JP4822100B2 - AC / AC direct conversion device - Google Patents

AC / AC direct conversion device Download PDF

Info

Publication number
JP4822100B2
JP4822100B2 JP2005247233A JP2005247233A JP4822100B2 JP 4822100 B2 JP4822100 B2 JP 4822100B2 JP 2005247233 A JP2005247233 A JP 2005247233A JP 2005247233 A JP2005247233 A JP 2005247233A JP 4822100 B2 JP4822100 B2 JP 4822100B2
Authority
JP
Japan
Prior art keywords
voltage
phase
conversion device
converter
direct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005247233A
Other languages
Japanese (ja)
Other versions
JP2007068247A (en
Inventor
康寛 玉井
和久 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2005247233A priority Critical patent/JP4822100B2/en
Publication of JP2007068247A publication Critical patent/JP2007068247A/en
Application granted granted Critical
Publication of JP4822100B2 publication Critical patent/JP4822100B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、大型のエネルギーバッファを用いることなく、半導体スイッチング素子を用いて多相交流電圧を任意周波数の多相交流電圧に直接変換する交流交流直接変換装置に関するものである。   The present invention relates to an AC / AC direct conversion device that directly converts a multiphase AC voltage to a multiphase AC voltage of an arbitrary frequency using a semiconductor switching element without using a large energy buffer.

図4は、この種の交流交流直接変換装置の従来技術を示しており、三相交流電圧を直接変換器としてのマトリクスコンバータにより任意周波数の三相交流電圧に変換する例である。
図4において、1は三相交流電源、2はリアクトル及びコンデンサからなる入力フィルタ、3はマトリクスコンバータ、4は電動機等の負荷である。
FIG. 4 shows the prior art of this type of AC / AC direct conversion device, which is an example of converting a three-phase AC voltage into a three-phase AC voltage of an arbitrary frequency by a matrix converter as a direct converter.
In FIG. 4, 1 is a three-phase AC power source, 2 is an input filter comprising a reactor and a capacitor, 3 is a matrix converter, and 4 is a load such as an electric motor.

上記マトリクスコンバータ3は、一端がR,S,T相入力端子に接続され、他端がU相出力端子に一括して接続された3個の双方向スイッチSからなるU相スイッチ3Uと、同様に他端がV相出力端子に一括して接続された3個の双方向スイッチSからなるV相スイッチ3Vと、同様に他端がW相出力端子に一括して接続された3個の双方向スイッチSからなるW相スイッチ3Wとから構成されている。なお、双方向スイッチSは、例えば、図4の下段に示す如くIGBT等の半導体スイッチング素子を2個逆並列に接続して構成されており、電流を双方向に通流可能である。   The matrix converter 3 is similar to the U-phase switch 3U composed of three bidirectional switches S having one end connected to the R, S, and T-phase input terminals and the other end collectively connected to the U-phase output terminal. The other end of the V-phase switch 3V is composed of three bidirectional switches S connected to the V-phase output terminal at the same time, and the other is connected to the W-phase output terminal. And a W-phase switch 3W composed of a direction switch S. Note that the bidirectional switch S is configured, for example, by connecting two semiconductor switching elements such as IGBTs in antiparallel as shown in the lower part of FIG. 4, and can pass current in both directions.

マトリクスコンバータ3は、直流中間回路に電解コンデンサ等を備えたコンバータ/インバータシステムのように大型のエネルギーバッファを用いないため、小型軽量化が可能であると共に、コンバータ/インバータシステムに立脚した制御が可能であり、入出力電流を正弦波に制御できる等の特徴がある。   The matrix converter 3 does not use a large energy buffer unlike a converter / inverter system that includes an electrolytic capacitor or the like in the DC intermediate circuit, so it can be reduced in size and weight and can be controlled based on the converter / inverter system. The input / output current can be controlled to a sine wave.

一方、マトリクスコンバータの最大出力電圧は入力電圧の0.86倍になることが知られており、コンバータ/インバータシステムと比べて電圧利用率の点では劣っている。このため、過変調領域での運転を行えば電圧利用率を高めることができるが、出力電圧の歪みや負荷である電動機のトルク脈動等の問題を生じる。   On the other hand, it is known that the maximum output voltage of the matrix converter is 0.86 times the input voltage, which is inferior in terms of voltage utilization compared to the converter / inverter system. For this reason, if the operation is performed in the overmodulation region, the voltage utilization rate can be increased, but problems such as distortion of the output voltage and torque pulsation of the electric motor as a load occur.

この点に鑑み、例えば非特許文献1には、マトリクスコンバータによる電動機の駆動システムにおいて、過変調領域ではマトリクスコンバータの入力電圧に応じ磁束を弱めて電動機の端子電圧を制御することにより、出力電圧や入出力電流の歪みを抑制して正弦波変調時よりも大きな電圧を出力可能とした制御方法が記載されている。   In view of this point, for example, in Non-Patent Document 1, in an electric motor drive system using a matrix converter, in an overmodulation region, the terminal voltage of the electric motor is controlled by weakening the magnetic flux according to the input voltage of the matrix converter. A control method is described in which distortion of input / output current is suppressed and a voltage larger than that at the time of sinusoidal modulation can be output.

一方、三相交流電源を三相トランスを介して多重三相PWMサイクロコンバータに接続してなる電力変換装置において、PWMパルスを作成するためのコントローラの数を減少させると共に、三相交流電源の非対称性や脈動等を考慮に入れてPWMパルスを作成することにより歪みの少ない高電圧を出力可能とした電力変換装置が、特許文献1に記載されている。
また、同様に三相交流電源を三相トランスを介して多重三相PWMサイクロコンバータに接続し、高圧交流電動機を駆動するようにしたものとして、低圧インバータ技術を利用して低歪みの高電圧を発生可能とした電力変換装置が、特許文献2に記載されている。
On the other hand, in a power conversion device in which a three-phase AC power source is connected to a multiplex three-phase PWM cycloconverter via a three-phase transformer, the number of controllers for generating PWM pulses is reduced and the three-phase AC power source is asymmetrical. Patent Document 1 discloses a power conversion device that can output a high voltage with less distortion by creating a PWM pulse in consideration of characteristics and pulsation.
Similarly, a three-phase AC power source is connected to a multiplex three-phase PWM cycloconverter via a three-phase transformer to drive a high-voltage AC motor. A power converter that can be generated is described in Patent Document 2.

佐藤 以久也,他5名,「マトリックスコンバータの電動機駆動性能改善に関する研究」,社団法人電気学会半導体電力変換研究会論文,SPC−04−75,2004年Ikuya Sato and 5 others, “Study on improvement of motor drive performance of matrix converter”, The Institute of Electrical Engineers of Japan, Semiconductor Power Conversion Study Group, SPC-04-75, 2004 特開平11−252992号公報([0017]〜[0019],[0029]、図1,図9等)Japanese Patent Laid-Open No. 11-252992 ([0017] to [0019], [0029], FIG. 1, FIG. 9 etc.) 特開2005−45999号公報([0023]〜[0028]、図1,図5等)Japanese Patent Laying-Open No. 2005-45999 ([0023] to [0028], FIGS. 1, 5, etc.)

上述した非特許文献1に開示されている技術を用いれば、過変調領域において入出力電流に大きな歪みが発生するおそれはないが、正弦波変調時と比べると歪みが増加し、コンバータ/インバータシステムと比較すると電動機の駆動特性が悪化する。また、過変調領域における制御は概して複雑であり、制御装置の回路構成の複雑化やコストの上昇を招く等の問題がある。   If the technique disclosed in Non-Patent Document 1 described above is used, there is no fear that a large distortion occurs in the input / output current in the overmodulation region, but the distortion increases compared to the case of sine wave modulation, and the converter / inverter system Compared with, the drive characteristics of the electric motor are deteriorated. Further, the control in the overmodulation region is generally complicated, and there are problems such as a complicated circuit configuration of the control device and an increase in cost.

このため、マトリクスコンバータにより電動機を駆動する場合には、過変調領域での運転が不要になる程度まで電動機の電圧定格を下げることが考えられるが、同一出力を得るためには電圧定格を下げた分だけ電流定格が増加したり専用の電動機が必要になる等の不都合があり、これらがマトリクスコンバータの用途を限定してしまう要因となる。   For this reason, when driving a motor with a matrix converter, it may be possible to lower the voltage rating of the motor to such an extent that operation in the overmodulation region is unnecessary, but the voltage rating has been lowered to obtain the same output. There are inconveniences such as an increase in current rating and the need for a dedicated electric motor, which limit the application of the matrix converter.

そこで、本発明の解決課題は、多相交流電源と直接変換器との間に設けた単巻変圧器により直接変換器の入力電圧を昇圧し、過変調領域での運転を要することなく最大出力電圧を増加させた交流交流直接変換装置を提供することにある。
なお、前記特許文献1,2には、単巻変圧器を用いて直接変換器の入力電圧を昇圧する着想は何ら開示されていない。
Therefore, the problem to be solved by the present invention is that the input voltage of the direct converter is boosted by a single transformer provided between the polyphase AC power source and the direct converter, and the maximum output is not required in the overmodulation region. The object is to provide an AC / AC direct conversion device with increased voltage.
Note that Patent Documents 1 and 2 do not disclose any idea of directly boosting the input voltage of a converter using a single-turn transformer.

上記課題を解決するため、請求項1に記載した発明は、半導体スイッチング素子を用いて交流電源の多相交流電圧を任意周波数の多相交流電圧に直接変換する直接変換器を備えた交流交流直接変換装置において、
前記交流電源と前記直接変換器との間に単巻変圧器を接続し、この単巻変圧器の漏れインダクタンスを入力フィルタリアクトルとして利用すると共に、前記単巻変圧器により電源電圧を昇圧して前記直接変換器に供給するものである。
In order to solve the above-mentioned problem, the invention described in claim 1 is an AC / AC direct circuit including a direct converter that directly converts a multi-phase AC voltage of an AC power source into a multi-phase AC voltage of an arbitrary frequency using a semiconductor switching element. In the conversion device,
A self-winding transformer is connected between the AC power source and the direct converter, and a leakage inductance of the self-winding transformer is used as an input filter reactor. Directly supplied to the converter.

請求項2に記載した発明は、請求項1に記載した交流交流直接変換装置において、前記直接変換器の最大出力電圧が電源電圧と等しくなるように、前記単巻変圧器により電源電圧を昇圧するものである。
The invention described in claim 2, Oite the AC AC direct conversion device according to claim 1, so that the maximum output voltage of the direct converter is equal to the supply voltage, the power supply voltage by said autotransformer Boosts the voltage.

請求項3に記載した発明は、請求項1または2に記載した交流交流直接変換装置において、前記単巻変圧器として、多相単巻変圧器を用いるものである。
The invention described in claim 3, Oite the AC AC direct conversion device according to claim 1 or 2, wherein the autotransformer is shall use a multi-phase autotransformer.

本発明によれば、マトリクスコンバータ等の直接変換器を過変調領域で運転することなく、その最大出力電圧を増加させることができる。このため、負荷である電動機の電圧定格を下げたり専用の電動機を用いる等の対応が不要になり、マトリクスコンバータの汎用性を阻害することもない。同時に、直接変換器の出力電圧や入出力電流の歪みを低減させることができる。
また、直接変換器の入力電圧の昇圧用に単巻変圧器を用いているので、通常の変圧器を用いる場合に比べて装置全体の小型化、低コスト化が可能であると共に、単巻変圧器の漏れインダクタンスを入力フィルタリアクトルとしても利用することができる。
According to the present invention, the maximum output voltage of a direct converter such as a matrix converter can be increased without operating in an overmodulation region. For this reason, measures such as lowering the voltage rating of the electric motor as a load or using a dedicated electric motor are not required, and the versatility of the matrix converter is not hindered. At the same time, distortion of the output voltage and input / output current of the direct converter can be reduced.
In addition, since the auto-transformer is used for boosting the input voltage of the direct converter, the entire device can be reduced in size and cost compared to the case of using a normal transformer, and the auto-transformer can be reduced. The leakage inductance of the vessel can also be used as an input filter reactor.

以下、図に沿って本発明の実施形態を説明する。
図1は、本発明の実施形態を示す構成図であり、図4と同一の構成要素には同一の番号を付して詳述を省略し、以下では異なる部分を中心に説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing an embodiment of the present invention. The same components as those in FIG. 4 are given the same reference numerals and detailed description thereof is omitted, and different portions will be mainly described below.

図1において、直接変換器としてのマトリクスコンバータ3の入力端子R,S,TにはY結線された入力フィルタコンデンサ6が接続されていると共に、三相交流電源1と前記入力端子R,S,Tとの間には、単巻変圧器5が接続されている。
ここで、図2は単巻変圧器5の構成を示しており、5r,5s,5tはマトリクスコンバータ3の入力端子R,S,Tに接続されるY結線の巻線、R’,S’,T’は三相交流電源1側の端子である。
図2(a)は単巻変圧器5を三相単巻変圧器により構成した例、図2(b)は3個の単相単巻変圧器5R,5S,5Tにより単巻変圧器5を構成した例であり、何れの場合にも同一の作用効果を得ることができる。
In FIG. 1, a Y-connected input filter capacitor 6 is connected to input terminals R, S, and T of a matrix converter 3 as a direct converter, and a three-phase AC power source 1 and the input terminals R, S, and T are connected. A self-winding transformer 5 is connected to T.
Here, FIG. 2 shows the configuration of the autotransformer 5, 5 r, 5 s, 5 t are Y-connected windings connected to the input terminals R, S, T of the matrix converter 3, R ′, S ′. , T ′ are terminals on the three-phase AC power source 1 side.
2A shows an example in which the autotransformer 5 is constituted by a three-phase autotransformer. FIG. 2B shows the autotransformer 5 by three single-phase autotransformers 5R, 5S, and 5T. In this case, the same effect can be obtained in any case.

ここで、図3を参照しながら、単相の単巻変圧器の動作原理を通常の二巻線変圧器と比較しつつ以下に説明する。図3(a)は二巻線変圧器、図3(b)は単巻変圧器の回路図である。
図3(b)の単巻変圧器において、周知のように巻線の共通部分(B−C間)を分路巻線、共通でない部分(A−B間)を直列巻線と呼び、分路巻線の巻数をN、全体の巻数をNとすると、分路巻線に加える電圧Vと全体の巻線(A−C間)に誘導される電圧Vとの間には数式1の関係がある。
[数式1]
/V=N/N=a
Here, referring to FIG. 3, the operation principle of the single-phase single-winding transformer will be described below in comparison with a normal two-winding transformer. FIG. 3A is a circuit diagram of a two-winding transformer, and FIG. 3B is a circuit diagram of a single-winding transformer.
In the single-winding transformer of FIG. 3 (b), as is well known, the common part (between B and C) of the winding is called a shunt winding, and the non-common part (between A and B) is called a series winding. When the number of turns of the path winding is N 1 and the total number of turns is N 2 , the voltage V 1 applied to the shunt winding and the voltage V 2 induced in the entire winding (between AC) are between There is a relationship of Formula 1.
[Formula 1]
V 1 / V 2 = N 1 / N 2 = a

また、単巻変圧器の一次側に流れる電流をI、二次側に流れる電流をIとし、巻線の励磁電流を無視すると、数式2,数式3が成り立つ。
[数式2]
(I−I)=(N−N)I
[数式3]
/I=N/N=1/a
上記の数式1〜3の関係は、図3(a)の二巻線変圧器においても同様である。
If the current flowing in the primary side of the autotransformer is I 1 , the current flowing in the secondary side is I 2, and the exciting current of the winding is ignored, Equations 2 and 3 are established.
[Formula 2]
N 1 (I 1 −I 2 ) = (N 2 −N 1 ) I 2
[Formula 3]
I 1 / I 2 = N 2 / N 1 = 1 / a
The relations of the above formulas 1 to 3 are the same in the two-winding transformer of FIG.

ここで、単巻変圧器における分路巻線に流れる電流Iは数式4によって表される。
[数式4]
I=I−I=(1−a)I
Here, the current I flowing through the shunt winding in the autotransformer is expressed by Equation 4.
[Formula 4]
I = I 1 −I 2 = (1-a) I 1

数式4は、分路巻線には一次電流Iと二次電流Iとの差分のみが流れることを示しており、巻数比が1に近くなると電流Iがほぼゼロになるので、分路巻線の小型化ひいては変圧器の小型化が可能である。また、一次巻線と二次巻線とを一部共用しているので、通常の変圧器に比べて体積を大幅に減少させることができ、この点でも小型化を図ることができる。よって、単巻変圧器は昇圧分が少ない用途の変圧器に適していると言える。 Equation 4 shows that only the difference between the primary current I 1 and the secondary current I 2 flows in the shunt winding, and when the turn ratio is close to 1, the current I becomes almost zero. It is possible to reduce the size of the winding and thus the size of the transformer. In addition, since the primary winding and the secondary winding are partially shared, the volume can be greatly reduced as compared with a normal transformer, and also in this respect, downsizing can be achieved. Therefore, it can be said that the auto-transformer is suitable for a transformer having a small amount of boosting.

一方、前述したようにマトリクスコンバータの最大出力電圧は入力電圧の0.86倍であるから、電源電圧を変圧器により昇圧してマトリクスコンバータに入力すれば、マトリクスコンバータの出力可能な電圧範囲を上記電源電圧の大きさまで拡げることができる。しかしながら、通常の三相変圧器を用いて昇圧する場合には変圧器の体格が大きく、装置全体の大型化やコストの上昇を招く。   On the other hand, as described above, since the maximum output voltage of the matrix converter is 0.86 times the input voltage, if the power supply voltage is boosted by a transformer and input to the matrix converter, the voltage range that can be output by the matrix converter is The power supply voltage can be expanded. However, when boosting using a normal three-phase transformer, the size of the transformer is large, leading to an increase in size and cost of the entire apparatus.

そこで、本実施形態では、昇圧比が小さい用途に最適な単巻変圧器5により電源電圧を昇圧してマトリクスコンバータ3に入力することにより、その最大出力電圧を三相交流電源1の電源電圧まで増加させるようにしたものである。
直接変換器としてマトリクスコンバータを用いた場合に従来のコンバータ/インバータシステムと同等の最大出力電圧を得るためには、電源電圧を15%程度昇圧してマトリクスコンバータに入力すれば良く、この場合の昇圧用変圧器としては、小型化を考慮した場合に単巻変圧器が最適である。
Therefore, in the present embodiment, the power supply voltage is boosted by the single-wound transformer 5 that is optimal for an application with a small boosting ratio and input to the matrix converter 3, so that the maximum output voltage reaches the power supply voltage of the three-phase AC power supply 1. It is intended to increase.
In order to obtain the maximum output voltage equivalent to that of the conventional converter / inverter system when a matrix converter is used as a direct converter, the power supply voltage may be boosted by about 15% and input to the matrix converter. As a transformer for a transformer, a single-winding transformer is optimal when considering miniaturization.

電源電圧を15%程度昇圧する場合、数式1における巻数比aが0.85の単巻変圧器を使用すればよく、その時に単巻変圧器の分路巻線に流れる電流Iは、数式4から入力電流Iの15%で済むため、分路巻線の小型化が可能になる。また、直列巻線には入力電流とほぼ等しい電流が流れるものの、昇圧分は15%であるので直列巻線の体積増加もそれほど問題にならない。 When boosting the power supply voltage by about 15%, it is sufficient to use an autotransformer having a turn ratio a of 0.85 in Equation 1, and the current I flowing in the shunt winding of the autotransformer at that time is given by Equation 4. Therefore, the shunt winding can be downsized because only 15% of the input current I 1 is required. In addition, although a current substantially equal to the input current flows through the series winding, the increase in the volume of the series winding is not a problem because the boosted amount is 15%.

具体的には、図2に示す単巻変圧器5を図1のように三相交流電源1とマトリクスコンバータ3の入力端子R,S,Tとの間に接続し、単巻変圧器5の巻数比aを0.85に設定することにより、三相交流電源1の線間電圧を15%程度昇圧してマトリクスコンバータ3に入力することができ、正弦波変調によりマトリクスコンバータ3を運転してその出力電圧を増加させると共に、出力電圧や入出力電流の歪みを低減することができる。   Specifically, the autotransformer 5 shown in FIG. 2 is connected between the three-phase AC power source 1 and the input terminals R, S, T of the matrix converter 3 as shown in FIG. By setting the turns ratio a to 0.85, the line voltage of the three-phase AC power source 1 can be boosted by about 15% and input to the matrix converter 3, and the matrix converter 3 is operated by sinusoidal modulation. The output voltage can be increased and distortion of the output voltage and input / output current can be reduced.

これにより、過変調領域での制御に伴う回路構成の複雑化やコストの上昇を招くこともなく、負荷4である電動機の電圧定格を下げたり専用の電動機を用いる必要もないため、マトリクスコンバータの汎用性を損なう心配もない。
更に、本実施形態によれば、単巻変圧器5の漏れインダクタンスを入力フィルタリアクトルとして利用することができるから、入力フィルタリアクトルを別個に設ける必要がなく、この点でも装置全体の小型化、低コスト化に寄与することができる。
As a result, the circuit configuration associated with the control in the overmodulation region is not complicated and the cost is not increased, and it is not necessary to lower the voltage rating of the motor as the load 4 or use a dedicated motor. There is no worry of sacrificing versatility.
Furthermore, according to this embodiment, since the leakage inductance of the autotransformer 5 can be used as an input filter reactor, there is no need to provide a separate input filter reactor. This can contribute to cost reduction.

本発明の実施形態を示す構成図である。It is a block diagram which shows embodiment of this invention. 図1における単巻変圧器の構成図である。It is a block diagram of the autotransformer in FIG. 二巻線変圧器及び単巻変圧器の回路図である。It is a circuit diagram of a double winding transformer and a single winding transformer. 従来技術を示す構成図である。It is a block diagram which shows a prior art.

符号の説明Explanation of symbols

1:三相交流電源
3:マトリクスコンバータ
3U:U相スイッチ
3V:V相スイッチ
3W:W相スイッチ
4:負荷
5:単巻変圧器
5r,5s,5t:巻線
5R,5S,5T:単相単巻変圧器
S:双方向スイッチ
1: Three-phase AC power supply 3: Matrix converter 3U: U-phase switch 3V: V-phase switch 3W: W-phase switch 4: Load 5: Single transformer 5r, 5s, 5t: Winding 5R, 5S, 5T: Single phase Autotransformer S: Bidirectional switch

Claims (3)

半導体スイッチング素子を用いて交流電源の多相交流電圧を任意周波数の多相交流電圧に直接変換する直接変換器を備えた交流交流直接変換装置において、
前記交流電源と前記直接変換器との間に単巻変圧器を接続し、この単巻変圧器の漏れインダクタンスを入力フィルタリアクトルとして利用すると共に、前記単巻変圧器により電源電圧を昇圧して前記直接変換器に供給することを特徴とする交流交流直接変換装置。
In an AC / AC direct conversion device including a direct converter that directly converts a multi-phase AC voltage of an AC power source into a multi-phase AC voltage of an arbitrary frequency using a semiconductor switching element,
A self-winding transformer is connected between the AC power source and the direct converter, and a leakage inductance of the self-winding transformer is used as an input filter reactor. An AC / AC direct conversion device characterized by being supplied to a direct converter.
請求項1に記載した交流交流直接変換装置において、
前記直接変換器の最大出力電圧が電源電圧と等しくなるように、前記単巻変圧器により電源電圧を昇圧することを特徴とする交流交流直接変換装置。
In the AC / AC direct conversion device according to claim 1,
An AC / AC direct conversion device characterized in that the power supply voltage is boosted by the autotransformer so that the maximum output voltage of the direct converter becomes equal to the power supply voltage.
請求項1または2に記載した交流交流直接変換装置において、
前記単巻変圧器として、多相単巻変圧器を用いることを特徴とする交流交流直接変換装置。
In the AC / AC direct conversion device according to claim 1 or 2,
Examples autotransformer, the AC AC direct conversion device, wherein Rukoto using polyphase autotransformer.
JP2005247233A 2005-08-29 2005-08-29 AC / AC direct conversion device Expired - Fee Related JP4822100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005247233A JP4822100B2 (en) 2005-08-29 2005-08-29 AC / AC direct conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005247233A JP4822100B2 (en) 2005-08-29 2005-08-29 AC / AC direct conversion device

Publications (2)

Publication Number Publication Date
JP2007068247A JP2007068247A (en) 2007-03-15
JP4822100B2 true JP4822100B2 (en) 2011-11-24

Family

ID=37929800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005247233A Expired - Fee Related JP4822100B2 (en) 2005-08-29 2005-08-29 AC / AC direct conversion device

Country Status (1)

Country Link
JP (1) JP4822100B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103956910A (en) * 2014-05-15 2014-07-30 西安利雅得电气股份有限公司 Indirect series-connection three-phase matrix type medium-high voltage frequency converter
RU2581594C2 (en) * 2014-10-06 2016-04-20 Евгений Николаевич Коптяев Improved frequency down-converter

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008259380A (en) * 2007-04-09 2008-10-23 Fuji Electric Systems Co Ltd Controller for ac-ac direct converter
DE102007059289B4 (en) * 2007-12-08 2011-07-28 Maschinenfabrik Reinhausen GmbH, 93059 Device for testing transformers
JP2011182554A (en) * 2010-03-01 2011-09-15 Toyo Electric Mfg Co Ltd Power-converter testing device employing matrix converter
JP5804963B2 (en) * 2012-02-07 2015-11-04 株式会社日立産機システム Inverter

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1075565A (en) * 1996-08-30 1998-03-17 Toshiba Corp Harmonic current suppressor for electronic apparatus
JP2001069759A (en) * 1999-08-24 2001-03-16 Yaskawa Electric Corp Control of power converter
JP4019263B2 (en) * 2002-10-11 2007-12-12 富士電機ホールディングス株式会社 AC-AC direct conversion power converter
JP4407215B2 (en) * 2003-09-11 2010-02-03 富士電機ホールディングス株式会社 AC-AC direct converter controller
JP2005143230A (en) * 2003-11-07 2005-06-02 Yaskawa Electric Corp Filtering device for matrix converter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103956910A (en) * 2014-05-15 2014-07-30 西安利雅得电气股份有限公司 Indirect series-connection three-phase matrix type medium-high voltage frequency converter
CN103956910B (en) * 2014-05-15 2016-04-13 西安利雅得电气股份有限公司 A kind of three-phase of series connection indirectly matrix form medium-high voltage frequency converter
RU2581594C2 (en) * 2014-10-06 2016-04-20 Евгений Николаевич Коптяев Improved frequency down-converter

Also Published As

Publication number Publication date
JP2007068247A (en) 2007-03-15

Similar Documents

Publication Publication Date Title
JP5995139B2 (en) Bidirectional DC / DC converter
JP4258739B2 (en) Method of converting electrical AC voltage of DC voltage source, especially photovoltaic DC voltage source into AC voltage
EP2784925B1 (en) Power conversion device
EP2835902A1 (en) Power conversion device
JP4793096B2 (en) High voltage AC direct power converter
US9374030B2 (en) Generator excitation apparatus and power conversion system
JP2007185019A (en) Rectifier circuit and three-phase rectifier
US6831442B2 (en) Utilizing zero-sequence switchings for reversible converters
JP4822100B2 (en) AC / AC direct conversion device
JP2013162658A (en) Power conversion device
JP2014233121A (en) Power conversion device
KR101661567B1 (en) Boost matrix converter and motor driving system using thereof
JP2004248430A (en) Control device of ac-ac power converter
RU2579439C2 (en) Selective control of ac engine or dc engine
JP4059083B2 (en) Power converter
JP4765006B2 (en) Power conversion system
JP3873888B2 (en) AC-AC power converter
JP2020178394A (en) Converter circuit, power conversion system, and motor driving device
JP5804963B2 (en) Inverter
JP2012010507A (en) Dc power supply device
JP7099585B1 (en) Open winding motor / inverter system
JP5618956B2 (en) Power converter
JP6100452B2 (en) Conversion device
JP5938739B2 (en) Power converter
JP6568788B2 (en) Transformer and power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110825

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees