JP2005134144A - Urinary protein analysis pathologic analysis method using electrophoresis - Google Patents

Urinary protein analysis pathologic analysis method using electrophoresis Download PDF

Info

Publication number
JP2005134144A
JP2005134144A JP2003367424A JP2003367424A JP2005134144A JP 2005134144 A JP2005134144 A JP 2005134144A JP 2003367424 A JP2003367424 A JP 2003367424A JP 2003367424 A JP2003367424 A JP 2003367424A JP 2005134144 A JP2005134144 A JP 2005134144A
Authority
JP
Japan
Prior art keywords
group
protein
fraction
groups
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003367424A
Other languages
Japanese (ja)
Inventor
Kiyoko Shiba
紀代子 芝
Nobuo Hiratsuka
信夫 平塚
Takehide Matsuda
武英 松田
Akira Kubota
亮 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Jokoh Co Ltd
Original Assignee
Japan Science and Technology Agency
Jokoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, Jokoh Co Ltd filed Critical Japan Science and Technology Agency
Priority to JP2003367424A priority Critical patent/JP2005134144A/en
Publication of JP2005134144A publication Critical patent/JP2005134144A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the most important problem for diagnosis and remedy not by performing type classification on electrophoretic images but by predicting the existence of a specific disease from an electrophoretic image, which is different from that of normal health and peculiar to a disorder, and to determine which organ and which portion thereof the disease is substantially caused by, in order to perform urinary protein analysis pathologic analysis characterized by classifying electrophoretic images of electrophoresed and silver-stained urinary protein into a group composed mainly of glomerulus damages, a group composed mainly of renal tube damages, a group where Bence-Jones protein comes into being, a group of normal healthy persons, etc. <P>SOLUTION: Pathologic analysis is performed by using peculiar algorithm classified by disorder based not only on a conventional densitogram but also on differences in individual concentration, on differences from the group of normal healthy persons, on whether there are peculiar protein bands, etc. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

ヒトや動物の尿の生化学的分析のうち、尿蛋白質を電気泳動しその分析結果の特長から、疾病の種類を特定しようという分野 Among the biochemical analyzes of urine from humans and animals, the field in which urine protein is electrophoresed and the type of disease is identified from the features of the analysis results

尿を用いる検査は、人体に苦痛を与えることなく採取できる被試験物質として受診時のスクリーニングや住民検診等で広く使われている。これらに使われている測定項目のうち尿蛋白質の分析について、試験紙による検査法では一般的に蛋白質が出現しないいわゆる陰性が健常とされている。しかし特許文献1のように感度の高い銀染色法を使うと、健常人でも極少量の蛋白質が排泄されていることがわかっている。この微量蛋白質の電気泳動法による分析法は、芝らにより非特許文献1および非特許文献2に詳しく述べられている。これによると銀染色法を用いる尿蛋白質の電気泳動像の分析から、糖尿病においては泳動像の形からおおよそ5群に分けられると述べている。
特開2002-236127号公報 生物物理化学誌vol.41、1997年、頁25-27 臨床検査vol.42、1998年、頁1106-1109
Tests using urine are widely used for screening at the time of medical examination and resident screening as test substances that can be collected without causing pain to the human body. Regarding the analysis of urine protein among the measurement items used in these, the so-called negative in which protein does not appear is generally regarded as normal in the test method using a test paper. However, it is known that a very small amount of protein is excreted even in a healthy person using a highly sensitive silver staining method as in Patent Document 1. This method for analyzing trace amounts of proteins by electrophoresis is described in detail in Non-Patent Document 1 and Non-Patent Document 2 by Shiba et al. According to this analysis, the analysis of electrophoretic images of urinary proteins using the silver staining method states that diabetes can be roughly divided into 5 groups according to the shape of the electrophoretic image.
JP 2002-236127 A Biophysical chemistry vol.41, 1997, pp. 25-27 Laboratory test vol.42, 1998, pp. 1106-1109

本願発明は、銀染色法を用いる高感度尿蛋白質分析法を使うことにより、従来から行われている電気泳動像の型分類をするのではなく、健常とは異なる疾患特有の泳動像から特定の疾病の存在を予測し、それがおおよそどの臓器のどの部分に起因するかを特定することが、診断と治療に最も重要だという課題を解決しようとした。 The present invention uses a highly sensitive urinary protein analysis method using a silver staining method, and does not classify an electrophoretic image that has been conventionally performed. We sought to solve the problem that predicting the presence of the disease and identifying which parts of which organ it was roughly attributed to is most important for diagnosis and treatment.

