JP5572426B2 - Method for producing carbon fiber reinforced silicon carbide composite material - Google Patents

Method for producing carbon fiber reinforced silicon carbide composite material Download PDF

Info

Publication number
JP5572426B2
JP5572426B2 JP2010055490A JP2010055490A JP5572426B2 JP 5572426 B2 JP5572426 B2 JP 5572426B2 JP 2010055490 A JP2010055490 A JP 2010055490A JP 2010055490 A JP2010055490 A JP 2010055490A JP 5572426 B2 JP5572426 B2 JP 5572426B2
Authority
JP
Japan
Prior art keywords
carbon fiber
silicon carbide
composite material
knitted fabric
fiber structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010055490A
Other languages
Japanese (ja)
Other versions
JP2011190545A (en
Inventor
彰洋 佐藤
宏行 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunze Ltd
Original Assignee
Gunze Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunze Ltd filed Critical Gunze Ltd
Priority to JP2010055490A priority Critical patent/JP5572426B2/en
Publication of JP2011190545A publication Critical patent/JP2011190545A/en
Application granted granted Critical
Publication of JP5572426B2 publication Critical patent/JP5572426B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Ceramic Products (AREA)
  • Knitting Of Fabric (AREA)

Description

本発明は、丸編みされた炭素繊維構造物及びそれを含む炭素繊維強化炭化ケイ素系複合材料に関する。   The present invention relates to a circular knitted carbon fiber structure and a carbon fiber reinforced silicon carbide composite material including the carbon fiber structure.

炭素繊維強化複合材料は、軽量、高剛性、高強度などの特性を有することから近年注目されており各分野への応用研究が進められている。中でも、炭素繊維強化炭化ケイ素複合材料(以下C/SiC複合材料とも記す)はその耐熱の高さから特に注目されている。   Carbon fiber reinforced composite materials have been attracting attention in recent years because of their characteristics such as light weight, high rigidity, and high strength, and application studies in various fields are being promoted. Among these, carbon fiber reinforced silicon carbide composite materials (hereinafter also referred to as C / SiC composite materials) are particularly attracting attention because of their high heat resistance.

例えば、特許文献1には、ピッチ系炭素繊維構造物と炭化ケイ素とからなるC/SiC複合材料が開示されている。しかしながら、この繊維強化複合材料は、長繊維の炭素繊維構造物を一方向あるいは二方向に配向させて複合化せしめるものであり、繊維の配向方向の機械強度には優れるものの、繊維構造物の伸縮性やドレープ性が劣るため三次元の複雑曲面を有する成形物を得るのが難しく、また、機械物性の等方性を重視する場合には適さない問題があった。 For example, Patent Document 1 discloses a C / SiC composite material composed of a pitch-based carbon fiber structure and silicon carbide. However, this fiber-reinforced composite material is a composite of long-fiber carbon fiber structures that are oriented in one or two directions, and has excellent mechanical strength in the fiber orientation direction, but the expansion and contraction of the fiber structure. Therefore, it is difficult to obtain a molded article having a three-dimensional complicated curved surface, and there is a problem that is not suitable when importance is attached to isotropy of mechanical properties.

一方で、特許文献2には繊維強化プラスチック材料に用いるPAN系炭素繊維編物を、特定の経編機によって編成する方法が開示されている。しかしながら実際には、この方法では編物のループを形成する際の曲率が大きい(曲率半径が小さい)ため、編成工程または複合化工程でフィラメントが折れやすい問題があった。
また、繊維構造物の伸縮性が不十分であり、繊維構造の不十分な等方性に基づいて、繊維強化複合材料の衝撃強度や耐摩耗性が不十分であるという問題があった。
On the other hand, Patent Document 2 discloses a method of knitting a PAN-based carbon fiber knitted fabric used for a fiber-reinforced plastic material with a specific warp knitting machine. However, in practice, this method has a problem that the filament is easily broken during the knitting process or the compounding process because the curvature when forming the loop of the knitted fabric is large (the radius of curvature is small).
In addition, there is a problem that the fiber structure has insufficient stretchability, and the impact strength and wear resistance of the fiber-reinforced composite material are insufficient based on insufficient isotropy of the fiber structure.

特許文献3には、炭素繊維構造物の繊維表面にCVD法により炭化ケイ素を析出させる方法が開示されている。しかしながら、この方法ではより厚い複合材料成形物を作製するにあたり、多大なコストや時間を要する問題があった。 Patent Document 3 discloses a method of depositing silicon carbide on a fiber surface of a carbon fiber structure by a CVD method. However, this method has a problem of requiring a great deal of cost and time in producing a thicker composite material molded product.

特開平5−139835号公報JP-A-5-139835 特開2008−106391号公報JP 2008-106391 A 特開昭61−141678号公報JP 61-141678 A

本発明は、伸縮性やドレープ性に優れ、高強度、高弾性率で、かつ複雑な形状を有する型に追随できる炭素繊維構造物、及び、衝撃強度、耐摩耗性、耐熱性、軽量性に優れ、厚肉成形品を得るのに適した炭素繊維強化炭化ケイ素複合材料(C/SiC複合材料)を提供することを目的とする。 The present invention is excellent in stretchability and drape, has high strength, high elastic modulus, and can follow a mold having a complicated shape, as well as impact strength, wear resistance, heat resistance, and light weight. An object of the present invention is to provide a carbon fiber reinforced silicon carbide composite material (C / SiC composite material) that is excellent and suitable for obtaining a thick molded article.

本発明者らは、上記課題を達成すべく鋭意研究を重ねた結果、炭素繊維を丸編みして筒状構造物とすることにより、複雑な形状を有する型に追随できかつ等方性を有する炭素繊維構造物が得られることを見いだした。また、該丸編みされた炭素繊維構造物に炭化ケイ素系粉末を含むスラリーを含浸させて、又は該炭素繊維構造物と炭化ケイ素系粉末を含むグリーンシートを積層してプリプレグシートを形成し、これを加熱処理(焼結)することにより得られるC/SiC複合材料は、多様性のある形状への成形が可能であり、かつ優れた耐熱性、衝撃強度、耐摩耗性、擬延性等を有することを見いだした。かかる知見に基づきさらに研究を重ねた結果、本発明を完成するに至った。
本発明は、下記の丸編みされた炭素繊維構造物で強化されてなる炭素繊維強化炭化ケイ素系複合材料の製造方法を提供する。
.炭化ケイ素が、丸編みされた炭素繊維構造物で強化されてなる炭素繊維強化炭化ケイ素系複合材料の製造方法であって、
(1)炭素繊維を丸編みして炭素繊維構造物を製造する工程、
(2)(a)該炭素繊維構造物に炭化ケイ素系粉末を含むスラリーを含浸してプリプレグシートを製造する工程、又は(b)該炭素繊維構造物と炭化ケイ素系粉末を含むグリーンシートを積層してプリプレグシートを製造する工程、
(3)該プリプレグシートを基材に被覆してプリフォームを製造する工程、及び
(4)該プリフォームを加熱処理する工程、
を含む製造方法。
As a result of intensive studies to achieve the above-mentioned problems, the present inventors can follow a mold having a complicated shape and have isotropic properties by circularly knitting carbon fibers into a cylindrical structure. It has been found that a carbon fiber structure can be obtained. Further, the circular knitted carbon fiber structure is impregnated with a slurry containing silicon carbide powder, or a green sheet containing the carbon fiber structure and silicon carbide powder is laminated to form a prepreg sheet. C / SiC composite material obtained by heat treatment (sintering) can be molded into various shapes and has excellent heat resistance, impact strength, wear resistance, pseudo-ductility, etc. I found out. As a result of further research based on this knowledge, the present invention has been completed.
The present invention provides a method for producing a carbon fiber-reinforced silicon carbide composite material reinforced with the following circular knitted carbon fiber structure.
Item 1 . A method for producing a carbon fiber reinforced silicon carbide-based composite material in which silicon carbide is reinforced with a circular knitted carbon fiber structure,
(1) A process of manufacturing a carbon fiber structure by circular knitting of carbon fibers,
(2) (a) A step of manufacturing a prepreg sheet by impregnating the carbon fiber structure with a slurry containing silicon carbide powder, or (b) laminating the carbon fiber structure and a green sheet containing silicon carbide powder. And a process for producing a prepreg sheet,
(3) A step of manufacturing a preform by coating the prepreg sheet on a base material, and (4) a step of heat-treating the preform.
Manufacturing method.

本発明の丸編みされた筒状炭素繊維構造物は、複雑な形状を有する型に追随できかつ等方性を有する。そのため、該丸編みされた炭素繊維構造物に炭化ケイ素系粉末を含むスラリーを含浸させて、又は該炭素繊維構造物と炭化ケイ素系粉末を含むグリーンシートを積層してプリプレグシートを形成し、これを加熱処理(焼結)することにより得られるC/SiC複合材料は、多様性のある形状への成形が可能であり、かつ優れた耐熱性、衝撃強度、耐摩耗性、擬延性等を有する。   The circular knitted tubular carbon fiber structure of the present invention can follow a mold having a complicated shape and is isotropic. Therefore, the circular knitted carbon fiber structure is impregnated with a slurry containing silicon carbide powder, or a green sheet containing the carbon fiber structure and silicon carbide powder is laminated to form a prepreg sheet. C / SiC composite material obtained by heat treatment (sintering) can be molded into various shapes and has excellent heat resistance, impact strength, wear resistance, pseudo-ductility, etc. .

実施例1で得られる筒編み生地の編目の写真を示す。The photograph of the stitch of the tubular knitted fabric obtained in Example 1 is shown. 実施例1で得られる筒編み生地の寸法を示す。The dimension of the cylindrical knitted fabric obtained in Example 1 is shown. 実施例1で得られる筒編み生地をテープ状にした様子を示す写真である。It is a photograph which shows a mode that the cylindrical knitted fabric obtained in Example 1 was tape-shaped. 実施例1で得られる筒編み生地を曲管に被覆した様子を示す写真である。It is a photograph which shows a mode that the tubular knitted fabric obtained in Example 1 was coat | covered on the curved pipe. 実施例1で得られる筒編み生地(テープ状)を曲管に巻き付けた様子を示す写真である。It is a photograph which shows a mode that the cylindrical knitted fabric (tape shape) obtained in Example 1 was wound around a curved pipe. 実施例1で得られる筒編み生地をヨコに拡張した時のループ形状の変化を示す写真である。It is a photograph which shows the change of a loop shape when the cylindrical knitted fabric obtained in Example 1 is expanded horizontally. 実施例1で得られる筒編み生地をタテに拡張した時のループ形状の変化を示す写真である。It is a photograph which shows the change of a loop shape when the cylindrical knitted fabric obtained in Example 1 is extended to length.

本発明は、伸縮性やドレープ性に優れ、高強度、高弾性率で、かつ複雑な形状を有する型に追随できる炭素繊維構造物、及び、衝撃強度、耐摩耗性、耐熱性、軽量性に優れ、厚肉成形品を得るのに適した炭素繊維強化炭化ケイ素複合材料(C/SiC複合材料)に関する。
本発明に係る炭素繊維は、複合材料としての擬延性効果を維持するため高強度、高弾性なポリアクリロニトリル系(PAN系)が好ましい。
The present invention is excellent in stretchability and drape, has high strength, high elastic modulus, and can follow a mold having a complicated shape, as well as impact strength, wear resistance, heat resistance, and light weight. The present invention relates to a carbon fiber reinforced silicon carbide composite material (C / SiC composite material) which is excellent and suitable for obtaining a thick molded article.
The carbon fiber according to the present invention is preferably a polyacrylonitrile system (PAN system) having high strength and high elasticity in order to maintain the pseudo-ductility effect as a composite material.

さらに、炭素繊維は丸編みに供されるため、編み立てのし易さの観点から、フィラメント平均径は通常5〜15μm程度、特に5〜8μmであることが好ましい。また、フィラメント数は、通常1000〜12000フィラメント程度、特に1000〜6000フィラメントであることが好ましい。繊度(繊維束の太さ)を表すテックス(g/1000m)は、通常50〜800t程度、特に66〜400tであることが好ましい。引張弾性率は通常200〜600GPa程度、特に200〜450GPaであることが好ましい。 Furthermore, since the carbon fibers are used for circular knitting, the average filament diameter is usually about 5 to 15 μm, particularly preferably 5 to 8 μm, from the viewpoint of ease of knitting. The number of filaments is usually about 1000 to 12000 filaments, and preferably 1000 to 6000 filaments. The tex (g / 1000 m) representing the fineness (thickness of the fiber bundle) is usually about 50 to 800 t, particularly preferably 66 to 400 t. The tensile modulus is usually about 200 to 600 GPa, particularly preferably 200 to 450 GPa.

本発明に係る炭素繊維構造物は、連続炭素繊維束からなる緯編地が好ましく、特に緯丸編地が好ましい。丸編地は端部が存在せず、薄く均一な連続組織を得やすい点で好ましく、平編(天竺編みとも言う)やゴム編(リブ編とも言う)、パール編(リンクス編とも言う)の中から選択される組織の緯丸編地が好ましい。また、前記組織の変化組織を採用し、伸縮しやすい方向や繊維密度をコントロールすることもできる。このような緯丸編地の例として、あぜ編、スムース、かの子、テレコ、メッシュのような緯丸編地が挙げられる。本発明における丸編地の各種組織を実現する上で、ニット、タック、ミス(ウェルト)、目移し、インレイ(挿入)等の各操作を適宜組み合わせて利用することができる。なかでも、平編(天竺編)、ゴム編、パール編のいずれかから選択される編組織を全針ニット編した緯丸編地が、ループの曲率を、編地全体に渡り均一にしやすい点で、特に好ましい。経編地はループからループに渡る繊維の直線部が存在するため、ループと直線部が混在するという点で不均一な組織となりやすく好ましくない。経編地は緯編地に比較して繊維が直線的に配される部分が多いため、複雑形状に賦形する際に繊維に毛羽や折損が生じやすいという問題を有しており、さらにはループの曲率が大きく(曲率半径が小さく)なりやすい傾向があり、これによっても繊維に毛羽や折損が生じやすいため好ましくない。   The carbon fiber structure according to the present invention is preferably a weft knitted fabric composed of continuous carbon fiber bundles, and particularly preferably a weft circular knitted fabric. The circular knitted fabric is preferable in that it has no edge and it is easy to obtain a thin and uniform continuous structure, such as a flat knitting (also called a tentacle knitting), a rubber knitting (also called a rib knitting), and a pearl knitting (also called a links knitting). A weft circular knitted fabric having a structure selected from among them is preferred. Moreover, the change structure of the said structure | tissue is employ | adopted and the direction and fiber density which are easy to expand / contract can also be controlled. Examples of such a weft knitted fabric include a weft knitted fabric such as a knitted knitted fabric, a smooth knitted fabric, a child, a teleco, and a mesh. In realizing various structures of the circular knitted fabric in the present invention, operations such as knit, tuck, miss (welt), transfer, inlay (insertion) and the like can be used in appropriate combination. Above all, the weft-round knitted fabric in which all the knitting structures selected from flat knitting (tengu knitting), rubber knitting and pearl knitting are knitted is easy to make the curvature of the loop uniform over the entire knitting And particularly preferred. Since the warp knitted fabric has a linear portion of the fiber extending from the loop to the loop, it is not preferable because the loop and the linear portion are likely to be mixed and an uneven structure tends to be formed. The warp knitted fabric has many parts in which the fibers are linearly arranged compared to the weft knitted fabric, and therefore has a problem that fluff and breakage are likely to occur in the fiber when it is shaped into a complicated shape. There is a tendency that the curvature of the loop tends to be large (the radius of curvature is small), and this is also not preferable because fluff and breakage are likely to occur in the fiber.

炭素繊維を丸編みする方法は特に限定はない。例えば、上記の炭素繊維を筒編機を用いて編み立てることができる。得られた丸編み(筒編み)生地は、一般的には度目(0.5インチ当たりの編目の数)が5〜10、好ましくは6〜8であり、目付が100〜700g/m、好ましくは150〜400g/mである。この丸編み生地では、織物やフィラメントワインディングと異なり、形状の変形がフレキシブルであり(360度いずれの方向にも伸縮可能であり)等方性を有する。そのため、得られるC/SiC複合材料は、多様な形状に成型可能であり、かつあらゆる方向からの衝撃強度に優れるという利点がある。 The method for circular knitting of carbon fibers is not particularly limited. For example, the carbon fiber can be knitted using a cylindrical knitting machine. The obtained circular knitted (tubular knitted) fabric generally has a stitch (number of stitches per 0.5 inch) of 5 to 10, preferably 6 to 8, and a basis weight of 100 to 700 g / m 2 . Preferably it is 150-400 g / m < 2 >. In this circular knitted fabric, unlike woven fabric and filament winding, the deformation of the shape is flexible (it can be expanded and contracted in any direction of 360 degrees) and is isotropic. Therefore, the obtained C / SiC composite material has an advantage that it can be molded into various shapes and is excellent in impact strength from all directions.

上記の丸編みされた炭素繊維構造物からプリプレグシートの製造は、通常の方法によって実施できる。具体的には、例えば、丸編みされた炭素繊維構造物を炭化ケイ素粉体と有機バインダーと分散剤とからなるスラリー中を通過させ、該炭素繊維構造物に炭化ケイ素粉体と有機バインダーを含浸させ、これを巻き取り、乾燥させることにより製造できる。或いは、上記の方法で製造される丸編みされた炭素繊維構造物と炭化ケイ素系粉末を含むグリーンシートを積層(例えば、2〜10層積層)してなるプリプレグシートとすることもできる。   The prepreg sheet can be produced from the above circular knitted carbon fiber structure by a usual method. Specifically, for example, a circular knitted carbon fiber structure is passed through a slurry composed of silicon carbide powder, an organic binder, and a dispersant, and the carbon fiber structure is impregnated with the silicon carbide powder and the organic binder. It can be manufactured by winding it and drying it. Or it can also be set as the prepreg sheet | seat formed by laminating | stacking (for example, 2-10 layer lamination | stacking) the green sheet containing the circular knitted carbon fiber structure manufactured by said method, and a silicon carbide type powder.

炭化ケイ素粉体は、その粒子径は、通常10nm〜2μm程度、好ましくは10nm〜1.5μm程度である。炭化ケイ素は焼結助剤を配合したものが好ましく、好ましい焼結助剤として、Al2 3、Y2 3、SiO2等が例示できる。 The particle size of the silicon carbide powder is usually about 10 nm to 2 μm, preferably about 10 nm to 1.5 μm. Silicon carbide preferably contains a sintering aid, and examples of preferred sintering aids include Al 2 O 3 , Y 2 O 3 , and SiO 2 .

この際に使用する有機バインダー及び分散剤としては、通常、炭化ケイ素成形品に用いられるものであれば、特に制限なく用いることができる。丸編みされた炭素繊維構造物とマトリックスとなる炭化ケイ素粉体の重量比は、通常20/80〜65/35であり、好ましくは30/70〜45/55である。   As the organic binder and dispersant used in this case, any organic binder that can be used for a silicon carbide molded product can be used without particular limitation. The weight ratio of the circular knitted carbon fiber structure to the silicon carbide powder as the matrix is usually 20/80 to 65/35, preferably 30/70 to 45/55.

本発明のC/SiC複合材料からなるプリフォームは、上記プリプレグシートを所定の形状を有する黒鉛型等の基材に被覆することにより製品形状に成形される。被覆の方法は特に限定はなく、例えば、形状が角柱状、円柱状の黒鉛型の場合には、プリプレグシートを基材に巻き付ける(倦回する)ことにより被覆できる(例えば図5)。巻き付けの積層回数は特に限定はないが、通常、最終的に得られる成形品の厚みが1mm以上、特に1〜15mmになるように巻き付ければよい。   The preform made of the C / SiC composite material of the present invention is formed into a product shape by coating the prepreg sheet on a base material such as a graphite mold having a predetermined shape. The coating method is not particularly limited. For example, in the case of a graphite column having a prismatic shape or a cylindrical shape, it can be coated by winding (winding) a prepreg sheet around the substrate (for example, FIG. 5). The number of windings is not particularly limited, but it may be usually wound so that the finally obtained molded product has a thickness of 1 mm or more, particularly 1 to 15 mm.

或いは、プリフォームは、丸編みされた筒状の炭素繊維構造物を基材に被覆して(例えば図4)、炭化ケイ素粉体と有機バインダーと分散剤とからなるスラリーを塗布することにより成形することもできる。塗布の方法は特に限定はなく、通常、最終的に得られる成形品の厚みが1mm以上、特に1〜15mmになるように塗布すればよい。   Alternatively, the preform is formed by coating a base material with a circular knitted cylindrical carbon fiber structure (for example, FIG. 4) and applying a slurry composed of silicon carbide powder, an organic binder, and a dispersant. You can also The method of application is not particularly limited, and it is usually sufficient that the final molded product is 1 mm or more in thickness, particularly 1 to 15 mm.

さらに、プリフォームは、基材に被覆した丸編みされた筒状の炭素繊維構造物に、又はそれにスラリーを塗布した構造物に、前記グリーンシート又はプリプレグシートを被覆することにより成形することもできる。   Furthermore, the preform can be formed by coating the green sheet or prepreg sheet on a circular knitted cylindrical carbon fiber structure coated on a base material or on a structure coated with a slurry. .

炭化ケイ素成形品は、基材への被覆により形成されるため、基材の形状に応じ任意の形状に成形することができる。この基材の形状は特に限定はなく、例えば、棒状、円柱状、角柱状(三角柱、四角柱等)、円錐、角錐(三角錐、四角錐等)等が例示でき、前記形状の複数を組み合わせた形状であってもよい。   Since the silicon carbide molded article is formed by coating the base material, it can be formed into an arbitrary shape according to the shape of the base material. The shape of the base material is not particularly limited, and examples thereof include a rod shape, a columnar shape, a prismatic shape (triangular prism, quadrangular prism, etc.), a cone, a pyramid (triangular pyramid, a quadrangular pyramid, etc.), etc. The shape may be different.

C/SiC複合材料からなる炭化ケイ素成形品は、上記のプリフォームを、ホットプレス(HP)処理、熱間等方圧プレス(HIP)処理等の加熱処理することにより製造することができる。   A silicon carbide molded article made of a C / SiC composite material can be produced by subjecting the preform to a heat treatment such as a hot press (HP) treatment or a hot isostatic press (HIP) treatment.

ホットプレス(HP)処理の場合は、プリフォームを、例えば、不活性ガス(例えば窒素、アルゴン等)雰囲気下、1600〜2200℃(好ましくは1700〜2000℃)で、10〜40MPa(好ましくは15〜30MPa)で処理することができる。   In the case of hot press (HP) treatment, the preform is, for example, 1600-2200 ° C. (preferably 1700-2000 ° C.) in an inert gas (eg, nitrogen, argon, etc.) atmosphere, and 10-40 MPa (preferably 15 ˜30 MPa).

熱間等方圧プレス(HIP)処理の場合は、通常、カーボンシートでプリフォームの表面を覆う。続いて、表面を覆ったプリフォームをガラスカプセルに真空封入してHIP処理を行う。ガラスカプセルの材質として、例えば、HIP処理温度が1800℃付近であれば、コーニング社の高シリカガラスである「バイコール」(登録商標)や東ソー社の石英ガラスである「クウォーツ ESグレード」を、HIP処理温度が1300℃付近であれば、コーニング社のボロシリケイトイガラスである「パイレックス(登録商標)」を用いることができる。HIP処理は、不活性ガス(アルゴン等)雰囲気下で、通常1700〜2000℃にて、30〜60MPa程度で処理される。   In the case of hot isostatic pressing (HIP) treatment, the surface of the preform is usually covered with a carbon sheet. Subsequently, the preform covering the surface is vacuum-sealed in a glass capsule to perform HIP processing. As the glass capsule material, for example, if the HIP processing temperature is around 1800 ° C., Corning's high silica glass “Vycor” (registered trademark) and Tosoh's quartz glass “Quartz ES grade” If the treatment temperature is around 1300 ° C., “Pyrex (registered trademark)”, a borosilicate toy glass manufactured by Corning, can be used. The HIP treatment is usually performed at about 1700 to 2000 ° C. and about 30 to 60 MPa in an inert gas (such as argon) atmosphere.

前記HP処理又はHIP処理で得られたC/SiC複合材料成形品から、公知の方法により基材を除去することで、C/SiC複合材料成形品を得ることができる。公知の基材除去方法としては切削等の方法が例示できる。   A C / SiC composite material molded product can be obtained by removing the substrate from the C / SiC composite material molded product obtained by the HP treatment or the HIP treatment by a known method. As a known substrate removing method, a method such as cutting can be exemplified.

C/SiC複合材料成形品は、目的に応じて、更にその内面又は外面を研磨してもよい。本発明のC/SiC複合材料成形品は、伸縮性及び等方性を有する丸編みされた炭素繊維構造物を強化材に用いているため、成形に用いる基材の形状に由来して、任意の形状に成形することができる。また、得られた成形品は、高強度かつ高耐熱性を有している。   The C / SiC composite material molded product may be further polished on the inner surface or outer surface depending on the purpose. Since the C / SiC composite material molded article of the present invention uses a stretched and isotropic circular knitted carbon fiber structure as a reinforcing material, it is derived from the shape of the base material used for molding, and is arbitrarily It can be formed into a shape. Further, the obtained molded product has high strength and high heat resistance.

厚み1.1mmのベラ針を22本備えた釜径23mm、7.7ゲージ(1インチ当りの針本数)の一口筒編機を使用して、炭素繊維(三菱レイヨン製パイロフィル、PAN系炭素繊維、フィラメント径7μm、フィラメント数3000本、引張弾性率234GPa)を天竺組織、全針ニットで編み立てた。得られた筒編み生地は度目7.2(0.5インチ当りの編目の数;コース数)、目付330g/m、周長65mmのチューブ状生地であった。図1及び図2を参照。
この筒編み生地を平らにしてテープ状にしたものを図3に示す。
Carbon fiber (Mitsubishi Rayon Pyrofil, PAN-based carbon fiber) using a 1-neck knitting machine with a hook diameter of 23 mm and 7.7 gauge (number of needles per inch) equipped with 22 Bella needles with a thickness of 1.1 mm The filament diameter was 7 μm, the number of filaments was 3000, and the tensile elastic modulus was 234 GPa). The obtained tubular knitted fabric was a tube-shaped fabric having a weight of 7.2 (number of stitches per 0.5 inch; number of courses), a basis weight of 330 g / m 2 , and a circumferential length of 65 mm. See FIG. 1 and FIG.
FIG. 3 shows a flat knitted fabric made into a tape shape.

筒編み生地を曲管に被覆した状態を図4に示す。筒編み生地(テープ状)を曲管に巻き付けた状態を図5に示す。また、図6には、筒編み生地をヨコ(筒の幅方向)に拡張した時のループ形状の変化の様子を示す。図7には、筒編み生地をタテ(筒の長手方向)に拡張した時のループ形状の変化の様子を示す。これらより、本発明の筒編み生地は伸縮性を有し、多様な形状の型に追随し易いため、多様な形状を有するC/SiC複合材料からなる成形品を製造することができる。   FIG. 4 shows a state in which a tubular knitted fabric is covered with a curved pipe. FIG. 5 shows a state in which a tubular knitted fabric (tape shape) is wound around a curved pipe. FIG. 6 shows how the loop shape changes when the tubular knitted fabric is expanded horizontally (in the width direction of the cylinder). FIG. 7 shows how the loop shape changes when the tubular knitted fabric is expanded vertically (in the longitudinal direction of the cylinder). Accordingly, the tubular knitted fabric of the present invention has stretchability and can easily follow various shapes of molds, so that a molded product made of C / SiC composite material having various shapes can be manufactured.

厚み1.1mmのベラ針を22本備えた釜径23mm、7.7ゲージ(1インチ当りの針本数)の一口筒編機を使用して、炭素繊維(東邦テナックス製テナックス、PAN系炭素繊維、フィラメント径7μm、フィラメント数3000本、引張弾性率240GPa)を天竺組織、全針ニットで編み立てた。得られた筒編み生地は度目6.5(0.5インチ当りの編目の数;コース数)、目付310g/m、周長65mmのチューブ状生地であった。得られた筒編み生地は、実施例1のそれと同様に伸縮性を有していた。 Carbon fiber (Tenax made by Toho Tenax, PAN-based carbon fiber) using a knitting machine with a hook diameter of 23 mm and 7.7 gauge (number of needles per inch) equipped with 22 Bella needles with a thickness of 1.1 mm A filament diameter of 7 μm, a filament number of 3000, and a tensile modulus of 240 GPa) were knitted with a tengu structure and an all-needle knit. The obtained tubular knitted fabric was a tube-shaped fabric having a weight of 6.5 (number of stitches per 0.5 inch; number of courses), a basis weight of 310 g / m 2 , and a circumferential length of 65 mm. The obtained tubular knitted fabric had elasticity similar to that of Example 1.

厚み1.7mmのベラ針を58本備えた釜径61mm、7.7ゲージ(1インチ当りの針本数)の一口筒編機を使用して、炭素繊維(三菱レイヨン製パイロフィル、PAN系炭素繊維、フィラメント径7μm、フィラメント数1000本、引張弾性率240GPa)を天竺組織、全針ニットで編み立てた。得られた筒編み生地は度目7.8(0.5インチ当りの編目の数;コース数)、目付120g/m、周長190mmのチューブ状生地であった。得られた筒編み生地は、実施例1のそれと同様に伸縮性を有していた。 Carbon fiber (Mitsubishi Rayon Pyrofil, PAN-based carbon fiber) using a one-piece cylindrical knitting machine with a hook diameter of 61 mm and a 7.7 gauge (number of needles per inch) equipped with 58 Bella needles with a thickness of 1.7 mm The filament diameter was 7 μm, the number of filaments was 1000, and the tensile elastic modulus was 240 GPa). The obtained tubular knitted fabric was a tube-shaped fabric having a weight of 7.8 (number of stitches per 0.5 inch; number of courses), a basis weight of 120 g / m 2 and a circumference of 190 mm. The obtained tubular knitted fabric had elasticity similar to that of Example 1.

β−SiC粒子4.5部、焼結助剤(Al2 3)0.5部、ポリエチレンオキサイド(PEO)5.0部の配合比でエタノールに分散させた。エタノール分散液(スラリー)中のSiC粉末の含有率は約20wt%であった。該スラリーをボールミルで処理(12h)して、マトリックス用スラリーを調整した。このスラリーを、実施例1で得られた筒編み生地に塗布(刷毛塗り)してプリプレグシートを調製した。 It was dispersed in ethanol at a blending ratio of 4.5 parts of β-SiC particles, 0.5 parts of sintering aid (Al 2 O 3 ), and 5.0 parts of polyethylene oxide (PEO). The content of SiC powder in the ethanol dispersion (slurry) was about 20 wt%. The slurry was treated with a ball mill (12 h) to prepare a matrix slurry. This slurry was applied to the tubular knitted fabric obtained in Example 1 (brush coating) to prepare a prepreg sheet.

得られたプリプレグシートを一辺が50mmの正方形にカットして12層積層し、内寸50mm×50mmのカーボン型内へセットした。これを、アルゴンガス雰囲気下で、1810℃、20MPaで50mm×50mmの押板によりホットプレスした。その後、C/SiC複合材料を取り出し、表面研磨仕上げを施し、厚み5mm、50mm×50mm大のC/SiC複合材料成形品を得た。   The obtained prepreg sheet was cut into a square having a side of 50 mm and laminated in 12 layers, and set in a carbon mold having an inner size of 50 mm × 50 mm. This was hot-pressed with a 50 mm × 50 mm pressing plate at 1810 ° C. and 20 MPa in an argon gas atmosphere. Thereafter, the C / SiC composite material was taken out and subjected to surface polishing finishing to obtain a C / SiC composite material molded product having a thickness of 5 mm and a size of 50 mm × 50 mm.

本発明によれば、伸縮性やドレープ性に優れ、高強度、高弾性率で、かつ複雑な形状を有する型に追随できる炭素繊維構造物、及び、衝撃強度、耐摩耗性、耐熱性、軽量性に優れ、厚肉成形品を得るのに適した炭素繊維強化炭化ケイ素複合材料(C/SiC複合材料)を提供することができる。 According to the present invention, a carbon fiber structure that is excellent in stretchability and drape, has high strength, high elastic modulus, and can follow a mold having a complicated shape, and impact strength, wear resistance, heat resistance, light weight. It is possible to provide a carbon fiber reinforced silicon carbide composite material (C / SiC composite material) excellent in properties and suitable for obtaining a thick molded article.

Claims (1)

炭化ケイ素が、丸編みされた炭素繊維構造物で強化されてなる炭素繊維強化炭化ケイ素系複合材料の製造方法であって、
(1)炭素繊維を丸編みして炭素繊維構造物を製造する工程、
(2)(a)該炭素繊維構造物に炭化ケイ素系粉末を含むスラリーを含浸してプリプレグシートを製造する工程、又は(b)該炭素繊維構造物と炭化ケイ素系粉末を含むグリーンシートを積層してプリプレグシートを製造する工程、
(3)該プリプレグシートを基材に被覆してプリフォームを製造する工程、及び
(4)該プリフォームを加熱処理する工程、
を含む製造方法。
A method for producing a carbon fiber reinforced silicon carbide-based composite material in which silicon carbide is reinforced with a circular knitted carbon fiber structure,
(1) A process of manufacturing a carbon fiber structure by circular knitting of carbon fibers,
(2) (a) A step of manufacturing a prepreg sheet by impregnating the carbon fiber structure with a slurry containing silicon carbide powder, or (b) laminating the carbon fiber structure and a green sheet containing silicon carbide powder. And a process for producing a prepreg sheet,
(3) A step of manufacturing a preform by coating the prepreg sheet on a base material, and (4) a step of heat-treating the preform.
Manufacturing method.
JP2010055490A 2010-03-12 2010-03-12 Method for producing carbon fiber reinforced silicon carbide composite material Expired - Fee Related JP5572426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010055490A JP5572426B2 (en) 2010-03-12 2010-03-12 Method for producing carbon fiber reinforced silicon carbide composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010055490A JP5572426B2 (en) 2010-03-12 2010-03-12 Method for producing carbon fiber reinforced silicon carbide composite material

Publications (2)

Publication Number Publication Date
JP2011190545A JP2011190545A (en) 2011-09-29
JP5572426B2 true JP5572426B2 (en) 2014-08-13

Family

ID=44795746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010055490A Expired - Fee Related JP5572426B2 (en) 2010-03-12 2010-03-12 Method for producing carbon fiber reinforced silicon carbide composite material

Country Status (1)

Country Link
JP (1) JP5572426B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104828825B (en) * 2015-05-19 2017-12-05 山东大学 A kind of method of low cost low temperature synthesizing silicon carbide powder

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01229874A (en) * 1988-03-02 1989-09-13 Agency Of Ind Science & Technol Woven and knitted cloth consisting of silicon-carbon conjugated fiber and production thereof
JPH05139835A (en) * 1991-08-08 1993-06-08 Hitachi Ltd Sintered compact of carbon fiber-reinforced silicon carbide and its production
JPH06116035A (en) * 1992-10-07 1994-04-26 Hitachi Ltd Carbon fiber bundle-reinforced silicon carbide sintered body and its production
JPH082966A (en) * 1994-06-16 1996-01-09 Nippon Cement Co Ltd Production of fiber-reinforced silicon carbide composite material
JPH09176939A (en) * 1995-12-26 1997-07-08 Nippon Carbon Co Ltd Carbon fiber knitted fabric having high stretchability and its production
JP4822528B2 (en) * 2006-10-25 2011-11-24 株式会社Shindo Sheet-like carbon fiber knitted fabric and method for producing the same

Also Published As

Publication number Publication date
JP2011190545A (en) 2011-09-29

Similar Documents

Publication Publication Date Title
US4613473A (en) Method for forming composite articles of complex shapes
AU2021107656A4 (en) Hybrid woven fiber preform-reinforced composite material and preparation method thereof
JP5118134B2 (en) Reinforcing fiber fabrics with multilayer satin weave for composite materials
CN106801296B (en) A kind of flexible auxetic fabric and its manufacturing method of adjustable scale and shape memory
Zhao et al. Rapid densification of C/SiC composite by incorporating SiC nanowires
CN108842296B (en) Multi-angle carbon fiber preform weaving method
US9604886B2 (en) Ceramic matrix composite material part
TW201002874A (en) Crucible holding member and method for producing the same
CN106905546B (en) Preparation method of high-strength high-conductivity composite fiber reinforced composite material
JP5572426B2 (en) Method for producing carbon fiber reinforced silicon carbide composite material
KR20040060017A (en) Method for manufacturing the preform of high temperature refractory, using needle-punching process
Latifi Engineered Polymeric Fibrous Materials
JPH10168699A (en) Composite fiber material and its production
KR101038475B1 (en) Preparation method of fiber-reinforced composites of uniform density by the growth of concentration gradient one-dimensional SiC nanostructure and fiber-reinforced composites using thereof
JP2017057123A (en) Carbon fiber-reinforced carbon composite material and method for producing carbon fiber-reinforced carbon composite material
JP6362454B2 (en) Mesh fiber reinforced composite
JP2011241505A (en) Reinforcement fiber sheet material
JP5398572B2 (en) Round knitted silicon carbide fiber structure and silicon carbide composite material including the same
JP4245725B2 (en) High temperature pressure molding furnace member made of carbon fiber reinforced carbon composite material and method for producing the same
JP5599647B2 (en) Silicon carbide composites reinforced with circular knitted crystalline silicon carbide fiber structures
JP5877431B2 (en) Method for producing carbon fiber reinforced composite material
JPH05269902A (en) Manufacture of fibrous preform for producing a composite material article
CN109137222A (en) A kind of thin large stereo framework material for seeing the braiding of three-dimensional filament carbon fibre
KR101603835B1 (en) Mold manufacturing method of carbon composites for using at high temperature and high pressure
CN105821578A (en) Fiber braided hose with filling core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131227

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20131227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140630

R150 Certificate of patent or registration of utility model

Ref document number: 5572426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees