JP4826971B2 - Manufacturing method of semiconductor device using high dielectric constant thin film - Google Patents

Manufacturing method of semiconductor device using high dielectric constant thin film Download PDF

Info

Publication number
JP4826971B2
JP4826971B2 JP2009099106A JP2009099106A JP4826971B2 JP 4826971 B2 JP4826971 B2 JP 4826971B2 JP 2009099106 A JP2009099106 A JP 2009099106A JP 2009099106 A JP2009099106 A JP 2009099106A JP 4826971 B2 JP4826971 B2 JP 4826971B2
Authority
JP
Japan
Prior art keywords
dielectric constant
high dielectric
layer
film
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009099106A
Other languages
Japanese (ja)
Other versions
JP2009164635A (en
Inventor
平司 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2009099106A priority Critical patent/JP4826971B2/en
Publication of JP2009164635A publication Critical patent/JP2009164635A/en
Application granted granted Critical
Publication of JP4826971B2 publication Critical patent/JP4826971B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、高誘電率薄膜の成膜方法及び高誘電率薄膜を用いた半導体装置の製造方法に関し、特に、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)の高集積化と高速化に不可欠な極薄ゲート絶縁膜層の成膜に用いて好適な高誘電率薄膜の成膜方法及び高誘電率薄膜を用いた半導体装置の製造方法に関する。   The present invention relates to a method of forming a high dielectric constant thin film and a method of manufacturing a semiconductor device using the high dielectric constant thin film, and in particular, is essential for high integration and high speed of MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor). The present invention relates to a method for forming a high dielectric constant thin film suitable for use in forming a very thin gate insulating film layer and a method for manufacturing a semiconductor device using the high dielectric constant thin film.

シリコン酸化膜はプロセス上の安定性や優れた絶縁特性を有し、MOSFETのゲート絶縁膜材料として用いられている。近年の素子微細化と共にゲート絶縁膜の薄層化が進んでおり、ゲート長が100nm程度以下になるとスケーリング則の要請からゲート絶縁膜であるシリコン酸化膜の厚さは1.5nm以下であることが必要となっている。しかし、この様な極薄の絶縁膜を用いた場合、ゲートバイアス印加時に絶縁層を挿んでのトンネル電流がソース/ドレイン電流に対して無視できない値となり、MOSFETの高性能化と低消費電力化における大きな課題となっている。   A silicon oxide film has process stability and excellent insulating properties, and is used as a gate insulating film material for MOSFETs. With the recent miniaturization of devices, the gate insulating film is becoming thinner, and when the gate length is about 100 nm or less, the thickness of the silicon oxide film, which is the gate insulating film, is 1.5 nm or less due to the demand of scaling law. Is required. However, when such an ultra-thin insulating film is used, the tunnel current through the insulating layer when the gate bias is applied becomes a value that cannot be ignored with respect to the source / drain current, and the high performance and low power consumption of the MOSFET It has become a big issue.

そこで、実効的なゲート絶縁膜を薄くし、かつトンネル電流をデバイス設計上の許容値内に抑える為の研究開発が進められている。その一つの方法は、シリコン酸化膜中に窒素を添加する事で純粋なシリコン酸化膜に比べて誘電率を増大させ、物理的な膜厚を薄層化する事なしに実効的なゲート絶縁層の膜厚を減少させる方法であるが、シリコン酸化膜への窒素添加による高誘電率化には限界があることが指摘されている。   Therefore, research and development are underway to make the effective gate insulating film thinner and to keep the tunnel current within the allowable range in device design. One method is to add nitrogen to the silicon oxide film to increase the dielectric constant compared to a pure silicon oxide film, and an effective gate insulating layer without reducing the physical film thickness. However, it has been pointed out that there is a limit to increasing the dielectric constant by adding nitrogen to the silicon oxide film.

二つ目の方法は、誘電率3.9であるシリコン酸化膜に代わって、誘電率10以上の薄膜材料、またはこれらの材料とシリコンとの複合材料であるシリケート薄膜をゲート絶縁膜に採用するという方法である。この様な高誘電率薄膜としては、Al2O3、ZrO2やHfO2、およびY2O3などの希土類元素酸化物、さらにはランタノイド系元素の酸化物が候補材料として検討されている。これらの高誘電率膜を用いれば、ゲート長を微細にしてもスケーリング則に則ったゲート絶縁膜容量を保持しつつ、ゲート絶縁膜としてトンネル電流を防げる厚さにすることができる。 In the second method, instead of a silicon oxide film having a dielectric constant of 3.9, a thin film material having a dielectric constant of 10 or more or a silicate thin film which is a composite material of these materials and silicon is used for the gate insulating film. It is a method. As such high dielectric constant thin films, rare earth element oxides such as Al 2 O 3 , ZrO 2 , HfO 2 , and Y 2 O 3 , and oxides of lanthanoid elements have been studied as candidate materials. If these high dielectric constant films are used, the gate insulating film can be made to have a thickness that can prevent a tunnel current while maintaining the gate insulating film capacity in accordance with the scaling rule even if the gate length is made fine.

なお、ゲート絶縁膜の種類によらず、ゲート絶縁膜材料がシリコン酸化膜であると仮定して、ゲート容量から逆算して得られるシリコン酸化膜の膜厚をシリコン酸化膜換算膜厚と呼ぶ。すなわち、絶縁膜とシリコン酸化膜の比誘電率をそれぞれεh、εoとし、絶縁膜の厚さをdhとした時、シリコン酸化膜換算膜厚deは、式1で与えられる。   Regardless of the type of gate insulating film, assuming that the gate insulating film material is a silicon oxide film, the film thickness of the silicon oxide film obtained by calculating backward from the gate capacitance is referred to as the equivalent silicon oxide film thickness. That is, when the relative dielectric constants of the insulating film and the silicon oxide film are εh and εo, respectively, and the thickness of the insulating film is dh, the equivalent silicon oxide film thickness de is given by Equation 1.

Figure 0004826971
Figure 0004826971

式1は、εoに較べて大きな誘電率εhをもった材料を用いれば、絶縁膜が厚くても薄いシリコン酸化膜と同等になりうることを示している。すなわち、シリコン酸化膜の比誘電率εoは3.9程度なので、例えばεh=39の高誘電体膜を用いれば15nmの厚さにしても1.5nmのシリコン酸化膜換算膜厚になり、トンネル電流を激減できるということになる。   Formula 1 shows that if a material having a dielectric constant εh larger than εo is used, even if the insulating film is thick, it can be equivalent to a thin silicon oxide film. That is, since the relative dielectric constant εo of the silicon oxide film is about 3.9, for example, if a high dielectric film of εh = 39 is used, even if the thickness is 15 nm, the equivalent film thickness of the silicon oxide film is 1.5 nm. The current can be drastically reduced.

しかしながら、上述したように、各種の高誘電率薄膜はゲート絶縁膜として優れた特性を有するが、高誘電率薄膜の成膜時および成膜後の加熱工程で、シリコン基板との界面にシリコン酸化膜を主成分とした界面遷移層が形成されるという問題がある。   However, as described above, various high dielectric constant thin films have excellent characteristics as gate insulating films. However, silicon oxide is formed at the interface with the silicon substrate during the high dielectric constant thin film deposition and in the heating process after film deposition. There is a problem that an interface transition layer mainly composed of a film is formed.

MOSFETにおけるゲート絶縁膜の作製では、高誘電率薄膜に比べて誘電率の低い界面層(シリコン酸化膜層)が形成されると、実効的な絶縁層厚が増加してしまうため、シリコン酸化膜換算膜厚で1.5nm以下の極薄ゲート絶縁膜開発において大きな課題となっている。例えば、厚さdh、比誘電率εhの高誘電体の下に比誘電率εoのシリコン酸化膜がdoの厚さで存在すると、単位面積当たりの容量は式2のようになる。   In the production of a gate insulating film in a MOSFET, if an interface layer (silicon oxide film layer) having a lower dielectric constant than a high dielectric constant thin film is formed, the effective insulating layer thickness increases. This is a major problem in the development of an ultra-thin gate insulating film having a converted film thickness of 1.5 nm or less. For example, when a silicon oxide film having a relative dielectric constant εo exists under a high dielectric having a thickness dh and a relative dielectric constant εh, the capacitance per unit area is expressed by Equation 2.

Figure 0004826971
Figure 0004826971

εeは複合膜を単一膜と見なした場合の実効的な比誘電率である。従って、シリコン酸化膜換算膜厚は式3のようになる。   εe is an effective relative dielectric constant when the composite film is regarded as a single film. Accordingly, the equivalent silicon oxide film thickness is as shown in Equation 3.

Figure 0004826971
Figure 0004826971

ここで、仮に、シリコン酸化膜が存在せず(do=0)、εh=39の高誘電率膜を採用して1.5nm厚の換算膜厚とするには、15nmの厚さにすればよいが、1nmのシリコン酸化膜が界面に存在した場合には、高誘電率膜の膜厚は5nmにしなければならない。εhがさらに小さい場合には、シリコン酸化膜が挟まれば膜厚はますます小さいものとなり、トンネル電流を防ぐことができなくなってしまう。   Here, if there is no silicon oxide film (do = 0) and a high dielectric constant film of εh = 39 is adopted to obtain a converted film thickness of 1.5 nm, the thickness should be 15 nm. However, when a 1 nm silicon oxide film is present at the interface, the film thickness of the high dielectric constant film must be 5 nm. If εh is even smaller, the film thickness becomes smaller if a silicon oxide film is sandwiched, and tunnel current cannot be prevented.

高誘電率薄膜の成膜では、一般的に膜厚の均一性や膜質がシリコン酸化膜に比べて悪いため、高誘電率薄膜自体の薄層化にも限界がある。この結果、界面シリコン酸化膜層を薄くして、高誘電率層の膜厚を比較的厚く設定しないと優れた特性を期待できない。従って、界面シリコン酸化膜層の増減を原子層レベルでコントロールしなければ製造でのロッド間、ロッド内、さらにウエハ間でのシリコン酸化膜換算膜厚deの制御が実質的に困難となる。   In the formation of a high dielectric constant thin film, since the uniformity of film thickness and film quality are generally poorer than that of a silicon oxide film, there is a limit to the thinning of the high dielectric constant thin film itself. As a result, excellent characteristics cannot be expected unless the interfacial silicon oxide film layer is thinned and the film thickness of the high dielectric constant layer is set relatively large. Therefore, unless the increase / decrease of the interface silicon oxide film layer is controlled at the atomic layer level, it becomes substantially difficult to control the equivalent silicon oxide film thickness de between the rods in the manufacturing process, within the rods, and between the wafers.

この様に原子層レベルでの界面層制御が要求されるにも関わらず、MOSFETの製造工程ではドーパント活性化のために1000℃前後の熱処理が必要であり、従来技術では界面層の熱安定性確保が困難である。また、高誘電率薄膜の成膜時においても、基板との界面に反応層(酸化膜層)が形成されることが報告されており、上述の熱安定性と共にデバイス開発上の大きな課題である。   Although the interface layer control at the atomic layer level is required in this way, the MOSFET manufacturing process requires a heat treatment at around 1000 ° C. to activate the dopant, and the conventional technology has the thermal stability of the interface layer. It is difficult to secure. In addition, it has been reported that a reaction layer (oxide film layer) is formed at the interface with the substrate even when a high dielectric constant thin film is formed, which is a major problem in device development along with the thermal stability described above. .

上記高誘電率膜形成後の高温での熱処理工程を回避する対応策としては、ダミーゲート電極作製後にドーパント活性化の為の高温熱処理を実施し、ダミーゲート等を除去してから高誘電体ゲート薄膜を堆積する方法が検討されている。しかしながら、本手法では製造プロセスが複雑となるだけでなく、ダミーゲート除去工程時に発生する汚染等の問題が生じてしまう。従って、従来のMOSFET製造プロセスの利点を生かすためには、高誘電率ゲート薄膜とシリコン基板界面の高温下での熱安定性を確保する事が必要である。   As a countermeasure to avoid the high-temperature heat treatment step after the formation of the high dielectric constant film, a high-dielectric gate is formed after the dummy gate is removed by performing a high-temperature heat treatment for dopant activation after the dummy gate electrode is manufactured. Methods for depositing thin films are being considered. However, this method not only complicates the manufacturing process, but also causes problems such as contamination that occurs during the dummy gate removal step. Therefore, in order to take advantage of the conventional MOSFET manufacturing process, it is necessary to ensure thermal stability of the interface between the high dielectric constant gate thin film and the silicon substrate at a high temperature.

