる溶媒としては、n−ヘキサン、n−ペンタン、n−ヘプタン、オクタン、ノナン、デカンなどの炭化水素系のアルカン系あるいはアルキン系溶媒;シクロヘキサノンなどのケトン系;トルエン;キシレン;などが挙げられる。   Solvents that can dissolve the resin include hydrocarbon-based alkane-based or alkyne-based solvents such as n-hexane, n-pentane, n-heptane, octane, nonane, and decane; ketones such as cyclohexanone; toluene; xylene; Is mentioned.

上記コアシェル構造の微粒子の大きさとしては、粒径が隔離材の厚みよりも小さいことが望ましいが、例えば隔離材の厚みの3/4〜1/100の平均粒径を有していることが好ましく、より具体的には、数平均粒子径で0.1〜20μmであることが望ましい。コアシェル構造の微粒子が小さすぎると、微粒子同士の隙間が小さくなるために、イオン伝導度が低下して電池特性低下の原因となることがある。他方、コアシェル構造の微粒子が大きすぎると、隔離材を薄くすることが困難となり、やはり電池特性低下(容量低下)の原因となることがある。   The size of the core-shell structured fine particles is preferably smaller than the thickness of the separator, but for example, has an average particle size of 3/4 to 1/100 of the thickness of the separator. More specifically, it is desirable that the number average particle diameter is 0.1 to 20 μm. If the core-shell structured microparticles are too small, the gap between the microparticles becomes small, so that the ionic conductivity may decrease, which may cause a decrease in battery characteristics. On the other hand, if the core-shell structured particles are too large, it is difficult to make the separator thin, and this may also cause a decrease in battery characteristics (capacity reduction).

また、コアシェル構造の微粒子は、その粒径が、できる限り揃っていることが好ましい。粒径が不揃いであると、大粒径の粒子同士の間に小粒径の粒子が入り込んでしまって空孔率が低下しやすいからである。具体的には、粒径が0.1〜20μmの範囲にあり、平均粒径が0.3〜15μmであることがより好ましい。   Moreover, it is preferable that the particle diameters of the core-shell structured fine particles are as uniform as possible. This is because if the particle sizes are not uniform, small particles are likely to enter between the large particles and the porosity tends to decrease. Specifically, the particle size is in the range of 0.1 to 20 μm, and the average particle size is more preferably 0.3 to 15 μm.

上記コアシェル構造の微粒子を用いる場合、上記コアシェル構造の微粒子のみで本発明における隔離材を構成することもできるが、前記有機微粒子(A)または耐熱微粒子(B)とともに用いてもよい。隔離材の全量中における上記コアシェル構造の微粒子の割合は、4質量%以上が好ましく、26質量%以上がより好ましく、90質量%以下とすることが望ましい。また、コアシェル構造の微粒子の結着を強固に行う目的で、前述と同様に第3成分のバインダー樹脂(C)を使用してもよい。   In the case where the core-shell structured fine particles are used, the separator in the present invention can be constituted only by the core-shell structured fine particles, but may be used together with the organic fine particles (A) or the heat-resistant fine particles (B). The proportion of the core-shell structured fine particles in the total amount of the separator is preferably 4% by mass or more, more preferably 26% by mass or more, and desirably 90% by mass or less. Further, in order to firmly bind the core-shell structured fine particles, the third component binder resin (C) may be used in the same manner as described above.

非水電池においては、その隔離材の一成分として用いられている有機微粒子(A)、あるいはコアシェル構造の微粒子の被覆層を構成する樹脂が、それぞれの融点において融解し、隔離材の空孔を閉塞することによって当該電池の内部抵抗が上昇するいわゆるシャットダウン効果を有する。
In a non-aqueous battery, the organic fine particles (A) used as a component of the separator or the resin constituting the coating layer of the core-shell structured fine particles melt at their respective melting points to form pores in the separator. It has a so-called shutdown effect in which the internal resistance of the battery is increased by being blocked.

さらに、隔離材が電極上に直接形成されているため、異常時に電極で発生した熱が直接隔離材に伝導するため、上記融解が素早く起こり、シャットダウン機能が短時間で発現する。   Furthermore, since the separator is formed directly on the electrode, heat generated at the electrode in the event of an abnormality is directly conducted to the separator, so that the melting occurs quickly and the shutdown function is manifested in a short time.

本発明において、上記シャットダウン機能は、電池の温度変化に対応する内部抵抗の変化で評価することができる、例えば、20℃から150℃まで1℃/分の速度で昇温させたときに、30℃、80℃および130℃での電池の内部抵抗を、それぞれR30、R80およびR130としたとき、R80/R30≦1かつ、R130/R30≧5となる電池が、電池の実使用温度でシャットダウンによる内部抵抗の上昇がなく、かつ、より安全な130℃以下の温度領域でシャットダウンによる内部抵抗の上昇が生じることから、電池の安全性が充分に確保されるため、本発明においてより好ましいものとされる。また、R130/R30の値は大きいほどよく、10以上であることが望ましく、30以上であることがより望ましい。 In the present invention, the shutdown function can be evaluated by a change in internal resistance corresponding to a change in battery temperature. For example, when the temperature is raised from 20 ° C. to 150 ° C. at a rate of 1 ° C./min, 30 A battery satisfying R 80 / R 30 ≦ 1 and R 130 / R 30 ≧ 5 when the internal resistance of the battery at R ° C., 80 ° C. and 130 ° C. is R 30 , R 80 and R 130 , respectively, Since the internal resistance does not increase due to shutdown at the actual operating temperature of the battery and the internal resistance increases due to shutdown in the safer temperature range of 130 ° C or lower, the safety of the battery is sufficiently secured. More preferred in the invention. The value of R 130 / R 30 is preferably as large as possible, preferably 10 or more, and more preferably 30 or more.

また、上記条件で電池の内部抵抗の変化を測定したときに、内部抵抗が上昇しはじめる温度と、内部抵抗が急激に増加する領域での内部抵抗の温度に対する傾きから、シャットダウン機能を評価することもできる。すなわち、後述する実施例5の電池の内部抵抗変化を表す図3に示されるように、室温付近から内部抵抗が温度と共に漸減する「漸減領域」と、内部抵抗が上昇に転じた後、急に増加する「立ち上がり領域」の内部抵抗変化をそれぞれ直線で近似し、その交点を「内部抵抗が上昇しはじめる温度」としたときに、その温度が80℃〜130℃の範囲であり、上記立ち上がり領域での近似直線の温度に対する傾き(単位:Ω/℃)が1以上であることが望ましい。   Also, when measuring changes in the internal resistance of a battery under the above conditions, evaluate the shutdown function from the temperature at which the internal resistance begins to rise and the slope of the internal resistance in the region where the internal resistance increases rapidly. You can also. That is, as shown in FIG. 3 showing a change in internal resistance of the battery of Example 5 to be described later, a “gradual decrease region” in which the internal resistance gradually decreases with the temperature from around room temperature, and then suddenly after the internal resistance starts to increase. When the internal resistance change of the “rising region” that increases is approximated by a straight line, and the intersection is defined as “temperature at which the internal resistance begins to rise”, the temperature is in the range of 80 ° C. to 130 ° C. It is desirable that the slope (unit: Ω / ° C) of the approximate straight line at 1 is 1 or more.

上記内部抵抗が上昇しはじめる温度は、電池の実用温度範囲を広くするために、90℃以上であることがより望ましく、一方、シャットダウン温度をより安全な温度とするために、120℃以下であることがより望ましく、115℃以下であることがさらに望ましい。   The temperature at which the internal resistance begins to rise is more preferably 90 ° C. or higher in order to widen the practical temperature range of the battery, while it is 120 ° C. or lower in order to make the shutdown temperature safer. It is more desirable that the temperature is 115 ° C. or lower.

更に、上記立ち上がり領域での近似直線の温度に対する傾きは、急であるほどシャットダウン効果が明確となるため、2以上であることがより望ましく、3以上であることがさらに望ましい。   Further, the slope of the approximate straight line with respect to the temperature in the rising region is more preferably 2 or more, more preferably 3 or more, since the shutdown effect becomes clearer as it becomes steeper.

また、有機微粒子(A)の融点、あるいはコアシェル構造の微粒子表面を被覆する樹脂の融点が110℃以下の場合、より安全な115℃以下の温度でシャットダウン機能が働くため電池の安全性が大幅に向上する。   In addition, when the melting point of the organic fine particles (A) or the melting point of the resin coating the surface of the core-shell structured fine particles is 110 ° C. or lower, the shutdown function works at a safer temperature of 115 ° C. or lower, which greatly increases the safety of the battery. improves.

さらに、昇温後に、上記電池を150℃で60分間保持したときの隔離材の収縮率は、5%以下に抑えられることが望ましい。これにより、シャットダウン機能が働いた後での電池の短絡が起こりにくくなるため、高温での電池の安全性が大幅に向上する。また、隔離材が収縮しないことにより、シャットダウン後の高温保持状態でも、電池の内部抵抗は高く保たれるので、誤って電池が外部短絡したような場合でも、充電状態の電池が徐々に放電し、より安全な状態へと移行させることができる。もちろん、意図的に放電させても安全に放電状態へと変化させることが可能である。ここで、150℃まで昇温したときの電池の内部抵抗をR150とすると、R150/R30が4以上となることが望ましく、8以上となることがより望ましく、25以上となることが最も望ましい。なお、上記収縮率は、セパレータの長さの変化であり、形状が帯状である場合は、長辺の長さの変化から求めればよく、円形である場合は、直径の変化から求めればよい。なお、このような収縮率も、隔離材が上記および後記の構成を有することで確保できる。 Furthermore, it is desirable that the shrinkage of the separator when the battery is held at 150 ° C. for 60 minutes after the temperature rise is suppressed to 5% or less. This makes it difficult for the battery to be short-circuited after the shutdown function has been activated, thereby greatly improving the safety of the battery at high temperatures. In addition, since the separator does not shrink, the internal resistance of the battery is kept high even in the high temperature state after shutdown, so even if the battery is accidentally short-circuited externally, the charged battery gradually discharges. , You can move to a safer state. Of course, even if it discharges intentionally, it can change to a discharge state safely. Here, when the internal resistance of the battery when the temperature is raised to 150 ° C. is R 150 , R 150 / R 30 is desirably 4 or more, more desirably 8 or more, and desirably 25 or more. Most desirable. Note that the shrinkage rate is a change in the length of the separator. If the shape is a strip, it may be obtained from a change in the length of the long side, and if it is circular, it may be obtained from a change in diameter. In addition, such a shrinkage rate can also be ensured by having the separator described above and below.

本発明においては、上記隔離材に加えて、イオン透過性かつ電子絶縁性の微多孔膜など従来公知のセパレータを併用してもよい。このようなセパレータとして、ポリプロピレン、ポリアラミド、ポリエステル、ポリイミドから選ばれる材料を主成分とする微多孔膜が好ましく用いられる。   In the present invention, in addition to the separator, a conventionally known separator such as an ion-permeable and electronic insulating microporous film may be used in combination. As such a separator, a microporous film mainly composed of a material selected from polypropylene, polyaramid, polyester, and polyimide is preferably used.

また、上記隔離材には、150℃で実質的に変形せず、非水電解液中で実質的に化学変化しない電気絶縁性の繊維状物質を含ませることもできる。このような繊維状物質として、例えば、セルロース、セルロース変成体、ポリプロピレン、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリアラミド、ポリアミドイミド、ポリイミド、ガラス、アルミナ、シリカなどを例示することができ、これらより選ばれる少なくとも1種を用いることが好ましい。ここでいう「繊維状である」とは、粒子のアスペクト比が4以上ある物質であるということを指す。繊維状物質の径は、セパレータの厚み以下であることが望ましいが、0.01〜5μmであることがより好ましい。0.01μm以上とすることにより、隔離材の空隙の大きさが適切となり、イオン透過性が良好となるからであり、また、5μm以下とすることにより、繊維同士が絡み合い、隔離材の強度を向上させる効果が大きくなるからである。   Further, the separator may contain an electrically insulating fibrous substance that does not substantially deform at 150 ° C. and does not substantially chemically change in the non-aqueous electrolyte. Examples of such fibrous materials include cellulose, cellulose modified material, polypropylene, polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polyaramid, polyamideimide, polyimide, glass, alumina, silica, and the like. It is preferable to use at least one selected from the above. The term “fibrous” as used herein refers to a substance having an aspect ratio of particles of 4 or more. The diameter of the fibrous substance is desirably equal to or less than the thickness of the separator, but more preferably 0.01 to 5 μm. This is because, by setting the thickness to 0.01 μm or more, the size of the gap of the separator becomes appropriate and the ion permeability is good. By setting the thickness to 5 μm or less, the fibers are entangled with each other, and the strength of the separator is increased. This is because the effect of improvement is increased.

また、隔離材の厚みは、電極の表面粗さに鑑みて決定することが望ましく、好ましくは電極の表面粗さ(凹部と凸部の差)の2倍以上の厚みとすることが推奨される。具体的には、例えば、全厚み(隔離材が正極と負極の両表面に形成されている場合には、その合計厚み)が、3μm以上、より好ましくは5μm以上であって、50μm以下、より好ましくは30μm以下、さらに好ましくは20μm以下とすることが望ましい。隔離材が薄すぎると、電極の凸部を十分に覆うことが困難となり、短絡の原因となることがある。他方、隔離材が厚すぎると、電池の高エネルギー密度化が困難となることがある。なお、隔離材の厚みは、隔離材を形成した電極ごと、隔離材の厚み方向に切片を切り出し、Auなどを蒸着して得られた試料について、走査型電子顕微鏡で、倍率5000〜10000倍で、観察して測定される厚みである。   In addition, the thickness of the separator is desirably determined in view of the surface roughness of the electrode, and it is recommended that the thickness is preferably at least twice the surface roughness of the electrode (the difference between the concave and convex portions). . Specifically, for example, the total thickness (when the separator is formed on both surfaces of the positive electrode and the negative electrode, the total thickness) is 3 μm or more, more preferably 5 μm or more, and 50 μm or less. The thickness is preferably 30 μm or less, more preferably 20 μm or less. If the separator is too thin, it may be difficult to sufficiently cover the convex portions of the electrode, which may cause a short circuit. On the other hand, if the separator is too thick, it may be difficult to increase the energy density of the battery. The thickness of the separator is about 5000 to 10,000 times with a scanning electron microscope for a sample obtained by cutting a section in the thickness direction of the separator and evaporating Au or the like together with the electrode on which the separator is formed. The thickness measured by observation.

次に、本発明の非水電池を構成する他の要素について説明する。なお、本発明の非水電池には、一次電池と二次電池が含まれるが、以下には、特に主要な用途である二次電池の構成を例示する。正極としては、従来公知の非水電池に用いられている正極であれば特に制限はない。例えば、活物質として、Li1+xMOで(−0.1<x<0.1、M:Co、Ni、Mnなど)で表される層状構造のリチウム含有遷移金属酸化物;LiMnなどのリチウムマンガン酸化物;LiMnのMnの一部を他元素で置換したLiMn(1−x);オリビン型LiMPO(M:Co、Ni、Mn、Fe);LiMn0.5Ni0.5;Li(1+a)MnNiCo(1−x−y)(−0.1<a<0.1、0<x<0.5、0<y<0.5);などを適用することが可能であり、これらの正極活物質に公知の導電助剤(カーボンブラックなどの炭素材料など)やポリフッ化ビニリデン(PVDF)などの結着剤などを適宜添加した正極合剤を、集電体を芯材として成形体に仕上げたものなどを用いることができる。 Next, other elements constituting the nonaqueous battery of the present invention will be described. The non-aqueous battery of the present invention includes a primary battery and a secondary battery, and the configuration of a secondary battery, which is a main application, will be exemplified below. The positive electrode is not particularly limited as long as it is a positive electrode used in a conventionally known nonaqueous battery. For example, a lithium-containing transition metal oxide having a layered structure represented by Li 1 + x MO 2 (−0.1 <x <0.1, M: Co, Ni, Mn, etc.) as an active material; LiMn 2 O 4 LiMn oxide such as LiMn 2 O 4 , LiMn x M (1-x) O 2 in which part of Mn is substituted with other elements; olivine type LiMPO 4 (M: Co, Ni, Mn, Fe); LiMn 0.5 Ni 0.5 O 2 ; Li (1 + a) Mn x Ni y Co (1-xy) O 2 (−0.1 <a <0.1, 0 <x <0.5, 0 < y <0.5); can be applied to these positive electrode active materials, binders such as known conductive assistants (carbon materials such as carbon black) and polyvinylidene fluoride (PVDF), etc. A positive electrode mixture to which is added as appropriate, with the current collector as the core material What was finished on the body can be used.

