JP4823531B2 - Magnetic oxide material - Google Patents

Magnetic oxide material Download PDF

Info

Publication number
JP4823531B2
JP4823531B2 JP2005017219A JP2005017219A JP4823531B2 JP 4823531 B2 JP4823531 B2 JP 4823531B2 JP 2005017219 A JP2005017219 A JP 2005017219A JP 2005017219 A JP2005017219 A JP 2005017219A JP 4823531 B2 JP4823531 B2 JP 4823531B2
Authority
JP
Japan
Prior art keywords
mol
content
value
magnetic material
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005017219A
Other languages
Japanese (ja)
Other versions
JP2006206347A (en
Inventor
敏志 中神
克之 堀江
喜和 沖野
厚 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2005017219A priority Critical patent/JP4823531B2/en
Publication of JP2006206347A publication Critical patent/JP2006206347A/en
Application granted granted Critical
Publication of JP4823531B2 publication Critical patent/JP4823531B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、フィルター、固定コイル等のインダクタンス素子として利用できるNi−Zn−Cu系フェライトからなる酸化物磁性材料に関する。   The present invention relates to an oxide magnetic material made of Ni—Zn—Cu ferrite that can be used as an inductance element such as a filter and a fixed coil.

Fe23、NiO、ZnO、CuOを主成分とする酸化物磁性材料に、Co34、SiO2、Bi23等を添加して、種々の特性を改善した酸化物磁性材料は周知である(例えば、特許文献1〜6参照)が、いずれも、高いQ値、良好な温度特性(温度変化に対する透磁率変化が小さい)、高い抗応力特性を兼ね備えたものではなかった。
特開平1−179402号公報 特開2002−75722号公報 特開平3−218962号公報 特開2002−134312号公報 特開平10−163017号公報 特開2002−141216号公報
An oxide magnetic material having various characteristics improved by adding Co 3 O 4 , SiO 2 , Bi 2 O 3, etc. to an oxide magnetic material mainly composed of Fe 2 O 3 , NiO, ZnO, and CuO. As is well known (for example, see Patent Documents 1 to 6), none of them has a high Q value, good temperature characteristics (small permeability change with respect to temperature change), and high anti-stress characteristics.
JP-A-1-179402 JP 2002-75722 A Japanese Patent Laid-Open No. 3-218962 JP 2002-134312 A Japanese Patent Laid-Open No. 10-163017 JP 2002-141216 A

特許文献1には、「Niを必須成分として含有する磁性酸化物フェライト材料に添加物としてBi23、V25の少なくとも1種を0.5〜5重量%含有させた焼結体からなることを特徴とする、外部応力下に使用されるインダクタ用磁心。」(特許請求の範囲請求項1)の発明が記載されており、抗応力特性を改善するために、Bi23を含有させるものである(第2頁右上欄第6行〜第16行)。 Patent Document 1 states that “a sintered body containing 0.5 to 5% by weight of at least one of Bi 2 O 3 and V 2 O 5 as an additive in a magnetic oxide ferrite material containing Ni as an essential component. In order to improve the anti-stress characteristic, Bi 2 O 3 is described, which describes an inductor magnetic core used under an external stress. (The second page, upper right column, lines 6 to 16).

特許文献2には、「主成分としてFe23が47.0〜50.0モル%、Mn23が0.01〜3.0モル%、CuOが0.5〜4.9モル%、ZnOが1.0〜23.0モル%、NiOが残部モル%含有されて構成されるNiCuZn系のフェライト材料であって、この主成分に対して、CoOが0.02〜1.0重量%、Bi23が0.5〜10.0重量%、SiO2が0.1〜2.0重量%、MgOが0.05〜1.0重量%添加されてなることを特徴とするフェライト材料。」(特許請求の範囲請求項1)の発明が記載されており、「極めて温度特性が良好(温度変化に対する透磁率の変化率が小さい)で、品質係数Qが高く、高強度のNiCuZn系フェライト材料が得られる。」(段落[0046])ことが示されているが、Q値を向上させるために、Mn23、MgOを必須成分とする(段落[0018]、[0024])ものである。 Patent Document 2 states that “Fe 2 O 3 as a main component is 47.0 to 50.0 mol%, Mn 2 O 3 is 0.01 to 3.0 mol%, and CuO is 0.5 to 4.9 mol. %, ZnO is 1.0 to 23.0 mol%, NiO is the remaining mol% NiCuZn-based ferrite material, CoO is 0.02 to 1.0 with respect to this main component It is characterized in that 0.5% to 10.0% by weight of Bi 2 O 3, 0.1 to 2.0% by weight of SiO 2 and 0.05 to 1.0% by weight of MgO are added. "The ferrite material to be used." (Claim 1) is described, "It has extremely good temperature characteristics (small change rate of magnetic permeability with respect to temperature change), high quality factor Q, and high strength. Of NiCuZn-based ferrite material is obtained ”(paragraph [0046]). To improve the Q value, Mn 2 O 3, MgO and as essential components (paragraph [0018], [0024]) is intended.

特許文献3には、「Fe23 46.5〜49.5モル%、CuO 5〜10モル%、ZnO 2〜30モル%、および残部NiOからなる、Ni−Zn−Cu系フェライト材料に、Co34 0.05〜0.60重量%、Bi23 3〜5重量%、およびSiO2 0.10〜2.0重量%を添加した、フェライトコア焼成用材料。」(特許請求の範囲)の発明が記載されているが、CuOの含有量が多いものであり、高いQ値のものを得ることは示されていない。 Patent Document 3 states that “a Ni—Zn—Cu ferrite material composed of 46.5 to 49.5 mol% of Fe 2 O 3 , 5 to 10 mol% of CuO, 2 to 30 mol% of ZnO, and the balance NiO is used. , Co 3 O 4 0.05 to 0.60 wt%, Bi 2 O 3 3 to 5 wt%, and SiO 2 0.10 to 2.0 wt% were added. The invention of claim (Claims) is described, but the content of CuO is large, and it is not shown to obtain a high Q value.

特許文献4には、「酸化鉄の含有量がFe23換算で45.0〜51.0モル%の範囲、酸化銅の含有量がCuO換算で0.5〜15.0モル%の範囲、酸化亜鉛の含有量がZnO換算で0〜33.0モル%の範囲、酸化マグネシウムの含有量がMgO換算で0.1〜5.0モル%、および、残部酸化ニッケルからなる主成分を含有し、さらに、該主成分に対して副成分として酸化コバルトをCo34換算で0.05〜1.0重量%の範囲、酸化ビスマスをBi23換算で0.5〜7.0重量%の範囲、酸化ケイ素をSiO2換算で0〜5.0重量%の範囲で含有することを特徴とする磁性材料。」(特許請求の範囲請求項1)の発明が記載されており、Q値、抗応力特性の向上を目的とする(段落[0012])ことが示されているが、高周波領域におけるQ特性を向上させるためにMgOを必須成分とする(段落[0020])ものである。 Patent Document 4 states that “the content of iron oxide is in the range of 45.0 to 51.0 mol% in terms of Fe 2 O 3 , and the content of copper oxide is 0.5 to 15.0 mol% in terms of CuO. The main component of the range, the content of zinc oxide in the range of 0 to 33.0 mol% in terms of ZnO, the content of magnesium oxide in the range of 0.1 to 5.0 mol% in terms of MgO, and the remaining nickel oxide And cobalt oxide as a subcomponent in the range of 0.05 to 1.0% by weight in terms of Co 3 O 4 and bismuth oxide in the range of 0.5 to 7 in terms of Bi 2 O 3 . A magnetic material characterized in that it contains 0% by weight and silicon oxide in the range of 0 to 5.0% by weight in terms of SiO 2 ”(Claim 1). It is shown that the purpose is to improve the Q value and the anti-stress characteristic (paragraph [0012]). MgO and as essential components in order to improve the Q characteristic in a high frequency region (paragraph [0020]) is intended.

特許文献5には、「Ni−Cu−Zn系高周波軟磁性材料において、モル%で、Fe23が40.0〜51.0%、CuOが1.0〜100%、NiOが38.0〜48.0%、およびZnOが1.0〜10.0%からなる磁性粉末にB23−Bi23−ZnO系ガラスが1〜25wt%含有することを特徴とする低温焼成用高周波軟磁性材料。」(特許請求の範囲請求項1)の発明が記載されているが、焼成温度を下げ、焼成に起因する母材と内部電極間の収縮時に生ずる応力を減少させ、内部電極の安定化を図る(段落[0019]ために、B23を必須成分とするガラスを含有させるものである。 Patent Document 5 states that “in a Ni—Cu—Zn high-frequency soft magnetic material, mol%, Fe 2 O 3 is 40.0 to 51.0%, CuO is 1.0 to 100%, and NiO is 38.%. Low-temperature firing characterized by containing 1 to 25 wt% of B 2 O 3 —Bi 2 O 3 —ZnO-based glass in a magnetic powder comprising 0 to 48.0% and ZnO of 1.0 to 10.0% High-frequency soft magnetic material for use "(Claim 1) is described, but the firing temperature is lowered to reduce the stress generated during shrinkage between the base material and the internal electrode due to firing, Stabilize the electrode (for paragraph [0019], glass containing B 2 O 3 as an essential component is contained).

特許文献6には、「Fe23 46.0〜51.0mol%、CuO 0.5〜15.0mol%、残部NiOからなる主成分100重量部に対し、添加物として、酸化ビスマスをBi23換算で4.0〜10.0重量部、酸化マグネシウムをMgO換算で1.0〜5.0重量部、酸化シリコンをSiO2換算で2.0〜8.0重量部、酸化コバルトをCoO換算で0.2〜0.5重量部添加してなることを特徴とする磁性材料。」(特許請求の範囲請求項1)の発明が記載されており、抗応力特性の向上を目的とする(段落[0011])ことが示されているが、初透磁率の温度係数を負とする温度特性に改善するために、MgOを必須成分とする(段落[0018])ものである。 Patent Document 6 discloses that “bismuth oxide is added as an additive to 100 parts by weight of a main component composed of 46.0 to 51.0 mol% of Fe 2 O 3, 0.5 to 15.0 mol% of CuO, and the balance NiO. 4.0 to 10.0 parts by weight in terms of 2 O 3 , magnesium oxide to 1.0 to 5.0 parts by weight in terms of MgO, silicon oxide to 2.0 to 8.0 parts by weight in terms of SiO 2 , cobalt oxide Is added in an amount of 0.2 to 0.5 parts by weight in terms of CoO. "(Claim 1) is described, and the object is to improve the anti-stress characteristics. (Paragraph [0011]), but MgO is an essential component (paragraph [0018]) in order to improve temperature characteristics in which the temperature coefficient of initial permeability is negative.

本発明は、Ni−Zn−Cu系フェライト材料(酸化物磁性材料)において、上記従来技術のようにMn23、MgO等を含有させることなく、Fe23、NiO、ZnO、CuO、Co34、SiO2、Bi23の含有量を調整することにより、高いQ値、良好な温度特性(温度変化に対する透磁率変化が小さい)、高い抗応力特性を兼ね備えた酸化物磁性材料を提供することを課題とする。 In the Ni—Zn—Cu based ferrite material (oxide magnetic material), the present invention does not contain Mn 2 O 3 , MgO or the like as in the above-described conventional technique, and Fe 2 O 3 , NiO, ZnO, CuO, By adjusting the content of Co 3 O 4 , SiO 2 , Bi 2 O 3 , oxide magnetism that combines high Q-value, good temperature characteristics (small permeability change with temperature change), and high anti-stress characteristics It is an object to provide materials.

本発明は、上記の課題を解決するために、以下の手段を採用する。
(1)主成分として、(a)Fe23が46.0〜50.0mol%、(b)ZnOが0〜18.0mol%、(c)CuOが0.5〜5.0mol%未満、残部(d)NiOで構成されるNi−Zn−Cu系フェライトからなる酸化物磁性材料において、その主成分100wt%に対し、添加成分として、(e)Co34が0.2〜1.0wt%、(f)SiO2が0.2〜2.0wt%、(g)Bi23 2.0〜12.0wt%の範囲で構成されることを特徴とする酸化物磁性材料である。
(2)主成分として、(a)Fe23が46.0〜50.0mol%、(b)ZnOが0〜18.0mol%、(c)CuOが0.5〜4.0mol%、残部(d)NiOで構成されるNi−Zn−Cu系フェライトからなることを特徴とする前記(1)の酸化物磁性材料である。
(3)添加成分として、(g)Bi23 4.0〜10.0wt%の範囲で構成されることを特徴とする前記(1)又は(2)の酸化物磁性材料である。
(4)添加成分として、(g)Bi23 5.0超〜10.0wt%の範囲で構成されることを特徴とする前記(3)の酸化物磁性材料である。
The present invention employs the following means in order to solve the above problems.
(1) as a main component, (a) Fe 2 O 3 is 46.0~50.0mol%, (b) ZnO is 0~18.0mol%, (c) CuO is less than 0.5~5.0Mol% In the oxide magnetic material made of Ni—Zn—Cu ferrite composed of the balance (d) NiO, (e) Co 3 O 4 is 0.2 to 1 as an additive component with respect to 100 wt% of the main component. .0wt%, (f) SiO 2 is 0.2~2.0wt%, oxide magnetic material characterized Rukoto consists of (g) range Bi 2 O 3 is 2.0~12.0Wt% It is.
(2) As main components, (a) Fe 2 O 3 is 46.0 to 50.0 mol%, (b) ZnO is 0 to 18.0 mol%, (c) CuO is 0.5 to 4.0 mol%, The balance (d) is the oxide magnetic material according to (1) above, which is made of Ni—Zn—Cu ferrite composed of NiO.
(3) as an additive component, an oxide magnetic material of (1) or (2), wherein the Rukoto consists of range (g) Bi 2 O 3 of 4.0~10.0wt%.
(4) as an additive component, an oxide magnetic material of (3), wherein the Rukoto consists of (g) Range Bi 2 O 3 is 5.0 super ~10.0wt%.

本発明は、酸化物磁性材料において、主成分である(a)Fe23、(b)ZnO、(c)CuOの各成分の含有量(残部であるNiOの含有量)、添加成分である(e)Co34、(f)SiO2、(g)Bi23の各成分の含有量を厳密に調整することにより、高いQ値、良好な温度特性(温度変化に対する透磁率変化が小さい)、高い抗応力特性を兼ね備えた酸化物磁性材料を得ることができる。 In the oxide magnetic material, the content of each component of (a) Fe 2 O 3 , (b) ZnO, and (c) CuO as the main components (the content of NiO as the balance) and additive components By strictly adjusting the content of each component of (e) Co 3 O 4 , (f) SiO 2 , and (g) Bi 2 O 3 , high Q value, good temperature characteristics (permeability with respect to temperature change) It is possible to obtain an oxide magnetic material having a high anti-stress characteristic.

本発明は、上記のように、各成分の含有量を厳密に調整することにより、高いQ値、良好な温度特性(温度変化に対する透磁率変化が小さい)、高い抗応力特性を兼ね備えた酸化物磁性材料を得ることができるものであるが、以下、本発明における各成分の含有量の限定理由について具体的に述べる。   As described above, the present invention strictly adjusts the content of each component to provide a high Q value, good temperature characteristics (small permeability change with respect to temperature change), and high anti-stress characteristics. Although a magnetic material can be obtained, the reasons for limiting the content of each component in the present invention will be specifically described below.

(a)Fe23について
Fe23の含有量は、46.0〜50.0 mol%で望ましいフェライト特性が得られる。
少なすぎると磁気特性(Q値)が低下し、多すぎると過剰Feの析出により焼結阻害、比抵抗低下、磁気特性(Q値)低下が起こるので、上記のように規定した。
The content of Fe 2 O 3 for (a) Fe 2 O 3 is obtained is preferable ferrite properties 46.0-50.0 mol%.
If the amount is too small, the magnetic property (Q value) is lowered. If the amount is too large, sintering is inhibited, specific resistance is lowered, and magnetic property (Q value) is lowered due to precipitation of excess Fe.

(b)ZnOについて
ZnOの含有量は、0〜18.0 mol%で望ましいフェライト特性が得られる。
多すぎると高いQ値が得られないので、上記のように規定した。
(B) About ZnO A desirable ferrite characteristic is obtained when the content of ZnO is 0 to 18.0 mol%.
If the amount is too large, a high Q value cannot be obtained.

(c)CuOについて
CuOの含有量は、0.5〜5.0mol%未満で望ましいフェライト特性が得られる。特に、高いQ値を得るためには、0.5〜4.0mol%が好ましい。
少なすぎると透磁率温度変化が大きくなってしまい、多すぎると高いQ値が得られないので、上記のように規定した。
(C) About CuO A desirable ferrite characteristic is obtained when the CuO content is less than 0.5 to 5.0 mol%. In particular, in order to obtain a high Q value, 0.5 to 4.0 mol% is preferable.
If the amount is too small, the change in permeability temperature becomes large. If the amount is too large, a high Q value cannot be obtained.

(e)Co34について
Co34の含有量は、0.2〜1.0wt%で望ましいフェライト特性が得られる。
少なすぎると透磁率温度変化が大きくなってしまい、多すぎると高いQ値が得られないので、上記のように規定した。
(E) Co 3 O 4 The desired ferrite characteristics can be obtained when the content of Co 3 O 4 is 0.2 to 1.0 wt%.
If the amount is too small, the change in permeability temperature becomes large. If the amount is too large, a high Q value cannot be obtained.

(f)SiO2について
SiO2の含有量は、0.2〜2.0wt%で望ましいフェライト特性が得られる。
少なすぎると温度特性(透磁率温度変化)と抗応力特性に改善効果が見られず、多すぎると焼結不足の不具合を起こすので、上記のように規定した。
(F) the content of SiO 2 for SiO 2 is desirable ferrite properties are obtained in 0.2~2.0wt%.
If the amount is too small, the effect of improving the temperature characteristics (permeability temperature change) and the anti-stress property is not observed. If the amount is too large, the problem of insufficient sintering is caused.

(g)Bi23について
Bi23の含有量は、2.0〜12.0wt%で望ましいフェライト特性が得られる。特に、高いQ値を得るためには、4.0〜10.0wt%が好ましい。5.0超〜10.0wt%がより好ましい。
少なすぎると焼結不足の不具合を起こし、高いQ値、良好な抗応力特性も得られず、多すぎるとQ値が低下してくるので、上記のように規定した。
The content of the (g) the Bi 2 O 3 Bi 2 O 3 is ferrite properties can be obtained desirable 2.0~12.0wt%. In particular, in order to obtain a high Q value, 4.0 to 10.0 wt% is preferable. More than 5.0 to 10.0 wt% is more preferable.
If the amount is too small, the problem of insufficient sintering is caused, a high Q value and good antistress characteristics cannot be obtained, and if the amount is too large, the Q value is lowered.

以上のような組成範囲(各成分の含有量)からなる本発明の酸化物磁性材料は、例えば、以下のようにして製造することができる。
まず、焼成後の組成が上記の範囲となるように秤量したFe23、NiO、ZnO、CuO、Co34、SiO2、Bi23を含有した原料を、ボールミル、サンドミル、振動ミル、湿式メディア攪拌型ミル等を用いて混合粉砕した後、仮焼(湿式の場合は乾燥後に仮焼)して仮焼粉を得る。その後、この仮焼粉を更にボールミル、サンドミル、振動ミル、湿式メディア攪拌型ミル等を用いて粉砕し、湿式の場合は更に乾燥する。この完成粉体にバインダーを加えて所望の形状に成形加工し、空気中で焼成して酸化物磁性材料を得る。
The oxide magnetic material of the present invention having the above composition range (content of each component) can be produced, for example, as follows.
First, a raw material containing Fe 2 O 3 , NiO, ZnO, CuO, Co 3 O 4 , SiO 2 , Bi 2 O 3 weighed so that the composition after firing is in the above range is used as a ball mill, sand mill, vibration After mixing and pulverizing using a mill, a wet media stirring type mill, etc., calcining (in the case of wet, calcining after drying), calcined powder is obtained. Thereafter, the calcined powder is further pulverized using a ball mill, a sand mill, a vibration mill, a wet media stirring mill, or the like, and further dried in the case of a wet type. A binder is added to the finished powder to form it into a desired shape and fired in air to obtain an oxide magnetic material.

各金属酸化物原料Fe23、NiO、ZnO、CuO、Co34、SiO2、Bi23を実施例表のように秤量し、ボールミルで5時間湿式混合した。その後、得られた原料混合粉末を空気中で800〜900℃で2hr仮焼し、この仮焼粉をボールミルで18hr湿式粉砕した。
この完成粉体にバインダーとして有機物(ポリビニルアルコール)を少量混合した後加圧プレス機で約100Mpaの圧力で寸法が7mmφ×15mmの円柱状成型体を得、この成型体を空気中で実施例表の設定温度で2hr焼成を行った。
Each metal oxide raw material Fe 2 O 3 , NiO, ZnO, CuO, Co 3 O 4 , SiO 2 , Bi 2 O 3 was weighed as shown in the example table, and wet mixed by a ball mill for 5 hours. Thereafter, the obtained raw material mixed powder was calcined in the air at 800 to 900 ° C. for 2 hr, and this calcined powder was wet pulverized by a ball mill for 18 hr.
A small amount of an organic substance (polyvinyl alcohol) as a binder is mixed with the finished powder, and then a cylindrical molded body having a size of 7 mmφ × 15 mm is obtained with a pressure press machine at a pressure of about 100 Mpa. Was baked for 2 hours at the set temperature.

次にこのコアサンプル中央部にワイヤを20回巻き回し、コアサンプル両端面に一定圧力で一軸圧縮力1t/cm2(98MPa)を印加し、インダクタンス値をLCRメーターで連続的に測定し得られた測定値からインダクタンス変化率を算出した。Qは上記コアサンプルをJISコイル6φ用に入れLCRメーターで50MHzのQ値を測定した。
結果を表1に示す。
Next, a wire is wound around the center of the core sample 20 times, a uniaxial compression force of 1 t / cm 2 (98 MPa) is applied to both ends of the core sample at a constant pressure, and the inductance value can be continuously measured with an LCR meter. The inductance change rate was calculated from the measured values. For Q, the core sample was put into a JIS coil 6φ, and the Q value at 50 MHz was measured with an LCR meter.
The results are shown in Table 1.

表1より、各成分の含有量が本発明の範囲内にある試料No.2〜4、6〜9、12、13、19、22〜24、27〜29のNi−Zn−Cu系フェライト材料は、Q値が高く、温度変化に対する透磁率変化率が小さくて良好な温度特性のものであり、インダクタンス値変化率△L1/Lが小さくて高い抗応力特性のものであることが分かる。 From Table 1, sample No. in which the content of each component is within the scope of the present invention. Ni-4Zn-Cu ferrite materials of 2-4, 6-9, 12, 13, 19, 22, 24, 27-29 have a high Q value and a low rate of change in magnetic permeability with respect to temperature change, and good temperature. It can be seen that the inductance value change rate ΔL 1 / L is small and has high anti-stress characteristics.

試料No.1のものは、Fe23の含有量が本発明の下限(46.0mol%)よりも少ないために、Q値が低い。 Sample No. No. 1 has a low Q value because the content of Fe 2 O 3 is less than the lower limit (46.0 mol%) of the present invention.

試料No.5のものは、Fe23の含有量が本発明の上限(50.0mol%)よりも多いために、焼成温度が高くなり焼結不足の不具合を起こすとともに、Q値も低い。 Sample No. In No. 5, since the content of Fe 2 O 3 is higher than the upper limit (50.0 mol%) of the present invention, the firing temperature becomes high, causing the problem of insufficient sintering, and the Q value is also low.

試料No.10のものは、ZnOの含有量が本発明の上限(18.0mol%)よりも多いために、Q値が低い。   Sample No. No. 10 has a low Q value because the ZnO content is higher than the upper limit (18.0 mol%) of the present invention.

試料No.11のものは、CuOの含有量が本発明の下限(0.5mol%)よりも少ない(0%)ために、温度変化に対する透磁率変化率が大きい。   Sample No. In No. 11, the content of CuO is less (0%) than the lower limit (0.5 mol%) of the present invention, and therefore the permeability change rate with respect to temperature change is large.

試料No.14〜17のものは、CuOの含有量が本発明の上限(5.0mol%)よりも多いために、Q値が低い。
試料No.16のものは、CuOの含有量とともにZnOの含有量も本発明の上限(18.0mol%)よりも多いために、Q値が極端に低くなっている。
Sample No. Since the thing of 14-17 has more content of CuO than the upper limit (5.0 mol%) of this invention, Q value is low.
Sample No. In No. 16, since the content of ZnO as well as the content of CuO is larger than the upper limit (18.0 mol%) of the present invention, the Q value is extremely low.

試料No.18のものは、Co34の含有量が本発明の下限(0.2mol%)よりも少ない(0%)ために、温度変化に対する透磁率変化率が大きい。 Sample No. In No. 18, the content of Co 3 O 4 is less (0%) than the lower limit (0.2 mol%) of the present invention, and therefore the permeability change rate with respect to temperature change is large.

試料No.20のものは、Co34の含有量が本発明の上限(1.0mol%)よりも多いために、Q値が低い。 Sample No. No. 20 has a low Q value because the content of Co 3 O 4 is higher than the upper limit (1.0 mol%) of the present invention.

試料No.21のものは、SiO2の含有量が本発明の下限(0.2mol%)よりも少ない(0%)ために、温度変化に対する透磁率変化率が大きく、インダクタンス値変化率も大きい。 Sample No. In No. 21, since the content of SiO 2 is less (0%) than the lower limit (0.2 mol%) of the present invention, the magnetic permeability change rate with respect to the temperature change is large, and the inductance value change rate is also large.

試料No.25のものは、SiO2の含有量が本発明の上限(2.0mol%)よりも多いために、焼成温度がやや高くなり焼結不足の不具合を起こす。 Sample No. In the case of No. 25, since the content of SiO 2 is higher than the upper limit (2.0 mol%) of the present invention, the firing temperature becomes slightly high, causing a problem of insufficient sintering.

試料No.26のものは、Bi23の含有量が本発明の下限(0.2mol%)よりも少ない(0%)ために、焼成温度が高くなり焼結不足の不具合を起こすとともに、Q値も低く、インダクタンス値変化率も大きい。 Sample No. In No. 26, the content of Bi 2 O 3 is lower (0%) than the lower limit (0.2 mol%) of the present invention. Low and inductance value change rate is large.

以上のように、本発明の酸化物磁性材料は、いずれもが、Q値が高く、良好な温度特性、高い抗応力特性のものであったが、比較例のものは、Q値が低かったり、焼結不足の不具合を起こしたり、温度特性や抗応力特性に満足のいくものではなかった。
As described above, all of the oxide magnetic materials of the present invention had a high Q value, good temperature characteristics, and high anti-stress characteristics, but the comparative examples had low Q values. It was not satisfactory in terms of temperature characteristics and anti-stress characteristics.

Claims (4)

主成分として、(a)Fe23が46.0〜50.0mol%、(b)ZnOが0〜18.0mol%、(c)CuOが0.5〜5.0mol%未満、残部(d)NiOで構成されるNi−Zn−Cu系フェライトからなる酸化物磁性材料において、その主成分100wt%に対し、添加成分として、(e)Co34が0.2〜1.0wt%、(f)SiO2が0.2〜2.0wt%、(g)Bi23 2.0〜12.0wt%の範囲で構成されることを特徴とする酸化物磁性材料。 As main components, (a) Fe 2 O 3 is 46.0 to 50.0 mol%, (b) ZnO is 0 to 18.0 mol%, (c) CuO is 0.5 to less than 5.0 mol%, and the balance ( d) In the oxide magnetic material composed of Ni—Zn—Cu ferrite composed of NiO, (e) Co 3 O 4 is 0.2 to 1.0 wt% as an additive component with respect to 100 wt% of the main component. , (f) SiO 2 is 0.2~2.0wt%, oxide magnetic material characterized Rukoto consists of (g) range Bi 2 O 3 is 2.0~12.0wt%. 主成分として、(a)Fe23が46.0〜50.0mol%、(b)ZnOが0〜18.0mol%、(c)CuOが0.5〜4.0mol%、残部(d)NiOで構成されるNi−Zn−Cu系フェライトからなることを特徴とする請求項1に記載の酸化物磁性材料。 As main components, (a) Fe 2 O 3 is 46.0~50.0mol%, (b) ZnO is 0~18.0mol%, (c) CuO is 0.5~4.0mol%, the remainder (d The oxide magnetic material according to claim 1, comprising Ni—Zn—Cu ferrite composed of NiO. 添加成分として、(g)Bi23 4.0〜10.0wt%の範囲で構成されることを特徴とする請求項1又は2に記載の酸化物磁性材料。 As an additive component, an oxide magnetic material according to claim 1 or 2, characterized in Rukoto consists of range (g) Bi 2 O 3 of 4.0~10.0wt%. 添加成分として、(g)Bi23 5.0超〜10.0wt%の範囲で構成されることを特徴とする請求項3に記載の酸化物磁性材料。 As an additive component, an oxide magnetic material according to claim 3, characterized in Rukoto consists of (g) Range Bi 2 O 3 is 5.0 super ~10.0wt%.
JP2005017219A 2005-01-25 2005-01-25 Magnetic oxide material Active JP4823531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005017219A JP4823531B2 (en) 2005-01-25 2005-01-25 Magnetic oxide material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005017219A JP4823531B2 (en) 2005-01-25 2005-01-25 Magnetic oxide material

Publications (2)

Publication Number Publication Date
JP2006206347A JP2006206347A (en) 2006-08-10
JP4823531B2 true JP4823531B2 (en) 2011-11-24

Family

ID=36963600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005017219A Active JP4823531B2 (en) 2005-01-25 2005-01-25 Magnetic oxide material

Country Status (1)

Country Link
JP (1) JP4823531B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101911221B (en) * 2008-01-08 2012-11-07 株式会社村田制作所 Open magnetic circuit type laminated coil component and method for manufacturing same
JP2010074067A (en) * 2008-09-22 2010-04-02 Murata Mfg Co Ltd Electronic component, and method for manufacturing same
JP2010215454A (en) * 2009-03-17 2010-09-30 Fdk Corp NiCuZn FERRITE
KR101252139B1 (en) * 2011-04-11 2013-04-08 주식회사 이엠따블유 ZnCu FERRITE AND PREPARATION METHOD THEREOF
JP6147638B2 (en) * 2013-10-07 2017-06-14 Tdk株式会社 Ferrite composition and electronic component
JP6024843B1 (en) * 2015-04-02 2016-11-16 Tdk株式会社 Ferrite composition and electronic component
KR101886489B1 (en) * 2015-04-02 2018-08-07 티디케이가부시기가이샤 Ferrite composition and electronic component
KR20160118973A (en) 2015-04-02 2016-10-12 티디케이가부시기가이샤 Ferrite composition and electronic component
JP6032379B2 (en) * 2015-04-02 2016-11-30 Tdk株式会社 Ferrite composition and electronic component
JP6740817B2 (en) 2016-08-30 2020-08-19 Tdk株式会社 Ferrite composition, ferrite sintered body, electronic component and chip coil
JP6142950B1 (en) 2016-09-30 2017-06-07 Tdk株式会社 Ferrite composition and electronic component
JP6465240B1 (en) * 2018-05-28 2019-02-06 Tdk株式会社 Ferrite composition and laminated electronic component

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3147496B2 (en) * 1992-05-25 2001-03-19 株式会社村田製作所 Ferrite material
JP3550251B2 (en) * 1996-04-26 2004-08-04 京セラ株式会社 Ferrite sintered body for high frequency region and signal chip inductor using the same
JP3672161B2 (en) * 1997-07-16 2005-07-13 Tdk株式会社 Ferrite manufacturing method and inductor manufacturing method
JP4102673B2 (en) * 2003-01-15 2008-06-18 太陽誘電株式会社 Ferrite

Also Published As

Publication number Publication date
JP2006206347A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
JP4823531B2 (en) Magnetic oxide material
CN109053178B (en) Ferrite composition and electronic component
JP4523430B2 (en) High saturation magnetic flux density Mn-Zn-Ni ferrite
JP4508626B2 (en) Mn-Co-Zn ferrite
JP5089970B2 (en) MnCoZn ferrite and transformer core
CN106915956A (en) MnZnLi based ferrites, magnetic core and transformer
JP6032379B2 (en) Ferrite composition and electronic component
JP3584439B2 (en) Mn-Zn ferrite and method for producing the same
JP4668404B2 (en) Magnetic material and coil parts using the magnetic material
KR101886489B1 (en) Ferrite composition and electronic component
JP3588693B2 (en) Mn-Zn ferrite and method for producing the same
JP2005132715A (en) Ni-Cu-Zn SYSTEM FERRITE MATERIAL AND ITS MANUFACTURING METHOD
JP3492802B2 (en) Low loss ferrite material
JP5871017B2 (en) Wire-wound coil component having a magnetic material and a core formed using the same
JPH08325056A (en) Ferrite material
JP6314758B2 (en) MnZn ferrite and MnZn ferrite large core
JP2007269503A (en) Ni-Cu-Zn BASED FERRITE MATERIAL AND METHOD OF MANUFACTURING THE SAME
JP4750563B2 (en) MnCoZn ferrite and transformer core
JP4813025B2 (en) High saturation magnetic flux density Mn-Zn-Ni ferrite
JP2010120808A (en) MnZn FERRITE AND METHOD OF PRODUCING THE SAME
JP4554965B2 (en) Mn-Co-Zn ferrite
JP4578230B2 (en) Magnetic oxide material
JP2006232647A (en) Ni-Cu-Zn-BASED FERRITE MATERIAL AND ITS PRODUCTION METHOD
JP5387422B2 (en) Ferrite composition and electronic component
JP3947343B2 (en) Magnetic ferrite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110907

R150 Certificate of patent or registration of utility model

Ref document number: 4823531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250