一方、高誘電率薄膜とシリコン基板との界面特性の理解が不十分であるのに対して、シリコンとシリコン酸化膜との界面は電気的な欠陥準位密度が少なく、またシリコン酸化膜は高誘電体薄膜に比べてバンドギャップが大きいため、デバイス特性の観点からは高誘電率薄膜との界面にシリコン酸化膜層が存在する方が望ましい。しかし、上述の様に、極薄ゲート絶縁層の実現には、誘電率の低いシリコン酸化膜層(界面層)の厚さは数原子層程度である事が要求される。   On the other hand, while the understanding of the interface characteristics between the high dielectric constant thin film and the silicon substrate is insufficient, the interface between silicon and the silicon oxide film has a low electrical defect level density, and the silicon oxide film has a high density. Since the band gap is larger than that of the dielectric thin film, it is desirable that the silicon oxide film layer exists at the interface with the high dielectric constant thin film from the viewpoint of device characteristics. However, as described above, in order to realize an extremely thin gate insulating layer, the thickness of the silicon oxide film layer (interface layer) having a low dielectric constant is required to be about several atomic layers.

以上の点を総合的に勘案すると、シリコン基板と高誘電率薄膜との界面にシリコン酸化膜層を意図的に挿入した工程を採用するかどうかに関らず、高誘電率薄膜の成膜やその後の処理工程において、界面遷移層(酸化膜層)の形成や成長を原子層レベルで制御・抑制する技術を確立する事が重要となっている。   Considering the above points comprehensively, regardless of whether or not a process in which a silicon oxide film layer is intentionally inserted at the interface between the silicon substrate and the high dielectric constant thin film is employed, In subsequent processing steps, it is important to establish a technique for controlling and suppressing the formation and growth of the interface transition layer (oxide film layer) at the atomic layer level.

本発明は、上記問題点に鑑みてなされたものであって、その主たる目的は、高誘電率薄膜形成時および成膜後の各種工程での界面反応層の成長を制御・抑制することができる、電気的特性に優れた高誘電率薄膜の成膜方法及び高誘電率薄膜を用いた半導体装置の製造方法を提供することにある。   The present invention has been made in view of the above-mentioned problems, and its main purpose is to control and suppress the growth of the interface reaction layer during various processes after the formation of the high dielectric constant thin film and after the film formation. Another object of the present invention is to provide a method for forming a high dielectric constant thin film having excellent electrical characteristics and a method for manufacturing a semiconductor device using the high dielectric constant thin film.

上記目的を達成するため、本発明は、高誘電率薄膜を成膜するための金属層の酸化処理工程及び/又は前記高誘電率薄膜の成膜後の処理工程を、シリコン基板界面に形成される界面反応膜の膜厚を原子層レベルに制御可能な、残留酸素分圧及び残留水分圧の双方が共に、1×10 -4 Torr以下の雰囲気中で行うものである。 In order to achieve the above object, according to the present invention, a metal layer oxidation treatment step for forming a high dielectric constant thin film and / or a treatment step after the formation of the high dielectric constant thin film is formed at the silicon substrate interface. Both the residual oxygen partial pressure and the residual moisture pressure can be controlled to the atomic layer level in an atmosphere of 1 × 10 −4 Torr or less.

また、本発明においては、前記成膜後の処理が、ドーパントの活性化処理を含むことが好ましい。   In the present invention, it is preferable that the treatment after the film formation includes a dopant activation treatment.

また、本発明においては、前記高誘電率薄膜の成膜又は前記成膜後の処理を、減圧雰囲気下又は不活性ガスを含む雰囲気下で行うことが好ましい。   In the present invention, it is preferable that the film formation of the high dielectric constant thin film or the treatment after the film formation is performed in a reduced pressure atmosphere or an atmosphere containing an inert gas.

このように、本発明は上記構成により、高誘電率薄膜とシリコン基板との界面遷移層(シリコン酸化膜層)の成長を制御・抑制することができ、実効的なゲート絶縁膜厚を薄層化することにより、ゲート層を流れるトンネル電流を飛躍的に低減させ、高性能かつ低消費電力のMOSFETを製造することができる。   As described above, according to the present invention, the growth of the interface transition layer (silicon oxide film layer) between the high dielectric constant thin film and the silicon substrate can be controlled and suppressed by the above configuration, and the effective gate insulating film thickness is reduced. As a result, the tunnel current flowing through the gate layer can be drastically reduced, and a high performance and low power consumption MOSFET can be manufactured.

以上説明したように、本発明の高誘電体薄膜の成膜方法および処理方法によれば、成膜中および処理中の残留酸素分圧ならびに残留水分圧を所定の値以下に低減することにより、高誘電率薄膜とシリコン基板との界面遷移層(シリコン酸化膜層)の成長を制御・抑制することができるという効果がある。そして、実効的なゲート絶縁膜厚を1nmレベルにまで薄層化することにより、ゲート層を流れるトンネル電流を飛躍的に低減させ、高性能かつ低消費電力のMOSFETを製造することが可能となるという効果がある。   As described above, according to the film formation method and the processing method of the high dielectric thin film of the present invention, by reducing the residual oxygen partial pressure and the residual moisture pressure during film formation and processing to a predetermined value or less, There is an effect that the growth of the interface transition layer (silicon oxide film layer) between the high dielectric constant thin film and the silicon substrate can be controlled and suppressed. By reducing the effective gate insulating film thickness to the 1 nm level, the tunnel current flowing through the gate layer can be drastically reduced, and a high performance and low power consumption MOSFET can be manufactured. There is an effect.

シリコン基板上にシリコン酸化膜が形成される様子を模式的に示す断面図である。It is sectional drawing which shows typically a mode that a silicon oxide film is formed on a silicon substrate. 本発明の一実施例に係るZrO2/SiO2/Si積層ゲート構造を作製する場合のプロセス工程を示す図である。It shows a process step in the case of producing a ZrO 2 / SiO 2 / Si multilayer gate structure according to an embodiment of the present invention. 本発明の高誘電体薄膜を成膜するプロセス装置の例を示す断面図である。It is sectional drawing which shows the example of the process apparatus which forms the high dielectric material thin film of this invention.

本発明に係る高誘電率薄膜の成膜方法は、その好ましい一実施の形態において、高誘電率薄膜の成膜工程又は成膜後の処理工程において、雰囲気中残留酸素分圧及び残留水分圧を所定の値以下に設定することにより、気相中から高誘電率薄膜を透過してシリコン基板との界面に供給される酸素量を低減してシリコン基板界面に形成される界面反応膜の膜厚を原子層レベルに制御し、ゲート絶縁膜として用いるZrO2等の高誘電率薄膜の膜厚を大きくすることにより、ゲート層を流れるトンネル電流の低減を図るものである。 In a preferred embodiment of the method for forming a high dielectric constant thin film according to the present invention, the residual oxygen partial pressure and the residual moisture pressure in the atmosphere are formed in the high dielectric constant thin film forming step or the processing step after the film forming. The film thickness of the interface reaction film formed at the silicon substrate interface by reducing the amount of oxygen supplied to the interface with the silicon substrate through the high dielectric constant thin film from the gas phase by setting it to a predetermined value or less. Is controlled at the atomic layer level and the film thickness of a high dielectric constant thin film such as ZrO 2 used as a gate insulating film is increased to reduce the tunnel current flowing through the gate layer.

具体的には、高誘電率薄膜の成膜時においては、雰囲気中の残留酸素分圧を1×10-4Torr以下に低減することで界面反応層(酸化層)の成長を1nm以下に抑制することができ、残留酸素分圧を5×10-6Torr以下に低減することで界面反応層の成長を0.3nm以下に抑制することが可能となり、高誘電率薄膜の成膜工程を減圧下あるいは不活性ガスを含む雰囲気下で行う場合にも、上述の様に残留酸素分圧と水分圧を低減することによって界面反応層の成長を抑制することが可能となる。 Specifically, during the formation of a high dielectric constant thin film, the growth of the interface reaction layer (oxide layer) is suppressed to 1 nm or less by reducing the residual oxygen partial pressure in the atmosphere to 1 × 10 −4 Torr or less. By reducing the residual oxygen partial pressure to 5 × 10 −6 Torr or less, the growth of the interfacial reaction layer can be suppressed to 0.3 nm or less, and the deposition process of the high dielectric constant thin film is reduced. Even when the reaction is performed in a lower atmosphere or an atmosphere containing an inert gas, the growth of the interface reaction layer can be suppressed by reducing the residual oxygen partial pressure and the water pressure as described above.

また、高誘電率薄膜成膜後の処理工程においては、残留酸素分圧ならびに水分圧を1×10-8Torr以下とすることで界面反応を停止させることができ、これらの分圧を5×10-6Torr以下にすることで界面反応層を0.3nm以下に、1×10-4Torr以下にすることで界面反応層を1nm以下に抑制することができる。更に、この高誘電率薄膜処理工程を減圧下あるいは不活性ガスを含む雰囲気中で実施する場合でも、上記に示したような低残留酸素分圧ならびに低残留水分圧条件下で処理することで、界面反応層の成長を停止または抑制することが可能である。特に、界面反応の進行は高温下で顕著となるため、残留酸素分圧と水分圧の低減効果は加熱処理工程に対して顕著となる。 In the processing step after the formation of the high dielectric constant thin film, the interface reaction can be stopped by setting the residual oxygen partial pressure and the water pressure to 1 × 10 −8 Torr or less, and these partial pressures are reduced to 5 ×. By setting it to 10 −6 Torr or less, the interface reaction layer can be suppressed to 0.3 nm or less, and by setting it to 1 × 10 −4 Torr or less, the interface reaction layer can be suppressed to 1 nm or less. Furthermore, even when this high dielectric constant thin film processing step is performed under reduced pressure or in an atmosphere containing an inert gas, by performing the processing under the low residual oxygen partial pressure and low residual moisture pressure conditions as described above, It is possible to stop or suppress the growth of the interface reaction layer. In particular, since the progress of the interfacial reaction becomes remarkable at high temperatures, the effect of reducing the residual oxygen partial pressure and the water pressure becomes remarkable for the heat treatment process.

ここで、残留酸素分圧と水分圧の低減効果について、図1を参照して以下に説明する。ZrO2やHfO2などの高誘電率薄膜とシリコン基板との界面には、シリコン酸化膜を主成分とした界面遷移層(シリケート層の場合もある)が形成されることが報告されている。この問題を解決するプロセス改善において重要な事項は、図1に示すように、界面酸化を引き起こす酸素は高誘電率薄膜層103中から供給されるのではなく、気相中の残留酸素106が高誘電率薄膜層103を透過してシリコン基板101との界面に到達し、シリコン原子104と結合することによってシリコン基板101の酸化反応が進行している点である。 Here, the effect of reducing the residual oxygen partial pressure and the moisture pressure will be described below with reference to FIG. It has been reported that an interface transition layer (which may be a silicate layer) mainly composed of a silicon oxide film is formed at the interface between a silicon substrate and a high dielectric constant thin film such as ZrO 2 or HfO 2 . As shown in FIG. 1, an important matter in improving the process to solve this problem is that oxygen causing interfacial oxidation is not supplied from the high dielectric constant thin film layer 103, but the residual oxygen 106 in the gas phase is high. The point is that the oxidation reaction of the silicon substrate 101 proceeds by passing through the dielectric thin film layer 103 and reaching the interface with the silicon substrate 101 and bonding with the silicon atoms 104.

この現象は、シリコン基板101上にZrO2等の高誘電率薄膜103を堆積した試料を残留酸素(残留水分)が存在する雰囲気下で熱処理した場合には界面酸化層が成長するのに対して、1×10-8Torr以下の超高真空中で熱処理を行った場合では界面酸化膜層が全く成長しない実験事実から明らかである。 This phenomenon occurs when an interface oxide layer grows when a sample in which a high dielectric constant thin film 103 such as ZrO 2 is deposited on a silicon substrate 101 is heat-treated in an atmosphere where residual oxygen (residual moisture) exists. It is clear from the experimental fact that when the heat treatment is performed in an ultrahigh vacuum of 1 × 10 −8 Torr or less, the interface oxide film layer does not grow at all.

また、一般に種々の熱処理工程において、雰囲気中の残留酸素や残留水分がシリコン基板の酸化を引き起こすことは周知である。しかし、シリコン酸化膜については、残留酸素が存在してもドーパント活性化のための1000℃以上の熱処理を実施してもシリコン酸化膜厚が増加する問題は生じない。これは、シリコン酸化膜層を透過する酸素量は、上述の高誘電率膜中を透過する酸素量に比べて非常に少ないため、熱処理工程で残留酸素が存在してもシリコン酸化膜とシリコン基板との界面での酸化反応は進行しないからである。従って、上述の高誘電率薄膜を用いる場合には、従来技術に比べて遥かに高精度にプロセス雰囲気中の残留酸素分圧や残留水分圧を制御することが重要となる。   In general, it is well known that residual oxygen and residual moisture in the atmosphere cause oxidation of the silicon substrate in various heat treatment processes. However, with respect to the silicon oxide film, even if residual oxygen is present, there is no problem that the silicon oxide film thickness increases even if heat treatment at 1000 ° C. or higher for dopant activation is performed. This is because the amount of oxygen that permeates through the silicon oxide film layer is very small compared to the amount of oxygen that permeates through the above-described high dielectric constant film. This is because the oxidation reaction does not proceed at the interface. Therefore, when the above-described high dielectric constant thin film is used, it is important to control the residual oxygen partial pressure and the residual moisture pressure in the process atmosphere with a much higher accuracy than in the prior art.

さらに同様の現象は、高誘電率薄膜の成膜時やその後の電極形成等の成膜プロセスにおいて、高誘電率薄膜層の一部が処理雰囲気に曝される際にも当てはまり、シリコン酸化膜に対しては問題とならない程度の残留酸素や水分が気相中に存在する場合でも、高誘電率薄膜を有するデバイスの作製工程では界面酸化膜層の成長によって致命的な問題が生じる。   Furthermore, the same phenomenon applies when a part of the high dielectric constant thin film layer is exposed to the processing atmosphere during film formation processes such as the formation of a high dielectric constant thin film or subsequent electrode formation. On the other hand, even when residual oxygen or moisture that does not cause a problem exists in the gas phase, a fatal problem arises due to the growth of the interfacial oxide film layer in the manufacturing process of a device having a high dielectric constant thin film.

以上の作用を考慮すれば、高誘電率薄膜を有するデバイスの製造工程においては、界面酸化膜層の増加量として許容される値を把握し、各プロセス中の残留酸素分圧を制御することが必要である。例えば、キャパシターなどの様に、絶縁層厚がまだ原子レベルにまで薄層化されていない工程では、1nm程度の界面反応層の成長が許される場合があるが、MOSFETのゲート絶縁膜の作製においては注意が必要であり、特にシリコン酸化膜換算膜厚で1.5nmを下回るような極薄ゲートを作製する場合には、数原子層の界面酸化層の成長が素子特性を大きく左右するため、残留酸素分圧や水分圧の厳密な制御が必要となる。   Considering the above effects, in the manufacturing process of a device having a high dielectric constant thin film, it is possible to grasp the allowable value as the increase amount of the interface oxide film layer and control the residual oxygen partial pressure during each process. is necessary. For example, in a process where the insulating layer thickness has not yet been reduced to the atomic level, such as a capacitor, an interface reaction layer of about 1 nm may be allowed to grow. In particular, when an ultra-thin gate having a silicon oxide equivalent film thickness of less than 1.5 nm is produced, the growth of the interface oxide layer of several atomic layers greatly affects the device characteristics. Strict control of residual oxygen partial pressure and moisture pressure is required.

また、界面電気特性改善のため、高誘電率薄膜とシリコン基板との界面に原子層厚のシリコン酸化膜層を挿入した構造においても、各種のプロセス工程によって初期の積層構造から界面酸化膜厚の原子層程度の増加を精密に制御しなければならない。   In addition, in order to improve the interfacial electrical characteristics, even in a structure in which a silicon oxide film having an atomic layer thickness is inserted at the interface between the high dielectric constant thin film and the silicon substrate, the interface oxide film thickness can be changed from the initial stacked structure by various process steps. The increase in atomic layers must be precisely controlled.

このように、絶縁層厚増加の許容値により要求される残留酸化分圧のレベルが異なるが、本発明では、高誘電率薄膜の膜厚制御性等を勘案してシリコン酸化膜換算膜厚を1.5nm以下とすることができる代表的なプロセス条件を例示している。具体的には、界面酸化膜層の膜厚が略1nm、略0.3nmとなる残留酸素分圧や残留水分圧を各々規定し、極薄ゲート絶縁膜形成の指標としている。   As described above, the level of residual oxidation partial pressure required varies depending on the allowable increase in the thickness of the insulating layer.In the present invention, however, the silicon oxide equivalent film thickness is set in consideration of the film thickness controllability of the high dielectric constant thin film. Typical process conditions that can be 1.5 nm or less are illustrated. Specifically, the residual oxygen partial pressure and the residual moisture pressure at which the film thickness of the interfacial oxide film layer becomes approximately 1 nm and approximately 0.3 nm are respectively defined and used as an index for forming an ultrathin gate insulating film.

上記した本発明の実施の形態についてさらに詳細に説明すべく、本発明の一実施例について、図2及び図3を参照して説明する。図2は、本実施例の高誘電率薄膜の成膜プロセスを工程順に示したフロー図であり、図3は、本実施例の高誘電率薄膜の成膜に用いるプロセス装置の例を示す断面図である。   In order to describe the above-described embodiment of the present invention in more detail, an example of the present invention will be described with reference to FIGS. FIG. 2 is a flow chart showing the film formation process of the high dielectric constant thin film of this embodiment in the order of steps, and FIG. 3 is a cross section showing an example of a process apparatus used for film formation of the high dielectric constant thin film of this embodiment. FIG.

以下、図2のフロー図に従って、本実施例の成膜方法によりZrO2/SiO2/Si積層構造からなる高誘電体ゲート絶縁層を有するMOSFETデバイスの作製を行った例について説明する。本実施例は、シリコン基板201と高誘電率薄膜層205との界面に意図的に3原子層厚のシリコン酸化膜層203を挿入した場合の成膜プロセスを示すものであり、このシリコン酸化膜層203上へのZrO2膜の形成は、金属Zr層を堆積後に減圧酸素雰囲気中で金属層を酸化処理することにより行った。なお、図2では簡略化のために素子作製領域のみを模式化して示すこととする。 In the following, an example in which a MOSFET device having a high dielectric gate insulating layer having a ZrO 2 / SiO 2 / Si laminated structure is manufactured by the film forming method of this embodiment will be described with reference to the flowchart of FIG. This embodiment shows a film forming process when a silicon oxide film layer 203 having a thickness of three atomic layers is intentionally inserted into the interface between the silicon substrate 201 and the high dielectric constant thin film layer 205. This silicon oxide film Formation of the ZrO 2 film on the layer 203 was performed by oxidizing the metal layer in a reduced-pressure oxygen atmosphere after depositing the metal Zr layer. In FIG. 2, only the element manufacturing region is schematically shown for simplification.

まず、図2(a)に示すように、シリコンウエハ洗浄後にフッ酸溶液処理によりその表面を水素原子202にて終端したシリコン基板201を、図3に示した極薄ゲート絶縁膜形成装置の試料交換室に導入した。そして、交換室の真空排気後、シリコン基板201を処理室に搬送し、真空中500℃にて熱処理を施し、表面を終端していた水素を脱離させて清浄なシリコン表面を得た。さらに、熱処理温度を850℃に上げ、真空中で保持して高温下でのシリコン原子の表面拡散と昇華反応によってデバイス作製領域の平坦化処理を実施した(図2(b)参照)。本工程により、原子間力顕微鏡で測定した表面粗さの指標RMSは0.17nm以下となり、原子レベルで平坦な表面が形成された事を確認した。   First, as shown in FIG. 2A, a silicon substrate 201 whose surface is terminated with hydrogen atoms 202 by a hydrofluoric acid solution treatment after cleaning the silicon wafer is used as a sample of the ultrathin gate insulating film forming apparatus shown in FIG. Introduced into the exchange room. Then, after the exchange chamber was evacuated, the silicon substrate 201 was transferred to the processing chamber and subjected to heat treatment in vacuum at 500 ° C., and hydrogen that had terminated the surface was desorbed to obtain a clean silicon surface. Furthermore, the heat treatment temperature was raised to 850 ° C., and the device fabrication region was planarized by surface diffusion and sublimation reaction of silicon atoms at a high temperature while being held in a vacuum (see FIG. 2B). By this step, the surface roughness index RMS measured with an atomic force microscope was 0.17 nm or less, and it was confirmed that a flat surface was formed at the atomic level.

シリコン基板201表面に意図的に原子層レベルのシリコン酸化膜層203を形成する工程では、以下の様に酸化条件を階段状に変化させることで原子層毎の酸化工程を実施した。まず、水素脱離、平坦化が完了したシリコン基板201を基板温度635℃、酸素分圧2×10-6Torrにて10分間酸化処理を行い、表面から第2原子層目までを酸化し、その後、基板温度720℃、酸素分圧4×10-5Torrに酸化条件を変えて20分間の処理を実施し、第3原子層目までの酸化を完了した(図2(c)参照)。 In the process of intentionally forming the silicon oxide film layer 203 at the atomic layer level on the surface of the silicon substrate 201, the oxidation process for each atomic layer was performed by changing the oxidation conditions in a stepwise manner as follows. First, the silicon substrate 201 that has completed hydrogen desorption and planarization is oxidized at a substrate temperature of 635 ° C. and an oxygen partial pressure of 2 × 10 −6 Torr for 10 minutes to oxidize the surface to the second atomic layer, Thereafter, the treatment was carried out for 20 minutes while changing the oxidation conditions to a substrate temperature of 720 ° C. and an oxygen partial pressure of 4 × 10 −5 Torr to complete the oxidation up to the third atomic layer (see FIG. 2C).

本工程は、過去に報告されているシリコン表面の原子層毎の酸化処理条件に基づくプロセスであり、上記の工程によって3原子層厚(約0.6nm)のシリコン酸化膜層203が形成されていることをX線光電子分光法や電子顕微鏡法によって確認した。   This step is based on the previously reported oxidation conditions for each atomic layer on the silicon surface, and the silicon oxide film layer 203 having a three atomic layer thickness (about 0.6 nm) is formed by the above steps. It was confirmed by X-ray photoelectron spectroscopy and electron microscopy.

上記の酸化膜形成工程に続いて、基板温度を室温に下げ、酸素ガスの排気を十分に行った後、電子ビーム蒸着法によりZr金属原料をシリコン酸化膜層203上に供給してZr堆積層204を形成した(図2(d)参照)。その後、再び処理室中に酸素ガスを導入し、基板温度550℃、酸素分圧1×10-4Torrの条件でZr堆積層204の酸化処理を行い、ZrO2層205を形成した(図2(e)参照)。 Subsequent to the oxide film forming step, after the substrate temperature is lowered to room temperature and oxygen gas is sufficiently exhausted, a Zr metal source is supplied onto the silicon oxide film layer 203 by an electron beam evaporation method to form a Zr deposited layer. 204 was formed (see FIG. 2D). Thereafter, oxygen gas was again introduced into the processing chamber, and the Zr deposited layer 204 was oxidized under the conditions of a substrate temperature of 550 ° C. and an oxygen partial pressure of 1 × 10 −4 Torr to form a ZrO 2 layer 205 (FIG. 2). (See (e)).

上記の酸化処理では、基板温度が550℃と比較的低温であるため、界面シリコン酸化膜層203が初期膜厚から増加しないことを、光電子分光ならびに電子顕微鏡による断面構造の観察から確認した。また、上記の様な金属膜の堆積と酸化工程を分離した高誘電率薄膜作製法以外でも、原料ガス中の残留酸素分圧を低減することで、界面シリコン酸化膜層の膜厚が増加しないことを同様の手法で確認した。   In the above oxidation treatment, since the substrate temperature was as low as 550 ° C., it was confirmed from the observation of the cross-sectional structure by photoelectron spectroscopy and an electron microscope that the interfacial silicon oxide film layer 203 did not increase from the initial film thickness. Moreover, the film thickness of the interfacial silicon oxide film layer does not increase by reducing the residual partial pressure of oxygen in the source gas other than the high dielectric constant thin film manufacturing method in which the metal film deposition and the oxidation process are separated as described above. This was confirmed by a similar method.

これに対して、上記のZr膜204堆積後の酸化処理を基板温度700℃(酸素分圧1×10-4Torr)として実施した場合には、ZrO2層205とシリコン基板201との界面酸化反応が進行し、シリコン酸化膜厚が0.6nmから約1nmにまで増加した。 On the other hand, when the oxidation process after the deposition of the Zr film 204 is performed at a substrate temperature of 700 ° C. (oxygen partial pressure of 1 × 10 −4 Torr), the interface oxidation between the ZrO 2 layer 205 and the silicon substrate 201 is performed. The reaction progressed and the silicon oxide film thickness increased from 0.6 nm to about 1 nm.

その後、Zr堆積層204を550℃にて酸化処理したZrO2層205(約2nm)/シリコン酸化膜層203(0.6nm)/シリコン基板201からなる積層構造試料を極薄ゲート絶縁膜形成装置から取出し、ポリシリコンゲート形成、ならびにソース・ドレイン領域207、208のイオン注入を実施した(図2(f)参照)。これらの成膜およびイオン注入等の工程においても、ウエハ試料を昇温する場合には雰囲気中の残留酸素分圧と残留水分圧を1×10-6Torr以下に低減することで、界面シリコン酸化膜層203の成長を抑制できることを確認している。 After that, the ZrO 2 layer 205 (about 2 nm) / silicon oxide film layer 203 (0.6 nm) / silicon substrate 201 obtained by oxidizing the Zr deposited layer 204 at 550 ° C. is used as an ultra-thin gate insulating film forming apparatus. Then, polysilicon gate formation and ion implantation of the source / drain regions 207 and 208 were performed (see FIG. 2 (f)). Also in these film forming and ion implantation processes, when the wafer sample is heated, the residual oxygen partial pressure and the residual moisture pressure in the atmosphere are reduced to 1 × 10 −6 Torr or less, thereby interfacial silicon oxidation. It has been confirmed that the growth of the film layer 203 can be suppressed.

さらに、上記試料のドーパントの活性化処理では、1×10-6Torr以下の高真空下、または残留酸素分圧ならびに残留水分圧が1×10-6Torr以下の高純度の不活性ガス雰囲気中で1050℃の熱処理を実施した。その結果、界面シリコン酸化膜層の増加を0.2nm未満に抑えることに成功した。一方、上述の熱処理工程で、巻き込み酸化が起きる開放型の石英炉の様な残留酸素分圧や水分圧を意図的に低減していない熱処理炉を用いた場合では、高誘電率ゲート薄膜が気相と接触したゲート端部等において界面シリコン酸化膜層の増加を観測し、本発明の効果を確認した。 Further, in the activation process of the dopant of the samples, 1 × 10 -6 Torr or less high vacuum, or the residual oxygen partial pressure and the residual moisture pressure 1 × 10 -6 Torr or less of a high-purity inert gas atmosphere Then, a heat treatment at 1050 ° C. was performed. As a result, the increase in the interfacial silicon oxide film layer was successfully suppressed to less than 0.2 nm. On the other hand, when a heat treatment furnace that does not intentionally reduce the residual oxygen partial pressure or moisture pressure, such as an open-type quartz furnace in which entanglement oxidation occurs in the above heat treatment process, the high dielectric constant gate thin film is not removed. The effect of the present invention was confirmed by observing an increase in the interfacial silicon oxide film layer at the edge of the gate in contact with the phase.

この工程で作製したMOSFETについて、MOS容量を測定した結果、シリコン酸化膜に換算した実効的なゲート絶縁膜厚は約1.1nmであった。また、電流−電圧測定の結果、1V印加時に絶縁層間を流れるトンネル電流は0.05A/cm2未満であった。 As a result of measuring the MOS capacitance of the MOSFET fabricated in this step, the effective gate insulating film thickness converted to a silicon oxide film was about 1.1 nm. As a result of current-voltage measurement, the tunnel current flowing between the insulating layers when 1 V was applied was less than 0.05 A / cm 2 .

上記の実施例は、代表的な高誘電率薄膜であるZrO2について示したが、これ以外の高誘電率薄膜材料の候補としては、Ta2O5、Nb2O5、Al2O3、HfO2や希土類元素の酸化物であるScO3、Y2O3、さらにはランタノイド系元素の酸化物であるLa2O3、CeO3、Pr2O3、Nd2O3、Sm2O3、Eu2O3、Gd2O3、Tb2O3、Dy2O3、Ho2O3、Er2O3、Tm2O3、Yb2O3、Lu2O3があり、これらの典型的な誘電率は10〜30程度である。さらに上述の材料とシリコンとの3元系材料薄膜についても高誘電率薄膜としての応用が考えられている。これらの材料系についても、本実施例で示した高誘電率薄膜中の酸素透過による界面反応層の形成は重大な問題であり、成膜中および処理中の残留酸素分圧ならびに残留水分圧低減による界面反応層(酸化膜層)の成長抑制(停止)が有効な技術となる。 The above-mentioned examples showed ZrO 2 which is a typical high dielectric constant thin film, but other high dielectric constant thin film material candidates include Ta 2 O 5 , Nb 2 O 5 , Al 2 O 3 , ScO 3 and Y 2 O 3 which are oxides of HfO 2 and rare earth elements, and La 2 O 3 , CeO 3 , Pr 2 O 3 , Nd 2 O 3 and Sm 2 O 3 which are oxides of lanthanoid elements , Eu 2 O 3 , Gd 2 O 3 , Tb 2 O 3 , Dy 2 O 3 , Ho 2 O 3 , Er 2 O 3 , Tm 2 O 3 , Yb 2 O 3 , Lu 2 O 3 , these A typical dielectric constant is about 10-30. Further, the ternary material thin film of the above material and silicon is also considered to be applied as a high dielectric constant thin film. In these material systems as well, the formation of an interface reaction layer by oxygen permeation in the high dielectric constant thin film shown in this example is a serious problem, and the residual oxygen partial pressure and residual moisture pressure during film formation and processing are reduced. It is an effective technique to suppress (stop) the growth of the interfacial reaction layer (oxide film layer).

このように、本実施例の高誘電率薄膜の成膜プロセスでは、金属層204の酸化処理、ドーパント活性化処理等の熱処理の際に、残留酸素分圧ならびに残留水分圧を所定の値以下(1×10-4Torr、1×10-6Torr等)に低減することにより、高誘電率薄膜層205とシリコン基板201との間に形成される界面遷移層(シリコン酸化膜層)の成長を抑制し、ゲート層を流れるトンネル電流を飛躍的に低減させた高性能かつ低消費電力のMOSFETデバイスを製造することができる。 As described above, in the film formation process of the high dielectric constant thin film according to this example, the residual oxygen partial pressure and the residual moisture pressure are less than or equal to predetermined values during the heat treatment such as oxidation treatment and dopant activation treatment of the metal layer 204 ( 1 × 10 −4 Torr, 1 × 10 −6 Torr, etc.), the growth of the interface transition layer (silicon oxide film layer) formed between the high dielectric constant thin film layer 205 and the silicon substrate 201 is reduced. This makes it possible to manufacture high performance and low power consumption MOSFET devices that suppress and drastically reduce the tunnel current flowing through the gate layer.

なお、本実施例では、予め数原子層厚のシリコン酸化膜203を形成するプロセスについて説明したが、このシリコン酸化膜203が無くてもシリコン酸化膜換算膜厚を1.5nm以下にすることができる。また、高誘電率薄膜層205の形成を金属層204堆積後、酸化処理を施すことによって行ったが、高誘電率薄膜層205を直接成膜しても良い。更に、本実施例では、高誘電率薄膜層205をゲート絶縁膜として用いる例について説明したが、本発明は上記実施例に限定されるものではなく、ゲート絶縁膜以外の高誘電率薄膜を必要とする部位に本発明の高誘電率薄膜を形成しても良いことは明らかである。   In this embodiment, the process for forming the silicon oxide film 203 having a thickness of several atomic layers has been described in advance. However, even if the silicon oxide film 203 is not provided, the equivalent silicon oxide film thickness may be 1.5 nm or less. it can. The high dielectric constant thin film layer 205 is formed by depositing the metal layer 204 and then oxidizing it, but the high dielectric constant thin film layer 205 may be formed directly. Further, in this embodiment, an example in which the high dielectric constant thin film layer 205 is used as a gate insulating film has been described. However, the present invention is not limited to the above embodiment, and a high dielectric constant thin film other than the gate insulating film is required. It is obvious that the high dielectric constant thin film of the present invention may be formed at the site.

101 シリコン基板
102 界面シリコン酸化膜層
103 高誘電率薄膜層
104 シリコン原子
105 酸素原子
106 気相中残留酸素
201 シリコン基板
202 表面水素
203 シリコン酸化膜層
204 金属(Zr)堆積層
205 高誘電率薄膜(ZrO2)層
206 ゲート電極
207 ソース領域
208 ドレイン領域
301 試料導入室
302 処理室
303 搬送系
304 基板加熱機構
305 シリコンウエハ
306 電子ビーム蒸着器
307 酸素ガス導入機構
308 真空排気系
DESCRIPTION OF SYMBOLS 101 Silicon substrate 102 Interface silicon oxide film layer 103 High dielectric constant thin film layer 104 Silicon atom 105 Oxygen atom 106 Residual oxygen in gas phase 201 Silicon substrate 202 Surface hydrogen 203 Silicon oxide film layer 204 Metal (Zr) deposition layer 205 High dielectric constant thin film (ZrO 2 ) layer 206 Gate electrode 207 Source region 208 Drain region 301 Sample introduction chamber 302 Processing chamber 303 Transport system 304 Substrate heating mechanism 305 Silicon wafer 306 Electron beam deposition device 307 Oxygen gas introduction mechanism 308 Vacuum exhaust system

Claims (5)

高誘電率薄膜を成膜するための金属層の酸化処理工程及び/又は前記高誘電率薄膜の成膜後の処理工程を、シリコン基板界面に形成される界面反応膜の膜厚を原子層レベルに制御可能な、残留酸素分圧及び残留水分圧の双方が共に、1×10 -4 Torr以下の雰囲気中で行うことを特徴とする半導体装置の製造方法。 The thickness of the interfacial reaction film formed at the silicon substrate interface is the atomic layer level in the oxidation process of the metal layer for forming the high dielectric constant thin film and / or the treatment process after the film formation of the high dielectric constant thin film. A method for manufacturing a semiconductor device, characterized in that both the residual oxygen partial pressure and the residual moisture pressure are controlled in an atmosphere of 1 × 10 −4 Torr or less. 前記成膜後の処理が、加熱処理である、請求項記載の半導体装置の製造方法。 The treatment after film formation, a heat treatment, a method of manufacturing a semiconductor device according to claim 1, wherein. 前記成膜後の処理が、ドーパントの活性化処理を含む、請求項記載の半導体装置の製造方法。 The treatment after film formation, including activation of the dopant, a manufacturing method of a semiconductor device according to claim 1, wherein. 前記成膜後の処理を、減圧雰囲気下又は不活性ガスを含む雰囲気下で行うことを特徴とする請求項1乃至3のいずれか一に記載の半導体装置の製造方法。 Manufacturing method of the process after the film formation, the semiconductor device according to any one of claims 1 to 3, characterized in that in an atmosphere containing a reduced pressure atmosphere or an inert gas. 請求項1乃至4のいずれか一に記載の処理を、少なくとも1回含む半導体装置の製造方法。 A method for manufacturing a semiconductor device, comprising the process according to claim 1 at least once .
JP2009099106A 2009-04-15 2009-04-15 Manufacturing method of semiconductor device using high dielectric constant thin film Expired - Fee Related JP4826971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009099106A JP4826971B2 (en) 2009-04-15 2009-04-15 Manufacturing method of semiconductor device using high dielectric constant thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009099106A JP4826971B2 (en) 2009-04-15 2009-04-15 Manufacturing method of semiconductor device using high dielectric constant thin film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000385907A Division JP4367599B2 (en) 2000-12-19 2000-12-19 Deposition method of high dielectric constant thin film

Publications (2)

Publication Number Publication Date
JP2009164635A JP2009164635A (en) 2009-07-23
JP4826971B2 true JP4826971B2 (en) 2011-11-30

Family

ID=40966797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009099106A Expired - Fee Related JP4826971B2 (en) 2009-04-15 2009-04-15 Manufacturing method of semiconductor device using high dielectric constant thin film

Country Status (1)

Country Link
JP (1) JP4826971B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6799960B2 (en) * 2016-07-25 2020-12-16 株式会社Screenホールディングス Heat treatment method and heat treatment equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6241821B1 (en) * 1999-03-22 2001-06-05 Motorola, Inc. Method for fabricating a semiconductor structure having a crystalline alkaline earth metal oxide interface with silicon
JP2002043565A (en) * 2000-07-26 2002-02-08 Toshiba Corp Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JP2009164635A (en) 2009-07-23

Similar Documents

Publication Publication Date Title
JP4643884B2 (en) Semiconductor device and manufacturing method thereof
US7679148B2 (en) Semiconductor device, production method and production device thereof
JP4104834B2 (en) Manufacturing method of MIS field effect transistor
TWI482218B (en) Method of forming a semiconductor device
JP2003179049A (en) Insulating film-forming method, and semiconductor device and manufacturing method thereof
JP4367599B2 (en) Deposition method of high dielectric constant thin film
US7151299B2 (en) Semiconductor device and its manufacturing method
JPH11135774A (en) High-dielectric constant silicate gate dielectric
JP4120938B2 (en) Semiconductor device having high dielectric constant insulating film and manufacturing method thereof
TWI393176B (en) Method of fabricating a mos device with non-sio2 gate dielectric
JP2001332547A (en) Semiconductor device and its manufacturing method
JP2007194239A (en) Process for fabricating semiconductor device
US9786762B2 (en) Gate electrode of a semiconductor device, and method for producing same
US9159779B2 (en) Method of fabricating semiconductor device
JP4826971B2 (en) Manufacturing method of semiconductor device using high dielectric constant thin film
JPWO2005074037A1 (en) Manufacturing method of semiconductor device
JP3647785B2 (en) Manufacturing method of semiconductor device
JP5581464B2 (en) Semiconductor structure having a film containing germanium oxide on a germanium layer and method for manufacturing the same
KR20120140112A (en) Manufacturing method of semiconductor device
TWI440082B (en) A method for removing geox
JP4868910B2 (en) Semiconductor device and manufacturing method thereof
US7365403B1 (en) Semiconductor topography including a thin oxide-nitride stack and method for making the same
KR101050457B1 (en) High voltage gate insulating film formation method of semiconductor device
JP5039396B2 (en) Manufacturing method of semiconductor device
JP3963446B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees