JP4825828B2 - Method for determining pathological conditions such as renal diseases by electrophoresis using silver staining - Google Patents

Method for determining pathological conditions such as renal diseases by electrophoresis using silver staining Download PDF

Info

Publication number
JP4825828B2
JP4825828B2 JP2008047281A JP2008047281A JP4825828B2 JP 4825828 B2 JP4825828 B2 JP 4825828B2 JP 2008047281 A JP2008047281 A JP 2008047281A JP 2008047281 A JP2008047281 A JP 2008047281A JP 4825828 B2 JP4825828 B2 JP 4825828B2
Authority
JP
Japan
Prior art keywords
fraction
urine
electrophoresis
protein
electrophoretic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008047281A
Other languages
Japanese (ja)
Other versions
JP2009204465A (en
Inventor
実 坂爪
文武 下条
紀代子 芝
信夫 平塚
武英 松田
亮 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jokoh Co Ltd
Original Assignee
Jokoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jokoh Co Ltd filed Critical Jokoh Co Ltd
Priority to JP2008047281A priority Critical patent/JP4825828B2/en
Publication of JP2009204465A publication Critical patent/JP2009204465A/en
Application granted granted Critical
Publication of JP4825828B2 publication Critical patent/JP4825828B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Description

ヒトや動物の尿中の蛋白質を電気泳動しその分析結果の特長から、疾病の種類を特定しようという分野 Fields in which proteins in human and animal urine are electrophoresed to identify the type of disease based on the characteristics of the analysis results

尿を用いる検査は、人体に苦痛を与えることなく採取できる被試験物質として受診時のスクリーニングや住民検診等で広く使われている。これらに使われている測定項目のうち尿蛋白質の分析について、試験紙による検査法では一般的に蛋白質が出現しないいわゆる陰性が健常とされている。この試験紙の測定感度は20〜30mg/dLである。
しかし特許文献1、特許文献2、特許文献3のように感度の高い銀染色法を使うと、健常人でも極少量の蛋白質が排泄されていることがわかっている。この微量蛋白質を電気泳動法により分析する方法は、芝らにより非特許文献1および非特許文献2、非特許文献3に詳しく述べられている。これによると銀染色法を用いる尿蛋白質の電気泳動像の分析から、糖尿病においては泳動像の形からおおよそ5群に分けられている。
特開2002-236127号公報 特開2003-215130号公報 特開2005-134144号公報 生物物理化学誌vol.41、1997年、頁25-27 臨床検査vol.42、1998年、頁1106-1109 臨床病理、臨時増刊、臨時増刊第107号、平成10年、頁49−55
Tests using urine are widely used in screening at screening and resident screening as test substances that can be collected without causing pain to the human body. Among the measurement items used in these, the analysis of urine protein is generally considered to be negative so-called negative in which no protein appears in the test method using a test paper. The measurement sensitivity of this test paper is 20-30 mg / dL.
However, it is known that when a highly sensitive silver staining method such as Patent Document 1, Patent Document 2, and Patent Document 3 is used, a very small amount of protein is excreted even in a healthy person. The method for analyzing this minute amount of protein by electrophoresis is described in detail in Non-Patent Document 1, Non-Patent Document 2, and Non-Patent Document 3 by Shiba et al. According to this, from the analysis of electrophoretic images of urinary proteins using silver staining, diabetes is roughly divided into 5 groups according to the shape of the electrophoretic image.
JP 2002-236127 A JP 2003-215130 A JP 2005-134144 A Biophysical Chemistry Vol. 41, 1997, pp. 25-27 Clinical Laboratory Vol. 42, 1998, pp. 1106-1109 Clinical pathology, extra edition, extra edition 107, 1998, pp. 49-55

本願発明は、銀染色法を用いる高感度尿蛋白質分析法を使うことにより、従来から行われている電気泳動像の分析だけをするのではなく、腎糸球体障害群、腎尿細管障害群、ベンスジョーンズ蛋白質が現れる群、混合型腎障害群のように疾患特有の泳動像から特定のアルゴリズムを抽出して、専門医でも判定し難い腎疾患の種類を判定しようと言うものである。 The present invention uses a highly sensitive urinary protein analysis method using a silver staining method, so that not only analysis of electrophoretic images conventionally performed, but also glomerular disorder group, renal tubular disorder group, A specific algorithm is extracted from a disease-specific electrophoretic image, such as a group in which Bence Jones protein appears, or a mixed type renal disorder group, to determine the type of kidney disease that is difficult for a specialist to determine.

課題を解決するため、多くの腎生検による臨床診断を根拠にそれぞれの泳動像の特徴を明確にして専門医でなくとも、泳動像の特徴より腎生検をしなくとも腎疾患の病態を把握できる方法を発明した。 In order to solve the problem, the characteristics of each electrophoretic image are clarified on the basis of clinical diagnosis by many renal biopsies, and even if you are not a specialist, you can understand the pathology of renal disease from the characteristics of the electrophoretic image without performing a renal biopsy Invented a method that can be used.

尿は腎臓で生成され必要な栄養素例えば蛋白質などは再吸収され再利用されるのが腎臓の重要な機能の1つである。従って尿に蛋白質が出現する場合、腎機能の障害や腎疾患が予測される。その腎疾患のうち、腎糸球体障害としてはIgA腎症、膜性腎症、巣状糸球体硬化症などが知られている。また腎尿細管障害としてはファンコニー症候群、間質性腎炎などがある。 One of the important functions of the kidney is that urine is produced in the kidney and necessary nutrients such as proteins are reabsorbed and reused. Therefore, when protein appears in urine, impaired renal function or renal disease is predicted. Among the renal diseases, IgA nephropathy, membranous nephropathy, focal glomerulosclerosis and the like are known as renal glomerular disorders. Examples of renal tubular disorders include Fancony syndrome and interstitial nephritis.

その腎疾患の確定診断をするため、腎生検が広く行われている。腎生検は針を腎臓に向かって穿刺し、腎組織を取り出し組織染色後専門医による病理診断をする方法であり、患者にかなりの苦痛を与えるばかりか、組織の採取や病理組織標本の作製、その標本の判定に相当の費用と時間と熟練を要していた。 Renal biopsy is widely performed to make a definitive diagnosis of the kidney disease. Renal biopsy is a method of puncturing the needle toward the kidney, taking out the kidney tissue and performing pathological diagnosis by a specialist after tissue staining, not only causing considerable pain to the patient, but also collecting tissue and preparing pathological tissue specimens, It took considerable cost, time and skill to judge the specimen.

さらに患者側からすると腎生検後に、肉眼的血尿、血腫の形成など出血にまつわる合併症が起こり、出血の程度が多ければ血圧低下、ショックにまで発展することがあると言われている。 Furthermore, from the patient's side, complications related to bleeding such as gross hematuria and hematoma formation occur after renal biopsy, and if the degree of bleeding is high, blood pressure may decrease and shock may develop.

腎生検以外の検査法には、CTなどの画像診断や尿中蛋白質の定量および尿蛋白分画法がある。そのうち尿中蛋白質の定量検査には、アルブミン、トランスフェリンなどの糸球体性蛋白質の測定、レチノール結合蛋白、β2ミクログロブリン、NAGなどの尿細管性蛋白質の測定、免疫グロブリンL鎖(κ、λ)およびその他の臓器の疾患に起因する蛋白質の測定など種々の方法があるが、測定しなければならない蛋白質の濃度が薄かったりその測定する項目の種類が多くかつ、免疫測定法など高価な抗体を使うなど欠点も多く実用的ではなくあまり実施されていない。 Test methods other than renal biopsy include image diagnosis such as CT, urinary protein quantification, and urine protein fractionation. Among them, quantitative tests for urinary proteins include measurement of glomerular proteins such as albumin and transferrin, measurement of tubular proteins such as retinol binding protein, β2 microglobulin, NAG, immunoglobulin light chain (κ, λ) and There are various methods such as measurement of proteins caused by diseases of other organs, but the concentration of protein to be measured is low or there are many types of items to be measured, and expensive antibodies such as immunoassay are used. There are many drawbacks and it is not practical and is not implemented very often.

従来の尿蛋白分画検査は、ポンソー3Rまたはアシッドバイオレッド17による染色法があったが蛋白質の染色能が低くその上、尿中蛋白質濃度がかなり低いため、尿を数十倍に濃縮して実施しておりその濃縮時間も10時間と長く、分離された電気泳動像も濃縮の影響による分画の歪み、不鮮明さのため正確な診断が困難なことが多かった。 In the conventional urine protein fraction test, there was a staining method with Ponceau 3R or Acid Bio Red 17, but the protein staining ability was low and the protein concentration in urine was quite low. The concentration time was as long as 10 hours, and the separated electrophoretic image was often difficult to accurately diagnose due to the distortion and unclearness of the fraction due to the effect of concentration.

本願発明は、前述特許文献1の銀染色法を用いており、その検出感度は数mg/dLとより微量で検出できることがわかっている。そして発明者らは多数の健常者や腎疾患の尿蛋白質の濃度を測定した結果、10mg/dL未満の患者には重篤な腎疾患が見られないこともわかった。そのうち腎疾患の病態が分かっている患者の尿蛋白質を電気泳動し銀染色した電気泳動像を詳しく精査した結果、疾患特有のアルゴリズムを特定することができた。 The present invention uses the silver staining method of Patent Document 1 described above, and it is known that the detection sensitivity can be detected in a trace amount of several mg / dL. The inventors measured the concentration of urine protein in a large number of healthy subjects and kidney diseases, and as a result, it was also found that patients with less than 10 mg / dL do not have severe kidney disease. As a result of electrophoretic analysis of silver-stained electrophoretic images of urinary proteins from patients with known renal pathology, we were able to identify disease-specific algorithms.

まず実施例に示すように尿蛋白質の銀染色による電気泳動像は、個人の腎機能の差異、疾病の状況により千差万別かつ種々多様性を呈する。この多様な電気泳動像をそのまま従来型の濃度図(ザイモグラム)にした測定結果を主治医に送ってもそれがどの疾患群にあたるかを判定するにはあまりにも条件が多すぎ極めて困難であった。 First, as shown in the Examples, electrophoretic images obtained by silver staining of urinary proteins exhibit a variety of variations depending on differences in individual renal functions and disease conditions. Even if measurement results obtained by directly converting these various electrophoretic images into conventional concentration diagrams (zymograms) were sent to the attending physician, there were too many conditions to determine which disease group they belonged to, and it was extremely difficult.

本願発明では、デンシトグラムだけではなくその濃度の差異や特定の蛋白質バンドの有無等に基づいて疾患別に4群に分類しその群特有のアルゴリズムをコンピュータにより病態解析を行った結果、それが臨床診断に非常に有用であるという結論に至った。 In the invention of the present application, as a result of classifying into four groups according to diseases based on not only the densitogram but also the concentration difference and presence / absence of a specific protein band, etc. It was concluded that it is very useful.

図1に銀染色法による尿蛋白質4群の代表的電気泳動像の実際を示す。(1)(2)は腎糸球体障害群、(3)(4)は腎尿細管障害群、(5)(6)はベンスジョーンズ蛋白質出現群、(7)(8)は健常者群である。 FIG. 1 shows actual electrophoretic images of 4 groups of urine proteins by silver staining. (1) (2) is a glomerular disorder group, (3) (4) is a renal tubular disorder group, (5) (6) is a Bence Jones protein appearance group, (7) (8) is a healthy group is there.

排泄される尿蛋白質の濃度は患者の病状により異なるので、綺麗な電気泳動像を得るため、電気泳動をする前に予め前述の特許文献1などの定量法で、その濃度を測定しておき、その濃度に従い電気泳動支持体へ患者尿の塗布量を一定にしている。一定量を検体塗布器(アプリケータ)で塗布するには、1回0.8μL塗布される器具を使用する場合、約4回3.2μLを目安として検体を塗布する。濃度が薄い場合は最大8回までは塗布できる。逆に濃度が濃い場合は検体を稀釈して結果的にほぼ一定量を塗布する。
従って図1において色調の変化いわゆる染色帯のそれぞれの濃さを見ても尿蛋白質の量的比を判断することは出来ない。当然これだけで腎疾患等の病態を判断することは非常に難しい。
Since the concentration of excreted urinary protein varies depending on the condition of the patient, in order to obtain a beautiful electrophoretic image, the concentration is measured in advance by the quantitative method described in Patent Document 1 before electrophoresis, The application amount of patient urine to the electrophoresis support is made constant according to the concentration. In order to apply a certain amount with a sample applicator (applicator), when using a device to which 0.8 μL is applied once, the sample is applied approximately 3.2 μL about 4 times. When the concentration is low, it can be applied up to 8 times. Conversely, if the concentration is high, the specimen is diluted and, as a result, an almost constant amount is applied.
Accordingly, it is impossible to judge the quantitative ratio of urine protein by looking at the changes in color tone in FIG. Of course, it is very difficult to judge the pathological condition such as kidney disease by this alone.

従って腎疾患等の病態を判断するためには、電気泳動像の濃度差だけでなく、疾患を特定する蛋白質の位置の特定および染色帯のピークの有無、その大きさなどを併せて判断し腎疾患の病態を見極めないとならない。本願発明者達は多数の実測例より、それらの特徴いわゆるアルゴリズムを世界で初めて決定し実際にそれらを応用した。 Therefore, in order to determine the pathology of kidney disease, etc., not only the concentration difference in the electrophoretic image, but also the location of the protein that identifies the disease, the presence or absence of the peak of the staining band, the size, etc. are also determined. You must determine the pathology of the disease. The inventors of the present application determined the so-called algorithms for the first time in the world from a large number of actual measurement examples, and actually applied them.

血清蛋白質を電気浸透のないセルロースアセテート膜例えばセパラックスSP(富士フイルム社製)で電気泳動した電気泳動像は、健常人で普通5つの山が検出でき、陽極側からアルブミン、α1、α2、β、γと呼ばれている。尿中に出現する蛋白質はこの血清中の蛋白質と本質的には同じものと考えられておりその移動度はほぼ同じである。 An electrophoretic image obtained by electrophoresis of serum protein with a cellulose acetate membrane without electroosmosis, such as Separax SP (manufactured by Fujifilm), can detect five normal peaks in a healthy person, and albumin, α1, α2, β, It is called γ. The protein appearing in urine is considered to be essentially the same as the protein in this serum, and its mobility is almost the same.

電気泳動法においては使用するセルロースアセテート膜や緩衝液および泳動槽の大きさ、泳動環境の湿度、温度、電圧等の差によって蛋白質の移動度にわずかな差がでることは良く知られている。そこでその泳動の条件に係わらず出現する蛋白質の位置を一定化するための方法として相対移動度(Relative Mobility=Rm)という概念が使われることがある。 In the electrophoresis method, it is well known that there is a slight difference in protein mobility depending on the cellulose acetate membrane and buffer used, the size of the electrophoresis tank, the humidity, temperature and voltage of the electrophoresis environment. Therefore, the concept of relative mobility (Relative Mobility = Rm) may be used as a method for fixing the position of the appearing protein regardless of the electrophoresis conditions.

相対移動度を図2において説明する。図2は血清蛋白質の電気泳動像のザイモグラフである。アルブミン分画の頂点いわゆるピーク(9)からの垂線が基準線(10)と交差する位置B(11)をRm=1.00とし、検体塗布位置A点(12)をRm=0.00としたとき、α1、α2、β、γ分画の各山のピーク位置をRmで表わす点(13)(14)(15)(16)は{(α1、α2、β、γ分画の各ピーク位置)−A}/(B−A)・・・(1)で表わすことが出来る。
血清蛋白質と同時に電気泳動し銀染色を行った尿蛋白質の電気泳動像を濃度図で表わしたものについてもα1、α2、β、γ分画のRmの値はほぼ同じである。
The relative mobility will be described with reference to FIG. FIG. 2 is a zymograph of electrophoresis image of serum protein. The vertex B of the albumin fraction, the position B (11) where the perpendicular from the peak (9) intersects the reference line (10) is Rm = 1.00, and the specimen application position A point (12) is Rm = 0.00. The points (13), (14), (15), and (16) in which the peak positions of the peaks of the α1, α2, β, and γ fractions are represented by Rm are {(α1, α2, β, and γ fractional peaks). (Position) -A} / (BA) (1).
The Rm values of the α1, α2, β, and γ fractions are almost the same for the electrophoretic image of the urine protein that was electrophoresed simultaneously with the serum protein and was stained with silver.

[腎糸球体障害群]
腎生検で腎糸球体障害と判定された多数の患者尿の蛋白質濃度は10mg/dL以上であり、それらを銀染色を用いるセルロースアセテート膜電気泳動法により濃度図で表わしたものについて精査した結果、β分画位置に山と谷の差が分画%で3%以上の明確な染色帯がありそのピーク位置のRmが0.49〜0.59かつアルブミン分画Rm=1.00の分画%が30〜85%の範囲にあった。従ってこれらの条件に該当する群を腎糸球体障害群とすることができた。この疾患群には、IgA腎症、膜性腎症、巣状糸球体硬化症、糖尿病性腎症、膜性増殖性糸球体腎炎、ループス腎炎などが含まれた。
[Neuroglomerular disorder group]
The protein concentration of many patient urine determined to be renal glomerular injury by renal biopsy is 10 mg / dL or more, and the results of examination of those expressed by concentration diagram by cellulose acetate membrane electrophoresis using silver staining The β-fraction position has a clear staining band with a peak-to-valley difference of 3% or more, and the peak position Rm is 0.49 to 0.59 and the albumin fraction Rm = 1.00. The image% was in the range of 30-85%. Therefore, the group corresponding to these conditions could be a glomerular disorder group. This disease group included IgA nephropathy, membranous nephropathy, focal glomerulosclerosis, diabetic nephropathy, membranoproliferative glomerulonephritis, lupus nephritis and the like.

[腎尿細管障害群]
腎生検で腎尿細管障害と判定された多数の患者尿の蛋白質濃度は10mg/dL以上であり、銀染色を用いるセルロースアセテート膜電気泳動像を濃度図で表わしたものについて精査した結果、β分画の陽極寄に山と谷の差が分画%で3%以上の明確な染色帯を持ちそれらのピークのRmが0.59〜0.69でかつアルブミン分画Rm=1.00の分画%が5〜49%の範囲にあった。
以上のアルゴリズムの他、この疾患群ではβ分画より陰極側の位置にもRm0.38〜0.51のあたりに独特の染色帯が現れることがあり、紛らわしい時には重要な判断材料とする事ができる。従ってこれらの条件に該当する群を腎尿細管障害群とすることができた。但し治療中の場合、治療薬によってはこのRmは変わることがある。この疾患群にはファンコニー症候群、シスチン尿症、間質性腎炎、痛風腎、薬剤性尿細管壊死、尿細管アシドーシス、カドミウム中毒などが含まれた。
[Renal tubular disorder group]
The protein concentration of many patient urine determined to be renal tubule injury by renal biopsy is 10 mg / dL or more, and as a result of examining the cellulose acetate membrane electrophoretic image using silver staining in a density diagram, The difference between the peak and the valley is 3% or more, and the peak Rm is 0.59 to 0.69 and the albumin fraction Rm is 1.00. Fraction% was in the range of 5-49%.
In addition to the above algorithm, in this disease group, a unique staining band may appear around Rm 0.38 to 0.51 at the position on the cathode side of the β fraction, and it may be an important judgment material when confusing. it can. Therefore, the group corresponding to these conditions could be a renal tubule disorder group. However, this Rm may vary depending on the therapeutic agent during treatment. This group included Fancony's syndrome, cystinuria, interstitial nephritis, gout kidney, drug-induced tubular necrosis, tubular acidosis, cadmium poisoning, and others.

[ベンスジョーンズ蛋白質が出現する群]
免疫固定法でベンスジョーンズ蛋白質の出現が確認された多数の患者尿の蛋白質濃度は10mg/dL以上であり、患者の尿を銀染色を用いるセルロースアセテート膜電気泳動像としそれを濃度図で表わしたものについて精査した結果、Rmが0.15〜0.80に渡るグロブリン領域(αからγ分画領域)にかけ幅広い部分において、山と谷の差が分画%で10%以上の明確な染色帯があり、その染色帯の上に重なるように大きな高さの染色帯があり、その染色帯を含む全体の高さhの半分h/2の位置の幅を半値幅=θとした時、アルブミンの頂点から塗布位置の間を1.00として割り付け、それぞれのバンドを相対移動度で表すとき、θの幅をRmで表した場合θが0.2以下の値をとり、かつアルブミン分画Rm=1.00の分画%が20%以下の値を取った。
以上により、これらの条件を満たすものをベンスジョーンズ蛋白質が出現する群とすることができた。
この疾患群には、多発性骨髄腫、オリゴクローナルバンド、原発性アミロイドーシスなどが含まれた。ベンスジョーンズ蛋白質は形質細胞が腫瘍化いわゆるモノクローン化し、免疫グロブリンのL鎖が過剰生産されたものをいい、その血中濃度が上昇するため、再吸収出来きれなかった蛋白質が尿中に排泄された結果出現してきた蛋白質である。
[Group of Bence Jones proteins appearing]
The protein concentration of many patient urines in which the appearance of Bence Jones protein was confirmed by the immunofixation method was 10 mg / dL or more, and the patient's urine was converted into a cellulose acetate membrane electrophoretic image using silver staining, which was represented by a density diagram. As a result of close examination of the thing, in the wide part of the globulin region (α to γ fraction region) with Rm ranging from 0.15 to 0.80, a clear staining band where the difference between the peaks and valleys is 10% or more in fraction% When there is a dyeing band of a large height so as to overlap the dyeing band, and the width at half h / 2 of the entire height h including the dyeing band is half-value width = θ, albumin When the distance between the apex and the coating position is assigned as 1.00, and each band is expressed by relative mobility, when the width of θ is expressed by Rm, θ takes a value of 0.2 or less, and the albumin fraction Rm = The fraction of 1.00 is less than 20% It took the value.
As described above, those satisfying these conditions could be made a group in which the Bence Jones protein appears.
This disease group included multiple myeloma, oligoclonal bands, primary amyloidosis and the like. Bence Jones protein is a so-called monocloned plasma cell that is overproduced by the immunoglobulin light chain, and because its blood concentration increases, the protein that could not be reabsorbed is excreted in the urine. Is a protein that has emerged as a result.

血液検査、尿検査を用いる健康診断で健常と診断された多数の健診者尿の蛋白質濃度は10mg/dL以下であった。その尿を銀染色を用いるセルロースアセテート膜電気泳動像を濃度図で表わしたものについて精査した結果、アルブミン分画Rm=1.00の分画%は20〜70%の範囲にあった。またα1、α2、β、γ分画も一様に出現した。
尿蛋白質の定量値について、普通住民健診などで使われている尿試験紙の感度は概ね20-30mg/dLであり、尿蛋白質陰性群にも腎症がいた事を考えれば妥当な結果であった。
健常者では腎糸球体でのアルブミンの透過性も低く、低分子量蛋白質もほとんどが尿細管で再吸収されるため、アルブミン以外でも蛋白染色帯が出現するが腎健常者群では類似した泳動像を示した。銀染色を用いるセルロースアセテート膜電気泳動法では予め尿蛋白質の濃度を先に測定して、その濃度が薄い場合は塗布るサンプル量を増やすので分画%値や波形の大きさだけをみて、その量が多い少ないなどの判定は前述のとおり出来ないことに留意する必要がある。
The protein concentration of a large number of healthy examinees who were diagnosed as healthy in a health examination using blood tests and urinalysis was 10 mg / dL or less. As a result of examining the urine of a cellulose acetate membrane electrophoretic image using silver staining in a density diagram, the fraction% of the albumin fraction Rm = 1.00 was in the range of 20 to 70%. In addition, α1, α2, β, and γ fractions appeared uniformly.
Regarding the quantitative value of urine protein, the sensitivity of the urine test paper used in normal medical examinations is generally 20-30 mg / dL, and it is a reasonable result considering that nephropathy was also present in the urine protein negative group. It was.
In healthy individuals, the permeability of albumin in the kidney glomerulus is low, and most low molecular weight proteins are reabsorbed by the tubules, so a protein staining band appears in addition to albumin. Indicated. In cellulose acetate membrane electrophoresis using silver staining, the concentration of urine protein is measured in advance, and if the concentration is low, the amount of sample to be applied is increased, so only the fraction% value and the waveform size are observed. It should be noted that it is not possible to determine whether the amount is large or small as described above.

腎生検で腎糸球体障害、腎尿細管障害と判定された患者および免疫固定法でベンスジョーンズ蛋白質の出現が確認された患者の内2種以上同時に罹患している患者の尿を銀染色を用いるセルロースアセテート膜電気泳動像を濃度図で表わしたものについて精査した結果、[腎糸球体障害群]、[腎尿細管障害群]、[ベンスジョーンズ蛋白質が出現する群]のそれぞれの特徴を併せ持つことを確認した。これらの疾患群はそれぞれの疾患に罹患しているので混合型腎等障害群ということにした。 Silver staining of urine from two or more patients affected by renal biopsy and those who have been diagnosed with renal glomerular disorder and renal tubule disorder and patients with Bence Jones protein confirmed by immunofixation As a result of careful examination of the concentration diagram of the cellulose acetate membrane electrophoresis image used, it has the characteristics of [renal glomerular disorder group], [renal tubule disorder group], and [group in which Bence Jones protein appears]. It was confirmed. Since these disease groups are affected by each disease, they are referred to as a mixed kidney disorder group.

腎糸球体障害、腎尿細管障害の程度が初期の段階では、健常者群との鑑別が難しい場合がある。この場合健常者の血清蛋白質の標準波形を患者の波形にアルブミンとγグロブリンの波形を正確に重ね合わせすることにより、まずβ分画の位置を決定し、このβ分画の分画%と別途定量で求めた濃度を掛け合わせることで、β分画やその他の画分の濃度を算出することが出来る。例えば健常者と思われる検体でβ分画の位置に染色帯を認めたとしても、そのβの濃度を前述のように算出した場合、そのβの蛋白量は5mg/dL以下であった。腎糸球体障害、腎尿細管障害と健常者群との鑑別が難しい場合は以上のアルゴリズムを判定に加えることも可能である。 In the early stages of renal glomerular injury and renal tubular injury, it may be difficult to differentiate from a healthy group. In this case, the position of the β fraction is first determined by accurately overlaying the waveform of albumin and γ globulin with the waveform of the serum protein of the healthy subject on the waveform of the patient, and separately from the fraction% of this β fraction. By multiplying the concentrations determined by quantification, the concentrations of β fraction and other fractions can be calculated. For example, even in a sample that appears to be a healthy person, even if a stained band is observed at the position of the β fraction, when the β concentration is calculated as described above, the β protein amount is 5 mg / dL or less. When it is difficult to distinguish a glomerular disorder, renal tubular disorder, and a group of healthy subjects, the above algorithm can be added to the determination.

腎生検により調べなければならい腎疾患の確定診断は、患者に余分な腎穿刺などの苦痛を強いたり、時間のかかる病理標本作成かつその標本の顕微鏡による専門医の診断を必要としている。そのため実際腎生検が必要とされる患者でも患者が多すぎる事から軽度な腎疾患の早期の検査実施は敬遠されてきた。多数の患者に、本願発明がスクリーニング的に実施されれば、腎疾患の早期診断および本当に腎生検をしなければならない患者を早く見つける等大きな効果が期待できる。 A definitive diagnosis of a renal disease that must be examined by a renal biopsy requires the patient to suffer pain such as extra renal puncture, and requires time-consuming preparation of a pathological specimen and diagnosis of a specialist by a microscope of the specimen. Therefore, since there are too many patients who actually need a renal biopsy, early screening of mild kidney disease has been avoided. If the present invention is screened for a large number of patients, it can be expected to have a great effect such as early diagnosis of kidney disease and early detection of patients who have to undergo a renal biopsy.

腎疾患やベンスジョーンズ蛋白の検出に本願尿蛋白質分析病態解析法を適用することで、腎生検そのものを減らせることができるので医療費の低減ばかりでなく万が一の医療事故の防止につながる。 By applying the urine protein analysis pathophysiology analysis method for detecting renal diseases and Bence Jones protein, the renal biopsy itself can be reduced, which leads to not only a reduction in medical costs but also an emergency medical accident.

本願発明は尿検査であるため患者に苦痛を与えないばかりか医師の腎組織採取等の侵襲的検査を回避する事ができかつ診断が簡略化される。 Since the present invention is a urine test, it not only causes pain to the patient but also avoids an invasive test such as a doctor's renal tissue sampling and simplifies the diagnosis.

腎疾患の早期診断による早期治療で人工透析開始時期を遅らせたり、病態の悪化を防ぐ事が出来るため、結果的に医療費の大幅な低減が図れる。 Early treatment by early diagnosis of kidney disease can delay the start of artificial dialysis and prevent deterioration of the disease state, resulting in a significant reduction in medical costs.

尿の電気泳動像は多種多様な形態を示すので、専門医でも判定に相当の熟練と経験が必要であったが本願発明の実施により腎臓専門医でなくとも疾病群を判断できるようになる。
例えばベンスジョーンズ蛋白の検出は骨髄腫などの癌のマーカとしてよく知られているが、熟練した検査技師の目視で先ず当たりをつけてから、特異抗体を使う免疫固定法で判定していた。この最初の熟練した検査技師の目視による検出は、熟練した検査技師のいない施設では判定出来ず見逃されていた。本願発明では個人的な主観ではなく規定されたアルゴリズムの採用により検出できるので、特定の施設でなくともこの検査法を適用すればその存在がスクリーニング的に検出できることとなる。従ってこの癌種の早期発見や治療効果の確認などに活用できる。
Since electrophoretic images of urine show a wide variety of forms, even specialists required considerable skill and experience for judgment, but by implementing the present invention, it becomes possible to judge disease groups even if not a renal specialist.
For example, detection of Bence Jones protein is well known as a marker for cancers such as myeloma, but it was determined by an immunofixation method using a specific antibody after first hitting with a visual inspection by a skilled laboratory technician. This first visual inspection by a skilled laboratory technician could not be judged at a facility without a skilled laboratory technician and was overlooked. In this invention, since it can detect by adoption of the prescribed algorithm rather than individual subjectivity, if this inspection method is applied even if it is not a specific facility, its presence can be detected by screening. Therefore, it can be utilized for early detection of this cancer type and confirmation of therapeutic effect.

望ましい形態の具体例を下記に示す。 Specific examples of desirable forms are shown below.

健常なヒトの血清検体をセルロースアセテート膜電気泳動法で電気泳動し、銀染色を行い、その電気泳動像の各バンドの出現位置を相対移動度RelativeMobility=Rm)で表したものが図2である。
セルロースアセテート膜は電気浸透現象の無い富士写真フイルム社製セパラックスSPを使った。緩衝液はバルビタール緩衝液pH8.6、イオン強度0.06、電気泳動槽及び直流安定化電源装置は共に株式会社常光製を使用した。
泳動条件は電気泳動学会の標準操作法に従った。銀染色液は特許文献1の試薬を使用した。濃度図の作成は株式会社常光製のフィンガープリンターを使用した。
A healthy human serum specimen is electrophoresed by cellulose acetate membrane electrophoresis, silver-stained, and the appearance position of each band in the electrophoretic image is represented by relative mobility (Relative Mobility = Rm). .
As the cellulose acetate membrane, Separax SP manufactured by Fuji Photo Film Co., Ltd. without electroosmosis was used. The buffer used was Barbital buffer pH 8.6, the ionic strength was 0.06, the electrophoresis tank and the direct current stabilized power supply were manufactured by Joko Co., Ltd.
The electrophoresis conditions were in accordance with the standard operation method of the Electrophoresis Society. The reagent of patent document 1 was used for the silver dyeing | staining liquid. A finger printer manufactured by Joko was used to create the density map.

図2で染色帯が無い基線はベースライン(10)と呼ばれている。(9)はアルブミン分画で、この頂点のピーク位置の垂線がベースラインと交差する点(11)をRm=1.00とした。(13)はα1分画、(14)はα2分画、(15)はβ分画、(16)はγ分画のそれぞれRmの位置である。
(12)は検体塗布位置に当たるところでこの点のRmを0.00とした。
In FIG. 2, the baseline without the dyeing zone is called the baseline (10). (9) is the albumin fraction, and the point (11) where the perpendicular of the peak position of this apex intersects the base line is Rm = 1.00. (13) is the α1 fraction, (14) is the α2 fraction, (15) is the β fraction, and (16) is the Rm position of the γ fraction.
In (12), the Rm at this point was set to 0.00 when it hits the specimen application position.

Rmの算出の1例。図2において塗布点(12)とアルブミンのRmの位置(11)間の距離が5.0cmであった場合、各分画の塗布点までの距離が下記の場合
a. 塗布点〜アルブミンのピーク位置までの距離 5.0cm
b. 塗布点〜α1のピーク位置までの距離 4.4cm
c. 塗布点〜α2のピーク位置までの距離 3.6cm
d. 塗布点〜βのピーク位置までの距離 2.6cm

e. 塗布点〜γのピーク位置までの距離 1.5cm

f. 塗布点 0.0cm

これらからRm値は、式(1)を使い次のように算出される。
Alb.のRm 5.0/5.0 = 1.00
α1のRm 4.4/5.0 = 0.88
α2のRm 3.6/5.0 = 0.72
β のRm 2.6/5.0 = 0.52
γ のRm 1.5/5.0 = 0.3
塗布点のRm 0.0/5.0 = 0.00
Rmはこのように表わされるが、なだらかなピークの場合、ピ一ク位置の選び方によりこの値は多少変化する。
An example of calculation of Rm. In FIG. 2, when the distance between the application point (12) and the Rm position (11) of albumin is 5.0 cm, the distance to the application point of each fraction is as follows: a. Application point to albumin peak Distance to position 5.0cm
b. Distance from application point to peak position of α1 4.4 cm
c. Distance from application point to peak position of α2 3.6 cm
d. Distance from application point to peak position of β 2.6 cm

e. Distance from application point to peak position of γ 1.5cm

f. Application point 0.0cm

From these, the Rm value is calculated as follows using Equation (1).
Alb. Rm 5.0 / 5.0 = 1.00
Rm of α1 4.4 / 5.0 = 0.88
Rm of α2 3.6 / 5.0 = 0.72
Rm of β 2.6 / 5.0 = 0.52
Rm of γ 1.5 / 5.0 = 0.3
Rm of application point 0.0 / 5.0 = 0.00
Rm is expressed in this way, but in the case of a gentle peak, this value varies somewhat depending on how the peak position is selected.

図3は糸球体疾患患者の尿(265mg/dL)を電気泳動し蛋白質を銀染色を行ったときの濃度図である。この患者はアルブミン分画が44.1%でβが49.7%であり、そのRmは0.55であった。本願発明のアルゴリズムを用いて判定すると腎糸球体障害群と判定された。 FIG. 3 is a concentration diagram when the urine (265 mg / dL) of a glomerular disease patient is electrophoresed and the protein is silver stained. This patient had an albumin fraction of 44.1%, a β of 49.7% and an Rm of 0.55. When judged using the algorithm of the present invention, it was judged as a renal glomerular disorder group.

図4は腎尿細管障害患者と診断された患者の尿(173mg/dL)を電気泳動し銀染色を行ったときの濃度図である。この患者のアルブミン分画は22.3%で、β分画より陽極側に当たるRmが0.60の位置に9.7%の大きな染色帯が見られた。本願発明のアルゴリズムを用いて判定すると腎尿細管障害群と判定された。
この疾患群に比較的多く出現するβ分画より陰極側の位置にもRm0.48の染色帯も見られ、腎尿細管障害を強く示唆している。
FIG. 4 is a concentration diagram when the urine (173 mg / dL) of a patient diagnosed as a renal tubular disorder patient is electrophoresed and silver stained. The albumin fraction of this patient was 22.3%, and a large staining band of 9.7% was observed at a position where the Rm corresponding to the anode side from the β fraction was 0.60. When judged using the algorithm of the present invention, it was judged as a renal tubular disorder group.
A staining band of Rm0.48 is also found at the position on the cathode side of the β fraction that appears relatively frequently in this disease group, strongly suggesting renal tubular damage.

図5はベンスジョーンズ蛋白質80mg/dLが存在する患者尿を電気泳動し銀染色を行ったときの濃度図である。アルブミンの分画%は89.7%、そしてRm0.53の位置に先端がとがったピークがありその高さhは29mm、1/2hは14.5mm、半値幅は6.3、Rm1.0の幅は53mmであるから半値幅のRmを計算すると6.3/53=0.119となりベンスジョーンズ蛋白質が現れる群と判定された。 FIG. 5 is a concentration diagram when the patient urine containing Bence Jones protein 80 mg / dL is electrophoresed and silver-stained. The albumin fraction is 89.7%, and there is a peak with a tip at the position of Rm 0.53, the height h is 29 mm, 1/2 h is 14.5 mm, the half width is 6.3, Rm 1.0. Since the half-width Rm was calculated as 6.3 / 53 = 0.119, it was determined that the Bence Jones protein appeared.

