JP4822528B2 - Sheet-like carbon fiber knitted fabric and method for producing the same - Google Patents

Sheet-like carbon fiber knitted fabric and method for producing the same Download PDF

Info

Publication number
JP4822528B2
JP4822528B2 JP2006290050A JP2006290050A JP4822528B2 JP 4822528 B2 JP4822528 B2 JP 4822528B2 JP 2006290050 A JP2006290050 A JP 2006290050A JP 2006290050 A JP2006290050 A JP 2006290050A JP 4822528 B2 JP4822528 B2 JP 4822528B2
Authority
JP
Japan
Prior art keywords
carbon fiber
fiber bundle
knitted fabric
sheet
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006290050A
Other languages
Japanese (ja)
Other versions
JP2008106391A (en
Inventor
敏幸 中山
英寿 笠川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindo Co Ltd
Original Assignee
Shindo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindo Co Ltd filed Critical Shindo Co Ltd
Priority to JP2006290050A priority Critical patent/JP4822528B2/en
Publication of JP2008106391A publication Critical patent/JP2008106391A/en
Application granted granted Critical
Publication of JP4822528B2 publication Critical patent/JP4822528B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Knitting Of Fabric (AREA)

Description

本発明は、繊維強化プラスチック(以下、FRPと略称することもある。)を成形する際に用いるシート状炭素繊維編物およびその製造法に関する。   The present invention relates to a sheet-like carbon fiber knitted fabric used for molding a fiber reinforced plastic (hereinafter sometimes abbreviated as FRP) and a method for producing the same.

炭素繊維を強化繊維とした複合材料、とくにFRPは、軽量、高強度、高剛性などの特性を有し、これらの特性を利用して多くの分野での使用が広まってきており、例えば航空宇宙、土木建築、スポーツ用途に用いられている。強化繊維布帛の代表的な形態としては、織物、強化繊維束を編糸で保持した一方向強化繊維材(たとえば特許文献1)や強化繊維束を一方向に並行に配列しBステージ状態の熱硬化性樹脂で接着した一方向プリプレグなどのシート材がある。これらの強化繊維布帛は上記したような複合材料にした際の優れた力学特性、軽量化などの要求を満たすことはできるものの、炭素繊維束が直線的に配列されているので、繊維方向の機械的特性には優れるが、繊維軸から離れるに従い急激に機械的な特性が低下するという極端な異方性を有する形態となっているため、次のような問題があった。   Composite materials using carbon fibers as reinforced fibers, especially FRP, have characteristics such as light weight, high strength, and high rigidity, and their use in many fields has become widespread. For example, aerospace It is used for civil engineering and sports. As a typical form of the reinforcing fiber fabric, a unidirectional reinforcing fiber material (for example, Patent Document 1) in which a woven fabric, a reinforcing fiber bundle is held by a knitting yarn, and a reinforcing fiber bundle are arranged in parallel in one direction and heat in a B stage state. There is a sheet material such as a unidirectional prepreg bonded with a curable resin. Although these reinforced fiber fabrics can satisfy the demands for excellent mechanical properties and weight reduction when the composite material is made as described above, the carbon fiber bundles are linearly arranged. Although it has excellent mechanical properties, it has the following anisotropy because it has a form of extreme anisotropy in which the mechanical properties suddenly decrease with distance from the fiber axis.

たとえば、三次元の複雑曲面を有する疑似等方性の成形物を成形しようとした場合、従来の強化繊維布帛ならびにプリプレグの形態では、伸縮性やドレープ性に劣るため、深絞り賦形が困難であった。また、極端な異方性を有する材料であるため、これらシート材を小さく裁断し、繊維軸が異なるように一枚一枚賦形しながら積層することが必要となり、成形作業が非常に煩雑であった。また、炭素繊維の破断伸度が小さく、かつ炭素繊維束が直線的に配列されているので、その成形物に強い衝撃が加わると、比較的低い衝撃力で破壊するという問題もあった。   For example, when trying to form a quasi-isotropic molded product having a three-dimensional complex curved surface, the conventional reinforced fiber fabric and prepreg form are inferior in stretchability and draping properties, so that deep drawing is difficult. there were. In addition, since it is a material having extreme anisotropy, it is necessary to cut these sheet materials into small pieces and laminate them while shaping each one so that the fiber axes are different, which makes the molding operation very complicated. there were. In addition, since the breaking elongation of the carbon fibers is small and the carbon fiber bundles are linearly arranged, there is a problem that when a strong impact is applied to the molded product, the carbon fiber is broken with a relatively low impact force.

上記のような問題を解決するため、業界では炭素繊維を編物形態に加工することを試みられてきたが、編成時に毛羽や糸切れが多発し、未だ満足なものは得られていないのが現状である。   In order to solve the above problems, the industry has tried to process carbon fiber into a knitted form, but fluff and yarn breaks occur frequently during knitting, and the current situation is that satisfactory products are not yet obtained. It is.

一方、ポリアクリロニトリル繊維のプリカーサを編成したのち不融化(耐炎化)処理し、これを炭化処理して炭素繊維編物を製造する方法が提案されているが(特許文献2)、加熱による不融化処理ならびに炭化処理によってプリカーサが大幅に収縮して布帛の幅が不安定となり、また繊維目付けの不均一な炭素繊維編物となるばかりか、無緊張下で炭化処理するため高強度、高弾性率の、いわゆる高性能な炭素繊維編物が得られないという問題があった。
特開2004−360106号公報 特開平9−176939号公報
On the other hand, a method for producing a carbon fiber knitted fabric by knitting a precursor of polyacrylonitrile fiber and then infusibilizing (flameproofing) and carbonizing the precursor has been proposed (Patent Document 2). In addition, the precursor is significantly shrunk due to carbonization treatment, the width of the fabric becomes unstable, and not only becomes a carbon fiber knitted fabric with non-uniform fiber weight, but also because of carbonization treatment under no tension, high strength, high elastic modulus, There was a problem that a so-called high-performance carbon fiber knitted fabric could not be obtained.
JP 2004-360106 A JP-A-9-176939

そこで本発明の課題は、伸縮性やドレープ性に富み複雑曲面にも賦形可能であり、かつ高強度、高弾性率の高性能なシート状炭素繊維編物、およびその高性能なシート状炭素繊維編物を、毛羽発生を抑え糸切れさせることなく編成できるシート状炭素繊維編物の製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a high-performance sheet-like carbon fiber knitted fabric having high elasticity and high elastic modulus that is rich in stretchability and drape and can be shaped even on complex curved surfaces, and the high-performance sheet-like carbon fiber. An object of the present invention is to provide a method for producing a sheet-like carbon fiber knitted fabric that can suppress the generation of fuzz and can be knitted without breaking the yarn.

上記課題を解決するために、本発明に係るシート状炭素繊維編物は、ポリアクリロニトリル繊維をプリカーサとして緊張下で炭化処理して製造された連続炭素繊維束からなるシート状炭素繊維編物であって、前記炭素繊維束における炭素繊維の引張強度が3〜10GPaで引張弾性率が200〜600GPaであり、前記炭素繊維束からなる編糸がたて方向に連続したループを形成してなり、前記炭素繊維束のフィラメント数が6,000本以下でかつ炭素繊維束の繊度が60〜400テックスであり、かつ、1平方メートルあたりの炭素繊維目付けが100〜700gであることを特徴とする。このように、適切なフィラメント数、繊度の炭素繊維束、とくに連続炭素繊維束が用いられることにより、ループ形成等も比較的容易に行われるようになり、編物への編成が可能になる。編物であるから、織物や一方向強化繊維材等に比べはるかに伸縮性やドレープ性に富み、複雑曲面にも容易に賦形可能なシート状炭素繊維編物が実現できる。 In order to solve the above problems, a sheet-like carbon fiber knitted fabric according to the present invention is a sheet-like carbon fiber knitted fabric comprising a continuous carbon fiber bundle produced by carbonizing under tension using polyacrylonitrile fiber as a precursor , The carbon fiber bundle has a tensile strength of 3 to 10 GPa and a tensile modulus of 200 to 600 GPa, and a knitting yarn made of the carbon fiber bundle forms a continuous loop in the warp direction. The number of filaments in the bundle is 6,000 or less, the fineness of the carbon fiber bundle is 60 to 400 tex, and the basis weight of carbon fiber per square meter is 100 to 700 g . Thus, by using a carbon fiber bundle having an appropriate number of filaments and fineness, particularly a continuous carbon fiber bundle, loop formation and the like can be performed relatively easily, and knitting into a knitted fabric becomes possible. Since it is a knitted fabric, a sheet-like carbon fiber knitted fabric that is far more stretchable and draped than a woven fabric, unidirectional reinforcing fiber material, etc., and can be easily shaped even on complex curved surfaces can be realized.

特に、この本発明に係るシート状炭素繊維編物においては、炭素繊維束のフィラメント数が6,000本以下でかつ炭素繊維束の繊度が60〜400テックスであり、1平方メートル当たりの炭素繊維目付けが100〜700gである。このような適切な範囲に調整することにより、賦形性に優れ、かつ、所望の機械的特性を疑似等方性にて発現可能なシート状炭素繊維編物が実現できる。 In particular, in the sheet-like carbon fiber knitted fabric according to the present invention, the number of filaments of the carbon fiber bundle is 6,000 or less and the fineness of the carbon fiber bundle is 60 to 400 tex , and the carbon fiber basis weight per square meter is 100~700g Ru der. By adjusting to such an appropriate range, it is possible to realize a sheet-like carbon fiber knitted fabric that is excellent in formability and capable of expressing desired mechanical properties in a pseudo-isotropic manner.

また、後述の実施態様にも示すように、炭素繊維束からなる編糸がたて方向に連続したループを形成している形態とされる。すなわち、複数本の炭素繊維束からなる挿入糸が、たて方向に配列された炭素繊維束からなるループによって順次編成された構成である。 Further, as shown in the embodiments described later, the knitting yarn made of carbon fiber bundles forms a loop that is continuous in the warp direction . In other words, the insertion yarn composed of a plurality of carbon fiber bundles is sequentially knitted by a loop composed of carbon fiber bundles arranged in the vertical direction.

また、本発明は、上記のようなシート状炭素繊維編物を確実かつ容易に製造可能とするために、炭素繊維束の鎖編糸をラッセル編機のガイドにらせん状に巻き付け、擬似的な撚りにより炭素繊維束を集束させるとともに、炭素繊維束とガイド間に摩擦力により炭素繊維束の供給方向と逆方向への戻りを抑制しながら、編成操作を繰り返すことを特徴とする、もしくは、炭素繊維束の鎖編糸をラッセル編機の下部が細く絞られたパイプガイドに通すことで、炭素繊維束を集束させながら供給し、編成操作を繰り返すことを特徴とするシート状炭素繊維編物の製造方法も提供する。 In addition, in order to enable the sheet-like carbon fiber knitted fabric as described above to be manufactured reliably and easily, the present invention wraps a chain knitting yarn of a carbon fiber bundle around a guide of a Russell knitting machine in a spiral manner, and performs pseudo twisting. The carbon fiber bundle is converged by the above, and the knitting operation is repeated while suppressing the return of the carbon fiber bundle in the direction opposite to the supply direction due to friction between the carbon fiber bundle and the guide, or the carbon fiber A method for producing a sheet-like carbon fiber knitted fabric, characterized in that a bundle of carbon fiber bundles is fed while being bundled by passing a bundled chain knitting yarn through a pipe guide narrowed at the bottom of the Russell knitting machine, and the knitting operation is repeated. Also provide.

このような本発明に係るシート状炭素繊維編物の製造方法は、とくにニードル、ガイドおよびシンカーを備えたラッセル編機、あるいはニードルおよびガイドを備えたラッセル編機による編成により、実施することができる。   Such a method for producing a sheet-like carbon fiber knitted fabric according to the present invention can be carried out by knitting using a Russell knitting machine equipped with a needle, a guide and a sinker, or a Russell knitting machine equipped with a needle and a guide.

本発明に係るシート状炭素繊維編物によれば、ドレープ性に優れ、深絞り賦形が可能であるため、複合材料を成形する際の成形作業が非常に簡単であり、その積層板は耐衝撃に優れる。これはポリアクリロニトリル繊維をプリカーサとして製造された連続炭素繊維束からなるシートであり、編物形態におけるループ組織によってもたらされる効果である。   According to the sheet-like carbon fiber knitted fabric according to the present invention, because it is excellent in drape and can be deep-drawn, the molding operation when molding a composite material is very simple. Excellent. This is a sheet composed of continuous carbon fiber bundles manufactured using polyacrylonitrile fiber as a precursor, and is an effect brought about by a loop structure in a knitted form.

また、本発明に係るシート状炭素繊維編物の製造方法によれば、シート状炭素繊維編物の編成時における毛羽発生や糸切れを防止でき、品質が均一な編物が得られる。とくに、炭素繊維束をガイドにらせん状に巻きつけて、もしくはパイプガイドに通すことで集束させながら供給し、編成操作を繰り返すことにより、上記のような目標とするシート状炭素繊維編物を容易に編成することができる。   Moreover, according to the manufacturing method of the sheet-like carbon fiber knitted fabric according to the present invention, it is possible to prevent generation of fluff and yarn breakage during knitting of the sheet-like carbon fiber knitted fabric, and a knitted fabric with uniform quality can be obtained. In particular, the target sheet-like carbon fiber knitted fabric can be easily obtained by winding the carbon fiber bundle spirally around the guide or by feeding it through a pipe guide while converging and repeating the knitting operation. Can be organized.

以下に、本発明について、望ましい実施の形態とともに、図面を参照しながら詳細に説明する。
図1は、本発明のシート状炭素繊維編物1、とくにシート状炭素繊維経編物1を説明するための部分拡大図を示している。炭素繊維束からなる編糸2がたて方向(シートの長さ方向)に連続したループを形成しながら並行に多数本配列し、そのループに炭素繊維束からなる多数本の挿入糸3が編み込まれている。本実施形態では、挿入糸3は編糸2の3本毎に交錯して方向が反転し(1コース毎にガイドを3針分振って)、経編地が形成されている。
Hereinafter, the present invention will be described in detail together with preferred embodiments with reference to the drawings.
FIG. 1: has shown the elements on larger scale for demonstrating the sheet-like carbon fiber knitted fabric 1 of this invention, especially the sheet-like carbon fiber warp knitted fabric 1. A plurality of knitting yarns 2 made of carbon fiber bundles are arranged in parallel while forming a continuous loop in the warp direction (sheet length direction), and a plurality of insertion yarns 3 made of carbon fiber bundles are knitted into the loop. It is. In the present embodiment, the insertion yarn 3 intersects every three knitting yarns 2 and the direction is reversed (the guide is shaken by three stitches for each course) to form a warp knitted fabric.

本発明のシート状炭素繊維編物1(シート材)では、編糸2の炭素繊維束がループを形成し、また挿入糸3がループに編みこまれて一体化されているので、たとえばシート材の長さ方向に引っ張ると、ループが伸び、また、これにつれて挿入糸3の配列角も変わるので、シート材が簡単に伸びて伸縮性に富み、かつドレープ性にも富み、このドレープ性は複雑曲面への賦形性を大きく支配する。編物はこのように伸縮性やドレープ性に優れるので、複雑曲面にも賦形可能となるのである。   In the sheet-like carbon fiber knitted fabric 1 (sheet material) of the present invention, the carbon fiber bundle of the knitting yarn 2 forms a loop, and the insertion yarn 3 is knitted and integrated into the loop. When pulled in the length direction, the loop expands, and the arrangement angle of the insertion thread 3 changes accordingly. Therefore, the sheet material is easily stretched and stretchable, and also has a good drape. This drape is a complex curved surface. Greatly governs the formability of Since the knitted fabric is excellent in stretchability and drape as described above, it can be shaped even on complicated curved surfaces.

また、編物では炭素繊維束(編糸2)がループを形成し、また挿入糸3も折り返し形態にて二方向に配列し、全体として多方向に繊維配列しているので、FRPにしたときには、一方向材や織物などの形態のように極端な異方性を示さない。したがって、繊維軸が異なるように一枚一枚賦形しながら積層しなくとも、多数枚同方向に積層しても疑似等方性の特性が得られ、成形作業も極めて簡単になる。   In the knitted fabric, the carbon fiber bundle (knitting yarn 2) forms a loop, and the insertion yarn 3 is also arranged in two directions in a folded form, and the fibers are arranged in multiple directions as a whole. It does not show extreme anisotropy like the form of unidirectional material or fabric. Therefore, even if the sheets are shaped one by one so that the fiber axes are different from each other, even if a large number of sheets are laminated in the same direction, a quasi-isotropic characteristic can be obtained, and the molding operation becomes extremely simple.

本発明のシート状炭素繊維編物における編組織については、図1の実施形態のように編糸2がたて方向にループを形成し、また挿入糸3がループに編みこまれて一体化されているので形態が安定し、積層作業時に繊維配向が乱れるようなことはなく好ましいが、これに限定されるものではない。この他にも、デンビ、チュール、マーキゼットなどの組織があり、また挿入糸は例えばデンビ組織の生地は耳部がカールしてしまうがそれを防ぐといった効果もあり、編組織や挿入糸の有無などの組合せは多数存在する。これらは使用用途や使用形態によって適宜設計されると良い。   As for the knitting structure in the sheet-like carbon fiber knitted fabric of the present invention, the knitting yarn 2 forms a loop in the warp direction as in the embodiment of FIG. 1, and the insertion yarn 3 is knitted into the loop and integrated. Therefore, the form is stable and the fiber orientation is not disturbed during the laminating operation, which is preferable, but is not limited thereto. In addition, there are tissues such as denbi, tulle, marquisette, etc. Also, the insert yarn has the effect of preventing the ear part from curling the ear part, for example, the presence or absence of knitting structure or insert yarn, etc. There are many combinations of. These may be appropriately designed depending on the intended use and usage pattern.

炭素繊維糸には短繊維を紡績した紡績糸も知られているが、紡績糸は強撚によって糸を形成しているので、集束性が強く、糸の断面形状は円形に近い。このような編糸を用いて編成した編物は空隙部が多くなり、編地の表面が凹凸し、編糸の屈曲が大きくなる。また、短繊維の紡績によって糸形成がなされているから、FRPでの強度発現度合いも低くなるので、本発明では連続フィラメントを多数本集束した連続炭素繊維束が用いられる。   As the carbon fiber yarn, a spun yarn obtained by spinning a short fiber is also known, but since the spun yarn is formed by strong twisting, the converging property is strong and the cross-sectional shape of the yarn is close to a circle. A knitted fabric knitted using such a knitting yarn has many voids, the surface of the knitted fabric is uneven, and the bending of the knitting yarn increases. In addition, since the yarn is formed by spinning short fibers, the strength expression in the FRP is also low, and therefore in the present invention, a continuous carbon fiber bundle in which a large number of continuous filaments are bundled is used.

本発明において使用される炭素繊維は、ポリアクリロニトリルの繊維束を酸素雰囲気中で加熱することによって酸化・耐炎化処理し、これを高温の不活性ガス中に緊張状態で炭化処理することによって製造される。したがって、処理条件によっても異なるが、引張強度が3〜10GPa、引張弾性率が200〜600GPaの高強度でかつ高弾性率の高性能の炭素繊維となり、バラツキの少ない均一な特性となる。   The carbon fiber used in the present invention is produced by oxidizing and flameproofing a fiber bundle of polyacrylonitrile by heating it in an oxygen atmosphere and carbonizing it in a high temperature inert gas under tension. The Therefore, although it depends on the processing conditions, it becomes a high-performance carbon fiber having a high strength and a high elastic modulus with a tensile strength of 3 to 10 GPa and a tensile elastic modulus of 200 to 600 GPa, and has uniform characteristics with little variation.

本発明で使用する連続炭素繊維束のフィラメント数や繊度は、例えば12,000本、800テックス程度とすることも考えられるが、あまり炭素繊維束が太いと編糸と挿入糸の交差している箇所(図1における箇所イ)が厚くなり、一方、編組織の中には炭素繊維が存在しない空隙部(図1における箇所ロ)もあるので、FRPに成形した際に空隙部ロに充填された樹脂が硬化時に収縮するので、凹凸の大きなFRPとなる。また、大きな空隙部にはボイドが発生しやすい。したがって、本発明では、フィラメント数が6,000本以下(例えば、1,000〜6,000本の範囲)でかつ炭素繊維束の繊度が400テックス以下、とくに、60〜400テックスの範囲とされている。 The number of filaments and fineness of the continuous carbon fiber bundle used in the present invention may be about 12,000 and 800 tex, for example , but if the carbon fiber bundle is too thick, the knitting yarn and the insertion yarn intersect. On the other hand, there are voids (locations B in FIG. 1) in which the carbon fiber does not exist in the knitted structure, so that the voids B are filled when formed into FRP. Since the resin shrinks when cured, the FRP has large irregularities. In addition, voids are likely to occur in large voids. Therefore, in the present invention, the following number of filaments 6,000 (e.g., a range of 1,000 to 6,000 lines) a and fineness of the carbon fiber bundle 400 tex or less, in particular, is in the range of 60 to 400 tex ing.

なお、上記空隙部ロに充填した樹脂に振動吸収性能があるので、用途によってはこの空隙部を利用し、その個数や大きさを適切に設計し、また樹脂を最適化することによって、振動吸収性機能を積極的に持たせるために活用することもできる。   In addition, since the resin filled in the voids B has vibration absorption performance, depending on the application, the voids can be used, the number and size can be appropriately designed, and the resin can be optimized to absorb vibration. It can also be used to actively have sexual functions.

また、本発明に係る炭素繊維編物の1平方メートル当たりの炭素繊維目付けは100〜700gである。FRP成形物に表面平滑性が求められる場合には、細い炭素繊維束を使用して100〜300g/m2、FRP成形物に機械的特性を求められたり厚みのあるFRP成形物を求められたりする場合には、太い炭素繊維束を使用して300〜700g/m2の目付けとすることが好ましい。また、目付けが100g/m2 未満であると、編目の大きな編物となり空隙部が多くなりFRP成形物の凹凸が大きくなり、700g/m2 を超えると、編糸同士や挿入糸との交錯によって炭素繊維束の屈曲(クリンプ)が大きくなり、応力集中よってFRP成形物の機械的特性を低下させるので好ましくない。 Further, the carbon fiber basis weight per square meter of carbon fiber knit according to the present invention is Ru 100~700g der. When surface smoothness is required for an FRP molded product, 100 to 300 g / m 2 using a thin carbon fiber bundle, mechanical properties are required for the FRP molded product, or a thick FRP molded product is required. In that case, it is preferable to use a thick carbon fiber bundle to have a basis weight of 300 to 700 g / m 2 . Further, if the basis weight is less than 100 g / m 2 , the knitted fabric becomes a large knitted fabric, and the voids increase and the unevenness of the FRP molded product increases, and if it exceeds 700 g / m 2 , Since the bending (crimp) of the carbon fiber bundle becomes large and the mechanical properties of the FRP molded product are deteriorated due to stress concentration, it is not preferable.

本発明に係るシート状炭素繊維編物を積層したFRPにおいては、衝撃力が加わると、炭素繊維が屈曲しているので、炭素繊維が真直ぐ配列した一方向材のように直ちに炭素繊維に大きな負荷はかからず、まずFRPのマトリックス樹脂が破壊して衝撃エネルギーを吸収し、次に炭素繊維が破壊に至るので、耐衝撃性に強いFRP成形物となる。   In the FRP in which the sheet-like carbon fiber knitted fabric according to the present invention is laminated, when an impact force is applied, the carbon fiber is bent, so that a large load is immediately applied to the carbon fiber like a unidirectional material in which the carbon fibers are arranged straight. However, since the FRP matrix resin first breaks and absorbs impact energy, and then the carbon fiber breaks, an FRP molded product having high impact resistance is obtained.

なお、FRPの耐衝撃性をさらに向上させるには、樹脂部での衝撃吸収エネルギーを多くするため、破断伸度の大きな樹脂を用いることが好ましい。熱可塑性樹脂の場合はポリアミド樹脂、ポリエーテルイミド樹脂およびポリエーテルエーテルケトン樹脂などが、また、エポキシ樹脂やビニルエステル樹脂などの熱硬化性樹脂の場合は破断伸度が4〜10%の高破断伸度樹脂が好ましい。   In order to further improve the impact resistance of FRP, it is preferable to use a resin having a high elongation at break in order to increase the impact absorption energy at the resin portion. In the case of thermoplastic resins, polyamide resins, polyetherimide resins, and polyether ether ketone resins are used. In the case of thermosetting resins such as epoxy resins and vinyl ester resins, high elongation at break is 4 to 10%. An elongation resin is preferred.

本発明に係るシート状炭素繊維編物は、図1に示したように、編目がさほど大きくなく、編物の表面凹凸も適度であり、かつシート状に形成できるので、この炭素繊維編物を積層することによって繊維体積含有率の大きなFRPが得られる。   As shown in FIG. 1, the sheet-like carbon fiber knitted fabric according to the present invention is not so large in stitches, the surface unevenness of the knitted fabric is also moderate, and can be formed into a sheet shape. Thus, FRP having a large fiber volume content can be obtained.

また、FRPを成形する際、公知の織物、強化繊維束を編糸で保持した一方向強化繊維材や一方向プリプレグなどのシート材と適宜組み合わせて積層し、成形する形態としてもよい。つまり、少なくとも一部に、とくに曲面等への賦形側に、本発明に係るシート状炭素繊維編物を使用し、残りの部分に公知の強化繊維シート材を組み合わせた形態とすることも可能である。   Further, when FRP is formed, a known woven fabric, a unidirectional reinforcing fiber material in which a reinforcing fiber bundle is held by a knitting yarn, or a sheet material such as a unidirectional prepreg may be laminated and molded as appropriate. In other words, it is possible to use a sheet-like carbon fiber knitted fabric according to the present invention on at least a part, particularly on the side of shaping to a curved surface, etc., and to combine the known reinforcing fiber sheet material with the remaining part. is there.

本発明に係るシート状炭素繊維編物は、すでに炭化された炭素繊維束を使用した編物なので、プリカーサからなる編物を炭化して得られる炭素繊維編物に比べ、安定した幅の布帛となり、また繊維目付けの均一な炭素繊維編物となり、高強度、高弾性率の、いわゆる高性能な炭素繊維編物となる。   Since the sheet-like carbon fiber knitted fabric according to the present invention is a knitted fabric using carbon fiber bundles that have already been carbonized, it becomes a fabric having a stable width as compared with a carbon fiber knitted fabric obtained by carbonizing a knitted fabric made of a precursor, and has a fiber weight per unit area. A uniform carbon fiber knitted fabric, and a so-called high performance carbon fiber knitted fabric having high strength and high elastic modulus.

次に本発明のシート状炭素繊維編物の製造方法について説明する。本発明のシート状炭素繊維編物を編成していく際、特に編糸に毛羽の発生や糸切れといった問題があるループ編成に的をおいて説明する。   Next, the manufacturing method of the sheet-like carbon fiber knitted fabric of this invention is demonstrated. When the sheet-like carbon fiber knitted fabric of the present invention is knitted, the explanation will be made focusing on the loop knitting in which the knitting yarn has problems such as generation of fuzz and yarn breakage.

まず、図2〜図7によりラッセル編機での通常のループ編成操作の各ステップについて説明する。各図において、Fはラッセル編機の前方、Bはラッセル編機の後方を示している。図2は始動時の状態を示し、ニードル4は最も低い位置にあり、シンカー6はラッセル編機の前方F側に動きガイド7は前方位置に留まっている。次に図3に示すように、ニードル4は上昇し、トング5で閉じられていたフック9が開口していく。シンカー6は前方位置まで動いてきてその地点でとどまり、ニードル4の上昇につられて上昇してくる編地8を押さえ、フック9にかかっていたループがフック9の下方向へとスライドしていく。このときガイド7がバックスウィングを始める。続いて図4に示すように、ニードル4は上昇を続けて最高点に達し、フック9でスライドしてきたループはニードル4下部へと落ちる。ガイド7はニードルのフック9よりも後方B側へバックスウィングし、シンカー6はニードル4から後退し始める。次に図5に示すように、バックスウィングが終わったガイド7がループを形成するために左もしくは右にジョギングするオーバーラップを行い、ガイド7がフロントスウィングを始めてループとなる編糸2がニードル4の上部に巻きつき、次いで図6に示すようにニードル4が下降していくと、ニードル4に巻きついた編糸がフック9内へ滑り込む。ニードルは4が下降していくとトング5によってフック9が閉じられていき、フック9内に滑り込んだ編糸が新ループとして保持される。さらにニードル4が下降していくためニードル4下部に落ちていたループが旧ループとなりフック9を閉じたトング5の上をスライドしていく。このときシンカー6は後退位置にある。次に図7に示すステップのように、ニードル4は最下位置(ノックオーバー位置)に達し、旧ループはニードル4から外れ、フック9内にある新ループと旧ループが絡む。始動位置からノックオーバー位置までの一連の動作を1コースとし、これらの動作を繰り返す。   First, each step of a normal loop knitting operation on the Russell knitting machine will be described with reference to FIGS. In each figure, F indicates the front of the Russell knitting machine, and B indicates the rear of the Russell knitting machine. FIG. 2 shows a state at the time of starting, in which the needle 4 is at the lowest position, the sinker 6 moves to the front F side of the Russell knitting machine, and the guide 7 remains at the front position. Next, as shown in FIG. 3, the needle 4 rises, and the hook 9 closed by the tongue 5 opens. The sinker 6 moves to the front position, stays at that point, presses the knitted fabric 8 that rises as the needle 4 rises, and the loop on the hook 9 slides downward in the hook 9. . At this time, the guide 7 starts backswing. Subsequently, as shown in FIG. 4, the needle 4 continues to rise and reaches the highest point, and the loop that has been slid by the hook 9 falls to the bottom of the needle 4. The guide 7 backswings toward the rear B side of the needle hook 9, and the sinker 6 starts to retract from the needle 4. Next, as shown in FIG. 5, the guide 7 that has finished the backswing is overlapped by jogging left or right to form a loop, and the guide 7 starts the front swing and the knitting yarn 2 that becomes a loop becomes the needle 4. When the needle 4 is lowered as shown in FIG. 6, the knitting yarn wound around the needle 4 slides into the hook 9. When the needle 4 is lowered, the hook 9 is closed by the tongue 5, and the knitting yarn sliding into the hook 9 is held as a new loop. Further, since the needle 4 descends, the loop that has fallen below the needle 4 becomes an old loop and slides on the tongue 5 that closes the hook 9. At this time, the sinker 6 is in the retracted position. Next, as shown in FIG. 7, the needle 4 reaches the lowest position (knockover position), the old loop comes off from the needle 4, and the new loop and the old loop in the hook 9 are entangled. A series of operations from the starting position to the knockover position is taken as one course, and these operations are repeated.

次に、図8、図9により、本発明によるシート状炭素繊維経編物の製造方法の一例について、図10、図11に示した従来の方法でシート状炭素繊維経編物を製造する場合と比較しながら、説明する。供給されてくる炭素繊維束10はガイド7にらせん状に巻きつけられてガイド穴11に通される。従来は、ガイド7には供給されてくる糸をそのまま左から右へと通すが、供給されてくる糸が炭素繊維束の場合、下記のような問題点があった。   Next, referring to FIGS. 8 and 9, an example of a method for producing a sheet-like carbon fiber warp knitted fabric according to the present invention is compared with the case of producing a sheet-like carbon fiber warp knitted fabric by the conventional method shown in FIGS. While explaining. The supplied carbon fiber bundle 10 is spirally wound around the guide 7 and passed through the guide hole 11. Conventionally, the supplied yarn is passed through the guide 7 from the left to the right as it is. However, when the supplied yarn is a carbon fiber bundle, there are the following problems.

図10、図11に従来の方法で炭素繊維経編物を製造する場合を示し、図12に図10、図11のガイドブロック12より上部に存在する経糸張力のバランス装置を示す。通常、図10に示すように炭素繊維束10をガイド7に巻きつけずにガイド穴11に通す。ニードル4のフック9に炭素繊維束10がかかり、ニードル4が下降していくと炭素繊維束10は引っ張られて張力が強くなる。この張力はテンションレール13によって吸収され、ニードル4が上昇した際に張力が弱まるときもこのテンションレール13によって一定張力で糸を供給できるように調整しているが、実際には完全に張力を吸収することはできず、テンションレール13で吸収できなかった張力が供給される編糸にかかることになる。   FIGS. 10 and 11 show a case where a carbon fiber warp knitted fabric is produced by a conventional method, and FIG. 12 shows a warp tension balance device existing above the guide block 12 of FIGS. Usually, as shown in FIG. 10, the carbon fiber bundle 10 is passed through the guide hole 11 without being wound around the guide 7. When the carbon fiber bundle 10 is applied to the hook 9 of the needle 4 and the needle 4 is lowered, the carbon fiber bundle 10 is pulled to increase the tension. This tension is absorbed by the tension rail 13, and even when the tension is weakened when the needle 4 is raised, the tension rail 13 is adjusted so that the thread can be supplied with a constant tension. However, the tension is actually completely absorbed. The tension that cannot be absorbed by the tension rail 13 is applied to the knitting yarn to be supplied.

編糸が合成繊維である場合、合成繊維には伸縮性があり、ニードル4が下降して張力がかかった状態からニードル4が上昇して編糸にかかった張力が弱まっても糸が緩んでいくのを糸の収縮によって吸収していく。したがって、ガイド穴11を左から右へと通る屈曲はあるものの、糸道が膨らむことはなくほぼ直線的で安定している。   When the knitting yarn is a synthetic fiber, the synthetic fiber is stretchable, and the yarn loosens even when the needle 4 is lowered and the tension is applied from the state where the needle 4 is lowered and the tension applied to the knitting yarn is weakened. The going is absorbed by the shrinkage of the thread. Therefore, although there is a bending through the guide hole 11 from the left to the right, the yarn path does not swell and is almost linear and stable.

しかし編糸が炭素繊維束10の場合、図10に示すようにニードル4が下降すると炭素繊維束10には張力がかかっていく。このとき炭素繊維束10は張力がかかっているためフィラメントは集束する。しかし、図11に示すようにニードル4が上昇していくと、炭素繊維束10にかかっていた張力は弱まって糸が緩み、次第に集束が解かれていきガイド穴11部分で炭素繊維束10の糸道が屈曲しているため屈曲している内周側と外周側の経路差によってフィラメントが蛇行し糸割れを起こしてしまう。炭素繊維は弾性率が大きいため変形が与えられると元に戻ろうとする復元力が働いてフィラメントの蛇行をなくそうとするため炭素繊維束10の糸道はa’部分で外に大きく膨らんでしまう。   However, when the knitting yarn is the carbon fiber bundle 10, as shown in FIG. 10, the tension is applied to the carbon fiber bundle 10 when the needle 4 is lowered. At this time, since the carbon fiber bundle 10 is under tension, the filaments converge. However, as shown in FIG. 11, when the needle 4 is raised, the tension applied to the carbon fiber bundle 10 is weakened, the yarn is loosened, and the bundling is gradually released. Since the yarn path is bent, the filament meanders due to the difference in the path between the inner peripheral side and the outer peripheral side, causing the yarn to crack. Since the carbon fiber has a large elastic modulus, when the deformation is applied, the restoring force that tries to return to the original works to eliminate the meandering of the filament, so that the yarn path of the carbon fiber bundle 10 swells greatly at the a ′ portion. .

こうなると、ニードル4が上昇し、ガイド7がフロントスウィングしてガイド7の横をニードル4が通過するときに、a’部分で膨らんだ炭素繊維を擦り、編機のニードルやガイドの回転数、つまり運動速度は織機などと比べて5〜10倍と高いので、毛羽が発生してしまう。ここで、ガラス繊維やアラミド繊維などの強化繊維は炭素繊維よりも弾性率が低く破断伸度も大きいため、多少ニードルに擦れても炭素繊維よりは毛羽がでにくいが、炭素繊維は弾性率が大きく、結節強度が低いので毛羽が発生しやすい。この他、ニードル4が上昇する時に炭素繊維束10の張力が弱まると若干ではあるが糸が供給される方向とは逆方向に戻ってしまい、ニードル4の昇降によって炭素繊維束10が進退を繰り返し、ガイド穴11に何度も擦れてしまい毛羽が発生しやすくなる。以上のように毛羽が発生して炭素繊維に損傷が与えられた場合、その部分がニードル4のフック9にかかって引っ張られると糸切れしてしまう。もし仮に糸切れしなかったとしても毛羽が多数存在し、編成したときに編地がきれいに形成されない。また、a’部分での膨らみを防止するために炭素繊維に高い張力を与えるとフック9やガイド穴11で屈折し、炭素繊維はそのまま破断してしまい編成が非常に困難であった。   When this happens, the needle 4 rises, the guide 7 swings forward and the needle 4 passes by the side of the guide 7, rubbing the carbon fibers swollen at the a ′ portion, the number of rotations of the needle and guide of the knitting machine, That is, since the movement speed is 5 to 10 times higher than that of a loom or the like, fluff is generated. Here, reinforcing fibers such as glass fibers and aramid fibers have a lower elastic modulus and higher elongation at break than carbon fibers, so even if they are rubbed slightly with a needle, they are less likely to fluff than carbon fibers, but carbon fibers have an elastic modulus. Because it is large and has low knot strength, fluff is likely to occur. In addition, if the tension of the carbon fiber bundle 10 is weakened when the needle 4 is raised, the carbon fiber bundle 10 returns to the direction opposite to the direction in which the yarn is supplied, and the carbon fiber bundle 10 repeatedly advances and retreats as the needle 4 moves up and down. The guide hole 11 is rubbed many times and fluff is likely to occur. As described above, when the fluff is generated and the carbon fiber is damaged, the yarn breaks when the portion is pulled by the hook 9 of the needle 4. Even if the yarn is not broken, there are many fluffs, and the knitted fabric is not formed cleanly when knitting. Further, when a high tension was applied to the carbon fiber in order to prevent swelling at the a 'portion, the carbon fiber was refracted at the hook 9 or the guide hole 11, and the carbon fiber was broken as it was, so that the knitting was very difficult.

そこで本発明では図8、図9に示したように、炭素繊維束10をガイド7にらせん状に巻きつけてからガイド穴11に通す。図8に示すように、炭素繊維束10がニードル4のフック9にかかってニードル4が下降すると、炭素繊維束10は引っ張られて張力がかかっていき、この張力によって炭素繊維束10のフィラメントは集束する。図9に示すように、ニードル4が上昇していくと、炭素繊維束10にかかっていた張力は弱まって糸が緩み、フィラメントが蛇行し糸割れを起こそうとするが、炭素繊維束10をガイド7にらせん状に巻きつけてからガイド穴11に通しているため、炭素繊維束10がねじれて擬似的に撚りがかかった状態を作り出し、炭素繊維束10は集束する。このため、前述のa’部分に対応する糸道a部分では、外に大きく膨らむことはない。   Therefore, in the present invention, as shown in FIGS. 8 and 9, the carbon fiber bundle 10 is spirally wound around the guide 7 and then passed through the guide hole 11. As shown in FIG. 8, when the carbon fiber bundle 10 is hooked on the hook 9 of the needle 4 and the needle 4 is lowered, the carbon fiber bundle 10 is pulled and tension is applied, and the filament of the carbon fiber bundle 10 is pulled by this tension. Focus. As shown in FIG. 9, when the needle 4 is raised, the tension applied to the carbon fiber bundle 10 is weakened and the yarn is loosened, the filaments meander to attempt to break the yarn. Since the guide 7 is spirally wound and then passed through the guide hole 11, the carbon fiber bundle 10 is twisted to create a pseudo twisted state, and the carbon fiber bundle 10 is converged. For this reason, the yarn path a portion corresponding to the a ′ portion described above does not bulge out greatly.

したがって、ニードル4がガイド7の横を通過するときに、ニードル4が炭素繊維を擦ることはなく毛羽が発生しない。これに加え、炭素繊維束10をガイド7にらせん状に巻きつけているため、炭素繊維束10とガイド7の間に接点ができて小さな摩擦力が発生し、ニードル4が上昇し炭素繊維束10の張力が弱まっても、炭素繊維束10の供給方向とは逆方向への戻りを少なくすることができ、糸の進退を抑えることができるため炭素繊維束の損傷を少なくできる。ここでガイド7の炭素繊維束10を巻きつけている部分は曲率がガイド穴11に比べて小さく、接触させていることで毛羽が発生することはない。また、炭素繊維の逆方向への戻りが少なくなるため、ガイド穴11からニードル4間の炭素繊維束が若干緩んだ状態になり、ニードル4が下がって炭素繊維束10が引っ張られても、編みつけ付近で炭素繊維束10に若干の緩みがあるため急に強い張力がかかるのを防ぐことができ、糸切れを防ぐこともできる。   Therefore, when the needle 4 passes by the side of the guide 7, the needle 4 does not rub against the carbon fiber and no fluff is generated. In addition, since the carbon fiber bundle 10 is spirally wound around the guide 7, a contact is made between the carbon fiber bundle 10 and the guide 7, and a small frictional force is generated, and the needle 4 is raised to raise the carbon fiber bundle. Even if the tension of 10 is weakened, the return in the direction opposite to the supply direction of the carbon fiber bundle 10 can be reduced, and the advancement and retreat of the yarn can be suppressed, so that the damage of the carbon fiber bundle can be reduced. Here, the portion of the guide 7 around which the carbon fiber bundle 10 is wound has a smaller curvature than that of the guide hole 11, and fluff does not occur when the portion is in contact. Further, since the return of the carbon fiber in the reverse direction is reduced, the carbon fiber bundle between the needle 4 and the guide hole 11 is slightly loosened, and even if the needle 4 is lowered and the carbon fiber bundle 10 is pulled, the knitting is performed. Since the carbon fiber bundle 10 has a slight looseness in the vicinity of the locating, it is possible to prevent a sudden strong tension from being applied, and it is possible to prevent yarn breakage.

上記の実施形態ではループ形成に際して編糸である炭素繊維束を導く役割をするものとしてガイド穴11を有するガイド7を使用しているが、例えば図13に示すように、パイプガイド15を使用してもよい。パイプガイド15の場合、供給されてくる糸を直線的に通すことができ、且つパイプの中を通るためパイプ中に拘束され糸道が安定的であることや、パイプガイド15の下部が細く絞られており、フィラメントを集束させた状態で糸を供給することができるため好ましい。   In the above embodiment, the guide 7 having the guide hole 11 is used as a member for guiding the carbon fiber bundle as the knitting yarn when forming the loop. For example, as shown in FIG. May be. In the case of the pipe guide 15, the supplied yarn can be passed linearly, and since it passes through the pipe, it is restrained in the pipe and the yarn path is stable, and the lower portion of the pipe guide 15 is narrowed down. It is preferable because the yarn can be supplied in a state where the filaments are converged.

ここで、ニードル4が下降したときになるべく強い張力がかからないようにするため、テンション板バネ14(図12に図示)としては、薄いものを使用するのが良い。また、ニードル4にかかっているループの結節部には編糸の張力がかかっており、編地を巻き取るときに強い張力で巻き取ると、この巻き取り力もループ結節部にかかるため非常に強い負荷がかかり、炭素繊維は結節強度が低いため糸切れしてしまう。したがって、巻き取り張力は編地が強く引っ張られることなく軽く巻ける程度が良い。   Here, in order to prevent as much tension as possible when the needle 4 is lowered, it is preferable to use a thin tension leaf spring 14 (shown in FIG. 12). In addition, the tension of the knitting yarn is applied to the knot portion of the loop applied to the needle 4, and when the knitted fabric is wound with a strong tension, the winding force is also applied to the loop knot portion, which is very strong. The load is applied, and the carbon fiber breaks due to low knot strength. Therefore, the winding tension should be such that the knitted fabric can be wound lightly without being pulled strongly.

さらに炭素繊維束10を毛羽立つことなくニードル4へと供給するために、シンカー6を取り外して編成を行うことが好ましい。通常編成するときには、ニードル4が上昇したときに形成したループがフック9からニードル4の下部に落ちることで編地を編成できるが、ニードル4上昇時にループがフック9にかかったまま編地も一緒に上がることがあるため、ループがニードル4下部へと落ちないことがある。こうなると編地を編成できなくなるため、図3に示したようにシンカー6で編地をおさえてニードル4が上昇したときにループがニードル4と一緒に上がるのを防ぎ、確実にループがニードル4下部に落ちるようにしている。続いて図6に示したようにニードル4が下降するときには、シンカー6はニードル4から後退した位置へと離れていく。ニードル4が下がりきると今度はニードル4上昇に備えてシンカー6が前進するというように、シンカー6は前後運動を繰り返している。   Furthermore, in order to supply the carbon fiber bundle 10 to the needle 4 without fuzzing, it is preferable to remove the sinker 6 and perform knitting. In normal knitting, the knitted fabric can be knitted by the loop formed when the needle 4 is raised falling from the hook 9 to the lower part of the needle 4. The loop may not fall to the bottom of the needle 4. In this case, the knitted fabric cannot be knitted. Therefore, as shown in FIG. 3, when the needle 4 is lifted by holding the knitted fabric with the sinker 6, the loop is prevented from rising together with the needle 4. Try to fall to the bottom. Subsequently, as shown in FIG. 6, when the needle 4 descends, the sinker 6 moves away from the needle 4 to a position retracted. The sinker 6 repeats the back-and-forth movement so that when the needle 4 is lowered, the sinker 6 moves forward in preparation for the needle 4 rising.

炭素繊維のように太い繊維束で編地を編成する場合、シンカー6の前後運動によって供給されてくる繊維束を突き刺して毛羽立ちやすく、このため炭素繊維に大きな損傷を与えてしまい、ニードル4にかかって引っ張られると糸切れしやすくなる。   When a knitted fabric is knitted with a thick fiber bundle such as carbon fiber, the fiber bundle supplied by the forward / backward movement of the sinker 6 is easily pierced and fuzzed easily. When it is pulled, the thread breaks easily.

したがって、シンカー6を取り外して編むことで毛羽の発生を防ぐことができる。ここで、シンカー6がないとループがニードル4下部に落ちず、編地を編成しにくいと上記したが、炭素繊維に比べ合成繊維は弾性率が低く、ループを形成すると編地の巻き取り力によって引っ張られるためループが長細くなってニードル4の周りに巻きつくような状態になり、ループがニードル4下部に落ちにくくなる。しかしながら、炭素繊維は高弾性であるのでループを形成するとそのループは円形状に丸い形をとるためニードル4がループの中を通過しやすくなり、シンカー6がなくてもループがニードル4下部に落ちやすく、またループがニードル4から外れやすいため編地を編成しやすい。   Therefore, the occurrence of fluff can be prevented by removing the sinker 6 and knitting. Here, the loop does not fall below the needle 4 without the sinker 6 and it is difficult to knit the knitted fabric. However, the synthetic fiber has a lower elastic modulus than the carbon fiber. Therefore, the loop becomes thin and wraps around the needle 4, and the loop is less likely to fall below the needle 4. However, since carbon fiber is highly elastic, when a loop is formed, the loop takes a circular shape and the needle 4 easily passes through the loop, and the loop falls to the bottom of the needle 4 without the sinker 6. The loop is easy to come off from the needle 4 and the knitted fabric is easily knitted.

本発明において使用する炭素繊維束は、編成時における炭素繊維束のニードルとの擦れによる毛羽発生を抑制し、またシンカーの炭素繊維束への突き刺さりを防ぐ観点から、フィラメント数が少ないほうが好ましく、フィラメント数6,000本以下とされている。また、炭素繊維束にはサイジング剤を用いて集束性が付与されていたほうが良く、サイジング剤付着量としては0.2〜1.5重量%程度であることが好ましい。また、炭素繊維束の撚りも集束性付与に効果があるので、例えば、1メートル当たり5〜15回程度の若干の撚りをかけることが望ましい。 The carbon fiber bundle used in the present invention preferably has a smaller number of filaments from the viewpoint of suppressing fluff generation due to rubbing of the carbon fiber bundle with the needle during knitting and preventing the sinker from sticking into the carbon fiber bundle. The number is 6,000 or less . Moreover, it is better that the carbon fiber bundle is imparted with a sizing agent using a sizing agent, and the sizing agent adhesion amount is preferably about 0.2 to 1.5% by weight. Moreover, since twisting of the carbon fiber bundle is also effective for imparting convergence, it is desirable to apply a slight twist of about 5 to 15 times per meter, for example.

また、前記実施形態の説明において、ニードル4としてコンパウンドニードルを図示したが、このニードル4とトング5の代わりとしてラッチニードルを使用してもよい。   In the description of the above embodiment, a compound needle is illustrated as the needle 4, but a latch needle may be used in place of the needle 4 and the tongue 5.

このように、上述した本発明に係るシート状炭素繊維経編物は、ドレープ性に優れ、深絞り賦形が可能であるため成形作業が非常に簡単であり、その積層板構成を採用したFRPは耐衝撃に優れる。これはポリアクリロニトリル繊維をプリカーサとして製造された連続炭素繊維束からなるシートであり、編物形態におけるループ組織によってもたらされる効果である。   As described above, the sheet-like carbon fiber warp knitted fabric according to the present invention described above is excellent in drape and can be deep-drawn and shaped, so the molding operation is very simple. Excellent shock resistance. This is a sheet composed of continuous carbon fiber bundles manufactured using polyacrylonitrile fiber as a precursor, and is an effect brought about by a loop structure in a knitted form.

また、上述した本発明に係るシート状炭素繊維経編物の製造方法によれば、炭素繊維の編成時における毛羽発生や糸切れが防止でき、品質が均一な編物が得られる。これは炭素繊維束をガイドにらせん状に巻きつけて、もしくはパイプガイドに通すことで集束させながら供給し、編成操作を繰り返すことによる効果である。   Moreover, according to the manufacturing method of the sheet-like carbon fiber warp knitted fabric according to the present invention described above, generation of fluff and yarn breakage during knitting of carbon fibers can be prevented, and a knitted fabric with uniform quality can be obtained. This is an effect obtained by repeating the knitting operation by winding the carbon fiber bundle around the guide in a spiral manner or by feeding it through a pipe guide while converging it.

本発明に係るシート状炭素繊維編物およびその製造方法は、とくに曲面等の複雑な形状を有するFRPを成形する際に用いて好適なものである。   The sheet-like carbon fiber knitted fabric according to the present invention and the method for producing the same are particularly suitable for use in molding FRP having a complicated shape such as a curved surface.

本発明の一実施形態に係るシート状炭素繊維編物の部分平面図である。It is a partial top view of the sheet-like carbon fiber knitted fabric which concerns on one Embodiment of this invention. ラッセル編機での通常のループ編成操作の一ステップを説明するための概略部分斜視図である。It is a schematic partial perspective view for demonstrating one step of normal loop knitting operation in a Russell knitting machine. 図2の次のステップを説明するための概略部分斜視図である。FIG. 3 is a schematic partial perspective view for explaining a next step of FIG. 2. 図3の次のステップを説明するための概略部分斜視図である。FIG. 4 is a schematic partial perspective view for explaining a next step of FIG. 3. 図4の次のステップを説明するための概略部分斜視図である。FIG. 5 is a schematic partial perspective view for explaining a next step of FIG. 4. 図5の次のステップを説明するための概略部分斜視図である。FIG. 6 is a schematic partial perspective view for explaining the next step of FIG. 5. 図6の次のステップを説明するための概略部分斜視図である。FIG. 7 is a schematic partial perspective view for explaining a next step of FIG. 6. 本発明の一実施形態に係るシート状炭素繊維編物の製造方法における糸道を示すラッセル編機の概略部分斜視図である。It is a general | schematic fragmentary perspective view of the Russell knitting machine which shows the yarn path in the manufacturing method of the sheet-like carbon fiber knitted fabric which concerns on one Embodiment of this invention. 図8の次のステップを説明するための概略部分斜視図である。FIG. 9 is a schematic partial perspective view for explaining a next step of FIG. 8. 従来の方法でシート状炭素繊維編物の製造する場合の糸道を示すラッセル編機の概略部分斜視図である。It is a general | schematic fragmentary perspective view of the Russell knitting machine which shows the yarn path in the case of manufacturing a sheet-like carbon fiber knitted fabric by the conventional method. 図10の次のステップを説明するための概略部分斜視図である。FIG. 11 is a schematic partial perspective view for explaining a next step of FIG. 10. ラッセル編機の経糸張力バランス装置の概略斜視図である。It is a schematic perspective view of the warp tension balance device of a Russell knitting machine. 本発明の別の実施形態に係るシート状炭素繊維編物の製造方法における糸道を示すラッセル編機の概略部分斜視図である。It is a general | schematic fragmentary perspective view of the Russell knitting machine which shows the yarn path in the manufacturing method of the sheet-like carbon fiber knitted fabric which concerns on another embodiment of this invention.

符号の説明Explanation of symbols

イ:編糸と挿入糸の交差している箇所
ロ:炭素繊維が存在しない空隙部
1:シート状炭素繊維編物
2:編糸
3:挿入糸
4:ニードル
5:トング
6:シンカー
7:ガイド
8:生地
9:フック
10:炭素繊維束
11:ガイド穴
12:ガイドブロック
13:テンションレール
14:テンション板バネ
15:パイプガイド
a:本発明によるガイド穴付近の糸道部分
a’:従来方法によるガイド穴付近の糸道部分
F:ラッセル編機前方
B:ラッセル編機後方
B: Location where the knitting yarn and the insertion yarn intersect B: Cavity where no carbon fiber exists 1: Sheet-like carbon fiber knitted fabric 2: Knitting yarn 3: Insertion yarn 4: Needle 5: Tong 6: Sinker 7: Guide 8 : Fabric 9: Hook 10: Carbon fiber bundle 11: Guide hole 12: Guide block 13: Tension rail 14: Tension leaf spring 15: Pipe guide a: Yarn portion near guide hole according to the present invention a ': Guide by conventional method Thread path near the hole F: Russell knitting machine front B: Russell knitting machine rear

Claims (3)

ポリアクリロニトリル繊維をプリカーサとして緊張下で炭化処理して製造された連続炭素繊維束からなるシート状炭素繊維編物であって、前記炭素繊維束における炭素繊維の引張強度が3〜10GPaで引張弾性率が200〜600GPaであり、前記炭素繊維束からなる編糸がたて方向に連続したループを形成してなり、前記炭素繊維束のフィラメント数が6,000本以下でかつ炭素繊維束の繊度が60〜400テックスであり、かつ、1平方メートルあたりの炭素繊維目付けが100〜700gであることを特徴とするシート状炭素繊維編物。 A sheet-like carbon fiber knitted fabric made of a continuous carbon fiber bundle produced by carbonizing under tension using polyacrylonitrile fiber as a precursor, and the tensile strength of the carbon fiber in the carbon fiber bundle is 3 to 10 GPa and the tensile elastic modulus is 200 to 600 GPa, a knitting yarn composed of the carbon fiber bundle is formed into a continuous loop in the warp direction, the number of filaments of the carbon fiber bundle is 6,000 or less, and the fineness of the carbon fiber bundle is 60 A sheet-like carbon fiber knitted fabric characterized by being -400 tex and having a carbon fiber basis weight per square meter of 100-700 g . 炭素繊維束の鎖編糸をラッセル編機のガイドにらせん状に巻き付け、擬似的な撚りにより炭素繊維束を集束させるとともに、炭素繊維束とガイド間に摩擦力により炭素繊維束の供給方向と逆方向への戻りを抑制しながら、編成操作を繰り返すことを特徴とする、請求項に記載のシート状炭素繊維編物の製造方法。 The chain knitting yarn of the carbon fiber bundle is spirally wound around the guide of the Russell knitting machine, the carbon fiber bundle is focused by pseudo twisting, and the carbon fiber bundle is reversed in the direction of supply by the friction force between the carbon fiber bundle and the guide. while suppressing a return direction, and repeating the knitting operations, the method for manufacturing a sheet-like carbon fiber or knitted fabric according to claim 1. 炭素繊維束の鎖編糸をラッセル編機の下部が細く絞られたパイプガイドに通すことで、炭素繊維束を集束させながら供給し、編成操作を繰り返すことを特徴とする、請求項に記載のシート状炭素繊維編物の製造方法。 By passing the chain stitch yarn of carbon fiber bundle to a pipe guide the lower is narrowed Russell knitting machine, supplies while focusing the carbon fiber bundle, and repeating the knitting operations, according to claim 1 Manufacturing method of sheet-like carbon fiber knitted fabric.
JP2006290050A 2006-10-25 2006-10-25 Sheet-like carbon fiber knitted fabric and method for producing the same Expired - Fee Related JP4822528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006290050A JP4822528B2 (en) 2006-10-25 2006-10-25 Sheet-like carbon fiber knitted fabric and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006290050A JP4822528B2 (en) 2006-10-25 2006-10-25 Sheet-like carbon fiber knitted fabric and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008106391A JP2008106391A (en) 2008-05-08
JP4822528B2 true JP4822528B2 (en) 2011-11-24

Family

ID=39439993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006290050A Expired - Fee Related JP4822528B2 (en) 2006-10-25 2006-10-25 Sheet-like carbon fiber knitted fabric and method for producing the same

Country Status (1)

Country Link
JP (1) JP4822528B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4964855B2 (en) * 2008-10-08 2012-07-04 日新製鋼株式会社 Plate-like composite material and long fiber knitted sheet
JP5572426B2 (en) * 2010-03-12 2014-08-13 グンゼ株式会社 Method for producing carbon fiber reinforced silicon carbide composite material
JP5849284B2 (en) * 2011-10-26 2016-01-27 兵庫県 Manufacturing method of fiber reinforced composite knitted material
JP5847033B2 (en) * 2012-07-19 2016-01-20 株式会社Shindo Carbon fiber stitch substrate and wet prepreg using the same
JP6504430B2 (en) * 2014-03-31 2019-04-24 東レ株式会社 Intermediate substrate and method of manufacturing fiber reinforced plastic part using the intermediate substrate
JP6362454B2 (en) * 2014-07-07 2018-07-25 新日鉄住金マテリアルズ株式会社 Mesh fiber reinforced composite
JP2017218688A (en) * 2016-06-07 2017-12-14 三菱重工業株式会社 Reinforcing base material for composite material part, composite material part, and method for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02132675A (en) * 1988-11-11 1990-05-22 Copal Co Ltd Floppy disk driving device
JP2934527B2 (en) * 1991-04-26 1999-08-16 東洋紡績株式会社 Civil and architectural mesh sheets
JPH09176939A (en) * 1995-12-26 1997-07-08 Nippon Carbon Co Ltd Carbon fiber knitted fabric having high stretchability and its production

Also Published As

Publication number Publication date
JP2008106391A (en) 2008-05-08

Similar Documents

Publication Publication Date Title
JP4822528B2 (en) Sheet-like carbon fiber knitted fabric and method for producing the same
KR100444086B1 (en) Reinforcement fabric and its manufacturing method and manufacturing apparatus
Mirdehghan Fibrous polymeric composites
Lau et al. Knittability of high-modulus yarns
US9427934B2 (en) Stitched carbon fiber base material and wet prepreg using same
KR102597683B1 (en) Nonwoven fabric laid in one direction and its uses
JP5707734B2 (en) Unidirectional reinforced fiber woven or knitted fabric for fiber reinforced plastic, its fiber substrate, method for producing the fiber substrate, and method for molding fiber reinforced plastic using the fiber substrate
JP5849284B2 (en) Manufacturing method of fiber reinforced composite knitted material
Latifi Engineered Polymeric Fibrous Materials
JP7031821B2 (en) Fiber reinforced resin tubular body and its manufacturing method
CN105051276A (en) Fiber-reinforced layer for conveyor belt
JP5049215B2 (en) Reinforcing fiber fabric and its weaving method
JP2009074186A (en) Method for producing carbon fiber woven fabric
JP6912044B2 (en) Heat resistant multi-axis stitch base material
JP2011241505A (en) Reinforcement fiber sheet material
JP6547149B2 (en) Heat resistant multiaxial stitch base material
JP6362454B2 (en) Mesh fiber reinforced composite
JP2009013512A (en) Method for producing carbon fiber cord for rubber reinforcement, and rubber reinforcing carbon fiber cord
JP6364798B2 (en) Reinforcing fiber fabric and method for producing the same
JP2019167648A (en) Unidirectionally reinforced fiber sheet and braid
JP3672043B2 (en) Thermoplastic composite continuous molding and continuous molding method
JP6897705B2 (en) Reinforcing fiber woven fabric and its manufacturing method
JP5796732B2 (en) Fiber reinforced sheet, method for producing the same, and fiber reinforced composite material
JP2017160571A (en) Manufacturing method of reinforcing fiber woven fabric and manufacturing apparatus thereof
JP5574630B2 (en) Guide device, continuous fiber bundle winder, continuous fiber bundle manufacturing method, and carbon fiber bundle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110905

R150 Certificate of patent or registration of utility model

Ref document number: 4822528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees