JP3635016B2 - Ferrite material - Google Patents

Ferrite material Download PDF

Info

Publication number
JP3635016B2
JP3635016B2 JP2000249240A JP2000249240A JP3635016B2 JP 3635016 B2 JP3635016 B2 JP 3635016B2 JP 2000249240 A JP2000249240 A JP 2000249240A JP 2000249240 A JP2000249240 A JP 2000249240A JP 3635016 B2 JP3635016 B2 JP 3635016B2
Authority
JP
Japan
Prior art keywords
oxide
range
terms
ferrite material
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000249240A
Other languages
Japanese (ja)
Other versions
JP2002060224A (en
Inventor
卓也 青木
幸雄 高橋
綱 伊藤
達也 島崎
文吾 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000249240A priority Critical patent/JP3635016B2/en
Application filed by TDK Corp filed Critical TDK Corp
Priority to EP06001307A priority patent/EP1666421B1/en
Priority to US10/069,952 priority patent/US6736990B2/en
Priority to EP01956797A priority patent/EP1314697B1/en
Priority to PCT/JP2001/006692 priority patent/WO2002016268A1/en
Priority to CNB018024300A priority patent/CN1196651C/en
Priority to DE60134683T priority patent/DE60134683D1/en
Priority to DE60137550T priority patent/DE60137550D1/en
Priority to KR10-2001-7016338A priority patent/KR100455510B1/en
Priority to CNB2005100897821A priority patent/CN100339334C/en
Priority to DE60129568T priority patent/DE60129568T2/en
Priority to EP06001306A priority patent/EP1666422B1/en
Priority to CNB2004100368077A priority patent/CN1269766C/en
Priority to TW090119378A priority patent/TW538018B/en
Publication of JP2002060224A publication Critical patent/JP2002060224A/en
Priority to HK03107565A priority patent/HK1055287A1/en
Application granted granted Critical
Publication of JP3635016B2 publication Critical patent/JP3635016B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Magnetic Ceramics (AREA)
  • Compounds Of Iron (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はNiCuZn系フェライト材料に係り、特に樹脂モールドタイプのフェライト部品に用いられるフェライト材料に関する。
【0002】
【従来の技術】
ニッケル系のフェライト材料(例えば、NiCuZn系フェライト、NiCu系フェライト、Ni系フェライト)は、インダクタ素子として広く用いられている。一方、近年の情報通信分野や高周波分野の急速な展開の中で、樹脂モールドタイプのインダクタ素子等に対する性能向上の要請が高まっている。
【0003】
樹脂モールドタイプのインダクタ素子では、フェライト材料を樹脂にモールドするが、樹脂硬化時にフェライト材料に圧縮応力が加わる。フェライト材料は圧縮応力の大きさに応じてインダクタンス値が変化するため、樹脂モールドタイプのインダクタ素子では、圧縮応力に対してインダクタンス変化の少ない、抗応力特性に優れたフェライト材料が望まれている。また、インダクタ素子の性能向上においては、温度変動に伴う透磁率変化が緩やかなこと、品質係数であるQ値が使用周波数帯域で大きいことが望まれる。
【0004】
このような要求に応じるために、特許第2679716号公報、特開平5−326243号公報等には、酸化コバルト、酸化ビスマス、酸化ケイ素を添加したNiCuZn系フェライト材料が開示されている。また、特開平1−103953号公報には、酸化ビスマスと酸化ケイ素を添加して耐熱衝撃性を向上させたNiZn系フェライト材料が開示され、特開平1−228108号公報には、酸化ケイ素、酸化マンガン、酸化ビスマス、酸化マグネシウムを添加して応力緩和構造を備えたNiCuZn系フェライト材料が開示されている。さらに、特開平4−323806号公報には、結晶組織の平均粒径が20〜60μmである耐熱衝撃フェライト材料が開示され、特開平8−325056号公報には、酸化ケイ素を2.1〜10.0重量%添加したNiCuZn系フェライト材料が開示されている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記の特許第2679716号公報および特開平5−326243号公報に開示されるNiCuZn系フェライト材料は、酸化亜鉛含有量が2〜30モル%と少ないため、高い初透磁率μiが得られないものであった。また、特開平1−103953号公報に開示されるNiZn系フェライト材料は、酸化コバルトの添加がないため、温度変動に伴う透磁率変化が大きなものであり、特開平1−228108号公報に開示されるNiCuZn系フェライト材料は、酸化ビスマスの添加量が0.1重量%以下と少ないため、抗応力特性が充分なものではなかった。さらに、特開平4−323806号公報に開示された耐熱衝撃フェライト材料は、結晶組織の平均粒径が20〜60μmと大きいため、温度変動に伴う透磁率変化が大きなものであり、特開平8−325056号公報に開示されるNiCuZn系フェライト材料は、酸化ケイ素の添加量が多いため、温度変動に伴う透磁率変化が大きなものであった。
このため、高い初透磁率をもち、抗応力特性に優れ、温度係数の絶対値が低いフェライト材料が望まれている。
【0006】
本発明は、上記のような実情に鑑みてなされたものであり、高い初透磁率をもち、抗応力特性に優れて圧縮応力に対するインダクタンス変化が少なく、透磁率の温度変化が緩やかなものであり、かつ、安価なフェライト材料を提供することを目的とする。
【0007】
【課題を解決するための手段】
このような目的を達成するために、本発明のフェライト材料は、酸化鉄、酸化銅、酸化亜鉛および酸化ニッケルを主成分とするフェライト材料であって、酸化鉄の含有量がFe換算で46.0〜49.0モル%の範囲、酸化銅の含有量がCuO換算で4.0〜11.0モル%の範囲、酸化亜鉛の含有量がZnO換算で30.1〜33.0モル%の範囲、および、残部酸化ニッケルを含有し、主成分に対して副成分として酸化コバルトをCoO換算で0.005〜0.03重量%の範囲、酸化ビスマスをBi換算で0.1〜0.5重量%の範囲、酸化ケイ素をSiO換算で0.1〜0.6重量%の範囲、酸化マグネシウムをMgO換算で0.05〜1.0重量%の範囲で含有するような構成とした。
【0008】
また、本発明のフェライト材料は、酸化鉄、酸化銅、酸化亜鉛および酸化ニッケルを主成分とするフェライト材料であって、酸化鉄の含有量がFe換算で46.0〜49.0モル%の範囲、酸化銅の含有量がCuO換算で4.0〜11.0モル%の範囲、酸化亜鉛の含有量がZnO換算で30.1〜33.0モル%の範囲、および、残部酸化ニッケルを含有し、主成分に対して副成分として酸化コバルトをCoO換算で0.005〜0.03重量%の範囲、酸化ビスマスをBi換算で0.1〜0.5重量%の範囲、タルクを0.1〜2.0重量%の範囲で含有するような構成とした。
そして、上記フェライト材料は、周波数100kHzにおける初透磁率が200以上であるような構成とした。
【0009】
また、上記フェライト材料は、初透磁率の相対温度係数が±5(ppm/℃)以内であるような構成とした。
さらに、上記フェライト材料は、98MPaの圧力で加圧したときのインダクタンスの変化率が±5%以内であるような構成とした。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
本発明は、NiCuZn系のフェライト材料の主成分である酸化鉄、酸化銅、酸化亜鉛および酸化ニッケルの含有量、ならびに、副成分である酸化コバルト、酸化ビスマスと、酸化ケイ素および酸化マグネシウム、あるいは、タルクの含有量を検討した結果、所定の範囲の含有量において高い初透磁率μiをもち、抗応力特性に優れて圧縮応力に対するインダクタンス変化が少なく、温度変動に伴う透磁率変化が緩やかなフェライト材料を得ることができた。
【0011】
すなわち、本発明のフェライト材料は、酸化鉄の含有量がFe換算で46.0〜49.0モル%、好ましくは46.5〜49.0モル%の範囲、酸化銅の含有量がCuO換算で4.0〜11.0モル%、好ましくは5.0〜9.0モル%の範囲、酸化亜鉛の含有量がZnO換算で30.1〜33.0モル%、好ましくは30.1〜32.0モル%の範囲であり、残部は酸化ニッケルを含有(好ましくはNiO換算で7.0〜20.0モル%の範囲)するものである。さらに、この主成分に対して副成分として酸化コバルトをCoO換算で0.005〜0.03重量%、好ましくは0.005〜0.025重量%の範囲、酸化ビスマスをBi換算で0.1〜0.5重量%、好ましくは0.1〜0.45重量%の範囲、酸化ケイ素をSiO換算で0.1〜0.6重量%、好ましくは0.1〜0.5重量%の範囲、酸化マグネシウムをMgO換算で0.05〜1.0重量%、好ましくは0.05〜0.8重量%の範囲で含有するものである。また、副成分の酸化ケイ素と酸化マグネシウムの添加形態としてタルクの形態で添加してもよい。タルクの添加量は主成分に対して0.1〜2.0重量%、好ましくは0.15〜1.8重量%の範囲である。
【0012】
このような本発明のフェライト材料は、周波数100kHzのおける初透磁率μiが200以上と高いものである。
【0013】
また、本発明のフェライト材料は、初透磁率の相対温度係数αμirの絶対値が小さいものである。この相対温度係数αμirは、2点の温度間での初透磁率の変化率を表す値であり、例えば、温度Tのときの初透磁率μiとし、温度Tのときの初透磁率μiとしたとき、温度範囲T〜Tにおける相対温度係数αμirは、下記式で表される。尚、初透磁率μiの測定周波数は100kHzとする。
αμir=[(μi−μi)/μi ]×[1/(T−T)]
本発明のフェライト材料は、20〜60℃における初透磁率の相対温度係数αμirを±5(ppm/℃)以内することができる。このように相対温度係数αμirが小さいと、初透磁率が温度による影響を受けにくくなり、インダクタ素子に使用した場合、信頼性が向上する。
【0014】
また、本発明のフェライト材料は、圧縮応力に対するインダクタンス変化が少なく、抗応力特性が良好である。例えば、98MPaの圧力で一軸加圧したときのインダクタンス変化率ΔL/L×100が、±5%以内である。尚、Lは加圧前のインダクタンスであり、ΔLは加圧によるインダクタンス変化量である。本発明のフェライト材料は、このように抗応力特性が良好であるため、樹脂モールドに伴うインダクタンス変化を低減でき、高精度の電機機器の製造を可能とする。
【0015】
本発明の主成分である酸化鉄の含有量が46.0モル%未満であると、初透磁率μiが低下し、49.0モル%を超えると、品質係数であるQ値が低下することになり好ましくない。そして、このQ値を改善するために、酸化コバルトの必要含有量が増大することになり、製造コストの面からも好ましくない。また、酸化銅の含有量が4.0モル%未満であると、温度変動に伴う透磁率変化が大きくなり、11.0モル%を超えると、Q値が低くなり好ましくない。また、酸化亜鉛の含有量が30.1モル%未満であると、抗応力特性が悪くなり、33.0モル%を超えると、キュリー点が120℃未満となり実用上問題がある。
【0016】
また、副成分である酸化コバルトの主成分に対する含有量が0.005重量%未満であると、Q値が低くなり、0.03重量%を超えると、抗応力特性が悪くなり好ましくない。副成分である酸化ビスマスの主成分に対する含有量が0.1重量%未満であると、抗応力特性が悪くなり、0.5重量%を超えると、温度変動による透磁率変化が大きくなり好ましくない。また、副成分である酸化ケイ素の主成分に対する含有量が0.1重量%未満であると、抗応力特性が悪くなり、0.6重量%を超えると、Q値が低下して好ましくない。さらに、副成分である酸化マグネシウムの主成分に対する含有量が0.05重量%未満であると、抗応力特性が悪くなり、1.0重量%を超えると、温度変動による透磁率変化が大きくなり好ましくない。また、副成分の酸化ケイ素と酸化マグネシウムの代わりに使用するタルクの主成分に対する含有量が0.1重量%未満であると、抗応力特性が悪くなり、2.0重量%を超えると、初透磁率μiが低下し好ましくない。
【0017】
上述のような本発明のフェライト材料は、焼成後の組成が上記の範囲となるように酸化鉄、酸化銅、酸化亜鉛、酸化ニッケル、酸化コバルト、酸化ビスマスと、酸化ケイ素、酸化マグネシウム、あるいは、タルクを含有した原材料を仮焼成し、この仮焼成粉を所望の形状に形成して焼成(例えば、1000〜1100℃)することにより製造することができる。
【0018】
【実施例】
次に、具体的な実施例を挙げて本発明を更に詳細に説明する。
【0019】
フェライト材料の作製
まず、主成分としてFe 、CuO、ZnOおよびNiOを下記の表1〜表3に示される量比(モル%)となるように秤量し、この主成分組成に対して、Bi、CoO、SiO、MgO、タルクを表1〜表3に示す量比(重量%)となるように秤量した。次に、これらの原料を鋼鉄製のボールミルで16時間湿式混合した。その後、得られた混合粉を900℃で2時間仮焼し、この仮焼成粉を鋼鉄製のボールミルにて16時間混合粉砕した。
【0020】
次いで、得られた各粉砕粉に、バインダーとしてポリビニルアルコール6%水溶液を10重量%添加して造粒した。こうして得られた顆粒を用いて、98MPaの圧力で、角柱サンプル(幅7mm、厚さ7mm、長さ35mm)とトロイダル状サンプル(外径20mm、内径10mm、高さ5mm)をプレス成形した。次に、この成形体を空気雰囲気下1000〜1100℃で2時間焼成してフェライト材料(試料1〜32)を得た。尚、最終組成を蛍光X線分光法により測定したところ、配合組成に対応するものであった。
【0021】
フェライト材料の評価
上記の各フェライト材料(試料1〜32)について、初透磁率μi、初透磁率の相対温度係数αμir、抗応力特性、品質係数であるQ値、および、キュリー点Tcを下記のように測定して、結果を下記の表1〜表3に示した。
【0022】
[初透磁率および初透磁率の相対温度係数の測定]
得られたトロイダル形状の各フェライト材料にワイヤを20回巻線した後、LCRメータ(ヒューレットパッカード社製HP4192)にて100kHzにおける初透磁率μiを測定し、下記の式にて20〜60℃における相対温度係数αμirを算出した。
αμir=[(μi−μi)/μi ]×[1/(T−T)]
(μi=温度Tのときの初透磁率)
(μi=温度Tのときの初透磁率)
【0023】
[抗応力特性の測定]
得られた角柱サンプルの中央部にワイヤを20回巻線した後、これに一定速度で一軸圧縮力を印加し、このときのインダクタンス値をLCRメータ(ヒューレットパッカード社製HP4285A)にて連続的に測定し、得られた測定値からインダクタンス変化率を算出した。1t/cmの一軸圧縮力を印加したときのインダクタンス変化率(ΔL/L×100)を表1〜表3に示した。
【0024】
[品質係数であるQ値の測定]
得られたトロイダル形状の各フェライト材料にワイヤを20回巻線した後、LCRメータ(ヒューレットパッカード社製HP4192)にて100kHzにおけるQ値を測定した。
【0025】
【表1】

Figure 0003635016
【0026】
【表2】
Figure 0003635016
【0027】
【表3】
Figure 0003635016
【0028】
表1〜表3に示されるように、本発明のフェライト材料である試料2〜4、試料7,8、試料11、試料14、試料16,17、試料20,21、試料24〜26、試料29〜31は、主成分としてFe23を46.0〜49.0モル%の範囲で含有し、CuOを4.0〜11.0モル%の範囲で含有し、ZnOを30.1〜33.0モル%の範囲で含有し、残部としてNiOをそれぞれ含有し、主成分に対して副成分としてCoOを0.005〜0.03重量%の範囲で含有し、Bi23を0.1〜1.0重量%の範囲で含有し、SiO2を0.1〜0.6重量%の範囲で含有し、MgOを0.05〜1.0重量%で含有するものであり、また、副成分のSiO2とMgOの代わりにタルクを0.1〜2.0重量%の範囲で含有するものであって、周波数100kHzにおける初透磁率μiが200以上であり、初透磁率の相対温度係数αμirが±5(ppm/℃)以内であり、98MPaの圧力で加圧したときのインダクタンスの変化率が±5%以内であり、100kHzにおけるQ値が100以上であり、キュリー点が120℃以上であることが確認された。
【0029】
一方、上記以外の試料では、周波数100kHzにおける初透磁率μiが200以上、初透磁率の相対温度係数αμirが±5(ppm/℃)以内、98MPaの圧力で加圧したときのインダクタンスの変化率が±5%以内、100kHzにおけるQ値が100以上、キュリー点が120℃以上、であることの少なくとも一つが達成されないものであった。
【0030】
【発明の効果】
以上詳述したように、本発明によれば、主成分である酸化鉄、酸化銅、酸化亜鉛および酸化ニッケルの含有量、ならびに、副成分である酸化コバルト、酸化ビスマスと、酸化ケイ素および酸化マグネシウム、あるいは、タルクの含有量を所定の範囲とすることにより、初透磁率が高く、温度変動による透磁率変化が緩やかであり、かつ、圧縮応力に対するインダクタンス変化が少ない高抗応力特性のフェライト材料が得られ、また、温度変動のよる透磁率変化を緩やかにさせる目的で含有する非常に高価な材料である酸化コバルトの含有量が格段に少ないため、安価なフェライト材料が可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a NiCuZn ferrite material, and more particularly to a ferrite material used for a resin mold type ferrite component.
[0002]
[Prior art]
Nickel-based ferrite materials (for example, NiCuZn-based ferrite, NiCu-based ferrite, and Ni-based ferrite) are widely used as inductor elements. On the other hand, in the recent rapid development of the information communication field and the high frequency field, there is an increasing demand for performance improvement for resin mold type inductor elements.
[0003]
In a resin mold type inductor element, a ferrite material is molded into a resin, and compressive stress is applied to the ferrite material when the resin is cured. Since the inductance value of the ferrite material changes according to the magnitude of the compressive stress, a ferrite material having a low resistance change against the compressive stress and an excellent antistress characteristic is desired for the resin mold type inductor element. Further, in order to improve the performance of the inductor element, it is desired that the permeability change accompanying temperature fluctuation is gentle and that the quality factor Q value is large in the used frequency band.
[0004]
In order to meet such requirements, Japanese Patent No. 2679716, Japanese Patent Laid-Open No. 5-326243, etc. disclose NiCuZn-based ferrite materials to which cobalt oxide, bismuth oxide, and silicon oxide are added. Japanese Laid-Open Patent Publication No. 1-103953 discloses a NiZn-based ferrite material having improved thermal shock resistance by adding bismuth oxide and silicon oxide, and Japanese Laid-Open Patent Publication No. 1-2228108 discloses silicon oxide, oxidized A NiCuZn-based ferrite material having a stress relaxation structure by adding manganese, bismuth oxide, and magnesium oxide is disclosed. Further, Japanese Patent Laid-Open No. 4-323806 discloses a thermal shock ferrite material having an average grain size of 20 to 60 μm, and Japanese Patent Laid-Open No. 8-325056 contains 2.1 to 10 of silicon oxide. A NiCuZn-based ferrite material added with 0.0% by weight is disclosed.
[0005]
[Problems to be solved by the invention]
However, the NiCuZn-based ferrite material disclosed in the above-mentioned Japanese Patent No. 2679716 and Japanese Patent Laid-Open No. 5-326243 has a low zinc oxide content of 2 to 30 mol%, so that a high initial permeability μi cannot be obtained. It was a thing. Further, the NiZn ferrite material disclosed in Japanese Patent Laid-Open No. 1-103953 has a large change in magnetic permeability due to temperature fluctuation because no cobalt oxide is added, and is disclosed in Japanese Patent Laid-Open No. 1-228108. In the NiCuZn ferrite material, the amount of bismuth oxide added is as small as 0.1% by weight or less, so that the anti-stress characteristics are not sufficient. Furthermore, since the thermal shock ferrite material disclosed in Japanese Patent Laid-Open No. 4-323806 has a large average grain size of 20 to 60 μm in crystal structure, the permeability change due to temperature fluctuation is large. Since the NiCuZn-based ferrite material disclosed in Japanese Patent No. 325056 has a large amount of silicon oxide added, the permeability change due to temperature fluctuation was large.
For this reason, a ferrite material having high initial permeability, excellent antistress characteristics, and a low absolute value of temperature coefficient is desired.
[0006]
The present invention has been made in view of the above circumstances, and has high initial permeability, excellent anti-stress characteristics, little inductance change with respect to compressive stress, and moderate change in permeability temperature. And it aims at providing an inexpensive ferrite material.
[0007]
[Means for Solving the Problems]
In order to achieve such an object, the ferrite material of the present invention is a ferrite material mainly composed of iron oxide, copper oxide, zinc oxide and nickel oxide, and the iron oxide content is converted to Fe 2 O 3. In the range of 46.0 to 49.0 mol%, the copper oxide content is 4.0 to 11.0 mol% in terms of CuO, and the zinc oxide content is 30.1 to 33.0 in terms of ZnO. In the range of mol% and the balance containing nickel oxide, cobalt oxide as a subcomponent with respect to the main component is in the range of 0.005 to 0.03% by weight in terms of CoO, and bismuth oxide is 0 in terms of Bi 2 O 3. .1~0.5 wt% range, 0.1 to 0.6 wt% of range silicon oxide in terms of SiO 2, containing in the range of 0.05 to 1.0 wt% of magnesium oxide in terms of MgO The configuration is as follows.
[0008]
The ferrite material of the present invention is a ferrite material mainly composed of iron oxide, copper oxide, zinc oxide and nickel oxide, and the content of iron oxide is 46.0 to 49.0 in terms of Fe 2 O 3. The range of mol%, the content of copper oxide in the range of 4.0 to 11.0 mol% in terms of CuO, the range of the content of zinc oxide in the range of 30.1 to 33.0 mol% in terms of ZnO, and the balance Contains nickel oxide, cobalt oxide as an auxiliary component with respect to the main component in the range of 0.005 to 0.03% by weight in terms of CoO, and bismuth oxide in the range of 0.1 to 0.5% by weight in terms of Bi 2 O 3 And talc in a range of 0.1 to 2.0% by weight.
And the said ferrite material was taken as the structure whose initial magnetic permeability in frequency 100kHz is 200 or more.
[0009]
Further, the ferrite material was configured such that the relative temperature coefficient of initial permeability was within ± 5 (ppm / ° C.).
Furthermore, the ferrite material was configured such that the rate of change in inductance when it was pressurized at 98 MPa was within ± 5%.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention are described below.
The present invention includes the content of iron oxide, copper oxide, zinc oxide and nickel oxide as the main components of the NiCuZn-based ferrite material, and cobalt oxide, bismuth oxide and silicon oxide and magnesium oxide as auxiliary components, or As a result of examining the content of talc, a ferrite material that has a high initial permeability μi in a specified range of content, has excellent anti-stress characteristics, has little inductance change with respect to compressive stress, and has a gentle change in permeability with temperature fluctuation Could get.
[0011]
That is, the ferrite material of the present invention, from 46.0 to 49.0 mol% iron oxide content is calculated as Fe 2 O 3, preferably in the range of 46.5 to 49.0 mol%, the content of copper oxide Is 4.0 to 11.0 mol%, preferably 5.0 to 9.0 mol% in terms of CuO, and the zinc oxide content is 30.1 to 33.0 mol%, preferably 30 in terms of ZnO. 0.1 to 32.0 mol%, and the balance contains nickel oxide (preferably in the range of 7.0 to 20.0 mol% in terms of NiO). Further, cobalt oxide as a subcomponent with respect to this main component is in the range of 0.005 to 0.03% by weight, preferably 0.005 to 0.025% by weight in terms of CoO, and bismuth oxide in terms of Bi 2 O 3 . 0.1 to 0.5% by weight, preferably in the range of 0.1 to 0.45% by weight, silicon oxide in terms of SiO 2 0.1 to 0.6% by weight, preferably 0.1 to 0.5% In the range of wt%, magnesium oxide is contained in an amount of 0.05 to 1.0 wt%, preferably 0.05 to 0.8 wt% in terms of MgO. Moreover, you may add in the form of a talc as an addition form of the silicon oxide of a subcomponent, and magnesium oxide. The amount of talc added is 0.1 to 2.0% by weight, preferably 0.15 to 1.8% by weight, based on the main component.
[0012]
Such a ferrite material of the present invention has an initial permeability μi as high as 200 or more at a frequency of 100 kHz.
[0013]
The ferrite material of the present invention has a small absolute value of the relative temperature coefficient αμir of the initial permeability. The relative temperature coefficient αμir is a value representing the rate of change of the initial permeability between two points temperature, for example, the initial permeability .mu.i 1 at the temperature T 1, the initial permeability at the temperature T 2 When μi 2 is set, the relative temperature coefficient αμir in the temperature range T 1 to T 2 is expressed by the following equation. Note that the measurement frequency of the initial permeability μi 1 is 100 kHz.
αμir = [(μi 2 −μi 1 ) / μi 1 2 ] × [1 / (T 2 −T 1 )]
The ferrite material of the present invention can have a relative temperature coefficient αμir of initial permeability at 20 to 60 ° C. within ± 5 (ppm / ° C.). As described above, when the relative temperature coefficient αμir is small, the initial magnetic permeability is not easily affected by temperature, and the reliability is improved when used for an inductor element.
[0014]
In addition, the ferrite material of the present invention has a small change in inductance with respect to compressive stress and good antistress characteristics. For example, the inductance change rate ΔL / L × 100 when uniaxially pressed at a pressure of 98 MPa is within ± 5%. Note that L is an inductance before pressurization, and ΔL is an inductance change amount due to pressurization. Since the ferrite material of the present invention has such a good anti-stress characteristic, it is possible to reduce the inductance change associated with the resin mold and to manufacture a highly accurate electric machine.
[0015]
When the content of iron oxide, which is the main component of the present invention, is less than 46.0 mol%, the initial magnetic permeability μi decreases, and when it exceeds 49.0 mol%, the quality factor Q value decreases. It is not preferable. And in order to improve this Q value, the required content of cobalt oxide will increase, and it is not preferable also from the surface of manufacturing cost. Further, if the content of copper oxide is less than 4.0 mol%, the change in magnetic permeability due to temperature fluctuation is large, and if it exceeds 11.0 mol%, the Q value is undesirably low. Further, when the content of zinc oxide is less than 30.1 mol%, the antistress characteristic is deteriorated, and when it exceeds 33.0 mol%, the Curie point is less than 120 ° C, which causes a practical problem.
[0016]
In addition, when the content of the cobalt oxide as a subcomponent relative to the main component is less than 0.005% by weight, the Q value is lowered, and when it exceeds 0.03% by weight, the anti-stress characteristic is deteriorated. When the content of the bismuth oxide, which is a subcomponent, is less than 0.1% by weight, the anti-stress characteristic is deteriorated, and when it exceeds 0.5% by weight, the permeability change due to temperature fluctuation is increased, which is not preferable. . Further, when the content of the silicon oxide as a subcomponent with respect to the main component is less than 0.1% by weight, the anti-stress characteristic is deteriorated, and when it exceeds 0.6% by weight, the Q value is undesirably lowered. Furthermore, if the content of the minor component magnesium oxide relative to the main component is less than 0.05% by weight, the anti-stress characteristics deteriorate, and if it exceeds 1.0% by weight, the permeability change due to temperature fluctuation increases. It is not preferable. Further, if the content of the talc used as a subcomponent of silicon oxide and magnesium oxide with respect to the main component is less than 0.1% by weight, the anti-stress characteristic is deteriorated. The magnetic permeability μi decreases, which is not preferable.
[0017]
The ferrite material of the present invention as described above is composed of iron oxide, copper oxide, zinc oxide, nickel oxide, cobalt oxide, bismuth oxide, silicon oxide, magnesium oxide, or so that the composition after firing is in the above range. The raw material containing talc can be calcined, and the calcined powder can be formed into a desired shape and calcined (for example, 1000 to 1100 ° C.).
[0018]
【Example】
Next, the present invention will be described in more detail with specific examples.
[0019]
Production of ferrite material First, Fe 2 O 3 , CuO, ZnO and NiO are weighed as main components so as to have a quantitative ratio (mol%) shown in Tables 1 to 3 below. Bi 2 O 3 , CoO, SiO 2 , MgO, and talc were weighed with respect to the composition so as to have a quantitative ratio (% by weight) shown in Tables 1 to 3. Next, these raw materials were wet mixed in a steel ball mill for 16 hours. Thereafter, the obtained mixed powder was calcined at 900 ° C. for 2 hours, and this calcined powder was mixed and ground in a steel ball mill for 16 hours.
[0020]
Next, 10% by weight of a 6% aqueous solution of polyvinyl alcohol was added as a binder to each pulverized powder, and granulated. Using the granules thus obtained, a prismatic sample (width 7 mm, thickness 7 mm, length 35 mm) and toroidal sample (outer diameter 20 mm, inner diameter 10 mm, height 5 mm) were press-molded at a pressure of 98 MPa. Next, this molded body was fired at 1000 to 1100 ° C. for 2 hours in an air atmosphere to obtain ferrite materials ( Samples 1 to 32 ). When the final composition was measured by fluorescent X-ray spectroscopy, it corresponded to the blended composition.
[0021]
Evaluation of ferrite material For each of the above ferrite materials ( samples 1 to 32 ), the initial permeability μi, the relative temperature coefficient αμir of the initial permeability, the anti-stress characteristics, the quality factor Q value, and the Curie point Tc was measured as follows, and the results are shown in Tables 1 to 3 below.
[0022]
[Measurement of initial permeability and relative temperature coefficient of initial permeability]
After winding the wire to each toroidal ferrite material obtained 20 times, the initial permeability μi at 100 kHz was measured with an LCR meter (HP 4192 manufactured by Hewlett Packard), and the following formula was used at 20 to 60 ° C. The relative temperature coefficient αμir was calculated.
αμir = [(μi 2 −μi 1 ) / μi 1 2 ] × [1 / (T 2 −T 1 )]
(Μi 1 = initial permeability at temperature T 1 )
(Μi 2 = initial permeability at temperature T 2 )
[0023]
[Measurement of anti-stress characteristics]
After winding the wire 20 times around the center of the obtained prism sample, a uniaxial compressive force was applied thereto at a constant speed, and the inductance value at this time was continuously measured with an LCR meter (HP4285A manufactured by Hewlett Packard). The inductance change rate was calculated from the measured values. Tables 1 to 3 show inductance change rates (ΔL / L × 100) when a uniaxial compressive force of 1 t / cm 2 is applied.
[0024]
[Measurement of quality factor Q value]
A wire was wound 20 times on the obtained toroidal ferrite material, and then the Q value at 100 kHz was measured with an LCR meter (HP4192 manufactured by Hewlett-Packard Company).
[0025]
[Table 1]
Figure 0003635016
[0026]
[Table 2]
Figure 0003635016
[0027]
[Table 3]
Figure 0003635016
[0028]
As shown in Tables 1 to 3, Samples 2 to 4, Samples 7 and 8, Sample 11, Sample 14, Samples 16 and 17, Samples 20 and 21, Samples 24 to 26, and Samples, which are ferrite materials of the present invention. 29 to 31 contain Fe 2 O 3 in the range of 46.0 to 49.0 mol% as the main component, CuO in the range of 4.0 to 11.0 mol%, and ZnO 30.1 In the range of ~ 33.0 mol%, each containing NiO as the balance, CoO as the subcomponent with respect to the main component in the range of 0.005 to 0.03% by weight, and Bi 2 O 3 It is contained in the range of 0.1 to 1.0% by weight, SiO 2 is contained in the range of 0.1 to 0.6% by weight, and MgO is contained in the range of 0.05 to 1.0% by weight. Further, those talc in place of SiO 2 and MgO subcomponent containing in the range of 0.1 to 2.0 wt% The initial permeability μi at a frequency of 100 kHz is 200 or more, the relative temperature coefficient αμir of the initial permeability is within ± 5 (ppm / ° C.), and the rate of change in inductance when pressurized at 98 MPa is It was within ± 5%, the Q value at 100 kHz was 100 or more, and the Curie point was confirmed to be 120 ° C. or more.
[0029]
On the other hand, in samples other than the above, the initial permeability μi at a frequency of 100 kHz is 200 or more, the relative temperature coefficient αμir of the initial permeability is within ± 5 (ppm / ° C.), and the rate of change in inductance when pressurized at 98 MPa. Is within ± 5%, the Q value at 100 kHz is 100 or more, and at least one of the Curie point is 120 ° C. or more is not achieved.
[0030]
【The invention's effect】
As described above in detail, according to the present invention, the contents of iron oxide, copper oxide, zinc oxide and nickel oxide as main components, and cobalt oxide, bismuth oxide as subcomponents, and silicon oxide and magnesium oxide. Alternatively, by setting the content of talc within a predetermined range, a ferrite material having a high anti-stress characteristic that has a high initial permeability, a gentle change in permeability due to temperature fluctuations, and a small inductance change with respect to a compressive stress. Further, since the content of cobalt oxide, which is a very expensive material contained for the purpose of gradual change in magnetic permeability due to temperature fluctuation, is remarkably low, an inexpensive ferrite material is possible.

Claims (5)

酸化鉄、酸化銅、酸化亜鉛および酸化ニッケルを主成分とするフェライト材料であって、酸化鉄の含有量がFe換算で46.0〜49.0モル%の範囲、酸化銅の含有量がCuO換算で4.0〜11.0モル%の範囲、酸化亜鉛の含有量がZnO換算で30.1〜33.0モル%の範囲、および、残部酸化ニッケルを含有し、主成分に対して副成分として酸化コバルトをCoO換算で0.005〜0.03重量%の範囲、酸化ビスマスをBi換算で0.1〜0.5重量%の範囲、酸化ケイ素をSiO換算で0.1〜0.6重量%の範囲、酸化マグネシウムをMgO換算で0.05〜1.0重量%の範囲で含有することを特徴とするフェライト材料。Ferrite material mainly composed of iron oxide, copper oxide, zinc oxide and nickel oxide, the content of iron oxide being in the range of 46.0 to 49.0 mol% in terms of Fe 2 O 3 , containing copper oxide The amount is in the range of 4.0 to 11.0 mol% in terms of CuO, the content of zinc oxide is in the range of 30.1 to 33.0 mol% in terms of ZnO, and the remaining nickel oxide is contained in the main component. On the other hand, cobalt oxide as a subcomponent is in the range of 0.005 to 0.03% by weight in terms of CoO, bismuth oxide is in the range of 0.1 to 0.5% by weight in terms of Bi 2 O 3 , and silicon oxide is in terms of SiO 2. A ferrite material comprising 0.1 to 0.6% by weight of magnesium oxide and 0.05 to 1.0% by weight of magnesium oxide in terms of MgO. 酸化鉄、酸化銅、酸化亜鉛および酸化ニッケルを主成分とするフェライト材料であって、酸化鉄の含有量がFe換算で46.0〜49.0モル%の範囲、酸化銅の含有量がCuO換算で4.0〜11.0モル%の範囲、酸化亜鉛の含有量がZnO換算で30.1〜33.0モル%の範囲、および、残部酸化ニッケルを含有し、主成分に対して副成分として酸化コバルトをCoO換算で0.005〜0.03重量%の範囲、酸化ビスマスをBi換算で0.1〜0.5重量%の範囲、タルクを0.1〜2.0重量%の範囲で含有することを特徴とするフェライト材料。Ferrite material mainly composed of iron oxide, copper oxide, zinc oxide and nickel oxide, the content of iron oxide being in the range of 46.0 to 49.0 mol% in terms of Fe 2 O 3 , containing copper oxide The amount is in the range of 4.0 to 11.0 mol% in terms of CuO, the content of zinc oxide is in the range of 30.1 to 33.0 mol% in terms of ZnO, and the remaining nickel oxide is contained in the main component. On the other hand, cobalt oxide as a secondary component is in the range of 0.005 to 0.03% by weight in terms of CoO, bismuth oxide is in the range of 0.1 to 0.5% by weight in terms of Bi 2 O 3 , and talc is 0.1 to 0.1% by weight. A ferrite material comprising 2.0% by weight. 周波数100kHzにおける初透磁率が200以上であることを特徴とする請求項1または請求項2に記載のフェライト材料。The ferrite material according to claim 1 or 2, wherein an initial permeability at a frequency of 100 kHz is 200 or more. 初透磁率の相対温度係数が±5(ppm/℃)以内であることを特徴とする請求項1乃至請求項3のいずれかに記載のフェライト材料。The ferrite material according to any one of claims 1 to 3, wherein a relative temperature coefficient of initial permeability is within ± 5 (ppm / ° C). 98MPaの圧力で加圧したときのインダクタンスの変化率が±5%以内であることを特徴とする請求項1乃至請求項4のいずれかに記載のフェライト材料。The ferrite material according to any one of claims 1 to 4, wherein a rate of change in inductance when pressed at a pressure of 98 MPa is within ± 5%.
JP2000249240A 2000-08-21 2000-08-21 Ferrite material Expired - Lifetime JP3635016B2 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
JP2000249240A JP3635016B2 (en) 2000-08-21 2000-08-21 Ferrite material
DE60129568T DE60129568T2 (en) 2000-08-21 2001-08-03 ferrite
EP01956797A EP1314697B1 (en) 2000-08-21 2001-08-03 Ferrite material
PCT/JP2001/006692 WO2002016268A1 (en) 2000-08-21 2001-08-03 Ferrite material
CNB018024300A CN1196651C (en) 2000-08-21 2001-08-03 Ferrite material
DE60134683T DE60134683D1 (en) 2000-08-21 2001-08-03 ferrite
DE60137550T DE60137550D1 (en) 2000-08-21 2001-08-03 ferrite
KR10-2001-7016338A KR100455510B1 (en) 2000-08-21 2001-08-03 Ferrite material
EP06001307A EP1666421B1 (en) 2000-08-21 2001-08-03 Ferrite material
US10/069,952 US6736990B2 (en) 2000-08-21 2001-08-03 Ferrite material
EP06001306A EP1666422B1 (en) 2000-08-21 2001-08-03 Ferrite material
CNB2004100368077A CN1269766C (en) 2000-08-21 2001-08-03 Ferrite material
CNB2005100897821A CN100339334C (en) 2000-08-21 2001-08-03 Ferrite material
TW090119378A TW538018B (en) 2000-08-21 2001-08-08 Ferrite material
HK03107565A HK1055287A1 (en) 2000-08-21 2003-10-17 Ferrite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000249240A JP3635016B2 (en) 2000-08-21 2000-08-21 Ferrite material

Publications (2)

Publication Number Publication Date
JP2002060224A JP2002060224A (en) 2002-02-26
JP3635016B2 true JP3635016B2 (en) 2005-03-30

Family

ID=18739011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000249240A Expired - Lifetime JP3635016B2 (en) 2000-08-21 2000-08-21 Ferrite material

Country Status (2)

Country Link
JP (1) JP3635016B2 (en)
CN (1) CN100339334C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102936131A (en) * 2012-11-07 2013-02-20 天通控股股份有限公司 Manganese zinc ferrite material for eddy current type approach switch, film-coated magnetic core and preparing method of manganese zinc ferrite material

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4576727B2 (en) * 2001-02-23 2010-11-10 株式会社村田製作所 Oxide magnetic ceramic composition and inductor component using the same
TWI303073B (en) * 2003-09-03 2008-11-11 Tdk Corp Ferrite material, ferrite sintered body, and inductor
JP4587758B2 (en) * 2004-09-22 2010-11-24 京セラ株式会社 Glass ceramic substrate
JPWO2007032338A1 (en) 2005-09-13 2009-03-19 日立金属株式会社 Ferrite material
KR101045781B1 (en) * 2008-08-12 2011-07-04 주식회사 이엠따블유 Process for preparing nickel manganese cobalt spinel ferrite having low investment loss and nickel manganese cobalt spinel ferrite produced thereby
JP5580961B2 (en) * 2010-07-15 2014-08-27 Fdk株式会社 Oxidized magnetic material and manufacturing method thereof
JP5637152B2 (en) * 2012-01-20 2014-12-10 Tdk株式会社 Ferrite sintered body and electronic parts
JP6142950B1 (en) * 2016-09-30 2017-06-07 Tdk株式会社 Ferrite composition and electronic component
CN107140967A (en) * 2017-05-31 2017-09-08 湖州知维技术服务有限公司 A kind of MgMnZn based ferrites and its preparation technology
US11380994B2 (en) * 2017-06-13 2022-07-05 Hitachi Metals, Ltd. Coil device and antenna
JP6927184B2 (en) * 2018-11-29 2021-08-25 株式会社村田製作所 Magnetic materials, electronic components and winding cores
CN113135748B (en) * 2021-04-19 2022-09-13 深圳顺络电子股份有限公司 Ferrite material and preparation method thereof, magnetic core and preparation method thereof, and winding transformer
CN115010479B (en) * 2022-06-23 2023-06-30 横店集团东磁股份有限公司 Shrinkage-free nickel-copper-zinc ferrite material and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01228108A (en) * 1988-03-09 1989-09-12 Tokin Corp Ni-cu-zn oxide magnetic material and manufacture thereof
JP3405630B2 (en) * 1994-12-26 2003-05-12 京セラ株式会社 Ferrite material
JP3181560B2 (en) * 1998-10-23 2001-07-03 ティーディーケイ株式会社 Ferrite oxide magnetic material
CN1304905A (en) * 2000-10-30 2001-07-25 广东肇庆风华电子工程开发有限公司 Low-temp sintered material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102936131A (en) * 2012-11-07 2013-02-20 天通控股股份有限公司 Manganese zinc ferrite material for eddy current type approach switch, film-coated magnetic core and preparing method of manganese zinc ferrite material
CN102936131B (en) * 2012-11-07 2014-09-17 天通控股股份有限公司 Manganese zinc ferrite material for eddy current type approach switch, film-coated magnetic core and preparing method of manganese zinc ferrite material

Also Published As

Publication number Publication date
JP2002060224A (en) 2002-02-26
CN1749211A (en) 2006-03-22
CN100339334C (en) 2007-09-26

Similar Documents

Publication Publication Date Title
EP1666421B1 (en) Ferrite material
TW543044B (en) Magnetic material and inductor
JP4823531B2 (en) Magnetic oxide material
JP3635016B2 (en) Ferrite material
JP3672161B2 (en) Ferrite manufacturing method and inductor manufacturing method
KR20170141643A (en) Ferrite composition and electronic device
JP4668404B2 (en) Magnetic material and coil parts using the magnetic material
JP4670435B2 (en) Ferrite sintered body, manufacturing method thereof and coil component
JP5871017B2 (en) Wire-wound coil component having a magnetic material and a core formed using the same
JPH08325056A (en) Ferrite material
JP3947343B2 (en) Magnetic ferrite material
JP3487552B2 (en) Ferrite material
JP4107667B2 (en) Ferrite material and inductor element
JP5250988B2 (en) Oxide magnetic material and noise filter
EP1231614A1 (en) Oxide magnetic material and core using the same
JP2006232647A (en) Ni-Cu-Zn-BASED FERRITE MATERIAL AND ITS PRODUCTION METHOD
JP4102673B2 (en) Ferrite
JP3692057B2 (en) Ferrite material
JP3550247B2 (en) Ferrite material
JP3550258B2 (en) Ferrite material
JP2007001781A (en) Ni-Cu-Zn BASED FERRITE MATERIAL AND METHOD OF MANUFACTURING THE SAME
JP2007001780A (en) Ni-Cu-Zn BASED FERRITE MATERIAL
JP2008109415A (en) Antenna
JPH1140408A (en) Core for inductance element and manufacture thereof
JP2001143919A (en) Magnetic core for inductor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041227

R150 Certificate of patent or registration of utility model

Ref document number: 3635016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 9

EXPY Cancellation because of completion of term