JP4824659B2 - Waste and leachate stabilization methods - Google Patents

Waste and leachate stabilization methods Download PDF

Info

Publication number
JP4824659B2
JP4824659B2 JP2007277063A JP2007277063A JP4824659B2 JP 4824659 B2 JP4824659 B2 JP 4824659B2 JP 2007277063 A JP2007277063 A JP 2007277063A JP 2007277063 A JP2007277063 A JP 2007277063A JP 4824659 B2 JP4824659 B2 JP 4824659B2
Authority
JP
Japan
Prior art keywords
waste
bod
leachate
environment
aerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007277063A
Other languages
Japanese (ja)
Other versions
JP2009101317A (en
Inventor
和夫 高橋
克彦 林
祥介 中家
優一 元永
上  周史
法之 小屋町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maeda Corp
Tenox Corp
Tenox Kyusyu Corp
Original Assignee
Maeda Corp
Tenox Corp
Tenox Kyusyu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maeda Corp, Tenox Corp, Tenox Kyusyu Corp filed Critical Maeda Corp
Priority to JP2007277063A priority Critical patent/JP4824659B2/en
Publication of JP2009101317A publication Critical patent/JP2009101317A/en
Application granted granted Critical
Publication of JP4824659B2 publication Critical patent/JP4824659B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

本発明は、好気性環境と嫌気性環境とを交互に繰り返して形成することにより、廃棄物及び浸出水の安定化を図る方法に関するものである。   The present invention relates to a method for stabilizing waste and leachate by alternately and repeatedly forming an aerobic environment and an anaerobic environment.

従来、廃棄物最終処分場では準好気性埋め立て構造が多く採用されている。この準好気性埋め立て構造は、浸出水の集排水管の末端を開放することにより、廃棄物層内において集排水管を通して自然通気による空気流通を起こさせるものである。すなわち、準好気性埋め立て構造では、廃棄物層内へ空気が供給されると、廃棄物層内の微生物が活性化して有機物分解が進行し、廃棄物が安定化するようになっている。   Conventionally, many semi-aerobic landfill structures have been adopted at waste final disposal sites. In this semi-aerobic landfill structure, the end of the leachate collecting / draining pipe is opened to cause air circulation by natural ventilation through the collecting / draining pipe in the waste layer. In other words, in the semi-aerobic landfill structure, when air is supplied into the waste layer, microorganisms in the waste layer are activated, organic matter decomposition proceeds, and the waste is stabilized.

このような準好気性埋め立て構造では、自然条件や廃棄物の埋め立て状況等に応じて空気の供給状況が変動し、有機物が安定化するまでに長期間を要するのが一般的である。また、準好気性埋め立て構造が採用されていない廃棄物最終処分場では、有機物が安定化するまでにさらに長期間を要することになる。   In such a semi-aerobic landfill structure, the air supply status varies depending on natural conditions, the waste landfill status, etc., and it generally takes a long time for the organic matter to stabilize. Further, in a waste final disposal site where a semi-aerobic landfill structure is not adopted, it takes a longer period of time for organic matter to stabilize.

廃棄物最終処分場では、埋め立て完了後も降雨などが廃棄物層内へ浸透して浸出水が発生する。そして、廃棄物が安定化するまでは、浸出水を浄化して放流するための水処理を継続する必要がある。このため、埋め立てられた廃棄物が安定化するまでの期間、すなわち廃棄物最終処分場の廃止に至るまでの期間が長くなればなるほど、維持管理コストが上昇してしまう。また、好気性環境における処理が終了する前に廃棄物層内が嫌気的雰囲気になってしまうと、浸出水のBODやCODが高濃度化し、浸出水を放流可能な水質まで浄化するために多くの負荷がかかり、費用も多大なものとなる。   In the waste final disposal site, even after the landfill is completed, rain penetrates into the waste layer and leachate is generated. And until the waste is stabilized, it is necessary to continue water treatment for purifying and discharging leachate. Therefore, the longer the period until the landfilled waste is stabilized, that is, the period until the final disposal site is abolished, the maintenance cost increases. Also, if the waste layer becomes anaerobic before the treatment in the aerobic environment is completed, the concentration of leachate BOD and COD will increase, and it is often used to purify the leachate to a water quality that can be discharged. Load, and the cost becomes great.

そこで、廃棄物最終処分場等において、適切な廃棄物処理を行うことにより、有機物が安定化するまでの期間を短縮化するための技術が種々提案されている。
例えば、紙屑や生ゴミ、処分場から掘削回収した有機物を多く含む廃棄物、あるいは汚染土壌中に、空気や過酸化水素やオゾン等の酸素含有物質を供給することにより、浄化能力を向上させる技術が開示されている(特許文献1参照)。
Therefore, various techniques have been proposed for shortening the period until the organic matter is stabilized by performing appropriate waste treatment at a waste final disposal site or the like.
For example, technology that improves purification capacity by supplying oxygen, substances such as air, hydrogen peroxide, ozone, etc., into paper waste, garbage, waste that contains a lot of organic matter excavated and collected from disposal sites, or contaminated soil Is disclosed (see Patent Document 1).

また、汚染地下水中に酸素及び分解微生物の栄養源を供給することにより、浄化能力を向上させる技術が開示されている(特許文献2参照)
特開2001−129519号公報 特開2001−129577号公報
Moreover, the technique which improves the purification | cleaning capability is disclosed by supplying the nutrient source of oxygen and a decomposition | disassembly microorganism to contaminated groundwater (refer patent document 2).
JP 2001-129519 A JP 2001-129577 A

ところで、廃棄物最終処分場等において、有機物が安定化するまでの期間を短縮化するためには、廃棄物中に酸素を供給して有機物を分解する好気性環境と、好気性環境とは異なる分解作用により難分解性の有機物を分解する嫌気性環境とを、適正な時期に切り替える必要がある。   By the way, in order to shorten the period until the organic matter is stabilized in a waste final disposal site, etc., an aerobic environment in which oxygen is supplied to the waste to decompose the organic matter is different from an aerobic environment. It is necessary to switch the anaerobic environment that decomposes the hardly decomposable organic matter by the decomposition action at an appropriate time.

しかしながら、従来の技術では好気性環境と嫌気性環境とを切り替えて廃棄物処理を行うことは開示されているが、どのような基準に基づいて好気性環境から嫌気性環境へ切り替えるのかについての明確な開示はない。また、実際に廃棄物中で有機物が分解されている様子を把握することは難しく、好気性環境と嫌気性環境とを切り替える時期については、処理作業者の経験と勘に頼っているのが現状である。   However, the conventional technology discloses that waste treatment is performed by switching between an aerobic environment and an anaerobic environment, but it is clear what criteria are used to switch from an aerobic environment to an anaerobic environment. There is no disclosure. In addition, it is difficult to grasp how organic substances are actually decomposed in waste, and the current situation is that the timing of switching between aerobic and anaerobic environments depends on the experience and intuition of the processing workers. It is.

本発明は、上述した事情に鑑み提案されたもので、好気性環境から嫌気性環境へ切り替える基準を明確なものとして適切な廃棄物処理を行うことにより、有機物が安定化するまでの期間を短縮化するとともに、環境負荷の低減を図ることが可能な廃棄物及び浸出水の安定化方法を提供することを目的とする。   The present invention has been proposed in view of the above-described circumstances, and shortens the period until the organic matter is stabilized by performing appropriate waste treatment with clear criteria for switching from an aerobic environment to an anaerobic environment. An object of the present invention is to provide a method for stabilizing waste and leachate capable of reducing environmental burden.

本発明に係る廃棄物及び浸出水の安定化方法は、上述した目的を達成するため、以下の特徴点を有している。
すなわち、本発明に係る廃棄物及び浸出水の安定化方法は、廃棄物層内に強制的に酸素含有気体を供給する好気性環境と、酸素含有気体の供給を停止した嫌気性環境とを交互に繰り返して形成することにより、廃棄物及び浸出水の安定化を図る方法であって、浸出水のBOD/COD又はBOD/TOCの少なくとも一方の値が下記条件式(1)を満足した場合に、好気性環境から嫌気性環境へ移行させて、廃棄物及び浸出水の安定化処理を行うことを特徴とするものである。
0.05≦x≦0.3 ・・・ (1)
さらに、好気性環境から嫌気性環境へ切り替える基準として、下記条件式(2)を用いることが好ましい。
0.08≦x≦0.1 ・・・ (2)
但し、xはBOD/COD又はBOD/TOC
The method for stabilizing waste and leachate according to the present invention has the following features in order to achieve the above-described object.
That is, the method for stabilizing waste and leachate according to the present invention alternates between an aerobic environment in which the oxygen-containing gas is forcibly supplied into the waste layer and an anaerobic environment in which the supply of the oxygen-containing gas is stopped. In this method, the waste and leachate are stabilized by repeatedly forming, and when at least one value of BOD / COD or BOD / TOC of leachate satisfies the following conditional expression (1) In addition, the waste and leachate are stabilized by shifting from an aerobic environment to an anaerobic environment.
0.05 ≦ x ≦ 0.3 (1)
Furthermore, it is preferable to use the following conditional expression (2) as a reference for switching from an aerobic environment to an anaerobic environment.
0.08 ≦ x ≦ 0.1 (2)
Where x is BOD / COD or BOD / TOC

また、廃棄物層内に強制的に酸素含有気体を供給する際に、加圧した酸素含有気体を断続的かつ瞬発的に廃棄物層内に供給して好気性環境を形成することが好ましい。   In addition, when the oxygen-containing gas is forcibly supplied into the waste layer, it is preferable that the pressurized oxygen-containing gas is intermittently and instantaneously supplied into the waste layer to form an aerobic environment.

また、廃棄物層内の水分量に応じて酸素含有気体に含まれる水分量を調整することが好ましい。   In addition, it is preferable to adjust the amount of water contained in the oxygen-containing gas according to the amount of water in the waste layer.

本発明に係る廃棄物及び浸出水の安定化方法によれば、好気性環境から嫌気性環境へ切り替える時期をBOD/COD又はBOD/TOCの値を用いて規定しているので、切り替え時期の基準が明確なものとなり、適切な廃棄物処理を行うことができる。このため、有機物が安定化するまでの期間を短縮化して、環境負荷の低減を図ることが可能となる。
また、廃棄物層内に強制的に酸素含有気体を供給して好気性環境を形成するため、廃棄物層の深度が大きい場合、例えば50m程度の深度であっても、当該深度まで送気可能な機器を用いることにより廃棄物及び浸出水の安定化を図ることが可能となる。
According to the method for stabilizing waste and leachate according to the present invention, the timing for switching from an aerobic environment to an anaerobic environment is defined using the value of BOD / COD or BOD / TOC. Becomes clear and appropriate waste disposal can be performed. For this reason, it is possible to reduce the environmental load by shortening the period until the organic matter is stabilized.
In addition, since the oxygen-containing gas is forcibly supplied into the waste layer to form an aerobic environment, when the depth of the waste layer is large, air can be supplied to that depth even at a depth of about 50 m, for example. By using a simple device, it becomes possible to stabilize waste and leachate.

以下、図面を参照して、本発明に係る廃棄物及び浸出水の安定化方法の実施形態を説明する。
<安定化装置>
まず、本発明に係る廃棄物及び浸出水の安定化方法で用いる安定化装置について説明する。図1は、本発明に係る廃棄物及び浸出水の安定化方法で用いる安定化装置の模式図である。
Hereinafter, an embodiment of a method for stabilizing waste and leachate according to the present invention will be described with reference to the drawings.
<Stabilizer>
First, the stabilization apparatus used in the method for stabilizing waste and leachate according to the present invention will be described. FIG. 1 is a schematic view of a stabilization device used in the method for stabilizing waste and leachate according to the present invention.

本発明に係る廃棄物及び浸出水の安定化方法は、所定の基準に基づいて好気性環境から嫌気性環境への切り替えを行うことにより、適切な廃棄物処理を行うものである。好気性環境における処理工程は、酸素含有気体の圧縮工程と、圧縮気体中に含まれる水分量を調整する送気工程と、廃棄物中に圧縮気体を強制送気する強制的挿入工程と、廃棄物中から有機物の分解ガス等を排出する吸引排気工程と、吸引ガスを浄化して系外へ放出する浄化工程とに大別することができる。   The method for stabilizing waste and leachate according to the present invention performs appropriate waste treatment by switching from an aerobic environment to an anaerobic environment based on a predetermined standard. The treatment process in the aerobic environment includes an oxygen-containing gas compression process, an air supply process for adjusting the amount of moisture contained in the compressed gas, a forced insertion process for forcibly supplying compressed gas into the waste, and a disposal process. It can be roughly divided into a suction exhaust process for discharging organic decomposition gas and the like from the substance, and a purification process for purifying the suction gas and releasing it out of the system.

本発明に係る廃棄物及び浸出水の安定化方法で用いる安定化装置10は、図1に示すように、圧縮工程(A)に配設されたコンプレッサー11、貯留タンク12、及び水供給タンク13と、送気工程(B)に配設された圧力容器14と、強制的挿入工程(C)に配設された送気管15と、吸引排気工程(D)に配設された吸引ポンプ16と、浄化工程(E)に配設された処理フィルター17と、コンプレッサー11と圧力容器14とを連通接続する送気ホース18と、廃棄物中で発生した分解ガス等を吸引ポンプ16へ送気するための吸気管19及び排気管20と、を主な構成要素としている。また、図示しないが、送気管15の先端部には送気口が設けられており、吸気管19には複数の吸気口が設けられている。なお、送気口は、送気管15の先端部だけではなく中間部に設けてもよい。
また、安定化装置10は図1に示す構造に限定されるものではなく、安定化処理を行う廃棄物処理場の構造や天候等に応じて、必要な機器を付加したり、細部構造を変更したりすることができる。
As shown in FIG. 1, a stabilization device 10 used in the waste and leachate stabilization method according to the present invention includes a compressor 11, a storage tank 12, and a water supply tank 13 disposed in the compression step (A). A pressure vessel 14 disposed in the air supply process (B), an air supply pipe 15 disposed in the forced insertion process (C), and a suction pump 16 disposed in the suction exhaust process (D). The processing filter 17 disposed in the purification step (E), the air supply hose 18 that connects the compressor 11 and the pressure vessel 14 to each other, and the decomposition gas generated in the waste are supplied to the suction pump 16. The main components are an intake pipe 19 and an exhaust pipe 20 for the purpose. Although not shown, an air supply port is provided at the tip of the air supply tube 15, and a plurality of intake ports are provided in the intake tube 19. The air supply port may be provided not only at the distal end portion of the air supply tube 15 but also at the intermediate portion.
In addition, the stabilization device 10 is not limited to the structure shown in FIG. 1, and necessary equipment is added or the detailed structure is changed according to the structure of the waste disposal site where the stabilization process is performed, the weather, or the like. You can do it.

<好気性環境における処理>
次に、好気性環境における処理手順を説明する。
本発明に係る廃棄物及び浸出水の安定化方法では、上述した安定化装置10を用いて好気性環境を形成する。なお、好気性環境の形成に先立ち、廃棄物層21内に送気管15及び吸気管19を挿入しておく。
好気性環境における安定化処理では、コンプレッサー11を用いて2〜7気圧の酸素を含有した圧縮気体を製造する(圧縮工程(A))。なお、圧縮気体は酸素含有気体であればよく、空気をそのまま用いてもよいし、酸素を付加して用いてもよい。
<Treatment in aerobic environment>
Next, a processing procedure in an aerobic environment will be described.
In the method for stabilizing waste and leachate according to the present invention, an aerobic environment is formed using the stabilizing device 10 described above. Prior to the formation of the aerobic environment, the air supply pipe 15 and the intake pipe 19 are inserted into the waste layer 21.
In the stabilization process in an aerobic environment, the compressor 11 is used to produce compressed gas containing 2 to 7 atmospheres of oxygen (compression step (A)). The compressed gas may be an oxygen-containing gas, and air may be used as it is, or oxygen may be added thereto.

コンプレッサー11の貯留タンク12に貯留される圧縮気体は、送気ホース18を介して圧力容器14に送られる(送気工程(B))。ここで、廃棄物層21内の水分量が湿度5〜30%に保たれるように、水供給タンク13から水を供給して圧縮気体の水分量が調整される。なお、廃棄物層21内の水分量の検出は、廃棄物層21内に設置した湿度計等により行ってもよいし、廃棄物層21内からサンプルを採取して行ってもよい。このように、廃棄物層21内の水分量を調整することにより、廃棄物層21内が過度に乾燥することを防止して、有機物の分解に必要な微生物の環境を制御することができる。   The compressed gas stored in the storage tank 12 of the compressor 11 is sent to the pressure vessel 14 via the air supply hose 18 (air supply process (B)). Here, the amount of water in the compressed gas is adjusted by supplying water from the water supply tank 13 so that the amount of water in the waste layer 21 is maintained at a humidity of 5 to 30%. The moisture content in the waste layer 21 may be detected by a hygrometer or the like installed in the waste layer 21 or a sample may be collected from the waste layer 21. Thus, by adjusting the amount of water in the waste layer 21, the inside of the waste layer 21 can be prevented from being excessively dried, and the environment of microorganisms necessary for the decomposition of the organic matter can be controlled.

コンプレッサー11の貯留タンク12に貯留された圧縮気体が一定の圧力に達すると、圧力容器14の排出口が開き、圧縮気体が吐出される。吐出された圧縮気体は、送気管15に設けられた送気口から廃棄物中に送気される(強制的挿入工程(C))。なお、圧力容器14の排出口を開く動作は手動で行ってもよいが、圧力容器14に圧力計を取り付け、圧縮気体が一定の圧力となったことを圧力計が検知した場合に、排出口に取り付けたアクチュエータ等が作動して排出口が自動的に開閉する機構を採用することが好ましい。また、送気管15の先端部及び中間部に複数の送気口を設けた場合に、先端部に設けた送気口から吐出される圧縮空気は、中間部に設けた送気口から吐出される圧縮空気よりも高圧であることが好ましい。   When the compressed gas stored in the storage tank 12 of the compressor 11 reaches a certain pressure, the discharge port of the pressure vessel 14 opens and the compressed gas is discharged. The discharged compressed gas is supplied into the waste from an air supply port provided in the air supply pipe 15 (forced insertion step (C)). The operation of opening the discharge port of the pressure vessel 14 may be performed manually. However, when a pressure gauge is attached to the pressure vessel 14 and the pressure gauge detects that the compressed gas has become a constant pressure, the discharge port is opened. It is preferable to employ a mechanism in which an actuator or the like attached to is operated to automatically open and close the discharge port. In addition, when a plurality of air supply ports are provided at the distal end portion and the intermediate portion of the air supply tube 15, the compressed air discharged from the air supply ports provided at the distal end portion is discharged from the air supply ports provided in the intermediate portion. The pressure is preferably higher than that of compressed air.

本実施形態では、排出口が開く間隔が20〜60秒に設定されており、圧縮気体は廃棄物層21内に断続的かつ瞬発的に強制送気される。なお、廃棄物層21内に強制送気される圧縮気体の量は、廃棄物層1m3あたり0.5〜10リットル/minとすることが好ましい。圧縮気体を廃棄物層21内に断続的かつ瞬発的に強制送気することにより、酸素含有気体が廃棄物層21内において同じ経路(隙間)を通ることなく、送気毎に異なった経路(隙間)を通ることになる。このため、廃棄物層21の全体を一様に好気性環境とすることができる。
廃棄物層21内に強制送気された圧縮気体は、廃棄物層21内を好気性環境とし、好気性微生物が活性化される。この好気性環境において、廃棄物層21に含まれる易分解性有機物の分解が促進される。
In this embodiment, the interval at which the discharge port opens is set to 20 to 60 seconds, and the compressed gas is forcibly and intermittently supplied into the waste layer 21 intermittently. The amount of compressed gas forcedly fed into the waste layer 21 is preferably 0.5 to 10 liter / min per 1 m 3 of the waste layer. By forcibly and instantaneously supplying compressed gas into the waste layer 21, the oxygen-containing gas does not pass through the same path (gap) in the waste layer 21, and different routes ( Through the gap). For this reason, the whole waste layer 21 can be made into an aerobic environment uniformly.
The compressed gas forcedly fed into the waste layer 21 makes the inside of the waste layer 21 an aerobic environment, and aerobic microorganisms are activated. In this aerobic environment, decomposition of readily decomposable organic substances contained in the waste layer 21 is promoted.

廃棄物中に強制送気された圧縮気体及び有機物の分解過程で発生するガスは、吸引ポンプ16の吸引力により、吸気管19及び排気管20を介して廃棄物層21の外へ強制排出される(吸引排気工程(D))。
強制排出された排気ガスは、処理フィルター17を通過させることにより浄化されて、系外へ排出される(浄化工程(E))。処理フィルター17は、排気ガス中に含まれる有害物質に応じて適宜選択されるが、例えば活性炭フィルターを用いることができる。
The compressed gas forcedly fed into the waste and the gas generated in the decomposition process of the organic matter are forcibly discharged out of the waste layer 21 through the intake pipe 19 and the exhaust pipe 20 by the suction force of the suction pump 16. (Suction / exhaust step (D)).
The exhaust gas that has been forcibly discharged is purified by passing through the processing filter 17 and discharged outside the system (purification step (E)). The processing filter 17 is appropriately selected according to the harmful substance contained in the exhaust gas, and for example, an activated carbon filter can be used.

なお、好気性環境において有機物を分解するための微生物として、メタン資化性菌、トルエン資化性菌、フェノール資化性菌、アンモニア酸化菌、亜硝酸酸化菌、プロパン酸化菌、イソプロピレン酸化菌等を挙げることができる。   As microorganisms for decomposing organic substances in an aerobic environment, methane-utilizing bacteria, toluene-utilizing bacteria, phenol-utilizing bacteria, ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, propane-oxidizing bacteria, isopropylene-oxidizing bacteria Etc.

<好気性環境から嫌気性環境への切り替え>
上述した各工程を行うことにより好気性環境下における処理が行われるが、本発明では、BOD/COD又はBOD/TOCに関する所定の基準値に基づいて、好気性環境と嫌気性環境とが切り替えられる。
本発明の発明者等は、好気性環境から嫌気性環境へ切り替える時期について鋭意研究を重ねてきた結果、BOD/COD又はBOD/TOCに関する所定の基準値を用いることで、有機物が安定化するまでの期間を短縮化するとともに、環境負荷の低減を図ることができることを見出した。
<Switching from an aerobic environment to an anaerobic environment>
Processing in an aerobic environment is performed by performing the above-described steps, but in the present invention, an aerobic environment and an anaerobic environment are switched based on a predetermined reference value related to BOD / COD or BOD / TOC. .
As a result of intensive studies on the timing of switching from an aerobic environment to an anaerobic environment, the inventors of the present invention use a predetermined reference value for BOD / COD or BOD / TOC until the organic matter is stabilized. It has been found that the environmental load can be reduced while shortening the period.

図2及び図3を参照して、好気性環境から嫌気性環境へ切り替える基準について説明する。図2は、BOD/CODの相関図、図3はBOD/TOCの相関図である。
図2から明らかなように、嫌気性環境と好気性環境とを比較すると、BOD/CODの値が0.3よりも大きい場合には、有機物の処理に関して好気性環境が優位となっている。特に、BOD/CODの値が0.1よりも大きい場合には、有機物の処理に関して好気性環境の優位性が際だっている。一方、嫌気性環境と好気性環境とを比較すると、BOD/CODの値が0.05よりも小さい場合には、有機物の処理に関して嫌気性環境が優位となっている。特に、BOD/CODの値が0.08よりも小さい場合には、有機物の処理に関して嫌気性環境の優位性が際だっている。
The criteria for switching from an aerobic environment to an anaerobic environment will be described with reference to FIGS. 2 is a correlation diagram of BOD / COD, and FIG. 3 is a correlation diagram of BOD / TOC.
As is clear from FIG. 2, when the anaerobic environment and the aerobic environment are compared, when the value of BOD / COD is larger than 0.3, the aerobic environment is dominant with respect to the treatment of organic matter. In particular, when the value of BOD / COD is larger than 0.1, the superiority of the aerobic environment with respect to the treatment of organic substances is outstanding. On the other hand, when the anaerobic environment and the aerobic environment are compared, when the value of BOD / COD is smaller than 0.05, the anaerobic environment is superior with respect to the treatment of organic matter. In particular, when the value of BOD / COD is smaller than 0.08, the superiority of the anaerobic environment with respect to the treatment of organic substances is remarkable.

また、図3から明らかなように、嫌気性環境と好気性環境とを比較すると、BOD/TOCの値が0.3よりも大きい場合には、有機物の処理に関して好気性環境が優位となっている。特に、BOD/TOCの値が0.1よりも大きい場合には、有機物の処理に関して好気性環境の優位性が際だっている。一方、嫌気性環境と好気性環境とを比較すると、BOD/TOCの値が0.05よりも小さい場合には、有機物の処理に関して嫌気性環境が優位となっている。特に、BOD/TOCの値が0.08よりも小さい場合には、有機物の処理に関して嫌気性環境の優位性が際だっている。   In addition, as is clear from FIG. 3, when the anaerobic environment and the aerobic environment are compared, when the value of BOD / TOC is larger than 0.3, the aerobic environment is dominant for the treatment of organic matter. Yes. In particular, when the value of BOD / TOC is larger than 0.1, the superiority of the aerobic environment with respect to the treatment of organic substances is outstanding. On the other hand, when the anaerobic environment and the aerobic environment are compared, when the value of BOD / TOC is smaller than 0.05, the anaerobic environment is superior with respect to the treatment of organic matter. In particular, when the value of BOD / TOC is smaller than 0.08, the superiority of the anaerobic environment is remarkable with respect to the treatment of organic substances.

上述した実験結果より、BOD/COD又はBOD/TOCの値をxとした場合に、浸出水のBOD/COD又はBOD/TOCの少なくとも一方の値が、下記条件式(1)を満足した場合に、強制的に酸素含有気体を供給する好気性環境から、酸素含有気体の供給を停止して嫌気性環境へ移行することで、廃棄物を効率的に安定化することができる。
0.05≦x≦0.3 ・・・ (1)
また、好気性環境から嫌気性環境へ切り替える基準として、下記条件式(2)を用いることが一層好ましい。
0.08≦x≦0.1 ・・・ (2)
From the experimental results described above, when the value of BOD / COD or BOD / TOC is x, at least one of the values of BOD / COD or BOD / TOC of leachate satisfies the following conditional expression (1) The waste can be efficiently stabilized by stopping the supply of the oxygen-containing gas from the aerobic environment forcibly supplying the oxygen-containing gas to the anaerobic environment.
0.05 ≦ x ≦ 0.3 (1)
Further, it is more preferable to use the following conditional expression (2) as a reference for switching from an aerobic environment to an anaerobic environment.
0.08 ≦ x ≦ 0.1 (2)

<嫌気性環境における処理>
上述した好気性環境における処理を行い、BOD/COD又はBOD/TOCの値が嫌気性環境へ移行する基準値となると、安定化装置10の運転を停止し、送気ホース18及び排気管20のバルブを閉じることにより、廃棄物層21を嫌気性環境に移行させる。嫌気性環境では、好気性環境とは異なる難分解性の有機物の分解が促進され、廃棄物層21内に存在する重金属類を不溶化して、廃棄物の埋め立て地内に固定する。
なお、嫌気性環境では、廃棄物層21内の水分量が湿度20〜50%に保たれるように調整することが好ましい。
<Treatment in anaerobic environment>
When the processing in the aerobic environment described above is performed and the value of BOD / COD or BOD / TOC becomes the reference value for shifting to the anaerobic environment, the operation of the stabilization device 10 is stopped, and the air supply hose 18 and the exhaust pipe 20 are By closing the valve, the waste layer 21 is transferred to an anaerobic environment. In the anaerobic environment, the decomposition of the hard-to-decompose organic matter different from the aerobic environment is promoted, the heavy metals existing in the waste layer 21 are insolubilized, and fixed in the waste landfill.
In an anaerobic environment, it is preferable to adjust so that the moisture content in the waste layer 21 is maintained at a humidity of 20 to 50%.

<嫌気性環境から好気性環境への切り替え>
そして、嫌気性環境における安定化処理を継続し、廃棄物層21の雰囲気中のメタンガス濃度が20〜50%で安定した状態となったら、安定化装置10の運転を再開して好気性環境へ移行させる。
<Switching from anaerobic environment to aerobic environment>
And if the stabilization process in an anaerobic environment is continued and the methane gas density | concentration in the atmosphere of the waste layer 21 will be in the state stabilized by 20 to 50%, the driving | operation of the stabilization apparatus 10 will be restarted and it will be in an aerobic environment. Transition.

このように、本発明に係る廃棄物及び浸出水の安定化方法では、好気性環境から嫌気性環境へ切り替える時期をBOD/COD又はBOD/TOCの値を用いて規定することにより、切り替え時期の基準が明確なものとなり、適切な廃棄物処理を行うことができる。すなわち、従来の技術では、自然環境の影響を受けていた有機物の分解過程を、より一層効果的に促進させることができ、廃棄物の早期安定化と浸出水処理における環境負荷を軽減することができる。
なお、廃棄物層21を強制的に好気性環境とする期間は、例えば3〜24ヶ月程度であり、嫌気性環境とする期間は、例えば1〜6ヶ月程度である。そして、好気性環境と嫌気性環境とを切り替えながら、例えば3〜5年間程度の間、安定化処理を行う。
As described above, in the method for stabilizing waste and leachate according to the present invention, the timing of switching from an aerobic environment to an anaerobic environment is defined by using the value of BOD / COD or BOD / TOC. Standards will be clear and appropriate waste disposal will be possible. In other words, the conventional technology can further effectively promote the decomposition process of organic matter that has been affected by the natural environment, and can reduce the environmental burden in the early stabilization of waste and leachate treatment. it can.
In addition, the period which makes the waste layer 21 forcibly aerobic environment is about 3 to 24 months, for example, and the period which makes anaerobic environment is about 1 to 6 months, for example. And stabilization processing is performed for about 3 to 5 years, for example, switching an aerobic environment and an anaerobic environment.

<安定化のための他の処理>
また、有機物が安定化するまでの期間を短縮化して、環境負荷の低減を図るために、上述した処理に加えて他の処理を行ってもよい。
例えば、圧縮気体中に、好気性微生物にとって好ましい栄養素や化学物質を加えることにより、有機物の分解を促進することができる。好気性微生物にとって好ましい栄養素や化学物質とは、例えば、窒素、リン酸、カリウム、珪素、マンガン、炭素、水素、酸素等である。
<Other processing for stabilization>
In addition to the above-described processes, other processes may be performed in order to shorten the period until the organic matter is stabilized and reduce the environmental load.
For example, the decomposition of organic substances can be promoted by adding nutrients and chemical substances preferable for aerobic microorganisms in the compressed gas. Preferred nutrients and chemical substances for aerobic microorganisms include nitrogen, phosphoric acid, potassium, silicon, manganese, carbon, hydrogen, oxygen, and the like.

本発明に係る廃棄物及び浸出水の安定化方法で用いる安定化装置の模式図。The schematic diagram of the stabilization apparatus used with the stabilization method of the waste material and leachate which concerns on this invention. 好気性環境から嫌気性環境へ切り替える基準を示すBOD/CODの相関図。The correlation figure of BOD / COD which shows the standard switched from an aerobic environment to an anaerobic environment. 好気性環境から嫌気性環境へ切り替える基準を示すBOD/TOCの相関図。The correlation figure of BOD / TOC which shows the standard switched from an aerobic environment to an anaerobic environment.

符号の説明Explanation of symbols

10 安定化装置
11 コンプレッサー
12 貯留タンク
13 水供給タンク
14 圧力容器
15 送気管
16 吸引ポンプ
17 処理フィルター
18 送気ホース
19 吸気管
20 排気管
21 廃棄物層
A 圧縮工程
B 送気工程
C 強制的挿入工程
D 吸引排気工程
E 浄化工程
DESCRIPTION OF SYMBOLS 10 Stabilizer 11 Compressor 12 Storage tank 13 Water supply tank 14 Pressure vessel 15 Air supply pipe 16 Suction pump 17 Processing filter 18 Air supply hose 19 Intake pipe 20 Exhaust pipe 21 Waste layer A Compression process B Air supply process C Forced insertion Process D Suction / exhaust process E Purification process

Claims (4)

廃棄物層内に強制的に酸素含有気体を供給する好気性環境と、酸素含有気体の供給を停止した嫌気性環境とを交互に繰り返して形成することにより、廃棄物及び浸出水の安定化を図る方法であって、
浸出水のBOD/COD又はBOD/TOCの少なくとも一方の値が下記条件式(1)を満足した場合に、好気性環境から嫌気性環境へ移行させることを特徴とする廃棄物及び浸出水の安定化方法。
0.05≦x≦0.3 ・・・ (1)
但し、xはBOD/COD又はBOD/TOC
Stabilization of waste and leachate by alternately forming an aerobic environment that forcibly supplies oxygen-containing gas into the waste layer and an anaerobic environment that stops supplying oxygen-containing gas It is a method to plan,
Waste and leachate stability characterized by shifting from an aerobic environment to an anaerobic environment when at least one of the values of BOD / COD or BOD / TOC of leachate satisfies the following conditional expression (1) Method.
0.05 ≦ x ≦ 0.3 (1)
Where x is BOD / COD or BOD / TOC
廃棄物層内に強制的に酸素含有気体を供給する好気性環境と、酸素含有気体の供給を停止した嫌気性環境とを交互に繰り返して形成することにより、廃棄物及び浸出水の安定化を図る方法であって、
浸出水のBOD/COD又はBOD/TOCの少なくとも一方の値が下記条件式(2)を満足した場合に、好気性環境から嫌気性環境へ移行させることを特徴とする廃棄物及び浸出水の安定化方法。
0.08≦x≦0.1 ・・・ (2)
但し、xはBOD/COD又はBOD/TOC
Stabilization of waste and leachate by alternately forming an aerobic environment that forcibly supplies oxygen-containing gas into the waste layer and an anaerobic environment that stops supplying oxygen-containing gas It is a method to plan,
Waste and leachate stability characterized by shifting from an aerobic environment to an anaerobic environment when at least one value of BOD / COD or BOD / TOC of leachate satisfies the following conditional expression (2) Method.
0.08 ≦ x ≦ 0.1 (2)
Where x is BOD / COD or BOD / TOC
加圧した酸素含有気体を断続的かつ瞬発的に廃棄物層内に供給して好気性環境を形成することを特徴とする請求項1又は2に記載の廃棄物及び浸出水の安定化方法。   The method for stabilizing waste and leachate according to claim 1 or 2, wherein the pressurized oxygen-containing gas is intermittently and instantaneously supplied into the waste layer to form an aerobic environment. 廃棄物層内の水分量に応じて酸素含有気体に含まれる水分量を調整することを特徴とする請求項1乃至3のいずれか1項に記載の廃棄物及び浸出水の安定化方法。   The method for stabilizing waste and leachate according to any one of claims 1 to 3, wherein the amount of water contained in the oxygen-containing gas is adjusted according to the amount of water in the waste layer.
JP2007277063A 2007-10-25 2007-10-25 Waste and leachate stabilization methods Active JP4824659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007277063A JP4824659B2 (en) 2007-10-25 2007-10-25 Waste and leachate stabilization methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007277063A JP4824659B2 (en) 2007-10-25 2007-10-25 Waste and leachate stabilization methods

Publications (2)

Publication Number Publication Date
JP2009101317A JP2009101317A (en) 2009-05-14
JP4824659B2 true JP4824659B2 (en) 2011-11-30

Family

ID=40703657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007277063A Active JP4824659B2 (en) 2007-10-25 2007-10-25 Waste and leachate stabilization methods

Country Status (1)

Country Link
JP (1) JP4824659B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06292874A (en) * 1993-04-09 1994-10-21 Ohbayashi Corp Waste disposal plant
JPH10249300A (en) * 1997-03-18 1998-09-22 Hazama Gumi Ltd Waste disposal site
JPH1190381A (en) * 1997-09-22 1999-04-06 Nippon Zeon Co Ltd Waste reclamation equipment, modification, execution and operation of existing reclamation equipment
JP2000084525A (en) * 1998-09-08 2000-03-28 Toshiba Corp Waste treatment device
JP2004130184A (en) * 2002-10-09 2004-04-30 Kubota Corp Method and apparatus for decontaminating soil
JP4649657B2 (en) * 2005-06-02 2011-03-16 学校法人福岡大学 Waste landfill disposal method and waste landfill structure

Also Published As

Publication number Publication date
JP2009101317A (en) 2009-05-14

Similar Documents

Publication Publication Date Title
KR101451598B1 (en) deodorizing apparatus and method including pretreatment and posttreatment device in the biofilter way
JP5166014B2 (en) Equipment for removing dissolved hydrogen sulfide in anaerobic treatment
JP2000263084A (en) Waste water treatment equipment and waste water treatment method
JP2008307475A (en) Hydrogen sulfide removing method and hydrogen sulfide removing apparatus
KR200450243Y1 (en) Excess sludge decrement equipment of a wastewater treatment facility
JP4824659B2 (en) Waste and leachate stabilization methods
JP2004130184A (en) Method and apparatus for decontaminating soil
JP2007038044A (en) Bio-desulfurization method and bio-desulfurization apparatus
JP2020131136A (en) Anaerobic water flowing system and water flowing anaerobic bio system
JP2004148242A (en) Waste water treatment method and waste water treatment equipment
JP3646589B2 (en) Purification method for contaminated ground
JPH10180237A (en) Removing method of organic chlorine compound
JP2001145872A (en) Method and apparatus for cleaning polluted ground or waste landfill ground
JP3646590B2 (en) Organic waste treatment system
KR20180085389A (en) The self-sustaining biofiltration apparatus for removal of nitrous oxide and the method of its installation and operation at wasterwater treatment plants
JPH11333492A (en) Apparatus and method for methane fermentation
JP2013094724A (en) Waste disposal method and waste disposal equipment
JP4538133B2 (en) Method for early stabilization and generation of malodor in waste landfill site, chemical used in this
JP2005246347A (en) Method and apparatus for treating sewage
JP6753106B2 (en) Organic wastewater treatment equipment
JP2001009060A (en) Method for removing hazardous material in soil
JP2008012476A (en) Wastewater treatment system
JP2007260611A (en) Method of cleaning contaminated soil
JP2000093987A (en) Air circulation type contact aeration bioreactor
JP3374229B2 (en) How to restore contaminated groundwater and soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110908

R150 Certificate of patent or registration of utility model

Ref document number: 4824659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350