中でも、構成元素としてMnを含むものが、活物質自身の安全性を高める上で好適であり、MnとNiをほぼ1:1で含む上記Li(1+a)MnNiCo(1−x−y)(ただし、−0.05≦x−y≦0.05)や、この化合物と、LiMnなどスピネル構造のリチウム含有遷移金属酸化物、LiCoNiOなど層状構造のリチウム含有遷移金属酸化物との混合物を好適に用いることができるが、通常汎用されているLiCoOでも本発明により充分に良好な結果を得ることができる。 Among them, a material containing Mn as a constituent element is suitable for enhancing the safety of the active material itself, and the above Li (1 + a) Mn x Ni y Co (1-x− ) containing Mn and Ni at about 1: 1. y) O 2 (where −0.05 ≦ x−y ≦ 0.05), this compound, a lithium-containing transition metal oxide having a spinel structure such as LiMn 2 O 4, or a lithium-containing transition having a layered structure such as LiCoNiO 2 Although a mixture with a metal oxide can be preferably used, sufficiently good results can be obtained by the present invention even with LiCoO 2 which is generally used in general.

正極の集電体としては、アルミニウムなどの金属の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、厚みが10〜30μmのアルミニウム箔が好適に用いられる。   As the current collector of the positive electrode, a metal foil such as aluminum, a punching metal, a net, an expanded metal, or the like can be used. Usually, an aluminum foil having a thickness of 10 to 30 μm is preferably used.

正極側のリード部は、通常、正極作製時に、集電体の一部に正極合剤層を形成せずに集電体の露出部を残し、そこをリード部とすることによって設けられる。ただし、リード部は必ずしも当初から集電体と一体化されたものであることは要求されず、集電体にアルミニウム製の箔などを後から接続することによって設けても良い。   The lead portion on the positive electrode side is normally provided by leaving the exposed portion of the current collector without forming the positive electrode mixture layer on a part of the current collector and forming the lead portion at the time of producing the positive electrode. However, the lead portion is not necessarily integrated with the current collector from the beginning, and may be provided by connecting an aluminum foil or the like to the current collector later.

負極としては、従来公知の非水電池に用いられている負極であれば特に制限はない。例えば、活物質として、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ(MCMB)、炭素繊維などの、リチウムを吸蔵、放出可能な炭素系材料の1種または2種以上の混合物が用いられる。また、Si,Sn、Ge,Bi,Sb、Inなどの元素およびその合金、リチウム含有窒化物、または酸化物などのリチウム金属に近い低電圧で充放電できる化合物、もしくはリチウム金属やリチウム/アルミニウム合金も負極活物質として用いることができる。これらの負極活物質に導電助剤(カーボンブラックなどの炭素材料など)やPVDFなどの結着剤などを適宜添加した負極合剤を、集電体を芯材として成形体に仕上げたものが用いられる他、上記の各種合金やリチウム金属の箔を単独、若しくは集電体上に形成したものを用いても良い。   The negative electrode is not particularly limited as long as it is a negative electrode used in a conventionally known nonaqueous battery. For example, carbon that can occlude and release lithium, such as graphite, pyrolytic carbons, cokes, glassy carbons, fired organic polymer compounds, mesocarbon microbeads (MCMB), and carbon fibers as active materials One type or a mixture of two or more types of system materials is used. In addition, elements such as Si, Sn, Ge, Bi, Sb, In and their alloys, lithium-containing nitrides, oxides and other compounds that can be charged and discharged at a low voltage close to lithium metal, or lithium metals and lithium / aluminum alloys Can also be used as a negative electrode active material. A negative electrode mixture prepared by appropriately adding a conductive additive (carbon material such as carbon black) or a binder such as PVDF to these negative electrode active materials and using a current collector as a core material is used. In addition, the above-described various alloys and lithium metal foils may be used alone or formed on a current collector.

負極に集電体を用いる場合には、集電体としては、銅製やニッケル製の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、銅箔が用いられる。この負極集電体は、高エネルギー密度の電池を得るために負極全体の厚みを薄くする場合、厚みの上限は30μmであることが好ましく、また、下限は5μmであることが望ましい。   When a current collector is used for the negative electrode, a copper or nickel foil, a punching metal, a net, an expanded metal, or the like can be used as the current collector, but a copper foil is usually used. In the negative electrode current collector, when the thickness of the entire negative electrode is reduced in order to obtain a battery having a high energy density, the upper limit of the thickness is preferably 30 μm, and the lower limit is preferably 5 μm.

負極側のリード部も、正極側のリード部と同様に、通常、負極作製時に、集電体の一部に負極合剤層を形成せずに集電体の露出部を残し、そこをリード部とすることによって設けられる。ただし、この負極側のリード部は必ずしも当初から集電体と一体化されたものであることは要求されず、集電体に銅製の箔などを後から接続することによって設けても良い。   As with the lead portion on the positive electrode side, the lead portion on the negative electrode side usually leaves an exposed portion of the current collector without forming a negative electrode mixture layer on a part of the current collector during the preparation of the negative electrode. It is provided by making it a part. However, the negative electrode side lead portion is not necessarily integrated with the current collector from the beginning, and may be provided by connecting a copper foil or the like to the current collector later.

電解液としては、例えば、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、プロピオン酸メチル、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、エチレングリコールサルファイト、1,2−ジメトキシエタン、1,3−ジオキソラン、テトラヒドロフラン、2−メチル−テトラヒドロフラン、ジエチルエーテルなどの1種のみからなる有機溶媒、あるいは2種以上の混合溶媒に、例えば、LiClO、LiPF 、LiBF 、LiAsF 、LiSbF 、LiCFSO 、LiCFCO、Li(SO、LiN(CFSO、LiC(CFSO、LiC2n+1SO(n≧2)、LiN(RfOSO〔ここでRfはフルオロアルキル基〕などのリチウム塩から選ばれる少なくとも1種を溶解させることによって調製したものが使用される。このリチウム塩の電解液中の濃度としては、0.5〜1.5mol/lとすることが好ましく、0.9〜1.25mol/lとすることがより好ましい。 Examples of the electrolyte include dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, methyl propionate, ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, ethylene glycol sulfite, 1,2-dimethoxyethane, 1,3- dioxolane, tetrahydrofuran, 2-methyl - tetrahydrofuran, organic solvent consists of only one type, such as diethyl ether or a mixture of two or more solvents, for example, LiClO 4, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiCF 3 CO 2, Li 2 C 2 F 4 (SO 3) 2, LiN (CF 3 SO 2) 2, LiC (CF 3 SO 2) 3, LiC n F 2n + 1 SO 3 (n ≧ 2) LiN (RfOSO 2) 2 [wherein Rf is a fluoroalkyl group] which was prepared by dissolving at least one selected from lithium salts such as are used. The concentration of the lithium salt in the electrolytic solution is preferably 0.5 to 1.5 mol / l, and more preferably 0.9 to 1.25 mol / l.

本発明の非水電池の形態としては、スチール缶やアルミニウム缶などを外装材として使用した角形電池や円筒形電池が挙げられ、また、金属を蒸着したラミネートフィルムを外装材として使用したソフトパッケージ電池とすることもできる。   Examples of the form of the non-aqueous battery of the present invention include a rectangular battery and a cylindrical battery using a steel can, an aluminum can or the like as an exterior material, and a soft package battery using a laminated film deposited with a metal as an exterior material. It can also be.

次に、本発明の非水電池の製造方法を説明する。上記の正極および負極の少なくとも一方の電極の表面(電池内において互いに対向する面の少なくとも一方)に、上記隔離材を形成する。隔離材は、有機微粒子(A)、耐熱微粒子(B)およびバインダー樹脂(C)を含む液状組成物を調製し、これを正極および負極の少なくとも一方の表面にキャストあるいはスプレーして塗布し、液状組成物中の溶媒(分散媒)を乾燥除去することにより形成される。
Next, the manufacturing method of the nonaqueous battery of this invention is demonstrated. The separator is formed on the surface of at least one of the positive electrode and the negative electrode (at least one of the surfaces facing each other in the battery). The separator is prepared by preparing a liquid composition containing organic fine particles (A), heat-resistant fine particles (B) and a binder resin (C), and applying or casting the liquid composition on at least one surface of the positive electrode and the negative electrode. It is formed by removing the solvent (dispersion medium) in the composition by drying.

隔離材を形成するための液状組成物は、有機微粒子(A)や耐熱微粒子(B)を微粒子のまま含むため、分散体(スラリー)である。この液状組成物に用いる溶媒(分散媒)としては、バインダー樹脂(C)を均一に溶解または分散し得るものが好ましく、例えば、トルエン、テトラヒドロフラン、メチルエチルケトン、メチルイソブチルケトンなどが好適である。   The liquid composition for forming the separator is a dispersion (slurry) because it contains organic fine particles (A) and heat-resistant fine particles (B) as fine particles. As the solvent (dispersion medium) used in the liquid composition, those capable of uniformly dissolving or dispersing the binder resin (C) are preferable, and for example, toluene, tetrahydrofuran, methyl ethyl ketone, methyl isobutyl ketone and the like are preferable.

隔離材を形成後、該隔離材を介して正極と負極を重ねて積層電極体とするか、重ねた正極と負極を更に巻回して巻回電極体とする(以下、積層電極体と巻回電極体を纏めて「電極体」という)。そして、電極体を外装材に装填し、電解液を注入した後に外装材を封止して非水電池とする。   After forming the separator, the positive electrode and the negative electrode are overlapped with each other through the separator to form a laminated electrode body, or the stacked positive electrode and negative electrode are further wound to form a wound electrode body (hereinafter referred to as a laminated electrode body and a wound body). The electrode bodies are collectively referred to as “electrode bodies”). Then, the electrode body is loaded into the exterior material, and after the electrolyte is injected, the exterior material is sealed to obtain a nonaqueous battery.

このようにして得られる非水電池では、内部温度が上昇して熱暴走温度に達する前に、有機微粒子(A)または上記コアシェル構造の微粒子の被覆層が溶融して隔離材の空孔を閉塞し、さらに耐熱微粒子(B)が存在することも相俟って、極めて良好なシャットダウン効果が得られる。
In the non-aqueous battery thus obtained, before the internal temperature rises to reach the thermal runaway temperature, the coating layer of the organic fine particles (A) or the fine particles of the core shell structure is melted to block the pores of the separator. In addition, combined with the presence of the heat-resistant fine particles (B), a very good shutdown effect can be obtained.

本発明では、上述したように、隔離材は正極および負極の少なくとも一方の電極の表面に直接形成されるのが望ましい。電極とセパレータが分離している場合、電極とセパレータの間に電解液による液層が存在するため、短絡などの異常発生時に電極で生じた熱は、該液層を介して間接的にセパレータに達することとなるが、電極上に直接隔離材が形成されていれば、電極で生じた熱が直接隔離材に伝わるため、シャットダウンの応答性に優れた電池を構成できるからである。   In the present invention, as described above, the separator is preferably formed directly on the surface of at least one of the positive electrode and the negative electrode. When the electrode and separator are separated, there is a liquid layer of electrolyte between the electrode and separator, so heat generated at the electrode when an abnormality such as a short circuit occurs indirectly passes through the liquid layer to the separator. This is because if the separator is formed directly on the electrode, the heat generated in the electrode is directly transmitted to the separator, so that a battery having excellent shutdown response can be configured.

しかも、本発明における隔離材は、従来の単独膜で構成されるセパレータのように延伸されていないため、高温下での収縮が生じにくく、本発明の非水電池を150℃の温度下で30分以上保持しても、隔離材が電極表面を覆ったままの状態を維持できる。このため、内部短絡を充分に防止することができる。   In addition, since the separator in the present invention is not stretched like a conventional separator made of a single membrane, it does not easily shrink at high temperatures, and the nonaqueous battery of the present invention is 30 ° C. at a temperature of 150 ° C. Even if held for more than a minute, the state in which the separator remains covering the electrode surface can be maintained. For this reason, an internal short circuit can be sufficiently prevented.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施をすることは、全て本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in detail based on examples. However, the following examples are not intended to limit the present invention, and all modifications made without departing from the spirit of the preceding and following descriptions are included in the technical scope of the present invention.

実施例1
<正極の作製>
正極活物質であるLiCoO:80質量部、導電助剤であるアセチレンブラック:10質量部、およびバインダーであるPVDF:5質量部を、N−メチル−2−ピロリドン(NMP)を溶剤として均一になるように混合して、正極合剤含有ペーストを調製した。このペーストを、集電体となる厚さ15μmのアルミニウム箔の両面に、活物質塗布長が表面281mm、裏面212mmになるように間欠塗布し、乾燥した後、カレンダー処理を行って、全厚が150μmになるように正極合剤層の厚みを調整し、幅43mmになるように切断して、長さ281mm、幅43mmの正極を作製した。さらにこの正極のアルミニウム箔の露出部にタブ付けを行った。
Example 1
<Preparation of positive electrode>
LiCoO 2 as a positive electrode active material: 80 parts by mass, acetylene black as a conductive additive: 10 parts by mass, and PVDF as a binder: 5 parts by mass uniformly using N-methyl-2-pyrrolidone (NMP) as a solvent It mixed so that positive electrode mixture containing paste might be prepared. This paste was intermittently applied to both sides of an aluminum foil having a thickness of 15 μm serving as a current collector so that the active material application length was 281 mm on the front surface and 212 mm on the back surface. The thickness of the positive electrode mixture layer was adjusted to 150 μm and cut to a width of 43 mm to produce a positive electrode having a length of 281 mm and a width of 43 mm. Further, the exposed portion of the aluminum foil of the positive electrode was tabbed.

<負極の作製>
負極活物質である黒鉛:90質量部と、バインダーであるPVDF:5質量部とを、NMPを溶剤として均一になるように混合して負極合剤含有ペーストを調製した。この負極合剤含有ペーストを、銅箔からなる厚さ10μmの集電体の両面に、活物質塗布長が表面287mm、裏面228mmになるように間欠塗布し、乾燥した後、カレンダー処理を行って全厚が142μmになるように負極合剤層の厚みを調整し、幅45mmになるように切断して、長さ287mm、幅45mmの負極を作製した。さらにこの負極の銅箔の露出部にタブ付けを行った。
<Production of negative electrode>
A negative electrode mixture-containing paste was prepared by mixing 90 parts by mass of graphite as a negative electrode active material and 5 parts by mass of PVDF as a binder so as to be uniform using NMP as a solvent. This negative electrode mixture-containing paste was intermittently applied on both sides of a 10 μm-thick current collector made of copper foil so that the active material application length was 287 mm on the front surface and 228 mm on the back surface, dried, and then subjected to calendar treatment. The thickness of the negative electrode mixture layer was adjusted so that the total thickness was 142 μm, and the negative electrode mixture layer was cut to have a width of 45 mm to produce a negative electrode having a length of 287 mm and a width of 45 mm. Further, a tab was attached to the exposed portion of the copper foil of the negative electrode.

<隔離材の形成>
バインダー樹脂(C)として、エチレン−酢酸ビニル共重合体(酢酸ビニル由来の構造単位が34モル%、日本ユニカー社製):100g、およびトルエン:6kgを容器に入れ、均一に溶解するまで室温にて撹拌した。さらに有機微粒子(A)として、ポリエチレン粉末[住友精化社製「フロービーズLE1080(商品名)」]:3kgを4回に分けて加え、ディスパーで、2800rpmの条件で1時間攪拌して分散させた。さらに耐熱微粒子(B)として、アルミナ(Al)微粒子[住友化学社製「スミコランダムAA04(商品名)」]:300gを加え、ディスパーで、2800rpmの条件で3時間攪拌して分散させて均一なスラリーとし、隔離材形成用の液状組成物を得た。このスラリーを、ギャップ:50μmで負極上に摺り切り塗布した後、トルエンを除去して、負極表面に厚み:15μmの隔離材を形成した。
<Formation of isolation material>
As binder resin (C), ethylene-vinyl acetate copolymer (the structural unit derived from vinyl acetate is 34 mol%, manufactured by Nippon Unicar Co., Ltd.): 100 g and toluene: 6 kg are put in a container and brought to room temperature until evenly dissolved. And stirred. Further, as organic fine particles (A), polyethylene powder [“Flow Beads LE1080 (trade name)” manufactured by Sumitomo Seika Co., Ltd.]: 3 kg was added in 4 portions, and dispersed with stirring with a disper at 2800 rpm for 1 hour. It was. Further, as heat-resistant fine particles (B), alumina (Al 2 O 3 ) fine particles [“Sumiko Random AA04 (trade name)” manufactured by Sumitomo Chemical Co., Ltd.]]: 300 g is added, and dispersed by stirring with a disper at 2800 rpm for 3 hours. A uniform slurry was obtained to obtain a liquid composition for forming a separator. The slurry was applied by sliding on the negative electrode with a gap of 50 μm, and then toluene was removed to form a separator with a thickness of 15 μm on the negative electrode surface.

上記のようにして得られた正極および隔離材を形成した負極を、隔離材を間にして重ね合わせ、大日本印刷製ラミネートフィルム外装材内部に装填し、電解液(エチレンカーボネートとエチルメチルカーボネートを1:2の体積比で混合した溶媒に、LiPFを1.2mol/lの濃度で溶解させた溶液)を注入し、真空封止を行って非水電池を作製した。 The positive electrode obtained as described above and the negative electrode on which the separator is formed are overlapped with the separator interposed therebetween, loaded inside the Dainippon Printing laminate film exterior material, and an electrolyte solution (ethylene carbonate and ethyl methyl carbonate). A solution in which LiPF 6 was dissolved at a concentration of 1.2 mol / l) was injected into a solvent mixed at a volume ratio of 1: 2, and vacuum sealing was performed to produce a nonaqueous battery.

実施例2
添加するアルミナ微粒子の量を3kgに変更した他は、実施例1と同様にして調製した隔離材形成用の液状組成物を用い、実施例1と同様にして非水電池を作製した。
Example 2
A non-aqueous battery was produced in the same manner as in Example 1 except that the amount of alumina fine particles to be added was changed to 3 kg, and a liquid composition for forming a separator prepared in the same manner as in Example 1 was used.

実施例3
添加するポリエチレン粉末の量を1kgに変更し、バインダー樹脂(C)のトルエン溶液への添加を1度で行った他は、実施例2と同様にして調製した隔離材形成用の液状組成物を用い、実施例1と同様にして非水電池を作製した。
Example 3
A liquid composition for forming a separating material prepared in the same manner as in Example 2 except that the amount of polyethylene powder to be added was changed to 1 kg and the binder resin (C) was added to the toluene solution once. A nonaqueous battery was produced in the same manner as in Example 1.

実施例4
耐熱微粒子(B)を架橋ポリメチルメタクリレート粉末[積水化成品工業製「MBX−5(商品名)」:1kgに変更した他は、実施例3と同様にして調製した隔離材形成用の液状組成物を用い、負極表面に形成する隔離材の厚みを20μmに変更した他は、実施例1と同様にして非水電池を作製した。
Example 4
Liquid composition for forming a separator prepared in the same manner as in Example 3 except that the heat-resistant fine particles (B) were changed to cross-linked polymethylmethacrylate powder [Sekisui Chemical Co., Ltd. “MBX-5 (trade name)”: 1 kg. A nonaqueous battery was fabricated in the same manner as in Example 1 except that the thickness of the separator formed on the negative electrode surface was changed to 20 μm.

実施例5
耐熱微粒子(B)を架橋ポリスチレン微粒子[積水化成品工業製「SBX−6(商品名)」]:1kgに変更した他は、実施例3と同様にして調製した隔離材形成用の液状組成物を用い、負極表面に形成する隔離材の厚みを20μmに変更した他は、実施例1と同様にして非水電池を作製した。
Example 5
Liquid composition for forming a separator prepared in the same manner as in Example 3 except that the heat-resistant fine particles (B) were changed to crosslinked polystyrene fine particles [“SBX-6 (trade name)” manufactured by Sekisui Plastics Co., Ltd.]: 1 kg. A nonaqueous battery was produced in the same manner as in Example 1 except that the thickness of the separator formed on the negative electrode surface was changed to 20 μm.

実施例6
バインダー樹脂(C)として、エチレン−エチルアクリレート共重合体[日本ユニカー社製「NUC6570(商品名)」:200g、およびトルエン:6kgを容器に入れ、均一に溶解するまで室温にて撹拌した。さらに有機微粒子(A)として、エチレン−酢酸ビニル共重合体粉末[住友精化社製「フローバックD5020(商品名)」]:1kgを加え、ディスパーで、2800rpmの条件で1時間攪拌して分散させた。更に微粒子(B)として、アルミナ微粒子[住友化学社製「スミコランダムAA04(商品名)」]:300gを加え、ディスパーで、2800rpmの条件で3時間攪拌して分散させて均一なスラリーとし、隔離材形成用の液状組成物を得た。この液状組成物を用いて、負極表面に形成する隔離材の厚みを20μmに変更した他は、実施例1と同様にして非水電池を作製した。
Example 6
As a binder resin (C), an ethylene-ethyl acrylate copolymer [NUC6570 (trade name) manufactured by Nippon Unicar Co., Ltd.]: 200 g and toluene: 6 kg were placed in a container and stirred at room temperature until evenly dissolved. Further, as the organic fine particles (A), ethylene-vinyl acetate copolymer powder [“Flowback D5020 (trade name)” manufactured by Sumitomo Seika Co., Ltd.]: 1 kg is added and dispersed by stirring for 1 hour with a disper at 2800 rpm. I let you. Further, as fine particles (B), alumina fine particles [“SUMIKORANDAN AA04 (trade name)” manufactured by Sumitomo Chemical Co., Ltd.]: 300 g are added and dispersed with stirring with a disperser at 2800 rpm for 3 hours to form a uniform slurry. A liquid composition for forming a material was obtained. Using this liquid composition, a nonaqueous battery was produced in the same manner as in Example 1 except that the thickness of the separator formed on the negative electrode surface was changed to 20 μm.

実施例7
添加するポリエチレン粉末の量を1kgに変更し、バインダー樹脂(C)のトルエン溶液への添加を1度で行った他は、実施例1と同様にして調製した隔離材形成用の液状組成物を用い、実施例1と同様にして非水電池を作製した。
Example 7
A liquid composition for forming a separator, prepared in the same manner as in Example 1, except that the amount of polyethylene powder to be added was changed to 1 kg and the binder resin (C) was added to the toluene solution once. A nonaqueous battery was produced in the same manner as in Example 1.

実施例8
実施例7で用いたものと同じ隔離材形成用の液状組成物を用い、正極および負極の表面に、それぞれ厚み15μmの隔離材を形成した他は、実施例1と同様にして非水電池を作製した。
Example 8
A non-aqueous battery was prepared in the same manner as in Example 1, except that the same liquid composition for forming a separator as that used in Example 7 was used, and a separator having a thickness of 15 μm was formed on the surfaces of the positive electrode and the negative electrode. Produced.

参考例9
トルエン1kgに、ポリエチレン粉末[住友精化社製「フローセンUF1.5(商品名)」]:100g、およびアルミナ微粒子[住友化学社製「スミコランダムAA04(商品名)」]:300gを加え、100℃に加熱してポリエチレン粉末を完全に溶解させた。この溶液を氷水にて一気に室温付近まで冷却させ、ポリエチレン樹脂をアルミナ微粒子表面に析出させ、コアシェル構造の微粒子を作製した。コアシェル構造の微粒子が分散したトルエン溶液に、バインダー樹脂(C)として、エチレン−酢酸ビニル共重合体(酢酸ビニル由来の構造単位が34モル%、日本ユニカー社製):100gを入れ、均一に溶解するまで室温にて撹拌して均一なスラリーとし、隔離材形成用の液状組成物を得た。このスラリーを、ギャップ:50μmで負極上に摺り切り塗布した後、トルエンを除去して、負極表面に厚み:15μmの隔離材を形成した。
Reference Example 9
To 1 kg of toluene, 100 g of polyethylene powder [Sumitomo Seika's “Flowsen UF1.5 (trade name)”]: 100 g and alumina fine particles [Sumitomo Chemical Co., “Sumicorundum AA04 (trade name)]]: 300 g are added, and 100 The polyethylene powder was completely dissolved by heating to ° C. This solution was cooled to near room temperature at once with ice water, and polyethylene resin was deposited on the surface of the alumina fine particles to produce core-shell structured fine particles. 100 g of ethylene-vinyl acetate copolymer (34 mol% vinyl acetate-derived structural unit, manufactured by Nihon Unicar) is added as a binder resin (C) to a toluene solution in which fine particles of a core-shell structure are dispersed and dissolved uniformly. The mixture was stirred at room temperature until a uniform slurry was obtained to obtain a liquid composition for forming a separator. The slurry was applied by sliding on the negative electrode with a gap of 50 μm, and then toluene was removed to form a separator with a thickness of 15 μm on the negative electrode surface.

比較例
隔離材に代えて、厚みが20μmのポリエチレン製セパレータを用いた以外は、実施例1と同様にして非水電池を作製した。
Comparative Example A nonaqueous battery was produced in the same manner as in Example 1 except that a polyethylene separator having a thickness of 20 μm was used instead of the separator.

上記の各電池について、下記の各特性評価を行った。   Each of the above batteries was evaluated for the following characteristics.

<負荷特性>
上記の各電池について、0.2Cの定電流で4.2Vになるまで、引き続き4.2Vの定電圧で充電を行った。なお、定電流充電開始から、定電圧充電終了までの総時間を7.5時間とした。充電後の各電池について、4.2Vから3.0Vになるまでの放電を、0.2Cの場合と2Cの場合で行い、各放電容量を測定して、0.2Cでの放電容量に対する.2Cでの放電容量の比を求め、これを電池の負荷特性とした。
<Load characteristics>
Each battery was continuously charged at a constant voltage of 4.2 V until it reached 4.2 V at a constant current of 0.2 C. The total time from the start of constant current charge to the end of constant voltage charge was 7.5 hours. About each battery after charge, discharge from 4.2V to 3.0V is performed in the case of 0.2C and 2C, each discharge capacity is measured, and the discharge capacity at 0.2C is measured. The ratio of the discharge capacity at 2C was determined and used as the load characteristics of the battery.

<シャットダウン特性>
上記の各電池を、オーブン中に置き、電池の内部抵抗を測定しながら、1℃/分の速度で、30℃から150℃になるまで昇温させ、電池の内部抵抗が上昇し始める温度と、30℃、80℃および130℃での電池の内部抵抗(以下、それぞれR30、R80およびR130とする)を測定し、R80/R30およびR130/R20を求めた。内部抵抗は、HIOKI社製接点抵抗計(3560 ACミリオームハイテスタ)を用いて測定し、1kHzの交流を印加したときの測定値をその電池の内部抵抗とした。なお、実施例5の電池では、150℃まで電池の内部抵抗は高い値を保ち、150℃のときの内部抵抗(R150)とR30との比、R150/R30は10であったが、比較例の電池では、シャットダウン後に、温度とともに急激に内部抵抗が減少し、前記比の値は3にまで減少した。
<Shutdown characteristics>
Each battery is placed in an oven, and while measuring the internal resistance of the battery, the temperature is increased from 30 ° C. to 150 ° C. at a rate of 1 ° C./min, and the temperature at which the internal resistance of the battery begins to rise The internal resistances of the batteries at 30 ° C., 80 ° C. and 130 ° C. (hereinafter referred to as R 30 , R 80 and R 130 , respectively) were measured to determine R 80 / R 30 and R 130 / R 20 . The internal resistance was measured using a contact resistance meter (3560 AC milliohm high tester) manufactured by HIOKI, and the measured value when an alternating current of 1 kHz was applied was defined as the internal resistance of the battery. In the battery of Example 5, the internal resistance of the battery remained high up to 150 ° C., the ratio of the internal resistance (R 150 ) and R 30 at 150 ° C., and R 150 / R 30 was 10. However, in the battery of the comparative example, the internal resistance rapidly decreased with the temperature after the shutdown, and the value of the ratio decreased to 3.

また、実施例5および比較例の電池の内部抵抗変化を、それぞれ図3および図4に示した。図3より、実施例の電池では、30℃から温度を上昇させた場合、80℃近傍までは内部抵抗が温度とともに漸減し(これを「漸減領域」として図中に表示)、その後内部抵抗が上昇に転じ、さらに温度を上げると、内部抵抗が直線的に急激に増加する(これを「立ち上がり領域」として図中に表示)様子を確認することができる。実施例5の電池では、上記漸減領域および立ち上がり領域の近似直線の交点から求まる「内部抵抗が上昇しはじめる温度」は、100℃であり、立ち上がり領域の近似直線の傾きは、4.8(Ω/℃)であったが、比較例の電池では、それぞれ、136℃、28(Ω/℃)であった。   The changes in internal resistance of the batteries of Example 5 and the comparative example are shown in FIGS. 3 and 4, respectively. From FIG. 3, in the battery of the example, when the temperature is increased from 30 ° C., the internal resistance gradually decreases with the temperature up to about 80 ° C. (this is indicated as “gradual decrease region” in the figure), and then the internal resistance decreases. When the temperature rises and the temperature is further raised, it can be confirmed that the internal resistance increases linearly and abruptly (this is indicated as “rise region” in the figure). In the battery of Example 5, the “temperature at which the internal resistance begins to rise” obtained from the intersection of the approximate straight line of the gradually decreasing region and the rising region is 100 ° C., and the slope of the approximate straight line of the rising region is 4.8 (Ω However, in the battery of the comparative example, it was 136 ° C. and 28 (Ω / ° C.), respectively.

<安全性評価>
上記シャットダウン特性評価に引き続いて、電池を150℃の温度で60分放置した後に取り出し、分解して隔離材の大きさの変化を調べた。すなわち、隔離材の長辺の長さについて、元の長さと上記貯蔵後の長さとの差を元の長さで割った値を、隔離材の収縮率(単位:%)として求め、安全性を評価した。隔離材の収縮率が5%以下の場合には、電池内部が150℃に達しても内部短絡が発生しにくく、安全性が確保されていることを意味している。
<Safety evaluation>
Subsequent to the evaluation of the shutdown characteristics, the battery was left at a temperature of 150 ° C. for 60 minutes and then taken out and decomposed to examine the change in the size of the separator. That is, for the length of the long side of the separator, the value obtained by dividing the difference between the original length and the length after storage by the original length is obtained as the shrinkage rate (unit:%) of the separator, and the safety Evaluated. When the shrinkage rate of the separator is 5% or less, it means that even if the inside of the battery reaches 150 ° C., an internal short circuit hardly occurs and safety is ensured.

各非水電池の隔離材の構成を表1〜表4に、上記の各評価結果を表5に示す。   Tables 1 to 4 show the configuration of the separator for each non-aqueous battery, and Table 5 shows the evaluation results.

Figure 0004827117
Figure 0004827117

Figure 0004827117
Figure 0004827117

表1における「PE」はポリエチレンを、「EVA」はエチレン−酢酸ビニル共重合体を、「PMMA」は架橋ポリメチルメタクリレートを、「PS」は架橋ポリスチレンを、「EEA」はエチレン−エチルアクリレート共重合体を、それぞれ意味している。また、表2においても同様である。実施例1〜8および参考例9で用いた耐熱微粒子(B)については、いずれもJIS−K7191法で測定した場合の熱変形温度が160℃以上であるか、もしくは熱変形温度が存在しないことを確認している。
In Table 1, “PE” is polyethylene, “EVA” is ethylene-vinyl acetate copolymer, “PMMA” is crosslinked polymethyl methacrylate, “PS” is crosslinked polystyrene, and “EEA” is ethylene-ethyl acrylate copolymer. Each polymer is meant. The same applies to Table 2. Regarding the heat-resistant fine particles (B) used in Examples 1 to 8 and Reference Example 9, the heat deformation temperature when measured by the JIS-K7191 method is 160 ° C. or higher, or there is no heat deformation temperature. Have confirmed.

Figure 0004827117
Figure 0004827117

Figure 0004827117
Figure 0004827117

Figure 0004827117
Figure 0004827117

表5から分かるように、実施例1〜8および参考例9の非水電池では、内部抵抗が上昇しはじめる温度が低く、内部抵抗の上昇率も高く、非常に良好なシャットダウン特性を有しており、150℃で長時間放置しても隔離材の大きさ(電極表面上での被覆状態)にも変化が見られず、良好な安全性が確保できている。さらに、実施例1〜7の電池では、非常に良好な負荷特性も確保できている。
As can be seen from Table 5, in the non-aqueous batteries of Examples 1 to 8 and Reference Example 9, the temperature at which the internal resistance begins to rise is low, the rate of increase of the internal resistance is high, and the shutdown characteristics are very good. Even when left at 150 ° C. for a long time, the size of the separator (covered state on the electrode surface) does not change, and good safety can be secured. Further, in the batteries of Examples 1 to 7, very good load characteristics can be secured.

これに対し、従来構成のセパレータを用いた比較例の電池では、内部抵抗が上昇する温度が高く、シャットダウンの応答性に劣っており、また、150℃で長時間放置した場合に、セパレータが元の大きさの11%にまで収縮する(収縮率:89%)など大きな収縮が見られ、高温下での短絡が発生しやすい状態となっていた。   On the other hand, in the battery of the comparative example using the separator having the conventional configuration, the temperature at which the internal resistance rises is high and the response of the shutdown is inferior. A large shrinkage such as shrinkage to 11% of the size (shrinkage rate: 89%) was observed, and a short circuit was likely to occur at a high temperature.

本発明の実施例2の非水電池に係る隔離材の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the separator which concerns on the nonaqueous battery of Example 2 of this invention. 図1の隔離材の一部を拡大した写真である。It is the photograph which expanded a part of isolation material of FIG. 実施例5の非水電池のシャットダウン特性評価における内部抵抗変化を示すグラフである。It is a graph which shows the internal resistance change in the shutdown characteristic evaluation of the non-aqueous battery of Example 5. 比較例の非水電池のシャットダウン特性評価における内部抵抗変化を示すグラフである。It is a graph which shows the internal resistance change in the shutdown characteristic evaluation of the nonaqueous battery of a comparative example.

符号の説明Explanation of symbols

1 有機微粒子(A)
2 耐熱微粒子(B)
3 バインダー樹脂(C)
4 電極
5 隔離材
1 Organic fine particles (A)
2 Heat-resistant fine particles (B)
3 Binder resin (C)
4 Electrode 5 Separating material

Claims (17)

正極と、リチウム、リチウム合金またはリチウムイオンを吸蔵、放出可能な材料を負極活物質とする負極と、前記正極と負極との間に多孔性の隔離材を有する非水電池であって、
前記隔離材は、正極および負極の少なくとも一方の電極の表面に形成されており、かつ融点が80〜150℃の有機微粒子(A)と、160℃以上の耐熱温度を有する耐熱微粒子(B)を含む少なくとも2種類の微粒子が、バインダー樹脂(C)により結着されて構成されており、
前記隔離材を構成する全材料中、前記耐熱微粒子(B)の割合が4質量%以上で、前記バインダー樹脂(C)の割合が1.6質量%以上13.3質量%以下であり、
当該電池を30℃から150℃まで1℃/分の速度で昇温させたときに、30℃、80℃および130℃での電池の内部抵抗を、それぞれR30、R80およびR130としたときに、R80/R30≦1かつ、R130/R30≧5となることを特徴とする非水電池。
A non-aqueous battery having a positive electrode, a negative electrode using a negative electrode active material as a material capable of occluding and releasing lithium, a lithium alloy or lithium ions, and a porous separator between the positive electrode and the negative electrode,
The separator is formed of organic fine particles (A) having a melting point of 80 to 150 ° C. and heat resistant fine particles (B) having a heat resistant temperature of 160 ° C. or higher, which are formed on the surface of at least one of the positive electrode and the negative electrode . And containing at least two kinds of fine particles bound by a binder resin (C),
In all the materials constituting the separator, the ratio of the heat-resistant fine particles (B) is 4% by mass or more, and the ratio of the binder resin (C) is 1.6% by mass to 13.3% by mass,
When the battery was heated from 30 ° C. to 150 ° C. at a rate of 1 ° C./min, the internal resistance of the battery at 30 ° C., 80 ° C. and 130 ° C. was R 30 , R 80 and R 130 , respectively. Sometimes, R 80 / R 30 ≦ 1 and R 130 / R 30 ≧ 5.
30℃から150℃まで1℃/分の速度で昇温させたときに、内部抵抗が上昇しはじめる温度が80℃〜130℃の範囲にあり、内部抵抗が増加する温度領域において、内部抵抗の温度に対する傾きが1以上である請求項1に記載の非水電池。   When the temperature is increased from 30 ° C. to 150 ° C. at a rate of 1 ° C./min, the temperature at which the internal resistance begins to rise is in the range of 80 ° C. to 130 ° C. The nonaqueous battery according to claim 1, wherein the gradient with respect to temperature is 1 or more. 上記有機微粒子(A)の融点が125℃以下である請求項1または2に記載の非水電池。 The non-aqueous battery according to claim 1 or 2 melting point of the organic fine particles (A) is 125 ° C. or less. 上記耐熱微粒子(B)の数平均粒子径が、0.1μm以上6μm以下である請求項1〜のいずれかに記載の非水電池。 The number average particle diameter of the refractory particles (B) The non-aqueous battery according to any one of claims 1 to 3, at 0.1μm or more 6μm or less. 上記隔離材中の上記耐熱微粒子(B)の割合が74質量%以下である請求項1〜のいずれかに記載の非水電池。 The non-aqueous battery according to any one of claims 1-4 ratio is not more than 74 wt% of the refractory particles in the separation member (B). 上記有機微粒子(A)は、ポリオレフィン系樹脂である請求項1〜のいずれかに記載の非水電池。 The organic fine particles (A) is a non-aqueous battery according to any one of claims 1 to 5 which is a polyolefin resin. 上記有機微粒子(A)は、ポリエチレン、またはエチレン−酢酸ビニル共重合体であって酢酸ビニル由来の構造単位が15モル%未満のもの、もしくはこれらの誘導体である請求項1〜のいずれかに記載の非水電池。 The organic fine particles (A) are polyethylene or ethylene - what a vinyl acetate copolymer structural unit derived from vinyl acetate of less than 15 mol%, or to any one of claims 1 to 5, which is a derivative thereof The nonaqueous battery as described. 上記耐熱微粒子(B)は、非電気伝導性の無機微粒子、160℃以上の融点を有する有機微粒子、または架橋高分子微粒子である請求項1〜のいずれかに記載の非水電池。 The refractory particles (B) is a non-electrically conductive inorganic fine particles, organic fine particles having a 160 ° C. or more melting point or non-aqueous battery according to any one of claims 1 to 7, which is a crosslinked polymer microparticles. 上記耐熱微粒子(B)は、酸化鉄、SiO、Al、TiO、窒化アルミニウム、窒化珪素、シリコン、ダイヤモンド、硫酸バリウム、フッ化カルシウム、フッ化バリウム、モンモリロナイト、ポリイミド、メラミン系樹脂、フェノール系樹脂、架橋ポリメチルメタクリレート、架橋ポリスチレン、架橋ポリジビニルベンゼン、ベンゾグアナミン−ホルムアルデヒド縮合物から選ばれる少なくとも1種の粒子である請求項1〜のいずれかに記載の非水電池。 The heat-resistant fine particles (B) are iron oxide, SiO 2 , Al 2 O 3 , TiO 2 , aluminum nitride, silicon nitride, silicon, diamond, barium sulfate, calcium fluoride, barium fluoride, montmorillonite, polyimide, and melamine resin. , phenolic resins, cross-linked polymethyl methacrylate, crosslinked polystyrene, crosslinked polydivinylbenzene, benzoguanamine - nonaqueous battery according to any one of claims 1 to 7 at least one kind of particles selected from formaldehyde condensate. 上記耐熱微粒子(B)は、JIS−K7191法で測定した場合の熱変形温度が160℃以上であるか、または熱変形温度が存在しないものである請求項1〜のいずれかに記載の非水電池。 The refractory particles (B) is not according to any one of claims 1 to 7 heat distortion temperature, as measured by JIS-K7191 method or is 160 ° C. or higher, or one in which heat deformation temperature is not present Water battery. 前記バインダー樹脂(C)は、メチレン鎖を有する樹脂である請求項1〜1のいずれかに記載の非水電池。 The non-aqueous battery according to any one of claims 1 to 10 , wherein the binder resin (C) is a resin having a methylene chain. 上記正極と負極の間に、上記隔離材に加えて、イオン透過性の絶縁性微多孔膜が介在している請求項1〜1のいずれかに記載の非水電池。 Above between the positive electrode and the negative electrode, in addition to the separation member, the non-aqueous battery according to any one of claims 1 to 1 1, ion-permeable insulating microporous membrane is interposed. 上記有機微粒子(A)の数平均粒子径が、0.1μm以上10μm以下である請求項1〜1のいずれかに記載の非水電池。 The number average particle diameter of the organic fine particles (A) The non-aqueous battery according to any one of claims 1 to 1 2 is 0.1μm or more 10μm or less. 上記電池を150℃で60分間保持したときの隔離材の収縮率が5%以下である請求項1〜1のいずれかに記載の非水電池。 The non-aqueous battery according to any one of claims 1 to 1 3 shrinkage isolation material when held for 60 minutes at 0.99 ° C. the battery is 5% or less. 上記隔離材の厚みが、3〜30μmである請求項1〜1のいずれかに記載の非水電池。 The thickness of the isolation material is a non-aqueous battery according to any one of claims 1 to 1 4, 3 to 30 .mu.m. 正極と、リチウム、リチウム合金またはリチウムイオンを吸蔵、放出可能な材料を負極活物質とする負極の少なくとも一方の電極の表面に、融点が80〜150℃の有機微粒子(A)と、160℃以上の耐熱温度を有する耐熱微粒子(B)と、バインダー樹脂(C)とを含む液状組成物を塗布し、乾燥させることにより請求項1に記載の多孔性の隔離材を形成することを特徴とする非水電池の製造方法。   Organic fine particles (A) having a melting point of 80 to 150 ° C. and 160 ° C. or higher on the surface of at least one of the positive electrode and the negative electrode using a material capable of occluding and releasing lithium, lithium alloy or lithium ions as the negative electrode active material The porous separator according to claim 1 is formed by applying and drying a liquid composition comprising heat-resistant fine particles (B) having a heat-resistant temperature and a binder resin (C). A method for producing a non-aqueous battery. 上記正極または負極の少なくとも一方の電極の表面に、上記液状組成物を塗布した後、乾燥前または乾燥中に両電極を積層させ、さらに乾燥させることにより、正極、隔離材および負極を一体化させることを特徴とする請求項1に記載の非水電池の製造方法。
After the liquid composition is applied to the surface of at least one of the positive electrode and the negative electrode, the electrodes are laminated before or during drying, and further dried to integrate the positive electrode, the separator, and the negative electrode. The method for manufacturing a non-aqueous battery according to claim 16 .
JP2004327326A 2004-11-11 2004-11-11 Nonaqueous battery and manufacturing method thereof Active JP4827117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004327326A JP4827117B2 (en) 2004-11-11 2004-11-11 Nonaqueous battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004327326A JP4827117B2 (en) 2004-11-11 2004-11-11 Nonaqueous battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006139978A JP2006139978A (en) 2006-06-01
JP4827117B2 true JP4827117B2 (en) 2011-11-30

Family

ID=36620673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004327326A Active JP4827117B2 (en) 2004-11-11 2004-11-11 Nonaqueous battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4827117B2 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5017834B2 (en) * 2005-09-27 2012-09-05 パナソニック株式会社 Lithium ion secondary battery
JP5135822B2 (en) * 2006-02-21 2013-02-06 日産自動車株式会社 Lithium ion secondary battery and battery pack using the same
JP5189099B2 (en) * 2006-09-25 2013-04-24 エルジー・ケム・リミテッド Novel separation membrane and electrochemical device including the separation membrane
JP5144651B2 (en) * 2007-10-03 2013-02-13 日立マクセル株式会社 Battery separator and non-aqueous electrolyte battery
JP5778378B2 (en) * 2008-02-28 2015-09-16 帝人株式会社 Nonaqueous electrolyte battery separator and nonaqueous electrolyte secondary battery
JP2009277597A (en) * 2008-05-16 2009-11-26 Panasonic Corp Nonaqueous electrolyte secondary battery
US8557437B2 (en) 2009-03-25 2013-10-15 Tdk Corporation Electrode comprising protective layer for lithium ion secondary battery and lithium ion secondary battery
JP2010225545A (en) * 2009-03-25 2010-10-07 Tdk Corp Electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2010225539A (en) * 2009-03-25 2010-10-07 Tdk Corp Electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5742717B2 (en) 2009-09-30 2015-07-01 日本ゼオン株式会社 Porous membrane for secondary battery and secondary battery
JP5579497B2 (en) * 2010-05-17 2014-08-27 日立マクセル株式会社 Flat non-aqueous battery
JP2012033312A (en) * 2010-07-29 2012-02-16 Konica Minolta Holdings Inc Separator electrode assembly, method of manufacturing the same and nonaqueous electrode secondary battery
JP5747918B2 (en) 2010-08-09 2015-07-15 日本ゼオン株式会社 Porous membrane for secondary battery, production method, and use
EP2626930B1 (en) 2010-10-07 2019-03-06 Zeon Corporation Slurry for secondary battery porous membrane, secondary battery porous membrane, secondary battery electrode, secondary battery separator, and secondary battery
KR101955247B1 (en) 2011-07-01 2019-03-08 제온 코포레이션 Porous membrane for secondary batteries, method for producing same, and use of same
JP5659996B2 (en) * 2011-10-06 2015-01-28 トヨタ自動車株式会社 Method for producing lithium ion secondary battery
WO2013141140A1 (en) * 2012-03-22 2013-09-26 日本ゼオン株式会社 Porous film for secondary batteries, method for producing same, electrode for secondary batteries, separator for secondary batteries, and secondary battery
JP2015069783A (en) * 2013-09-27 2015-04-13 株式会社日立ハイテクノロジーズ Power storage device manufacturing apparatus, power storage device, and method for manufacturing the same
KR101796281B1 (en) * 2013-10-04 2017-11-10 주식회사 엘지화학 Separator for electrochemical device comprising core-shell fillers, electrochemical device comprising the same, and method for preparing the separator
CN105074989B (en) 2013-10-31 2018-11-09 株式会社Lg 化学 The manufacturing method of electrode-membrane compound, the electrode-membrane compound manufactured by the manufacturing method and comprising its lithium secondary battery
JP6289625B2 (en) * 2013-10-31 2018-03-07 エルジー・ケム・リミテッド Organic-inorganic composite porous membrane, separator including the same, and electrode structure
JP2015176856A (en) * 2014-03-18 2015-10-05 株式会社豊田自動織機 Negative electrode, method of manufacturing the same, and power storage device
JP6343468B2 (en) * 2014-03-19 2018-06-13 マクセルホールディングス株式会社 Electrochemical element separator and electrochemical element
JP6211461B2 (en) * 2014-05-14 2017-10-11 富士機械工業株式会社 Electrode material coating system with shutdown function layer
KR20150143157A (en) * 2014-06-13 2015-12-23 주식회사 엘지화학 manufacturing method of polymer particle
JP2016126832A (en) * 2014-12-26 2016-07-11 トヨタ自動車株式会社 Electrode body
JP2016186920A (en) * 2015-03-27 2016-10-27 日立マクセル株式会社 Nonaqueous electrolyte secondary battery
JP2017069147A (en) * 2015-10-02 2017-04-06 トヨタ自動車株式会社 Electrode body and method for manufacturing electrode body
WO2018017944A1 (en) * 2016-07-22 2018-01-25 Celgard, Llc Improved coatings, coated separators, batteries, and related methods
WO2019017331A1 (en) 2017-07-18 2019-01-24 株式会社Gsユアサ Electrode, power storage element and method for producing electrode
WO2019242016A1 (en) * 2018-06-22 2019-12-26 Shanghai Energy New Materials Technology Co., Ltd. Separators, electrochemical devices comprising separators, and methods for making separators
CN111509176B (en) * 2020-04-29 2022-12-27 东莞东阳光科研发有限公司 Cross-linked polyimide/ceramic composite diaphragm and preparation method thereof
CN116231231B (en) * 2023-05-09 2023-08-01 合肥长阳新能源科技有限公司 Interlayer crosslinking co-extrusion battery diaphragm, preparation method thereof and battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4650730A (en) * 1985-05-16 1987-03-17 W. R. Grace & Co. Battery separator
JP3175730B2 (en) * 1998-04-27 2001-06-11 住友化学工業株式会社 Non-aqueous electrolyte battery separator and lithium secondary battery
KR100666821B1 (en) * 2004-02-07 2007-01-09 주식회사 엘지화학 Organic/inorganic composite porous layer-coated electrode and electrochemical device comprising the same

Also Published As

Publication number Publication date
JP2006139978A (en) 2006-06-01

Similar Documents

Publication Publication Date Title
JP4827117B2 (en) Nonaqueous battery and manufacturing method thereof
JP4743747B2 (en) Separator, manufacturing method thereof, and nonaqueous electrolyte battery
JP5477985B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP6980978B2 (en) A composition for forming an insulating layer for a lithium secondary battery, and a method for manufacturing an electrode for a lithium secondary battery using the composition.
JP5158678B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP5213007B2 (en) Battery separator and non-aqueous electrolyte battery
JP5144651B2 (en) Battery separator and non-aqueous electrolyte battery
JP5328034B2 (en) Electrochemical element separator, electrochemical element and method for producing the same
JP5937776B2 (en) Battery separator and battery
US8771859B2 (en) Separator for battery and nonaqueous electrolyte battery using same
JP5611505B2 (en) Battery separator and lithium secondary battery
JP2006164761A5 (en)
US20050214637A1 (en) Battery separator and non-aqueous electrolyte secondary battery using the separator
JP5650738B2 (en) Battery separator and battery
WO2009151054A1 (en) Porous film for separator, battery separator, battery electrode, and manufacturing methods therefor, and lithium secondary battery
JP5427046B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof
JP2006032246A (en) Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2009032677A (en) Porous membrane for separator and its manufacturing method; separator for battery and its manufacturing method; electrode for battery and its manufacturing method, and lithium secondary cell
WO2005117169A1 (en) Wound nonaqueous secondary battery and electrode plate used therein
JP5247657B2 (en) Non-aqueous electrolyte battery
JP2008226566A (en) Composition for porous insulating layer formation, positive electrode for lithium-ion secondary battery, negative electrode for lithium ion secondary battery, and lithium-ion secondary battery
JP2009064566A (en) Separator for battery and nonaqueous electrolyte battery
JP2008027839A (en) Porous membrane with liner, method of manufacturing porous membrane, and method of manufacturing lithium secondary battery
JP2008004438A (en) Separator for battery, and lithium secondary cell
JP2014170661A (en) Separator for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101008

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110517

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110908

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4827117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250