課題を解決するため、多くの腎生検による臨床診断を根拠にそれぞれの泳動像の特長を明確にして専門医でなくとも、泳動像の特長より腎生検をしなくとも腎疾患の病態を把握できるようになる方法の開発を目指した。 In order to solve the problem, the characteristics of each electrophoretic image are clarified based on clinical diagnosis by many renal biopsies, and even if you are not a specialist, you can grasp the pathology of renal disease from the characteristics of the electrophoretic image without performing a renal biopsy We aimed to develop a method that can be used.

一般的に、尿は腎臓で生成され必要な栄養素は再吸収され再利用されるという腎臓の機能から、尿蛋白質の出現そのものが腎機能の障害や腎疾患が予測される。その腎疾患のうち、腎糸球体障害としてはIgA腎症、膜性腎症、巣状糸球体硬化症などが知られている。また腎尿細管障害としてはファンコニー症候群、間質性腎炎などがある。 In general, the appearance of urine protein itself predicts impaired renal function and kidney disease because of the renal function that urine is produced in the kidney and necessary nutrients are reabsorbed and reused. Among the renal diseases, IgA nephropathy, membranous nephropathy, focal glomerulosclerosis and the like are known as renal glomerular disorders. Examples of renal tubular disorders include Fancony syndrome and interstitial nephritis.

その腎疾患の確定診断をするため、腎生検が広く行われている。腎生検は針を腎臓に向かって穿刺し、腎組織を取り出し組織染色後専門医による病理診断をする方法であり、患者にかなりの苦痛を与えるばかりか、組織の採取や病理組織標本の作製、その標本の判定に相当の費用と時間と熟練を要していた。 Renal biopsy is widely performed to make a definitive diagnosis of the kidney disease. Renal biopsy is a method of puncturing the needle toward the kidney, taking out the kidney tissue and performing pathological diagnosis by a specialist after tissue staining, not only causing considerable pain to the patient, but also collecting tissue and preparing pathological tissue specimens, It took considerable cost, time and skill to judge the specimen.

さらに患者側からすると腎生検後に、肉眼的血尿、血腫の形成など出血にまつわる合併症が起こり、出血の程度が多ければ血圧低下、ショックにまで発展することがあると言われている。 Furthermore, from the patient's side, complications related to bleeding such as gross hematuria and hematoma formation occur after renal biopsy, and if the degree of bleeding is high, blood pressure may decrease and shock may develop.

これら腎生検以外の検査法には、CTなどの画像診断や尿中蛋白質の定量および尿蛋白分画法がある。そのうち尿中蛋白質の定量検査には、アルブミン、トランスフェリンなどの糸球体性蛋白質の測定、レチノール結合蛋白、β2ミクログロブリン、NAGなどの尿細管性蛋白質の測定、免疫グロブリンL鎖(κ、λ)およびその他の臓器の疾患に起因する蛋白質の測定など種々の方法があるが、測定しなければならない蛋白質の種類が多すぎたり、免疫測定法など高価な抗体を使うなど欠点も多く実用的でなくあまり実施されていなかった。 These examination methods other than renal biopsy include diagnostic imaging such as CT, quantification of urinary protein, and urine protein fractionation. Among them, quantitative tests of urinary protein include measurement of glomerular proteins such as albumin and transferrin, measurement of tubular proteins such as retinol binding protein, β2 microglobulin, NAG, immunoglobulin light chain (κ, λ) and There are various methods such as measurement of proteins caused by diseases of other organs, but there are many disadvantages such as using too many kinds of proteins that need to be measured or using expensive antibodies such as immunoassays, which are not practical. It was not implemented.

従来の尿蛋白分画検査は、尿中蛋白質濃度がかなり低いため、尿を数十倍に濃縮して実施しておりその時間も10時間程度かかるばかりでなく、分離された電気泳動像も濃縮の影響による分画の不鮮明さで正確な診断が困難なことが多い。 Conventional urine protein fractionation tests are performed by concentrating urine several tens of times because the urinary protein concentration is quite low, and it takes about 10 hours, and the separated electrophoretic image is also concentrated. In many cases, it is difficult to make an accurate diagnosis due to the unclearness of the fractions due to the influence of the above.

本願発明は、前述特許文献1の銀染色法を用いて多数の腎疾患の尿蛋白質の電気泳動像の臨床例を詳しく精査した結果、疾患特有のアルゴリズムを特定することができた。 As a result of detailed examination of clinical examples of electrophoretic images of urinary proteins of many kidney diseases using the silver staining method of Patent Document 1, the present invention has been able to identify a disease-specific algorithm.

まず実施例に示すように尿蛋白質の銀染色による電気泳動像は、個人の腎機能の差異、疾病の状況により千差万別かつ種々雑多の印象を与える。この種々雑多の像をそのまま従来型の濃度図(デンシトグラム)にして専門医に回送してもそれがどの疾患群にあたるかを判定するにはあまりにも条件が多すぎ極めて困難であった。 First, as shown in the Examples, the electrophoretic image obtained by silver staining of urine protein gives various and various impressions depending on differences in individual kidney functions and disease conditions. Even if this various miscellaneous image is directly converted into a conventional density diagram (densitogram) and forwarded to a specialist, it is too difficult to determine which disease group it corresponds to.

本願発明では、デンシトグラムだけではなくその個別濃度の差異や健常者群との差異さらに特定の蛋白質バンドの有無等に基づいて疾患別に4群に分類しその群特有のアルゴリズムをコンピュータにより病態解析を行い、それが非常に有用という結論に至った。 In the present invention, not only the densitogram but also the differences in individual concentrations and the group of healthy subjects and the presence or absence of specific protein bands are classified into four groups according to the disease, and the pathological analysis of the algorithm specific to that group is performed by a computer. Did and came to the conclusion that it was very useful.

図1に銀染色法による尿蛋白質4群の代表的電気泳動像の実際を示す。(1)(2)は腎糸球体障害群、(3)(4)は腎尿細管障害群、(5)(6)はベンスジョーンズ蛋白質出現群、(7)(8)は健常者群である。 FIG. 1 shows actual electrophoretic images of 4 groups of urine proteins by silver staining. (1) (2) is a glomerular disorder group, (3) (4) is a renal tubular disorder group, (5) (6) is a Bence Jones protein appearance group, (7) (8) is a healthy group. is there.

排泄される尿蛋白質の濃度は患者の病状により異なるので、電気泳動する前に予め前述の特許文献1などの定量法で、その濃度を測定しておき、その濃度に従い電気泳動支持体へ患者尿の塗布量を一定にしているので、図1における色調の変化は濃度の差として認識できるようになっている。 Since the concentration of excreted urinary protein varies depending on the patient's pathology, the concentration is measured in advance by the quantitative method such as Patent Document 1 described above before electrophoresis, and the patient's urine is transferred to the electrophoresis support according to the concentration. Since the coating amount is constant, the change in color tone in FIG. 1 can be recognized as a difference in density.

病態解析の特定したアルゴリズムと関係する疾患名は下記のとおりである。 The disease names related to the specified algorithm of pathological analysis are as follows.

1. 銀染色した電気泳動像において、アルブミン画分とβ画分の分画値がそれぞれその他の疾患群の分画値に較べて、有意に高く現れる場合は腎糸球体障害群であり、主な疾患名はIgA腎症、膜性腎症、巣状糸球体硬化、糖尿病性腎症、膜性増殖性糸球体腎炎、ループス腎炎などが含まれる。 1. In the silver-stained electrophoretic image, if the fraction values of albumin fraction and β fraction are significantly higher than those of other disease groups, respectively, it is the renal glomerular disorder group. Names of diseases include IgA nephropathy, membranous nephropathy, focal glomerulosclerosis, diabetic nephropathy, membranoproliferative glomerulonephritis, lupus nephritis and the like.

2. アルブミン画分の分画値が腎糸球体障害とされる群のアルブミン画分の分画値より有意に低くかつ、β画分の代わりにそれをはさんだ形に別の蛋白画分が有意に濃く現れる場合は腎尿細管障害群であり、主な疾患名は、ファンコニー症候群、シスチン尿症、間質性腎炎、痛風腎、薬剤性尿細管壊死、尿細管アシドーシス、カドミウム中毒などが含まれる。 2. The fraction value of the albumin fraction is significantly lower than the fraction value of the albumin fraction of the group considered to have glomerular disorders, and another protein fraction is sandwiched between them instead of the β fraction. If it appears significantly deeper, it is the renal tubule disorder group, and the main disease names are Fancony syndrome, cystinuria, interstitial nephritis, gout kidney, drug tubular necrosis, tubule acidosis, cadmium poisoning, etc. included.

3. グロブリン領域に単一で、明確な蛋白染色帯を検出する場合はベンスジョーンズ蛋白質が現れる群であり、主な疾患名は多発性骨髄腫、オリゴクローナール、原発性アミロイドーシスなどが含まれる。ベンスジョーンズ蛋白質は形質細胞が腫瘍化いわゆるモノクローン化し、免疫グロブリンのL鎖が過剰生産されたものをいい、その血中濃度が上昇するため、再吸収出来きれなかった蛋白質が尿中に排泄される。 3. A group of Bence Jones proteins that appears when a single, distinct protein staining band is detected in the globulin region. Major disease names include multiple myeloma, oligoclonal and primary amyloidosis. The Bence Jones protein is a so-called monocloned plasma cell that is overproduced by the immunoglobulin light chain, and its blood concentration increases, so the protein that could not be reabsorbed is excreted in the urine. The

4. 銀染色されたアルブミン画分の色調がその他の疾患群のアルブミン画分より有意に薄くかつ単一の染色帯を持ち、さらにグロブリン領域全体が薄く帯状に染まったいわゆる大きな団子状の染色帯になる場合は健常者群である。健常者では腎糸球体でのアルブミンの透過性も低く、低分子量蛋白質もほとんどが尿細管で再吸収されるため、アルブミン以外では蛋白染色帯が出現するほどの蛋白質は排出されない。 4. The silver-stained albumin fraction is significantly lighter in color than the albumin fractions of other diseases and has a single staining band, and the entire globulin region is thinly banded, so-called large dumpling staining band When it becomes, it is a group of healthy people. In healthy individuals, the permeability of albumin through the kidney glomerulus is low, and most of the low molecular weight protein is reabsorbed by the tubules.

また、上記アルゴリズムは特許文献、非特許文献には全く記載されていない。 Further, the above algorithm is not described at all in patent documents and non-patent documents.

1.腎生検により調べなければならい腎疾患の確定診断は、患者に余分な腎穿刺などの苦痛を強いたり、時間のかかる病理標本作成かつその標本の顕微鏡による専門医の診断を必要としている。実際腎生検が必要でもそれがされず放置されていた多数の患者に、本測定法によるスクリーニング的検査を実施し本当に腎生検をしなければならない患者を早く見つける等大きな効果が期待できる。 1. A definitive diagnosis of a renal disease that must be examined by a renal biopsy requires the patient to suffer pain such as extra renal puncture, and requires time-consuming preparation of a pathological specimen and diagnosis of a specialist by a microscope of the specimen. A large effect can be expected, such as conducting a screening test using this measurement method for a large number of patients who have been left without a renal biopsy, but who have to do a renal biopsy early.

2.腎疾患やベンスジョーンズ蛋白の検出に本願尿蛋白質分析病態解析法を適用することで、腎生検に較べ飛躍的に診断が簡略化され、測定時間が短縮されかつ検査価格を低下させることが出来る。 2. Applying the urine protein analysis pathology analysis method to detect kidney disease and Bence Jones protein dramatically simplifies diagnosis, shortens measurement time and lowers test cost compared to renal biopsy .

3.腎疾患の早期診断による早期治療で人工透析開始時期を遅らせたり、病態の悪化を防ぐ事が出来るため、結果的に医療費の大幅な低減が図れる。 3. Early treatment by early diagnosis of kidney disease can delay the start of artificial dialysis and prevent deterioration of the disease state, resulting in a significant reduction in medical costs.

4.尿の電気泳動像は多種雑多なパターンを示すので、専門医でも判定に苦慮していたのを、本願尿蛋白質分析病態解析により腎臓専門医でなくとも疾病群を判断できるようになる。 4). Since the electrophoretic image of urine shows various patterns, it is possible to determine the disease group even if it is not a renal specialist by the present urine protein analysis pathological analysis, which is difficult for the specialist to judge.

尿蛋白質を電気泳動し、銀染色を行い、その電気泳動像を、腎糸球体障害を主とする群、腎尿細管障害を主とする群、ベンスジョーンズ蛋白質が現れる群、健常者群などに分類する。 Electrophoresis of urinary protein, silver staining, and electrophoretic image of the electrophoretic image for groups with mainly glomerular glomerular disorders, groups with mainly renal tubular disorders, groups with Bence Jones protein appearing, groups of healthy subjects, etc. Classify.

図2は健常血清蛋白の電気泳動像の模式図(9)と腎糸球体障害患者と診断された患者の尿の電気泳動像の模式図6種類を(10)〜(15)に示した。(16)はアルブミン画分で、(17)はβ画分である。(10)〜(15)の患者群は何れも図3と図4と図5のアルブミン画分およびβ画分の濃度より明らかに濃い。 FIG. 2 is a schematic diagram (9) of electrophoretic images of healthy serum proteins, and (10) to (15) are six schematic diagrams of electrophoretic images of urine from a patient diagnosed as having a glomerular disorder. (16) is the albumin fraction and (17) is the β fraction. All the patient groups of (10) to (15) are clearly denser than the concentrations of the albumin fraction and the β fraction in FIGS.

α1画分、α2画分が多様に出現するため、(10)〜(15)の患者群を分類している。 Since the α1 and α2 fractions appear in various ways, the patient groups (10) to (15) are classified.

図3は健常血清蛋白の電気泳動像の模式図(9)と腎尿細管障害患者と診断された患者の尿の電気泳動像の模式図4種類を(18)〜(21)に示した。(16)はアルブミン画分で(17)はβ画分の位置であるがここでは見えない。(22)と(23)はβ画分(17)を挟む形にそれぞれ出現する。 FIG. 3 is a schematic diagram (9) of electrophoretic images of healthy serum proteins and four schematic diagrams of urine electrophoretic images of patients diagnosed as renal tubular disorder patients (18) to (21). (16) is the albumin fraction and (17) is the position of the β fraction, but it is not visible here. (22) and (23) appear in a form sandwiching the β fraction (17), respectively.

α1画分、α2画分が多様に出現するため、(18)〜(20) の患者群を分類している。(21)に関しては、酸性尿であり、(23)の染色帯の蛋白質(β2ミクログロブリン)が分解したものである。 Since the α1 and α2 fractions appear in various ways, the patient groups (18) to (20) are classified. Regarding (21), it is acidic urine, which is a degradation of the protein (β2 microglobulin) in the staining zone of (23).

図4は健常血清蛋白の電気泳動像の模式図(9)とベンスジョーンズ蛋白質が存在すると診断された患者の尿の電気泳動像の模式図6種類を(24)〜(29)に示した。(30)はγグロブリン領域である。(31)〜(36)はそれぞれ違った位置にそれぞれ明確な蛋白染色帯が認められた。 FIG. 4 shows schematic diagrams (9) of electrophoretic images of healthy serum proteins and six schematic diagrams of electropherograms of urine of patients diagnosed as having Bence Jones protein in (24) to (29). (30) is the gamma globulin region. In (31) to (36), distinct protein staining bands were observed at different positions.

図5は健常血清蛋白の電気泳動像の模式図(9)と健常者の尿の電気泳動像の模式図(37)を示した。(16)はアルブミン画分で、(38)はα1グロブリン〜γグロブリン領域である。(16)は単一の染色帯で現れるが、(38)のグロブリン領域は全体が薄く団子状に染まっている。 FIG. 5 shows a schematic diagram (9) of an electrophoretic image of healthy serum protein and a schematic diagram (37) of an electrophoretic image of urine of a healthy person. (16) is the albumin fraction, and (38) is the α1 globulin to γ globulin region. (16) appears in a single staining band, but the globulin region of (38) is entirely thin and dumpled.

尿蛋白質4群の代表的電気泳動像Representative electrophoretic images of urine protein group 4 健常血清蛋白と腎糸球体障害患者の尿の電気泳動像の模式図Schematic diagram of electrophoretic image of healthy serum protein and urine of glomerular disorder patient 健常血清蛋白と腎尿細管障害患者の尿の電気泳動像の模式図Schematic diagram of electrophoretic image of healthy serum protein and urine of renal tubule disorder patient 健常血清蛋白とベンスジョーンズ蛋白質が存在する患者の尿の電気泳動像の模式図Schematic diagram of electrophoretic images of urine from patients with healthy serum protein and Bence Jones protein 健常血清蛋白と健常者の尿の電気泳動像の模式図Schematic diagram of electrophoretic images of healthy serum protein and urine of healthy subjects

符号の説明Explanation of symbols

(1)(2) 腎糸球体障害群の代表的な電気泳動像
(3)(4) 腎尿細管障害群の代表的な電気泳動像
(5)(6) ベンスジョーンズ蛋白質出現群の代表的な電気泳動像
(7)(8) 健常者群の代表的な電気泳動像
(9) 正常血清蛋白の電気泳動像の模式図
(10)〜(15) 腎糸球体障害患者の尿の電気泳動像の模式図
(16) アルブミン画分
(17) β画分
(18)〜(21) 腎尿細管障害患者の尿の電気泳動像の模式図
(22) (17)を挟む形に出現するアルブミン側の蛋白染色帯(レチノール結合蛋白)
(23) (17)を挟む形に出現するγグロブリン側の蛋白染色帯(β2ミクログロブリン)
(24)〜(29) ベンスジョーンズ蛋白質が存在する患者の尿の電気泳動像の模式図
(30) γグロブリン領域
(31)〜(36) それぞれ異なった位置に明確な蛋白染色帯があるベンスジョーンズ蛋白質
(37) 健常者の尿の電気泳動像の模式図
(38) 全体が薄く帯状に染まっているα1グロブリン〜γグロブリン領域
(1) (2) Representative electrophoretic images of the glomerular disorder group
(3) (4) Representative electrophoretic images of renal tubule injury group
(5) (6) Representative electrophoresis image of Bence Jones protein appearance group
(7) (8) Representative electrophoretic images of healthy subjects
(9) Schematic diagram of electrophoresis image of normal serum protein
(10)-(15) Schematic diagram of electrophoretic image of urine from glomerular disorder patient
(16) Albumin fraction
(17) β fraction
(18)-(21) Schematic diagram of electrophoretic image of urine from renal tubule disorder patient
(22) Albumin side protein staining band (retinol binding protein) appearing between (17)
(23) Gamma globulin protein staining zone (β2 microglobulin) that appears across (17)
(24)-(29) Schematic diagram of electrophoretic image of urine from patient with Bence Jones protein
(30) Gamma globulin region
(31)-(36) Bence Jones protein with distinct protein staining bands at different positions
(37) Schematic diagram of urine electrophoresis image of healthy subject
(38) α1 globulin to γ globulin region, which is thinly dyed as a whole

Claims (5)

尿蛋白質を電気泳動し、銀染色を行った電気泳動像を、腎糸球体障害を主とする群、腎尿細管障害を主とする群、ベンスジョーンズ蛋白質が現れる群、健常者群などに分類することを特長とする尿蛋白質分析病態解析方法。 Electrophoretic images of urinary protein electrophoresed and silver-stained are classified into groups mainly composed of glomerular disorders, groups mainly composed of renal tubular disorders, groups where Bence Jones protein appears, and groups of healthy subjects. Urine protein analysis pathological condition analysis method characterized by
アルブミン画分とβ画分の分画値がそれぞれその他の疾患群の分画値に較べて、有意に高く現れることを特長とした群を、腎糸球体障害群とした請求項1の尿蛋白質分析病態解析方法。

2. The urinary protein according to claim 1, wherein the group characterized in that the fractional values of albumin fraction and β fraction appear significantly higher than the fractional values of other disease groups, respectively, is a glomerular disorder group Analyze pathological analysis method.
アルブミン画分の分画値が腎糸球体障害を主とする群のアルブミン画分の分画値より有意に低くかつ、β画分の代わりにそれをはさんだ形に別の蛋白画分が有意に濃く現れることを特長とした群を、腎尿細管障害群とした請求項1の尿蛋白質分析病態解析方法。 The fraction value of the albumin fraction is significantly lower than the fraction value of the albumin fraction of the group mainly composed of glomerular disorders, and another protein fraction is significant in the form of sandwiching it instead of the β fraction. 2. The urinary protein analysis pathological condition analysis method according to claim 1, wherein the group characterized by appearing deeply in the kidney is a renal tubular disorder group. グロブリン領域に骨髄腫等の存在を示唆する明確な蛋白染色帯を検出することができる群を、ベンスジョーンズ蛋白質が現れる群とした請求項1の尿蛋白質分析病態解析方法。 2. The urinary protein analysis pathological condition analysis method according to claim 1, wherein the group capable of detecting a clear protein staining band suggesting the presence of myeloma or the like in the globulin region is a group in which Bence Jones protein appears. 銀染色されたアルブミン画分の色調がその他の疾患群のアルブミン画分より有意に薄くかつ単一の染色帯を持ち、さらにグロブリン領域が薄く大きな団子状の染色帯になることを特長とする群を、健常者群とした請求項1の尿蛋白質分析病態解析方法。 A group characterized in that the color tone of the silver-stained albumin fraction is significantly lighter than the albumin fraction of other disease groups and has a single staining zone, and the globulin region is thin and becomes a large dumpling-like staining zone. 2. The urinary protein analysis pathological condition analysis method according to claim 1, wherein the group is a group of healthy subjects.
JP2003367424A 2003-10-28 2003-10-28 Urinary protein analysis pathologic analysis method using electrophoresis Pending JP2005134144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003367424A JP2005134144A (en) 2003-10-28 2003-10-28 Urinary protein analysis pathologic analysis method using electrophoresis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003367424A JP2005134144A (en) 2003-10-28 2003-10-28 Urinary protein analysis pathologic analysis method using electrophoresis

Publications (1)

Publication Number Publication Date
JP2005134144A true JP2005134144A (en) 2005-05-26

Family

ID=34645429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003367424A Pending JP2005134144A (en) 2003-10-28 2003-10-28 Urinary protein analysis pathologic analysis method using electrophoresis

Country Status (1)

Country Link
JP (1) JP2005134144A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204465A (en) * 2008-02-28 2009-09-10 Jokoh Co Ltd Method for determining pathology of kidney disease or like by electrophoretic method using silver staining

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204465A (en) * 2008-02-28 2009-09-10 Jokoh Co Ltd Method for determining pathology of kidney disease or like by electrophoretic method using silver staining

Similar Documents

Publication Publication Date Title
JP6400012B2 (en) Diagnostic apparatus and method
JP2020521117A5 (en)
Lunding et al. Oligoclonal bands in cerebrospinal fluid: a comparative study of isoelectric focusing, agarose gel electrophoresis and IgG index
Dubayová et al. Diagnostic monitoring of urine by means of synchronous fluorescence spectrum
Ayele et al. Evaluation of circulating cathodic antigen (CCA) strip for diagnosis of urinary schistosomiasis in Hassoba school children, Afar, Ethiopia
Boatin et al. Diagnostics in onchocerciasis: future challenges
Du et al. Establishment and development of the personalized criteria for microscopic review following multiple automated routine urinalysis systems
JP2018132526A (en) Markers, method for inspection, and inspection kit for major depressive disorder and bipolar disorder, and method for screening therapeutic medicines for major depressive disorder and bipolar disorder
WO2022181333A1 (en) Test for mild cognitive impairment
EP3346262A1 (en) Optical thermal method and system for diagnosing pathologies
JPWO2015060317A1 (en) Testing method for neurodegenerative diseases
CN113470814A (en) Application of substances for detecting ALR, NLR, PLR and ANRI in predicting risk of vascular invasion
JP4825828B2 (en) Method for determining pathological conditions such as renal diseases by electrophoresis using silver staining
Manda-Handzlik et al. UriSed—Preliminary reference intervals and optimal method for urine sediment analysis in newborns and infants
JP2005134144A (en) Urinary protein analysis pathologic analysis method using electrophoresis
US20170234798A1 (en) Method and device for diagnosing viral infection using teardrop
JP4735503B2 (en) Peritoneal function marker, analysis method thereof and use thereof
US20220137041A1 (en) Device for methods of detecting cancer
JP7190165B2 (en) Method for determination of possibility of suffering from chronic kidney disease
WO2007076447A2 (en) Method of diagnosing chronic diarrhea
JP2006119103A (en) Method for classifying pathologic conditions of renal disease
CN111613327B (en) System for developing multiple myeloma diagnosis model based on logistic regression and application thereof
Kowalska-Kepczynska et al. Research Article Extended Inflammation Parameters (EIP) as Markers of Immune System Cell Activation in Psoriasis
RU2172489C1 (en) Method for diagnosing the cases of multiple myeloma
Dziekoński Salivary frap/creatinine ratio as a first non-invasive biomarker of chronic kidney disease in children

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070625