図6は健常血清蛋白質の銀染色法を用いた電気泳動像の濃度図(17)を実線で表しベンスジョーンズ蛋白質出現者の濃度図(18)を重ね合わせた図である。
血清蛋白質のアルブミン(19)、α1(20)、α2(21)、β(22)、γ(23)の濃度図を患者の尿の濃度図に重ねあわせると、特殊な分画の位置と量を特定がしやすくなる。
FIG. 6 is a diagram in which the concentration diagram (17) of the electrophoretic image obtained by using the silver staining method of the healthy serum protein is represented by a solid line and the concentration diagram (18) of the Bence Jones protein appearing person is superimposed.
When the concentration diagrams of serum proteins albumin (19), α1 (20), α2 (21), β (22), and γ (23) are superimposed on the concentration diagram of the patient's urine, the position and amount of the special fraction It becomes easy to identify.

銀染色法による尿蛋白質の電気泳動像Electrophoretic image of urinary protein by silver staining method 健常血清蛋白の濃度図と相対移動度Concentration map and relative mobility of healthy serum proteins 腎糸球体障害者の濃度図Density diagram of glomerular disorder 腎尿細管障害者の濃度図Density diagram of renal tubule disorder ベンスジョーンズ蛋白質出現者の濃度図Concentration map of Bence Jones protein appearances 健常血清蛋白質の濃度図をベンスジョーンズ蛋白質出現者の濃度図に重ね合わせた図A figure showing the concentration diagram of healthy serum protein superimposed on the concentration diagram of Bence Jones protein appearances

符号の説明Explanation of symbols

(1)(2) 腎糸球体障害群の代表的な電気泳動像
(3)(4) 腎尿細管障害群の代表的な電気泳動像
(5)(6) ベンスジョーンズ蛋白質出現群の代表的な電気泳動像
(7)(8) 健常者群の代表的な電気泳動像
(9) アルブミン
(10) 基準線(ベースライン)
(11) Rm=1.00の位置
(12) 塗布位置(Rm=0.00)
(13) α1
(14) α2
(15) β
(16) γ
(17) 健常者の血清蛋白質の濃度図
(18) ベンスジョーンズ蛋白質出現者の濃度図
(1) (2) Representative electrophoretic image of renal glomerular disorder group (3) (4) Representative electrophoretic image of renal tubular disorder group (5) (6) Representative of Bence Jones protein appearance group Electrophoretic image (7) (8) Representative electrophoretic image of healthy subjects (9) Albumin (10) Reference line (baseline)
(11) Rm = 1.00 position (12) Application position (Rm = 0.00)
(13) α1
(14) α2
(15) β
(16) γ
(17) Serum protein concentration diagram in healthy subjects (18) Concentration diagram of Bence Jones protein appearances

Claims (3)

血清蛋白質をセルロースアセテート膜で電気泳動し、銀染色を行った電気泳動像を濃度図で表したものについて、アルブミン分画のピーク位置および検体塗布位置の相対移動度それぞれRm=1.00とRm=0.00とする分析方法および電気泳動像の解析方法である分画%、尿蛋白濃度値を規定する方法を利用し、尿蛋白質10mg/dL以上を有する人の患者尿を電気泳動し、銀染色を行った電気泳動像を濃度図で表したものについて、β分画位置に山と谷の差が分画%で3%以上の明確な染色帯があり、β分画のピーク位置のRmが0.49〜0.59でかつアルブミン分画Rm=1.00の分画%が30〜85%の範囲にあることをもって腎糸球体障害群と判定し、同じく尿蛋白質10mg/dL以上を有する人の尿を電気泳動し、銀染色を行った電気泳動像を濃度図で表したものについて、β分画の陽極寄りの位置に、山と谷の差が分画%で3%以上の明確な染色帯を持ち、β分画の陽極寄りのピーク位置のRmが0.59〜0.69でかつアルブミン分画Rm=1.00の分画%が5〜49%の範囲にあることをもって腎尿細管障害群とする腎疾患等病態判定方法 Electrophoretic images of serum proteins electrophoresed on a cellulose acetate membrane and silver-stained electrophoretic images represented by density diagrams, relative mobility of albumin fraction peak position and sample application position are Rm = 1.00 and Rm, respectively. Electrophoretic electrophoresis of patient urine having a urine protein of 10 mg / dL or more , using the analysis method of setting = 0.00 and the analysis method of electrophoresis image, the fraction%, and the method of defining the urine protein concentration value , For the electrophoretic image of silver-stained electrophoretic images represented by a density map, there is a clear staining band with a difference between peaks and valleys of 3% or more in the β fraction position, and the peak position of the β fraction is Rm is judged to glomerular disorders group with that fraction percent and a 0.49 to 0.59 albumin fraction Rm = 1.00 is in the range of 30% to 85%, likewise urinary protein 10 mg / dL or higher Electrophoresis of human urine The electrophoretic image of silver-stained electrophoretic images expressed as a density map has a clear staining band with a difference between peaks and valleys of 3% or more at the position close to the anode of the β fraction. kidney Rm at the peak of the image of the anode nearer is and fractionation% albumin fraction Rm = 1.00 in 0.59 to 0.69 is a renal tubular disorder group have to be in the range of 5 to 49% Disease state diagnosis method 血清蛋白質をセルロースアセテート膜で電気泳動し、銀染色を行った電気泳動像を濃度図で表したものについて、アルブミン分画のピーク位置および検体塗布位置の相対移動度それぞれRm=1.00とRm=0.00とする分析方法および電気泳動像の解析方法である分画%、尿蛋白濃度値および半値幅を規定する方法を利用し、尿蛋白質10mg/dL以上を有する人の尿を電気泳動し、銀染色を行った電気泳動像を濃度図で表したものについて、Rmが0.15〜0.80であるαからγ分画領域にかけ山と谷の差が分画%で10%以上の明確な染色帯があり、その染色帯の上に重なるように大きな高さの染色帯があり、その染色帯を含む全体の高さhの半分h/2の位置の幅を半値幅θとした時、アルブミンから塗布位置の間を1.00として割り付け、θをRmの値で表した場合θが0.2以下の値をとり、かつアルブミン分画Rm=1.00の分画%が20%以下の値をとることをもってベンスジョーンズ蛋白質が現れる群と判定する腎疾患等病態判定方法 Electrophoretic images of serum proteins electrophoresed on a cellulose acetate membrane and silver-stained electrophoretic images represented by density diagrams, relative mobility of albumin fraction peak position and sample application position are Rm = 1.00 and Rm, respectively. Electrophoresis of human urine having a urinary protein of 10 mg / dL or more using an analysis method for setting = 0.00 and an analysis method for electrophoretic images, a method for defining fraction%, urine protein concentration and half-value width In the case of a silver-stained electrophoretic image expressed as a density diagram, the difference between the peaks and valleys is 10% or more in the fractional% from α to γ fractional region where Rm is 0.15 to 0.80. There is a clear dyeing band, and there is a dyeing band with a large height so as to overlap the dyeing band, and the width at the half h / 2 of the entire height h including the dyeing band is defined as the half-value width θ. The distance between the albumin and the application position is 1.0. Assignment, theta and a value of theta is 0.2 or less when expressed by the value of Rm, and fractionation% albumin fraction Rm = 1.00 is with taking the value of 20% or less Bence Jones proteins as Method for determining pathological conditions such as kidney disease that is determined as an appearing group 尿蛋白質10mg/dL以上を有する人の尿を電気泳動し銀染色を行った電気泳動像を濃度図で表したものについて、請求項1、請求項2で同時に2種類以上の腎疾患特有の蛋白質を認めた場合をもってそれぞれの混合型腎障害群と判定する腎疾患等病態判定方法 Electrophoresis images obtained by electrophoresis of urine of a human having urine protein of 10 mg / dL or more and silver staining are represented by concentration diagrams, and two or more types of kidney disease-specific proteins are simultaneously expressed in claim 1 and claim 2 For determining pathological conditions such as kidney disease when the disease is recognized as a mixed renal disorder group
JP2008047281A 2008-02-28 2008-02-28 Method for determining pathological conditions such as renal diseases by electrophoresis using silver staining Expired - Fee Related JP4825828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008047281A JP4825828B2 (en) 2008-02-28 2008-02-28 Method for determining pathological conditions such as renal diseases by electrophoresis using silver staining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008047281A JP4825828B2 (en) 2008-02-28 2008-02-28 Method for determining pathological conditions such as renal diseases by electrophoresis using silver staining

Publications (2)

Publication Number Publication Date
JP2009204465A JP2009204465A (en) 2009-09-10
JP4825828B2 true JP4825828B2 (en) 2011-11-30

Family

ID=41146895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008047281A Expired - Fee Related JP4825828B2 (en) 2008-02-28 2008-02-28 Method for determining pathological conditions such as renal diseases by electrophoresis using silver staining

Country Status (1)

Country Link
JP (1) JP4825828B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2446484C1 (en) * 2010-11-25 2012-03-27 Государственное образовательное учреждение высшего профессионального образования "Северо-Осетинская государственная медицинская академия "Федерального агентства по здравоохранению и социальному развитию" Method for simulation of cobalt-induced nephropathy in experimental animals suffering chronic poisoning
JP6608642B2 (en) 2014-08-07 2019-11-20 アークレイ株式会社 Urine sample evaluation method, analyzer, and analysis system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719666A (en) * 1980-07-10 1982-02-01 Olympus Optical Co Ltd Fractionation treating method in electrophoresis
JP3390873B2 (en) * 1992-05-14 2003-03-31 株式会社常光 Method for detecting M protein in serum protein fraction
JP2005134144A (en) * 2003-10-28 2005-05-26 Jokoh Co Ltd Urinary protein analysis pathologic analysis method using electrophoresis
JP2006119103A (en) * 2004-10-25 2006-05-11 Jokoh Co Ltd Method for classifying pathologic conditions of renal disease

Also Published As

Publication number Publication date
JP2009204465A (en) 2009-09-10

Similar Documents

Publication Publication Date Title
JP6400012B2 (en) Diagnostic apparatus and method
JP2020521117A5 (en)
Bonnier et al. Vibrational spectroscopic analysis of body fluids: avoiding molecular contamination using centrifugal filtration
US20100044224A1 (en) Biological fluid analysis system
US20070015291A1 (en) Rapid test for glycated albumin in blood
WO2011136228A1 (en) Diagnostic marker for kidney diseases and use thereof
US20100167306A1 (en) Rapid test for glycated albumin in saliva
Himawan et al. Where microneedle meets biomarkers: futuristic application for diagnosing and monitoring localized external organ diseases
JP6405305B2 (en) Kits and methods for determining physiological levels and / or ranges of hemoglobin and / or disease states
EP1517140A2 (en) Method and device for diagnostic investigation of biological samples
JP4825828B2 (en) Method for determining pathological conditions such as renal diseases by electrophoresis using silver staining
JP2012108112A (en) Hba1c measurement result display method, display device and display program
JP4735503B2 (en) Peritoneal function marker, analysis method thereof and use thereof
US20220137041A1 (en) Device for methods of detecting cancer
JP2005134144A (en) Urinary protein analysis pathologic analysis method using electrophoresis
CN105807067A (en) Dry-type immunofluorescence kit for detecting NCAM2 (neural cell adhesion molecules 2) of patient suffering from alzheimer's syndromes and preparation method
JP4120011B2 (en) Lipoprotein specimen testing method
RU2755974C1 (en) Method for diagnosing non-alcoholic hepatic steatosis
CN111613327B (en) System for developing multiple myeloma diagnosis model based on logistic regression and application thereof
JP2006119103A (en) Method for classifying pathologic conditions of renal disease
Cheong Evaluation of fresh walnut versus commercial walnut allergen for skin prick testing.
Blud et al. Comparison of histological staining techniques for copper.
Chen et al. Influence of storage time on stability of routine coagulation parameters (INR, APTT, and fibrinogen) at room temperature.
RU2007716C1 (en) Method of organism homeostasis state evaluation
Kowalska-Kepczynska et al. Research Article Extended Inflammation Parameters (EIP) as Markers of Immune System Cell Activation in Psoriasis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110905

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110912

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees