JP4825052B2 - 循環型フロー核磁気共鳴測定装置および測定方法 - Google Patents

循環型フロー核磁気共鳴測定装置および測定方法 Download PDF

Info

Publication number
JP4825052B2
JP4825052B2 JP2006143474A JP2006143474A JP4825052B2 JP 4825052 B2 JP4825052 B2 JP 4825052B2 JP 2006143474 A JP2006143474 A JP 2006143474A JP 2006143474 A JP2006143474 A JP 2006143474A JP 4825052 B2 JP4825052 B2 JP 4825052B2
Authority
JP
Japan
Prior art keywords
sample
low molecular
sample transfer
container
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006143474A
Other languages
English (en)
Other versions
JP2007315826A (ja
Inventor
功 北川
道哉 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006143474A priority Critical patent/JP4825052B2/ja
Priority to EP07008344A priority patent/EP1860452B1/en
Priority to DE602007005540T priority patent/DE602007005540D1/de
Priority to US11/798,015 priority patent/US7449890B2/en
Publication of JP2007315826A publication Critical patent/JP2007315826A/ja
Application granted granted Critical
Publication of JP4825052B2 publication Critical patent/JP4825052B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/30Sample handling arrangements, e.g. sample cells, spinning mechanisms
    • G01R33/307Sample handling arrangements, e.g. sample cells, spinning mechanisms specially adapted for moving the sample relative to the MR system, e.g. spinning mechanisms, flow cells or means for positioning the sample inside a spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • G01N24/087Structure determination of a chemical compound, e.g. of a biomolecule such as a protein
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • G01N24/088Assessment or manipulation of a chemical or biochemical reaction, e.g. verification whether a chemical reaction occurred or whether a ligand binds to a receptor in drug screening or assessing reaction kinetics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/46NMR spectroscopy
    • G01R33/465NMR spectroscopy applied to biological material, e.g. in vitro testing

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

本発明は核磁気共鳴測定において試料の測定条件を変化させながら繰り返し測定を行うための測定装置および測定方法に関する。
タンパク質など生体内で機能を有する分子の分子量は薬などに用いられる化合物に比べて大きく高分子化合物としての特性を有している。
タンパク質に代表される高分子化合物は溶液中で分子機能を有しており、この分子機能は特定の低分子化合物と結合することで阻害されたり促進されたりする。
特定の低分子化合物と高分子化合物の結合あるいは相互作用は、多くの方法で検出されている。特に高分子化合物あるいは低分子化合物の分子構造の情報を直接観測できる核磁気共鳴を用いた測定(以下、NMR測定という。)では、化合物濃度に対する測定スペクトルの変化から高分子化合物と低分子化合物の解離定数、反応速度の評価だけでなく化合物の構造に基づいた相互作用の解析が可能である。NMR測定によるタンパク質と低分子化合物の相互作用を測定する方法は、例えば、特表2003−510608号公報(特許文献1)に記載されている。
NMR測定に用いる高分子化合物のうちタンパク質は、自然界に存在する生命体から抽出する方法、タンパク質の生成に関連する遺伝子を組み込んだ大腸菌等を利用した大量発現系から抽出する方法、生きた細胞を用いずにタンパク質を大量発現させる無細胞発現系を利用する方法などによって生成される。また、タンパク質を構成する主な元素である水素、炭素、窒素に対して同位体放射元素による標識(以下、ラベル化という。)を行う場合がある。このラベル化には、タンパク質を構成する水素、炭素、窒素の3元素を組み合わせてラベル化する方法、すべてをラベル化する全標識方法、特定のアミノ酸残基に属する原子のみをラベル化する選択的標識などの方法がある。どの方法においてもラベル化の処理コストは高額である。
核磁気共鳴分光装置(以下、NMR装置という。)は、典型的には静磁場Bを生じさせる磁石と、この磁石の内側に設置したボア部に配置された核磁気共鳴プローブとを含む。この核磁気共鳴プローブは、目的とする試料にRF磁場Bを加え、そして加えられた磁場に対する試料の反応(応答)を検出するための1つ以上のコイルが含まれる。
従来の核磁気共鳴プローブには、静置試料プローブおよびフロースループローブが含まれる。静置試料プローブではガラス管またはアンプル(以下、試料管という)の中に試料を加え、この試料管をNMR装置の所定の位置にセットしてから測定を開始する方法が行われている。
従来の静置試料プローブでは、開口部を持つ試料管で低分子化合物の滴定を行いながらNMR測定を行うことで、濃度増加に対するNMRスペクトル変化の観測が可能である。しかしながら、試料溶液は高分子化合物、薬物としての効果を評価する低分子化合物、その他の試薬が混合した溶液であるため、一旦、ある濃度の低分子化合物を含んだ条件に達した試料溶液を用いて、その濃度以下の条件でNMR測定を行うことは困難である。すなわち、一般的には、所定量の試料溶液中の高分子化合物の量を一定に保持した状態で低分子化合物の濃度をパラメータとして測定する。したがって、低分子化合物の濃度を下げるために、バッファー液を注入すると試料溶液の量が増加することになり、これを所定量まで減らすと、高分子化合物の量も減ってしまうことになり、測定条件が変わってしまうからである。
また、NMR測定で用いる試料管での低分子化合物の滴定は、試料溶液全体の体積の増大を生じさせ、高分子化合物試料濃度の変化および試料溶液の液面位置の変化を生じる。これらの変化を抑制するためには、試料溶液の体積に対して滴下する体積を出来るだけ少なくする必要がある。
滴下する体積を小さくするためには、滴下する低分子化合物の濃度を上げる必要があるが、滴下溶液の濃度は低分子化合物の溶解度によってその上限が決まり、一般に物質の溶解度は溶媒の種類や温度などによって大きく異なる。従って、滴下による低分子化合物濃度変化に対するNMR測定では、溶媒や温度の違いが高分子化合物濃度の安定性に影響を及ぼす。
一方、例えば、特表2004−534958号公報(特許文献2)に開示されているフロースループローブでは、試料入口、試料出口、および入口と出口との間に延びる内部の管部を含む。この内部の管部には、試料を保持するためのセルが含まれる。試料は試料入口から入れられ、内部の管部を流れてセルに入る。測定後には管部を流れてプローブ外へと取り除かれる。
従来のフロースループローブとロボット式の試料移送システムの組み合わせが使用されている。様々な試料移送システムとの組み合わせが、例えばGilson, Inc.から市販されている。そのようなシステムでは、複数の測定条件に調整した試料を、複数の容器にあらかじめ準備する必要がある。試料は容器から試料を取り出せる装置を経由してあらかじめセットされたフロースループローブへ送り込まれる。1つの試料に対してNMR測定が終了すると、試料はプローブ外に排出される。
従来のフロースループローブと試料移送システムの組み合わせでは、複数の濃度条件に調整した試料をあらかじめ準備することが求められる。したがって、測定条件数だけの一定濃度の高分子化合物溶液が必要となり、試料に要する費用が高価となる。
また、測定条件範囲が未知の高分子化合物や低分子化合物では、好適な測定条件範囲や条件変化の度合いが確定するまで機能評価の計測全体を繰り返し行う問題で悩まされ得る。
特表2003−510608号公報 特表2004−534958号公報
本発明は、タンパク質などの高分子化合物と低分子化合物を含んだ溶液試料に対して核磁気共鳴測定を行うための装置および方法、ならびに、試料の濃度条件を安定的に制御し、低分子化合物の濃度を変化させながら繰り返し測定を行うための装置および方法を提供する。
本発明では、核磁気共鳴プローブにセットされた試料容器を、これを含めて閉ループを構成する試料移送管で結ぶとともに、この閉ループ中に送液ポンプを設けて、閉ループを循環的に液体が移送できるように構成する。試料移送管の一部に制御部を備え、試料である高分子化合物、この高分子化合物と混合される低分子化合物およびバッファー液を導入する手段を設け、試料成分を制御する。さらに、制御部には閉ループの全容積を超える量の溶液の注入に対して低分子化合物あるいはバッファー液を選択的に排出する手段を設け、試料成分を制御する。高分子化合物の量を所定の値に保持(高分子化合物の濃度を一定に保持)して低分子化合物の濃度を増加あるいは減少させ、試料溶液中の低分子化合物と高分子化合物の濃度比を変化させたNMR測定を可能とする。
本発明に係る高分子化合物と低分子化合物を含んだ溶液に対するNMR測定方法によれば、高分子化合物濃度を一定にしたまま低分子化合物濃度を増加あるいは減少させる工程を有するため、一定の高分子化合物の量の下で低分子化合物と高分子化合物の濃度比を自由に制御してNMRスペクトルの変化を測定することができる。
また、本発明に係る高分子化合物と低分子化合物を含んだ溶液に対するNMR測定方法によれば、滴下によるNMR測定容器内の溶液体積の変化が発生しないので、試料溶液の温度や低分子化合物の溶解度によらず、NMR測定容器内の高分子化合物濃度は一定に保ったままNMR測定を行うことができる。
本発明のNMR測定における試料溶液の循環型フロー構成およびその方法の好適な実施の形態について図を参照して、以下に説明する。
(実施例1)
図1は本発明の実施例1の試料溶液の循環型フロー型NMR測定装置の概念を示す図である。20,20は試料に磁場を加えるための分割磁石であり、それぞれボア22,22を有する。24は核磁気共鳴プローブであり、ボア22の内部に保持されている。核磁気共鳴プローブ24には、試料の一定量を保持する容器10が設けられ、これは分割磁石20,20の発生する磁場の領域に位置するようになされる。容器10は、一般に、石英ガラスによって作成することが望ましい。試料の核磁気共鳴信号を検出する検出コイル28が容器10と最適な位置関係にセットされている。試料を所定の高周波信号で励起するための送信コイルが設けられるが、図が煩雑となるので、図示は省略した。容器10の上下端部には、試料管接続部12,14が設けられ、これらを介して試料移送管16,16と流体的に接続されている。容器10と試料移送管16,16および後述する制御部30の試料移送管16は閉ループとなされて、試料を循環させることができる。実施例1では、容器10、試料管接続部12,14および試料移送管16,16の接続部は同軸上に接続され、容器10と試料移送管16,16,16の構成する閉ループの容器10と試料移送管16,16の連結された直線部分は分割磁石20,20の分割部分に設けられている。26は送受信システムであり、検出コイル28の信号を取り出し、あるいは、図示しない送信コイルへ信号を送り込む。
30は制御部であり、試料移送管16,16を連結する試料移送管16が設けられ、これに、排出バルブ40、フィルタ部42、pH値および圧力などの溶液状態をモニタする計測装置52、低分子化合物の溶液注入装置44、試料である高分子化合物の溶液注入装置46、バッファー液あるいは清浄な水を注入する注水バルブ48、送液ポンプ50が連結される。これにより、容器10と試料移送管16,16,16は閉ループとなされるとともに、試料成分が制御できるものとなる。
フィルタ部42は試料移送管16と連結される接液部60の外側に、タンパク質などの高分子化合物と他の成分を分離できるものである限り、特に限定はされないが、好ましくは、タンパク質は通過できない程度であって低分子化合物を含む他の成分が通過できる程度の径の細孔を持った膜62を用いる。例えば、ミリポア社製のディスク状限外濾過フィルタとディスク状フィルタフォルダーを組み合わせた構成で、好適なものができる。これにより、試料溶液内のタンパク質の分子量に合わせてディスク状限外濾過フィルタの細孔サイズを選択して使用できるので、タンパク質以外の成分の限外濾過操作を好適に行うことができる。膜62で濾過された液体は液溜め64に排出される。すなわち、このフィルタ部42は高分子化合物は排出しないので、閉ループ中の高分子化合物の量を一定に保持できる。
溶液注入部44は、1つあるいは複数の加圧式のシリンジポンプを電子制御する形態が好ましい。例えば、Kdサイエンティフィック社製のシリンジポンプIC3100,IC3200を試料移送管16と流体的に接続し、低分子化合物を含んだ溶液を入れたシリンジを精密制御しながら加圧送液を行うことで、溶液を閉ループ内に注入する作業を好適に行うことができる。なお、閉ループ内にバッファー液を注入したいときは、シリンジ内にバッファー液を入れてシリンジを精密制御しながら加圧送液を行うことで閉ループ内にバッファー液を注入できる。
試料溶液注入装置46は、溶液注入部44と同様に、1つあるいは複数の加圧式のシリンジポンプを電子制御する形態が好ましい。例えば、Kdサイエンティフィック社製のシリンジポンプIC3100,IC3200を試料移送管16と流体的に接続し、試料である高分子化合物の溶液を入れたシリンジを精密制御しながら加圧送液を行うことで、高分子化合物の溶液を閉ループ内に注入する作業を好適に行うことができる。
送液ポンプ50は、一般に高速液体クロマトグラフィー(以下、HPLCという。)で用いられるものが好適である。電子制御可能なステッピングモーターなどを用いてプランジャーを駆動し、容器10と試料移送管16,16,16の構成する閉ループに定圧送液が可能なものが望ましい。
計測装置52はpH値および圧力などの溶液状態をモニタするメータであり、HPLCで用いられるものを使用することができる。
ここで、試料移送管16,16,16の材質について見ると、試料溶液の性質によって選択すべきである。タンパク質などの生体関連高分子化合物に対する測定では、ポリエチレンエチレンケトン(PEEK)、Tefzel、Kel−F、フューズドシリカが用いられることが多い。また試料移送管の内径は0.5mmから0.065mmの範囲とし、試料移送管の全長は4m程度とし、容器10と試料移送管の全容積が1000μL程度とすることが望ましい。
以下、図1を参照して、実施例1における計測の手順について説明する。
(バッファー液の注入)
まず、注水バルブ48を介してバッファー液を供給しながら、送液ポンプ50を運転して試料移送管16,16,16にバッファー液を満たす。この結果、容器10もバッファー液で満たされ、閉ループがバッファー液で満たされる。バッファー液はタンパク質などの高分子化合物が安定的に存在しかつ安定的なNMR測定が行えるように水素イオン濃度(pH)を調整したバッファー液、燐酸バッファー溶液などを用いる。この段階では、排出バルブ40は閉じられている。
(試料の注入)
その後、試料溶液注入部46に高分子化合物を含んだ試料を入れて、これを制御して、試料溶液を注入しながら送液ポンプ50を運転する。この試料の中にはNMR測定時のロックに必要なロック溶媒を混入する必要がある。タンパク質のNMR測定で多く用いられる燐酸バッファーなど、溶媒に軽水が大半を占める場合には、好適には、ロック溶媒として重水を用いる。好適な重水濃度は5%から10%である。また、測定対象の高分子化合物に合わせて好適なバッファー溶媒、ロック溶媒を選択して測定する。この際、容器10、試料移送管16,16,16、およびフィルタ部42の閉ループの全容積に相当する量の高分子化合物を含んだ試料を注入することにより、バッファー液で満たされていた閉ループが分子化合物を含んだ試料で置換される。
試料溶液の注入時の送液ポンプ50の吐出圧力は、フィルタ部42での圧力が限外濾過開始圧力よりも大きい値にセットする。試料溶液の注入に応じて試料移送管16,16,16の閉ループに生ずる余剰なバッファー液はフィルタ部42で液溜め64に排出される。液溜め64に排出された溶液の体積が、容器10、試料移送管16,16,16、およびフィルタ部42の閉ループの全容積に近づくとメータ52での圧力が低下する。その後すみやかに、送液ポンプ50の吐出圧力をフィルタ部42の限外濾過に必要な圧力以下にまで低下させ、フィルタ部42での限外濾過を終了する。
フィルタ部42での圧力が限外濾過開始圧力よりも低い圧力で送液ポンプ50を運転して、試料移送管16,16,16の閉ループで溶液を循環させ、溶液の状態をさらに均一化させることが可能である。
(NMR測定)
次いで、容器10内のロック溶媒を含んだ試料溶液に対して磁石20,20により磁場Bを加え、磁場ロックを行うことができる。この磁場ロックと磁石20,20が発生する磁場Bの均一性の調整を用いることでNMR計測を行える磁場Bの均一性を維持できる。
NMR測定のための磁場の均一性調整を行った後に、低分子化合物の注入動作や低分子化合物の希釈動作と組み合わせたNMR測定を繰り返し実施することで、試料溶液中の低分子化合物濃度を変化させたNMR測定を行うことができる。
(低分子化合物の濃度制御)
送液ポンプ50による試料溶液の循環を行い、容器10、試料移送管16,16,16、およびフィルタ部42の閉ループ内の中に試料溶液の流れを作りながら、溶液注入部44に低分子化合物を含んだ溶液を入れて、これを制御して、低分子化合物を含んだ溶液を注入する。注入した低分子化合物は送液ポンプ50で加圧されて試料移送管16を経由して試料溶液と共にプローブにセットされた容器10へ送られる。注入と同時に発生する余剰な溶液は、低分子化合物を含んだ溶液の注入作業以前に試料溶液内に含まれる低分子化合物の溶液とバッファー液である。この余剰な溶液はフィルタ部42で液溜め64に排出される。液溜め64に排出された溶液の体積が注入体積に近づくとメータ52での圧力が低下する。その後すみやかに、送液ポンプ50を停止してフィルタ部の圧力を限外濾過に必要な圧力以下にまで低下させ、フィルタ部42の濾過を終了する。
フィルタ部42での圧力が限外濾過開始圧力よりも低い圧力で送液することで、容器10、試料移送管16,16および16の閉ループ内で試料を循環させ、溶液の状態をさらに均一化させることが可能である。
低分子化合物の注入の際にも、フィルタ部42で排出されるのは低分子化合物の溶液あるいはバッファー液であるので、閉ループ内の高分子化合物濃度を一定に保ったまま低分子化合物濃度が増加した状態となる。
前記の低分子化合物の注入動作を複数回繰り返すことで、NMR測定に用いる試料溶液内の低分子化合物濃度を増加させることが出来る。
プローブにセットされた容器10および試料移送管16,16および16の閉ループ全体の容積をV、すべての注入動作前に容積Vの中に存在する低分子化合物濃度をα、注入する低分子化合物の濃度をβとし、注入動作1回当りの体積をvとする。そして、i回目の注入動作においてフィルタ部から排出される低分子化合物量をE(i)、注入動作後に残った低分子化合物量をM(i)、平均濃度をδ(i)とする。
最初の注入動作後、排出される低分子化合物量E(1)、残った低分子化合物量M(1)、平均濃度δ(1)はそれぞれ、式(1)、式(2)及び式(3)で示される。
Figure 0004825052
Figure 0004825052
Figure 0004825052
低分子化合物の注入動作をi回繰り返した後では、低分子化合物量E(i)、残った低分子化合物量M(i)、平均濃度δ(i)はそれぞれ、式(4)、式(5)及び式(6)で示される。
Figure 0004825052
Figure 0004825052
Figure 0004825052
(低分子化合物濃度の希釈)
低分子化合物濃度の希釈は低分子化合物の注入と同様な動作で、注入溶液として低分子化合物を含まない溶媒、例えば、バッファー液を閉ループに注入することで実現される。
まず、送液ポンプ50により閉ループの試料溶液の循環を行い、試料溶液の流れを試料移送管16の中に作る。溶液注入部44から、測定者が設定した量の低分子化合物を含まない溶液を注入する。注入した溶液は送液ポンプ50で加圧されて試料移送管16を経由して試料溶液と共にプローブにセットされた容器10へ送られる。注入と同時に発生する余剰な溶液は、試料内の低分子化合物やバッファー液のみを外部へ排出するフィルタ部42によって液溜め64に排出される。送液ポンプ50を停止して、閉ループ内の循環の圧力を限外濾過に必要な圧力以下にまで低下させることでフィルタ部42の濾過が終了する。この結果、閉ループ内の高分子化合物濃度を一定に保ったまま、低分子化合物濃度が減少した状態になる。
前記の低分子化合物の希釈動作を複数回繰り返すことで、NMR測定に用いる試料溶液内の低分子化合物濃度を減少させることができる。
プローブにセットされた容器、試料移送管全体、および制御部での閉ループ全体の体積をV、希釈前の低分子化合物濃度をδ(0)、注入動作1回当りの低分子化合物を含まない溶液の体積をvとする。そして、i回目の注入動作においてフィルタ部から排出される低分子化合物量をE(i)、注入動作後に残った低分子化合物量をM(i)、平均濃度をδ(i)とする。
最初の注入動作後、排出される低分子化合物量E(1)、残った低分子化合物量M(1)、平均濃度δ(1)はそれぞれ、式(7)、式(8)及び式(9)で示される。
Figure 0004825052
Figure 0004825052
Figure 0004825052
希釈動作をi回繰り返した後では、排出される低分子化合物量E(i)、残った低分子化合物量M(i)、平均濃度δ(i)はそれぞれ、式(10)、式(11)及び式(12)で示される。
Figure 0004825052
Figure 0004825052
Figure 0004825052
前記の手順を組み合わせることで、試料溶液中の高分子化合物濃度を一定に保ったまま低分子化合物濃度を増加あるいは減少させ、NMR測定を行った後に再び、低分子化合物濃度を変化させることが可能である。また、これを繰り返すことで、一定量かつ一定濃度の高分子化合物に対し、低分子化合物濃度を変化させた一連のNMR測定を実施することが可能である。
図2に、溶液注入部44から低分子化合物を含んだ溶液を注入して閉ループ内の低分子化合物濃度を増大させた場合の濃度変化の例を、図3に、溶液注入部44から低分子化合物を含まない溶液を注入して閉ループ内の低分子化合物濃度を減少させた場合の濃度変化の例を、それぞれ、示す。
図2の例では、容器10、試料移送管16,16,16、およびフィルタ部42の閉ループ内の全体の容積を1000μL、初期の低分子化合物濃度は0mol/L、すべての注入動作に亘って注入する低分子化合物濃度を0.01mol/L、1回の注入動作での溶液注入部44からの注入体積を10μLとした場合の容器10内での低分子化合物濃度を示す。注入回数が増加するに従って容器10内の低分子化合物濃度が増大する。ここで、低分子化合物の注入に伴う平均濃度の変化は上述した式(1)−式(6)に従って変化することになるが、図2の例では、初期の低分子化合物濃度は0mol/Lであるので、すべての注入動作前に容積Vの中に存在する低分子化合物濃度αは0である。
このように、注入濃度、1回の注入動作での低分子化合物の注入体積、動作回数を指定することで、設定した低分子化合物濃度を実現させ、その条件下でNMR測定を実行することができる。
図3の例では、容器10、試料移送管16,16,16、およびフィルタ部42の閉ループ内の全体の容積を1000μL、初期の低分子化合物濃度は0.0019mol/L、すべての注入動作に亘って注入する低分子化合物濃度を0.00mol/L(すなわち、バッファー溶液のみの注入)、1回の注入動作での溶液注入部44からの注入体積を100μLとした場合の容器10内での低分子化合物濃度を示す。注入回数が増加するに従って容器10内の低分子化合物濃度が減少する。ここで、注入回数に対する容器10内の低分子化合物濃度は式(10)、式(11)、式(12)にしたがって変化する。
このように、1回の注入動作での低分子化合物を含まない溶液の注入体積、動作回数を指定することで、設定した低分子化合物濃度を実現させ、その条件下でNMR測定を実行する。
また、前記に示した低分子化合物濃度を増加させる操作と減少させる操作を組み合わせることにより、低分子化合物濃度の増減も自由に制御することが可能であり、一度測定した条件を再現して測定することが可能であることも分かる。
低分子化合物を含むあるいは含まない溶液の注入動作において、注入溶液に一定濃度のロック溶媒を入れておくことで、一連の動作において容器10内のロック溶媒の濃度も一定にすることが可能である。
(試料の変更)
一つの試料に対する一連の計測が完了すると、新しい試料に変更して次の計測が始められる。この場合、試料間のコンタミを防止するために、次の手順とするのが良い。
まず、試料溶液注入部46に残っている高分子化合物を含んだ試料、溶液注入部44に残っている低分子化合物を、それぞれ、廃棄し、次いで、これらを清浄な水で洗浄するとともに、これらに清浄な水を適当に入れる。液溜め64に排出されている溶液も廃棄する。次いで、注水バルブ48を介して清浄な水を供給しながら、送液ポンプ50を運転して試料移送管16,16,16の閉ループに清浄な水を満たす。この際、試料溶液注入部46および溶液注入部44に入れられている清浄な水を押し出し、これらと試料移送管16との連結部も洗浄する。送液ポンプ50の運転による試料移送管16,16,16の閉ループの清浄な水の循環がある程度なされた後に、注水バルブ48を介して清浄な水を供給しながら、排出バルブ40を開きとして送液ポンプ50の運転を短時間継続した後、注水バルブ48および、排出バルブ40を閉じるとともに、送液ポンプ50の運転も停止する。この結果、容器10も含め、試料移送管16,16,16の閉ループは清浄な水で満たされる。この段階でも、液溜め64に排出されている溶液は廃棄する。
この後、バッファー液の注入から始まる手順で、新しい試料についての計測を行うことができる。
また、次の計測でも同じバッファー液を使用する場合には、洗浄に用いるのは清浄な水ではなくバッファー液を用いてもよい。この場合には、バッファー液の注入手順を省略することができる。
ここで、容器10と試料移送管16,16との接続の好ましい形態を説明する。
図4(a)、(b)は、容器10が、試料移送管16,16との接続管61,61を両端部に突出させた構造の場合の接続形態の二つの例を説明する図である。容器10は、いずれの場合でも、肉厚のガイド部71,71とNMR測定部70とを有する。この構造は、例えば、ガラスで容易に一体型で形成することができる。図4(a)では肉厚のガイド部71がガイド部71に対して相対的に長いものとされているが図4(b)では肉厚のガイド部71,71はほぼ同じ長さとされている。プローブ24が容器10を保持する形で構成されているときは、図4(a)に示す構造が好適であり、プローブ24が容器10および試料管接続部12,14を保持する形で構成されているときは、図4(b)に示す構造が好適である。
接続管61,61は接続する試料移送管16,16と同じ外径が好ましく、好適な値は1.57mmから0.36mmの範囲である。また、接続管61,61、接続管61,61およびガイド部71,71の内径の好適な値は0.5mmから0.065mmの範囲であることが望ましい。NMR測定部70はNMR測定に十分な試料を溜める必要があり、高分子化合物としてタンパク質を用いる場合には400μLから100μLが好ましい。また、NMR測定部70は、分割磁石20,20の発生するNMR計測に好適な磁場の領域内にこれらの試料が配置されるように、十分な内径を持つものとされる。
試料管接続部12,14は接続コネクタ65とオシネ66,66を有する、HPLCで一般的に使用される圧縮タイプの接続具である。オシネ66,66は一体型のものとナット67,67とフェレル68,68が分離した型と2種類あるが、どちらも接続に適している。コネクタ65とオシネ66,66は好適には、PEEK又はPTEF,Kel−F,TefzelあるいはHPLCの分野で知られているそのほかの材料で作られる。コネクタ65内に両側から接続管61,61およびガイド部71,71のそれぞれを挿入して、オシネ66,66によって固定するとともに、ナット67,67によって緩み止めを施す。
図5(a)、(b)は、容器10の肉厚のガイド部71,71の細管内に試料移送管16,16を両端部から挿入する構造の場合の接続形態の二つの例を説明する図である。この例でも、プローブ24の構造に応じて、ガイド部71,71の長さの適当なものを選択すればよい。また、NMR測定部70は、試料となる高分子化合物としてタンパク質を用いる場合には400μLから100μLが好ましく、分割磁石20,20の発生するNMR計測に好適な磁場の領域内にこれらの試料が配置されるように、十分な内径を持つものとされる。ガイド部71,71の細管の内径の好適な値は接続する試料移送管16,16の外径と同じ値が好ましく、好適な値は1.57mmから0.36mmの範囲である。69,69は収縮チューブであり、ガイド部71,71に試料移送管16,16を挿入したあと、収縮させて、両者を固定する。収縮チューブ69,69は、好適にはテフロン(登録商標)、TefzelあるいはHPLCの分野で知られているそのほかの材料を用いた熱収縮性のチューブを用いる。
(実施例2)
図6は本発明の実施例2の構成を示す概念図である。図1に示す実施例1と同じ構成要素には、同じ参照符号を付した。図1と図6とを対比して明らかなように、容器10に接続部12,14を介して接続される試料移送管16,16を、接続部で折り曲げて、ボア22を通して導出する点を除けば、実施例2は実施例1と同じ構成である。測定手順についても同じでよい。
実施例2では、試料に磁場を加えるための分割磁石20,20の外径が大きいときはトータルとしての試料移送管16,16の長さを短くできるメリットがある。この実施例3では、容器10は、図4(b)、図5(b)に示す構造のものとするのが良い。
(実施例3)
図7は本発明の実施例3の構成を示す概念図である。図6に示す実施例2と同じ構成要素には、同じ参照符号を付した。図6と図7とを対比して明らかなように、プローブ24が容器10、接続部12,14および接続部12,14を介して接続される試料移送管16,16の接続部近辺を含めて構成されている点を除けば、実施例3は実施例2と同じ構成である。測定手順についても同じでよい。
実施例3では、試料に磁場を加えるための分割磁石20,20の外径が大きいときはトータルとしての試料移送管16,16の長さを短くできるメリットがあるとともに、容器10をプローブ24に強固に保持できるものとできる。
(実施例4)
図8は本発明の実施例4の構成を示す概念図である。図1に示す実施例1と同じ構成要素には、同じ参照符号を付した。図1と図8とを対比して明らかなように、容器10を含むプローブ24が試料に磁場を加えるための分割20のボア22内に設けられるとともに、容器10に加えられる磁場Bの向きが容器10と平行構成されている点を除けば、実施例4は実施例1と同じ構成である。測定手順についても同じでよい。
実施例4では、試料に磁場を加えるための磁石20を小型とするときは、試料移送管16,16の長さを短くできるメリットがある。
(実施例5)
図9は本発明の実施例5の構成を示す概念図である。図8に示す実施例4と同じ構成要素には、同じ参照符号を付した。図8と図9とを対比して明らかなように、プローブ24が容器10、接続部12,14および接続部12,14を介して接続される試料移送管16,16の接続部近辺を含めて構成されている点を除けば、実施例5は実施例4と同じ構成である。測定手順についても同じでよい。
実施例5では、容器10をプローブ24に強固に保持できるものとできる。
(実施例6)
図10は本発明の実施例6の構成を示す概念図である。図9に示す実施例5と同じ構成要素には、同じ参照符号を付した。図9と図10とを対比して明らかなように、プローブ24が容器10、接続部12,14および接続部12,14を介して接続される試料移送管16,16の接続部近辺を含めて構成されるとともに、試料移送管16が容器10、試料移送管16と直線になるように構成される点を除けば、実施例6は実施例5と同じ構成である。測定手順についても同じでよい。
実施例6では、試料に磁場を加えるための磁石20のボア22の内径を小さくできるから、装置全体を小型化できる。
(実施例7)
図11は本発明の実施例7の構成を示す概念図である。図1に示す実施例1と同じ構成要素には、同じ参照符号を付した。図1に示す実施例1の構成と対比して明らかなように、溶液注入部44が、44,44,---,44のn個配置された点を除けば、実施例1と同じである。すなわち、実施例7では、一つの試料の計測において、独立した溶液注入部44のシリンジから異なった低分子化合物を含んだ溶液を注入して、容器10内での測定対象の高分子化合物の濃度を一定に保ちつつ、さらに、ある低分子化合物の濃度を一定に保って、他の低分子化合物濃度を調整する方法を提供する。
測定の手順の基本的な内容は、実施例1と同じでよいので、ここでは、一つの低分子化合物の濃度を一定に保ちつつ、他の低分子化合物濃度を増加させる好ましい一方法は以下のようである。
(a)試料の高分子化合物を含む試料溶液を容器10、試料移送管16,16および制御部30の試料移送管16の閉ループ内に注入する。
(b)容器10内の濃度を一定にしようとする低分子化合物の注入濃度をβとして溶液注入部44のシリンジにセットする。
(c)工程(b)でセットした低分子化合物以外のその他の低分子化合物を溶液注入部44,---,44のシリンジにセットする。このとき、その他の低分子化合物の注入体積のトータルをVexとする。
(d)容器10での濃度(α)を一定にするように、工程b)でセットした低分子化合物の注入体積vを式(13)を満足するようにセットする。
(e)工程(a)の試料溶液へ、工程(b)および工程(c)でセットした低分子化合物の注入を行う。この際、実施例1で説明したように、余剰溶液はフィルタ部42の排出液溜め64に排出される。
一つの低分子化合物の濃度を一定に保ちつつ、他の低分子化合物濃度を希釈させる好ましい一方法は以下のようである。
(f)高分子化合物を含む試料溶液を容器10、試料移送管16,16および制御部30の試料移送管16の閉ループ内に注入する。
(g)容器10内の濃度を一定にしようとする低分子化合物の注入濃度をβとして溶液注入部44のシリンジにセットする。
(h)低分子化合物を含まない溶液を溶液注入部44,---,44のシリンジにセットする。このとき、低分子化合物を含まない溶液の低分子化合物の注入体積のトータルをVexとする。
(i)容器10での濃度(α)を一定にするように、工程(f)でセットした低分子化合物の注入体積vを式(13)を満足するようにセットする。
(j)工程(f)の試料溶液へ、工程(g)および工程(h)でセットした低分子化合物および低分子化合物を含まない溶液の注入を行う。この際、実施例1で説明したように、余剰溶液はフィルタ部42の排出液溜め64に排出される。
上述の溶液注入部44が、44,44,---,44のn個配置とされる構成は、他の実施例2−6でも、同様に実施できる。
さらに、実施例7の構成では、低分子化合物の注入動作、低分子化合物の希釈動作、低分子化合物の濃度を一定に保ちつつ他の低分子化合物濃度を増加する動作、そして低分子化合物の濃度を一定に保ちつつ他の低分子化合物濃度を希釈する動作を組み合わせることで、複数の低分子化合物が混合した溶液で、各低分子化合物濃度を独立に変化させたNMR測定を可能とできる。
タンパク質をはじめとする生体内で機能を有する高分子化合物に本発明を適用することにより、一定量の高分子化合物の使用のもとで、滴定条件によらず試料容積一定を維持し、溶液条件を変化させたNMR計測の反復が可能となるので、ライフサイエンスの分野では生体内で生じている生化学プロセス解析の効率向上となり、医療や創薬分野では疾病関連タンパク質との結合強度計測による疾病メカニズム解析やスクリーニングの高効率化に繋がる。
本発明の実施例1の試料溶液の循環型フロー型NMR測定装置の概念を示す図である。 溶液注入部44から低分子化合物を含んだ溶液を注入して閉ループ内の低分子化合物濃度を増大させた場合の濃度変化の例を示す図である。 溶液注入部44から低分子化合物を含まない溶液を注入して閉ループ内の低分子化合物濃度を減少させた場合の濃度変化の例を示す図である。 (a)、(b)は、容器10と試料移送管16,16との接続形態の二つの例を説明する図である。 (a)、(b)は、容器10と試料移送管16,16との接続形態の他の二つの例を説明する図である。 本発明の実施例2の構成を示す概念図である。 本発明の実施例3の構成を示す概念図である。 本発明の実施例4の構成を示す概念図である。 本発明の実施例5の構成を示す概念図である。 本発明の実施例6の構成を示す概念図である。 本発明の実施例7の構成を示す概念図である。
符号の説明
10…保持容器、12,14…接続部、16,16,16…試料移送管、20,20,20…磁石、22,22,22…ボア、24…核磁気共鳴プローブ、26…送受信システム、28…プローブコイル、30…制御部、40…排出バルブ、42…フィルタ部、44…溶液注入部、46…試料溶液注入部、48…注水バルブ、50…送液ポンプ、52…pH,圧力メータ、60…接液部、61,61…接続管、62…フィルタ、64…排出液溜め部、65…接続コネクタ、66,66…オシネ、67,67…ナット、68,68…フェレル、70…NMR測定部、71,71…ガイド部、69,69…収縮チューブ。

Claims (10)

  1. 試料に磁場を加えるための磁石と、
    前記磁石による磁場の形成されている領域に配置された核磁気共鳴プローブと、
    前記核磁気共鳴プローブに設置された試料を保持する容器と、
    前記容器の試料に対して電磁波を送るあるいは前記核磁気共鳴プローブから電磁波を受け取る送受信システムと、
    前記容器を含めて閉ループを構成する試料移送管と、
    前記試料移送管の一部に設けられた制御部とよりなり、
    前記制御部には
    前記試料移送管に測定対象となる高分子化合物を含む溶液を注入する手段と、
    前記試料移送管に、低分子化合物を含む溶液を注入する手段と、
    前記閉ループを構成している前記容器および試料移送管内の溶液を循環的に移送するための送液ポンプと、
    前記送液ポンプの運転により前記試料移送管内の圧力が所定のレベル以上に高まったときは前記低分子化合物を選択的に排出できるフィルタと、
    前記試料移送管内の圧力を監視する手段と、
    を備えることを特徴とする核磁気共鳴測定を行うための装置。
  2. 前記制御部は、さらに、前記試料移送管にバッファー液または清浄な水を注入する手段と、前記閉ループを構成している前記容器および試料移送管内の溶液を排出するための排出バルブを備える請求項1記載の核磁気共鳴測定を行うための装置。
  3. 前記フィルタは、前記試料移送管内の圧力増加によって試料内の低分子化合物または液体のみが外部へ排出される膜あるいは中空状の物質を介して前記試料移送管に接続され、前記膜あるいは中空状の物質を通過した低分子化合物または液体が保持される液溜部とで構成される請求項1記載の核磁気共鳴測定を行うための装置。
  4. 前記高分子化合物を含む溶液を注入する手段および前記低分子化合物を含む溶液を注入する手段のそれぞれはシリンジポンプで構成され、シリンジポンプからの注入量が電子機器によって制御される請求項1記載の核磁気共鳴測定を行うための装置。
  5. 前記送液ポンプは電子制御可能なステッピングモーターによって駆動されるプランジャーによって前記閉ループを構成している前記容器および試料移送管内に定圧送液を行うものである請求項1記載の核磁気共鳴測定を行うための装置。
  6. 前記試料移送管に、低分子化合物を含む溶液を注入する手段が、低分子化合物を含む溶液に代えて低分子化合物を含まない溶液を注入するものとされた請求項1記載の核磁気共鳴測定を行うための装置。
  7. 前記試料移送管に、低分子化合物を含む溶液を注入する手段が、複数個設けられ、それぞれの低分子化合物を含む溶液を注入する手段の低分子化合物が異なるものとされた請求項1記載の核磁気共鳴測定を行うための装置。
  8. 前記試料移送管に、低分子化合物を含む溶液を注入する手段の少なくとも一つは、低分子化合物を含まない溶液を注入するものとされた請求項7記載の核磁気共鳴測定を行うための装置。
  9. 試料に磁場を加えるための磁石と、
    前記磁石による磁場の形成されている領域に配置された核磁気共鳴プローブと、
    前記核磁気共鳴プローブに設置された試料を保持する容器と、
    前記容器の試料に対して電磁波を送るあるいは前記核磁気共鳴プローブから電磁波を受け取る送受信システムと、
    前記容器を含めて閉ループを構成する試料移送管と、
    前記試料移送管の一部に設けられた制御部とよりなり、
    前記制御部には
    前記試料移送管に測定対象となる高分子化合物を含む溶液を注入する手段と、
    前記試料移送管に、低分子化合物を含む溶液を注入する手段と、
    前記閉ループを構成している前記容器および試料移送管内の溶液を循環的に移送するための送液ポンプと、
    前記送液ポンプの運転により前記試料移送管内の圧力が所定のレベル以上に高まったときは前記低分子化合物を選択的に排出できるフィルタと、
    前記試料移送管内の圧力を監視する手段と、
    前記試料移送管にバッファー液または清浄な水を注入する手段と、
    前記閉ループを構成している前記容器および試料移送管内の溶液を排出するための排出バルブと、
    を備える核磁気共鳴測定を行うための装置による測定方法が、
    前記試料移送管にバッファー液または清浄な水を注入する手段を介してバッファー液を供給しながら、前記送液ポンプを運転して前記閉ループを構成している前記容器および試料移送管内をバッファー液で満たすこと、
    次いで、測定対象となる高分子化合物を含む溶液を注入する手段により前記送液ポンプを運転しながら前記閉ループを構成している前記容器および試料移送管内に高分子化合物を含んだ試料溶液を注入すること、
    次いで、低分子化合物を含む溶液を注入する手段により前記送液ポンプを運転しながら前記閉ループを構成している前記容器および試料移送管内に低分子化合物を含んだ試料溶液を注入すること、
    により、前記閉ループを構成している前記容器および試料移送管内の前記高分子化合物の量を所定値に維持しながら、前記低分子化合物の相対的な量を変更可能としたことを特徴とする核磁気共鳴測定方法。
  10. 前記閉ループを構成している前記容器および試料移送管内に低分子化合物を含んだ試料溶液の注入動作、あるいは、低分子化合物に代えて低分子化合物を含まない試料溶液の注入動作による希釈動作を必要に応じて繰り返し実施する請求項9記載の核磁気共鳴測定方法。
JP2006143474A 2006-05-24 2006-05-24 循環型フロー核磁気共鳴測定装置および測定方法 Expired - Fee Related JP4825052B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006143474A JP4825052B2 (ja) 2006-05-24 2006-05-24 循環型フロー核磁気共鳴測定装置および測定方法
EP07008344A EP1860452B1 (en) 2006-05-24 2007-04-24 Apparatus and method for circulated flow nuclear magnetic resonance measurement
DE602007005540T DE602007005540D1 (de) 2006-05-24 2007-04-24 Vorrichtung und Verfahren zur NMR-Messung an einem Zirkulationsfluss
US11/798,015 US7449890B2 (en) 2006-05-24 2007-05-09 Apparatus and method for circulated flow nuclear magnetic resonance measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006143474A JP4825052B2 (ja) 2006-05-24 2006-05-24 循環型フロー核磁気共鳴測定装置および測定方法

Publications (2)

Publication Number Publication Date
JP2007315826A JP2007315826A (ja) 2007-12-06
JP4825052B2 true JP4825052B2 (ja) 2011-11-30

Family

ID=38445667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006143474A Expired - Fee Related JP4825052B2 (ja) 2006-05-24 2006-05-24 循環型フロー核磁気共鳴測定装置および測定方法

Country Status (4)

Country Link
US (1) US7449890B2 (ja)
EP (1) EP1860452B1 (ja)
JP (1) JP4825052B2 (ja)
DE (1) DE602007005540D1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4897437B2 (ja) * 2006-11-17 2012-03-14 株式会社日立製作所 低分子化合物溶液循環型フローnmr装置
JP4457155B2 (ja) 2008-02-22 2010-04-28 株式会社日立製作所 核磁気共鳴測定装置および核磁気共鳴測定装置を用いた測定方法
DE102008059313A1 (de) * 2008-11-27 2010-06-02 Bruker Biospin Gmbh NMR-Messaparatur mit Durchfluss-Probenkopf und druckgasbetriebener Mischkammer, insbesondere zur para-Wasserstoff-induzierten Polarisierung einer flüssigen NMR-Messprobe
JP5508081B2 (ja) 2010-03-25 2014-05-28 株式会社神戸製鋼所 フロースルー型nmr分析装置
JP5831872B2 (ja) * 2011-09-07 2015-12-09 国立研究開発法人産業技術総合研究所 核磁気共鳴を利用した反応速度解析装置
CN111380790A (zh) * 2018-12-29 2020-07-07 中国石油大学(北京) 恒压条件下测量可燃冰孔隙度的系统及方法
CN114485765A (zh) * 2021-12-31 2022-05-13 安徽普氏环保装备有限公司 一种通用的磁分离机磁粉回收率检测系统及检测方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2721970A (en) * 1952-01-30 1955-10-25 Varian Associates Method and means for identifying substances
DE2759457C2 (de) * 1977-11-18 1980-12-04 Spectrospin Ag, Faellanden, Zuerich (Schweiz) Spinresonanz-Spektrometer
AU4015295A (en) 1994-10-26 1996-05-23 Eberhard-Karls-Universitat Tubingen Universitatsklinikum Tandem coil nmr probe
US5705928A (en) * 1996-06-14 1998-01-06 Varian Associates, Inc. Sample delivery system used in chemical analysis methods which employs pressurized gas for sample conveyance
US6319894B1 (en) * 1997-01-08 2001-11-20 The Picower Institute For Medical Research Complexes and combinations of fetuin with therapeutic agents
JP3842931B2 (ja) * 1999-08-23 2006-11-08 日本電子株式会社 液体クロマトグラフ−nmr法
JP2001059828A (ja) * 1999-08-23 2001-03-06 Jeol Ltd 液体クロマトグラフ−nmr法
WO2001023889A1 (en) * 1999-09-29 2001-04-05 Smithkline Beecham Corporation Method of using one-dimensional and multi-dimensional nuclear magnetic resonance to identify compounds that interact with target biomolecules
US6380737B1 (en) 2001-07-10 2002-04-30 Varian, Inc. Apparatus and method utilizing sample transfer to and from NMR flow probes
JP3918920B2 (ja) * 2002-03-26 2007-05-23 日本電子株式会社 Nmr測定方法
DE102004002138A1 (de) * 2004-01-15 2005-08-04 Robert Bosch Gmbh Verfahren und Vorrichtung zur Erfassung von physikalischen Eigenschaften eines Gases oder eines Gasgemisches im Bereich eines Hochfrequenz-Resonators
JP4403807B2 (ja) * 2004-01-22 2010-01-27 東ソー株式会社 示差屈折計を備えた液体クロマトグラフ装置
US7157699B2 (en) * 2004-03-29 2007-01-02 Purdue Research Foundation Multiplexed mass spectrometer
JP2006068689A (ja) * 2004-09-03 2006-03-16 Toyobo Co Ltd 中空糸膜束の乾燥方法

Also Published As

Publication number Publication date
EP1860452B1 (en) 2010-03-31
EP1860452A1 (en) 2007-11-28
JP2007315826A (ja) 2007-12-06
US20070273381A1 (en) 2007-11-29
US7449890B2 (en) 2008-11-11
DE602007005540D1 (de) 2010-05-12

Similar Documents

Publication Publication Date Title
JP4825052B2 (ja) 循環型フロー核磁気共鳴測定装置および測定方法
US10371775B2 (en) Dialysis system with radio frequency device within a magnet assembly for medical fluid sensing and concentration determination
EP3158931B1 (en) Medical fluid sensors and related systems and methods
US10451572B2 (en) Medical fluid cartridge with related systems
US7492157B2 (en) Apparatus of nuclear magnetic resonance measurement by using circulation flow for sample condition control
EP4133296A1 (en) Parahydrogen hyperpolarization membrane reactor
EP2967334B1 (en) Medical fluid sensors and related systems and methods
JP4457155B2 (ja) 核磁気共鳴測定装置および核磁気共鳴測定装置を用いた測定方法
EP2968719B1 (en) Medical fluid sensors and related systems and methods
Carret et al. Enhancing NMR of nonrelaxing species using a controlled flow motion and a miniaturized circuit
US11796444B2 (en) Coupling device for an NMR flow cell
GB2581031A (en) Apparatus for quickly changing a sample in an NMR spectrometer with a flow cell
JP2010127905A (ja) 混合カートリッジおよび検体検査装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees