JP4821677B2 - Induction heating cooker - Google Patents

Induction heating cooker Download PDF

Info

Publication number
JP4821677B2
JP4821677B2 JP2007087936A JP2007087936A JP4821677B2 JP 4821677 B2 JP4821677 B2 JP 4821677B2 JP 2007087936 A JP2007087936 A JP 2007087936A JP 2007087936 A JP2007087936 A JP 2007087936A JP 4821677 B2 JP4821677 B2 JP 4821677B2
Authority
JP
Japan
Prior art keywords
coil
heated
input current
pan
current detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007087936A
Other languages
Japanese (ja)
Other versions
JP2007294439A (en
Inventor
潤 文屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007087936A priority Critical patent/JP4821677B2/en
Publication of JP2007294439A publication Critical patent/JP2007294439A/en
Application granted granted Critical
Publication of JP4821677B2 publication Critical patent/JP4821677B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/05Heating plates with pan detection means

Description

この発明は、誘導加熱調理器に関するものであって、略同心上且つ略同一平面上に配された径の異なる内外の渦巻形状で形成された加熱コイルを用いて、被加熱体の材質及び大きさの少なくとも一方を判別する負荷判別に関するものである。   The present invention relates to an induction heating cooker, and uses a heating coil formed in inner and outer spiral shapes having different diameters arranged substantially concentrically and on the same plane, and the material and size of the object to be heated. The present invention relates to load determination for determining at least one of the above.

従来の誘導加熱調理器における負荷判別は、内側から順次外側に同心的に巻回した複数の加熱コイルを用い、順次、加熱コイルを切り替えながら通電することで被加熱体の材質や大きさを判別し、被加熱体の材質や大きさに応じて1個または複数個の加熱コイルを選択して加熱している(例えば、特許文献1参照。)。
また、単一加熱コイルを有した誘導加熱調理器に於いて、一石電圧共振形インバータのスイッチング素子に逆並列接続されたダンパーダイオードに流れる電流と、インバータへの入力電流により、被加熱体の材質や大きさを判別しているものもある(例えば、特許文献2参照。)。
Load discrimination in the conventional induction heating cooker uses a plurality of heating coils concentrically wound from the inside to the outside, and sequentially determines the material and size of the object to be heated by switching the heating coil. However, one or a plurality of heating coils are selected and heated according to the material and size of the heated object (see, for example, Patent Document 1).
In addition, in an induction heating cooker having a single heating coil, the material of the object to be heated depends on the current flowing through the damper diode connected in reverse parallel to the switching element of the one-tone voltage resonant inverter and the input current to the inverter. Some have discriminated the size (for example, see Patent Document 2).

特開平11−224767号公報(第9頁、第1図)Japanese Patent Laid-Open No. 11-224767 (page 9, FIG. 1) 特開平6−168778号公報(第7頁、第1図)Japanese Patent Laid-Open No. 6-168778 (page 7, FIG. 1)

被加熱体の材質や大きさ双方を判別する負荷判別を行う際、複数個の加熱コイルを順次切り替える制御を行う場合、リレー等の部品を多数必要とするために電気回路が大型化する、また制御方法が複雑化するという問題があった。更には、単一加熱コイルを用いた場合、被加熱体の載置される位置によって、即ち「鍋ずれ」が起きた場合には正確に負荷判別できないという問題があった。
この発明は、上記のような課題を解決するためになされたもので、第1の目的は電気回路を大型化させることなく、且つ容易な制御方法により、たとえ鍋ずれが起きた場合にも正確に負荷判別を行い被加熱体の材質と大きさの少なくとも一方を判別することができる誘導加熱調理器を得るものである。
When performing load determination to determine both the material and size of the object to be heated, when performing control to switch a plurality of heating coils sequentially, the electrical circuit becomes large because many parts such as relays are required. There was a problem that the control method was complicated. Furthermore, when a single heating coil is used, there is a problem that the load cannot be accurately determined depending on the position where the object to be heated is placed, that is, when a “pan shift” occurs.
The present invention has been made in order to solve the above-described problems. The first object of the present invention is to increase the accuracy of an electric circuit without increasing the size of an electric circuit, even if a pan shift occurs. Thus, an induction heating cooker capable of determining the load and determining at least one of the material and size of the object to be heated is obtained.

この発明に係る誘導加熱調理器は、電源からの交流電流を全波整流する整流回路に接続され、整流回路の出力電圧を平滑する平滑回路と、複数のスイッチング素子で構成し、平滑回路の出力段に接続され平滑回路の出力電圧を高周波の交流電圧に変換するインバータと、インバータの出力段に接続され、それぞれ共振コンデンサとともに直列共振回路を形成する略同心上且つ略同一平面上に配された径の異なる渦巻形状で形成される複数の加熱コイルと、該加熱コイルのうち、径の大きい加熱コイル側に流れる電流を検出するコイル電流検出手段と、インバータへの入力電流を検出する入力電流検出手段とを備え、入力電流値に対するコイル電流値の比率に基づいて被加熱体の材質を判別する際に、被加熱体の材質は、径の異なる内外の渦巻き形状で形成された前記加熱コイルのうち、径の小さい加熱コイル側通電するとともに、平滑回路からの出力電圧が径の大きい加熱コイル側に流れないように径の大きい加熱コイルに接続されたスイッチング素子を切り替えて径の大きい加熱コイルに誘導電流を発生させ、コイル電流検出手段にて検出された誘導電流値及び入力電流値に基づいて判別し、入力電流値に対する誘導電流値の比率が、閾値Bよりも大きい場合は被加熱体の材質をインバータの駆動を停止させる不適正鍋と判別するするものである。 An induction heating cooker according to the present invention includes a smoothing circuit that is connected to a rectifier circuit that full-wave rectifies an alternating current from a power source and smoothes an output voltage of the rectifier circuit, and a plurality of switching elements, and outputs the smoothing circuit. An inverter connected to the stage for converting the output voltage of the smoothing circuit into a high-frequency AC voltage, and connected to the output stage of the inverter, each being arranged on a substantially concentric and substantially coplanar surface that forms a series resonant circuit with a resonant capacitor . A plurality of heating coils formed in spiral shapes with different diameters, coil current detection means for detecting a current flowing in the heating coil side of the heating coils , and an input current for detecting an input current value to the inverter and a detection unit, when determining the material of the object to be heated based on the ratio of the coil current to the input current value, the material of the object to be heated is different inside and outside the vortex diameters Among the heating coil formed by a vapor form, as well as energizing the small heating coil side diameters, connected to the large heating coils in diameter so that the output voltage from the smoothing circuit does not flow through the larger heating coil of diameter Switching the switching element to generate an induction current in the heating coil having a large diameter, and determining based on the induction current value and the input current value detected by the coil current detection means , the ratio of the induction current value to the input current value, When it is larger than the threshold B, the material of the object to be heated is determined as an inappropriate pan that stops the drive of the inverter .

この発明の誘導加熱調理器は、略同心上且つ略同一平面上に配された径の異なる内外の渦巻形状で形成された加熱コイルを用いて負荷判別を行うので、たとえ鍋ずれが起きた場合にも正確に被加熱体の材質及び大きさの負荷判別を行うことができるという効果がある。また、内外の加熱コイルの通電を切り替えることのみで負荷判別を行うので、電気回路を大型化させることなく容易な制御方法で済むという効果がある。 Induction heating cooker of the present invention, since the load determination by using a heating coil formed in diameter arranged in a substantially concentrically and substantially flush with different inside and outside the spiral shape, even if the pot deviation occurs In addition, there is an effect that it is possible to accurately determine the load of the material and size of the heated object. In addition, since load determination is performed only by switching energization of the internal and external heating coils, there is an effect that an easy control method can be used without increasing the size of the electric circuit.

実施の形態1.
図1はこの発明の実施の形態における誘導加熱調理器の回路構成図を示すものである。また図2はフルブリッジインバータの駆動信号波形(例)、図3はこの発明の実施の形態における誘導加熱調理器の動作フローチャート、図4はこの発明の実施の形態にて本発明者が実験で得た入力電流-コイル電流データのマッピング図(被加熱体の鍋ずれ距離ごと)、図5は図4の鍋ずれ0mm時データにおいて電流比率(=コイル電流/入力電流)を縦軸に書き換えた図、図6は図1のインバータ構成を異ならせた場合の回路構成図である。図1(1)において、略同心上且つ略同一平面上に配された径の異なる内外の渦巻形状で形成された加熱コイルのうち、径の小さい加熱コイル5a(以下、「内コイル」と称す。)と直列に共振コンデンサ6aが、径の大きい加熱コイル5b(以下、「外コイル」と称す。)と直列に共振コンデンサ6bが接続される。外コイルの外径は、170mmから190mmの間に形成されている。内コイル5aと外コイル5bの最小距離は3−6mmの間で配置されている。内コイル5aと共振コンデンサ6aの直列回路はスイッチング素子4a、4b、4c、4dで構成されるフルブリッジインバータの出力段に接続され、外コイル5bと共振コンデンサ6bの直列回路はスイッチング素子4a、4b、4e、4fで構成されるフルブリッジインバータの出力段に接続される。これら2つのフルブリッジインバータは商用電源1から整流回路2と平滑回路3を介して電流が供給されるように平滑回路3の出力段に接続される。そしてインバータを構成するスイッチング素子4a〜4fは駆動回路9を介して制御手段7から駆動信号が与えられる。ここで制御手段7には、内コイル5aと共振コンデンサ6aの直列回路上に設けられたコイル電流検出手段12の出力と、商用電源1と整流回路2の間に設けられた入力電流検出手段11の出力と、使用者が所望電力を設定する電力設定手段8の出力が接続される。制御手段7からは、フルブリッジインバータの出力段に設けられたコイル通電切替手段10へその出力が接続される。
Embodiment 1 FIG.
FIG. 1 shows a circuit configuration diagram of an induction heating cooker according to an embodiment of the present invention. 2 is a drive signal waveform (example) of the full bridge inverter, FIG. 3 is an operation flowchart of the induction heating cooker in the embodiment of the present invention, and FIG. 4 is an experiment conducted by the inventor in the embodiment of the present invention. Mapping diagram of the obtained input current-coil current data (for each pan displacement distance of the object to be heated), FIG. 5 shows the current ratio (= coil current / input current) rewritten on the vertical axis in the data when the pan displacement is 0 mm in FIG. FIG. 6 and FIG. 6 are circuit configuration diagrams when the inverter configuration of FIG. 1 is varied. In FIG. 1 (1), a heating coil 5a having a small diameter (hereinafter referred to as an "inner coil") among the heating coils formed in inner and outer spiral shapes having different diameters arranged substantially concentrically and on the same plane. The resonance capacitor 6a is connected in series with the heating coil 5b having a large diameter (hereinafter referred to as “outer coil”). The outer diameter of the outer coil is formed between 170 mm and 190 mm. The minimum distance between the inner coil 5a and the outer coil 5b is 3-6 mm. The series circuit of the inner coil 5a and the resonant capacitor 6a is connected to the output stage of the full bridge inverter composed of the switching elements 4a, 4b, 4c, 4d, and the series circuit of the outer coil 5b and the resonant capacitor 6b is the switching elements 4a, 4b. 4e and 4f are connected to the output stage of the full bridge inverter. These two full-bridge inverters are connected to the output stage of the smoothing circuit 3 so that current is supplied from the commercial power source 1 via the rectifier circuit 2 and the smoothing circuit 3. The switching elements 4 a to 4 f constituting the inverter are given drive signals from the control means 7 via the drive circuit 9. Here, the control means 7 includes an output of the coil current detection means 12 provided on the series circuit of the inner coil 5a and the resonance capacitor 6a, and an input current detection means 11 provided between the commercial power source 1 and the rectifier circuit 2. And the output of the power setting means 8 for setting the desired power by the user. The output from the control means 7 is connected to the coil energization switching means 10 provided at the output stage of the full bridge inverter.

なお、入力電流検出手段11は商用電源1と整流回路2の間に設ける以外に、整流回路2の出力段、或いは平滑回路3の出力段に設けてもよい。 Note that the input current detection means 11 may be provided at the output stage of the rectifier circuit 2 or the output stage of the smoothing circuit 3 in addition to being provided between the commercial power supply 1 and the rectifier circuit 2.

次に動作について図1〜図6を用いて説明する。
加熱コイル5(内コイル5a及び外コイル5b)の上面側に設置される天板(図示せず)上に被加熱体13が載置され、誘導加熱調理器の使用者が電源オンして電力設定が行われると(S0)、各スイッチング素子には駆動回路9を介して制御手段7から駆動信号が与えられ、フルブリッジインバータ動作が行われる(S1)。ここで定常動作時は、図2(A)に示す駆動信号波形(例)が制御手段7から与えられることで、スイッチング素子4a、4b、4c、4dで構成されるフルブリッジインバータが内コイル5aに、スイッチング素子4a、4b、4e、4fで構成されるフルブリッジインバータが外コイル5bに通電することになるが、加熱開始直後の材質判別時に於いては低電力設定(例えば0.5kW程度を入力)で、周波数は加熱動作時(例えば20kHzで動作)よりも高い周波数(例えば40kHzで動作)にて内コイル5aのみが通電されるようにコイル通電切替手段10によって通電経路が形成される。即ち、内コイル5aと共振コンデンサ6aの直列回路はフルブリッジインバータに接続された状態が保持され、外コイル5bと共振コンデンサ6bの直列回路はフルブリッジインバータから切断された状態となるように、コイル通電切替手段10を制御手段7が制御する。このようにして内コイル5aのみを通電した(S2)後、入力電流検出手段11が入力電流値を検出し(S3)、コイル電流検出手段12が内コイル電流値を検出する(S4)。
Next, the operation will be described with reference to FIGS.
A heated body 13 is placed on a top plate (not shown) installed on the upper surface side of the heating coil 5 (inner coil 5a and outer coil 5b), and the user of the induction heating cooker turns on the power to power When the setting is performed (S0), a driving signal is given to each switching element from the control means 7 via the driving circuit 9, and a full bridge inverter operation is performed (S1). Here, at the time of steady operation, the drive signal waveform (example) shown in FIG. 2A is given from the control means 7 so that the full bridge inverter constituted by the switching elements 4a, 4b, 4c and 4d becomes the inner coil 5a. In addition, the full bridge inverter composed of the switching elements 4a, 4b, 4e, and 4f energizes the outer coil 5b. However, when determining the material immediately after the start of heating, a low power setting (for example, about 0.5 kW is input). ), An energization path is formed by the coil energization switching means 10 so that only the inner coil 5a is energized at a frequency (for example, operation at 40 kHz) higher than that during the heating operation (for example, operation at 40 kHz). That is, the series circuit of the inner coil 5a and the resonance capacitor 6a is kept connected to the full bridge inverter, and the series circuit of the outer coil 5b and the resonance capacitor 6b is disconnected from the full bridge inverter. The control means 7 controls the energization switching means 10. After energizing only the inner coil 5a in this way (S2), the input current detecting means 11 detects the input current value (S3), and the coil current detecting means 12 detects the inner coil current value (S4).

様々な材質の被加熱体13について、内コイル5aのみ通電時の入力電流値と内コイル電流値を測定し、次の結果を得た。入力電流値を横軸に、内コイル電流値を縦軸に様々な材質の被加熱体13における測定値をプロットしたところ、鍋ずれ0mm(=加熱コイル5の中心位置に被加熱体13を載置)の場合では図4(A)のマッピング図を得た。ここでポイントが大きくなるほど径の大きな被加熱体での測定値を意味し(ポイントの大きさは、データの分布を示すものではなく、被加熱体の大きさのみを表す)図のように[閾値A]と[閾値B]を設けると、[閾値A]以下で磁性材質、[閾値A]と[閾値B]の間でアルミ材質を除く非磁性材質、[閾値B]以上でアルミ材質の被加熱体に区分けできる。[閾値A]や[閾値B]はそれぞれ入力電流とコイル電流の比率を表す直線であり、図5に示すように電流比率(=コイル電流/入力電流)を縦軸に書き換えた場合、この測定例では電流比率β≦7.1で磁性材質、7.1<β<12.5でアルミ材質を除く非磁性材質、β≧12.5でアルミ材質と判別できる。 With respect to the heated body 13 made of various materials, only the inner coil 5a was measured for the input current value and the inner coil current value when energized, and the following results were obtained. When the measured values of the heated body 13 of various materials are plotted with the input current value on the horizontal axis and the inner coil current value on the vertical axis, the pan deviation is 0 mm (= the heated body 13 is placed at the center position of the heating coil 5. 4), the mapping diagram of FIG. Here, the larger the point, the larger the measured value of the heated object with a larger diameter (the size of the point does not indicate the data distribution, only the size of the heated object) Threshold A] and [Threshold B] are provided for magnetic materials below [Threshold A], non-magnetic materials excluding aluminum between [Threshold A] and [Threshold B], and aluminum materials above [Threshold B]. Can be divided into heated objects. [Threshold A] and [Threshold B] are straight lines representing the ratio between the input current and the coil current, and this measurement is performed when the current ratio (= coil current / input current) is rewritten on the vertical axis as shown in FIG. In the example, the current ratio β ≦ 7.1 can be discriminated from a magnetic material, 7.1 <β <12.5 from a non-magnetic material excluding an aluminum material, and β ≧ 12.5 from an aluminum material.

また、被加熱体として、小物(ナイフ、フォーク等)、アルミ製のマグカップ等、耐熱ガラス鍋、土鍋等の陶磁器、又は人間や動物の身体の一部など不適被加熱体が置かれているときや何も置かれていない無負荷状態では、入力電流値と内コイル電流値がともに低くなる[閾値X]により、不適被加熱体と無負荷状態の少なくとも一方を判別できる(図4には、図示せず)。判別結果により、速やかにインバータを停止することで、安全性を高められる。 In addition, when heated objects such as small items (knives, forks, etc.), aluminum mugs, ceramics such as heat-resistant glass pots, earthenware pots, or parts of human or animal bodies are placed In the no-load state where nothing is placed, at least one of the inappropriately heated body and the no-load state can be determined by the [threshold X] in which both the input current value and the inner coil current value are low ( Not shown). The safety can be improved by quickly stopping the inverter according to the determination result.

また鍋ずれ(被加熱体13の載置される位置の中心が加熱コイル5の中心に対して移動した時を以下「鍋ずれ」と記す)が起きた場合の、様々な材質の被加熱体13における測定値をプロットしたところ図4(B)〜(F)に示すマッピング図が得られた。上記材質判別方法によれば、鍋ずれ100mm(=加熱コイル5の中心に対し被加熱体13の中心が100mmの距離に載置)までに於いても、[閾値A]の値と[閾値B]の値と[閾値X]の値(図4には、図示せず)を可変することなく同様に各材質を判別することができる。 In addition, when a pan shift occurs (when the center of the position on which the heated body 13 is placed moves relative to the center of the heating coil 5), the heated body of various materials is used. When the measured values in FIG. 13 were plotted, the mapping diagrams shown in FIGS. 4B to 4F were obtained. According to the above material discrimination method, the value of [threshold A] and [threshold B] are up to 100 mm in pan deviation (= the center of the heated body 13 is placed at a distance of 100 mm with respect to the center of the heating coil 5). ] And [Threshold X] (not shown in FIG. 4) can be similarly determined without changing the values.

また、測定を実施した被加熱体は、円形であったが四角等の円形でない被加熱体であっても鍋ずれに対し[閾値A]の値と[閾値B]の値と[閾値X]の値を可変することなく同様に各材質を判別することができる。   In addition, even though the object to be heated was circular but not a circular object such as a square, the value of [Threshold A], the value of [Threshold B], and [Threshold X] against pan deviation Each material can be similarly identified without changing the value of.

以上の測定結果は、様々な材質の被加熱体13について、内コイル5aのみ通電時の入力電流値と内コイル電流値を測定した場合の結果であるが、コイル通電切替手段10を使用せず、内コイル5aのみに通電した時に外コイル5bに発生する誘導電流を測定しても、被加熱体13の材質を同様に判別できる。[閾値A]の値と[閾値B]の値と[閾値X]の値は変化するが同様に各材質を判別できる。外コイル5bに発生する誘導電流を測定する時は、図1(1)のコイル電流検出手段12を内コイル電流測定位置から外コイル5bとコイル通電切替手段10の間の外コイル電流測定位置に移動した図1(2)の回路構成図を使用する。 The above measurement results are the results when the input current value and the inner coil current value when only the inner coil 5a is energized are measured for the heated body 13 of various materials, but the coil energization switching means 10 is not used. Even when the induced current generated in the outer coil 5b when only the inner coil 5a is energized is measured, the material of the heated body 13 can be similarly determined. Although the value of [Threshold A], the value of [Threshold B], and the value of [Threshold X] change, each material can be similarly identified. When measuring the induced current generated in the outer coil 5b, the coil current detection means 12 in FIG. 1 (1) is moved from the inner coil current measurement position to the outer coil current measurement position between the outer coil 5b and the coil energization switching means 10. The moved circuit configuration diagram of FIG. 1 (2) is used.

このように、入力電流検出手段11の出力とコイル電流検出手段12の出力から得られる電流比率(=コイル電流/入力電流)を制御手段7が演算し(S5)、その演算結果が制御手段7の予め記憶する所定値A以上(S6)でなければ被加熱体13の材質を磁性材質と判別(S7)、演算結果が所定値A以上(S6)で且つ所定値B以上(S8)でなければ被加熱体13の材質はアルミ材質を除く非磁性材質と判別(S9)、演算結果が所定値B以上(S8)であれば被加熱体13の材質をアルミ材質の鍋と判別する(S10)。アルミ材質の鍋とは、純アルミニウム又はアルミニウム合金の少なくとも一方で作られた鍋のことをいう。アルミ材質の鍋を不適正鍋と呼ぶ。そして被加熱体13の材質をアルミ材質の鍋と判別した(S10)場合は、不適正鍋が載置されたとみてインバータ動作を停止する(S15)。S3及びS4のステップ直後に、演算結果が所定値X以下であれば、被加熱体13が不適被加熱体、又は無負荷状態と判別し(S20)インバータ動作を停止するステップ(S15)を入れ、安全性を高める。 Thus, the control means 7 calculates the current ratio (= coil current / input current) obtained from the output of the input current detection means 11 and the output of the coil current detection means 12 (S5), and the calculation result is the control means 7. If the predetermined value A is not less than the predetermined value A stored in advance (S6), the material of the heated body 13 is determined to be a magnetic material (S7), and the calculation result must be not less than the predetermined value A (S6) and not less than the predetermined value B (S8). For example, the material of the body 13 to be heated is determined as a non-magnetic material excluding the aluminum material (S9). If the calculation result is equal to or greater than the predetermined value B (S8), the material of the body 13 to be heated is determined as an aluminum pan (S10). ). The pan made of aluminum means a pan made of at least one of pure aluminum or aluminum alloy. An aluminum pot is called an inappropriate pot. And when the material of the to-be-heated body 13 is discriminate | determined from the pan of an aluminum material (S10), an inverter operation | movement is stopped considering that the improper pan was mounted (S15). Immediately after the steps of S3 and S4, if the calculation result is equal to or less than the predetermined value X, it is determined that the heated body 13 is an inappropriate heated body or a no-load state (S20), and the step of stopping the inverter operation (S15) is inserted. , Increase safety.

以上のように、入力電流値と内コイル電流値の電流比率を演算することにより被加熱体の材質を判別するようにしているので、電気回路を大型化させることなく容易な制御方法で材質判別することができる。また、制御手段7に所定値を2つ設けることで、非磁性材質のうちアルミ材質を確実に判別することができる。さらに、加熱コイルを内コイルと外コイルに分割しているため、被加熱体が鍋ずれを起こしても精度良く確実に材質判別することができる。また、アルミ材質の鍋又は不適被加熱体又は無負荷状態と判別したときは、速やかにインバータを停止することで、安全性を高められる。   As described above, since the material of the object to be heated is determined by calculating the current ratio between the input current value and the inner coil current value, the material can be determined by an easy control method without increasing the size of the electric circuit. can do. In addition, by providing two predetermined values in the control means 7, it is possible to reliably determine the aluminum material among the non-magnetic materials. Furthermore, since the heating coil is divided into the inner coil and the outer coil, the material can be accurately and reliably discriminated even if the heated object causes a pan shift. Moreover, when it discriminate | determines from the pan of an aluminum material, an improper to-be-heated body, or a no-load state, safety | security can be improved by stopping an inverter rapidly.

ところで以上の材質判別方法は、コイル通電切替手段10を用いることにより外コイルへの通電を行わないように制御した場合であるが、その限りではなく、コイル通電切替手段10を削除して内コイル5aと外コイル5bの一端が夫々スイッチング素子4aと4bの中点に接続された構成とし、図2(B)に示すようにスイッチング素子4e、4fを常時オフさせる、或いは図2(A)に示すようにスイッチング素子を通常駆動させても良い。図2(B)の駆動波形では内コイル5a通電で外コイル5bにスイッチング素子4e、4fの内蔵ダイオードを介した「誘導電流」が流れ、図2(A)の駆動波形では内コイル5a通電で外コイル5bにも通常の負荷電流が流れるが、本発明者はいずれの通電方法に於いても図4のマッピング傾向と差異の無い測定結果を得ており、よって上記と同様の効果を得ることができる。また、図6のようにスイッチング素子を8個使用してフルブリッジインバータ構成を異ならせた場合も効果は同様であり(但し外コイル5bに誘導電流が流れるようにスイッチング素子4e、4fを常時オフさせる、若しくは外コイル5bに電流が流れないようにスイッチング素子4e、4f、4g、4hを常時オフさせる)、さらにインバータ構成をハーフブリッジインバータ構成(図1と図6のスイッチング素子4d、4fを常時短絡させ、4c、4eを常時開放させた構成)や、「一石電圧型インバータ構成」等の別のインバータ構成でも効果は同様であることを記しておく。 By the way, the above material discrimination method is a case where the coil energization switching means 10 is used to control the energization of the outer coil. However, the present invention is not limited to this, and the coil energization switching means 10 is deleted and the inner coil is removed. 5a and one end of the outer coil 5b are connected to the midpoints of the switching elements 4a and 4b, respectively, and the switching elements 4e and 4f are always turned off as shown in FIG. 2B, or as shown in FIG. As shown, the switching element may be normally driven. In the drive waveform of FIG. 2B, “inductive current” flows through the internal diodes of the switching elements 4e and 4f to the outer coil 5b when the inner coil 5a is energized, and in the drive waveform of FIG. 2A, the inner coil 5a is energized. A normal load current also flows through the outer coil 5b, but the present inventor has obtained a measurement result that is not different from the mapping tendency of FIG. 4 in any energization method, and thus obtains the same effect as described above. Can do. In addition, the effect is the same when the full-bridge inverter configuration is changed using eight switching elements as shown in FIG. 6 (however, the switching elements 4e and 4f are always turned off so that the induced current flows through the outer coil 5b). Or the switching elements 4e, 4f, 4g, and 4h are always turned off so that no current flows through the outer coil 5b), and the inverter configuration is a half-bridge inverter configuration (the switching elements 4d and 4f in FIGS. 1 and 6 are always turned on). It should be noted that the effect is the same even in other inverter configurations such as a short circuit and a configuration in which 4c and 4e are always open) and a “single voltage type inverter configuration”.

前記の実施の形態では、加熱コイルとして径の異なる多層巻のコイルを内コイルと外コイルとして説明したが、一単巻のコイルでも中間端子を追加し外側と内側のコイルに分けて通電できる構造でも効果は同様であることを記しておく。 In the above-described embodiment, the multi-layer coil having different diameters as the heating coil has been described as the inner coil and the outer coil. However, even with a single coil, an intermediate terminal is added and the outer and inner coils can be separately energized. But note that the effect is similar.

前記の実施の形態では、材料判別時の内コイルに通電する周波数は、加熱動作時の周波数よりも高い周波数を使用することにより、インバータのスイッチング素子に過電流が流れて破壊するのを防止する効果がある。例えば、加熱動作時に20kHzの周波数を使用し、材料判別時に40kHzの周波数を使用している。 In the above-described embodiment, the frequency of energizing the inner coil at the time of material discrimination is higher than the frequency at the time of the heating operation, thereby preventing overcurrent from flowing through the inverter switching element and destroying it. effective. For example, a frequency of 20 kHz is used during the heating operation, and a frequency of 40 kHz is used during material discrimination.

実施の形態2.
以上の実施の形態1では、内コイル通電により入力電流値と内コイル電流値を検出し、その電流値から被加熱体の材質を判別するようにしたものであるが、次に外コイル通電により入力電流値を検出し、その電流値から被加熱体の大きさを判別するようにした場合の実施の形態を示す。図7は、このような場合の、誘導加熱調理器の動作フローチャート、図8はこの実施の形態にて本発明者が実験で得た入力電流-コイル電流データのマッピング図(被加熱体の鍋ずれ距離ごと)である。この実施の形態におけるインバータ構成図は、実施の形態1で説明した図1(1)のコイル電流検出手段12を内コイル電流測定位置から外コイル5bとコイル通電切替手段10の間の外コイル電流測定位置に移動した図1(2)の回路構成図とするため説明を省略する。
Embodiment 2. FIG.
In the first embodiment described above, the input current value and the inner coil current value are detected by energizing the inner coil, and the material of the object to be heated is discriminated from the current value. An embodiment in which an input current value is detected and the size of the object to be heated is determined from the current value will be described. FIG. 7 is an operation flowchart of the induction heating cooker in such a case, and FIG. 8 is a mapping diagram of input current-coil current data obtained by an experiment by the inventor in this embodiment (pot of heated object) Every deviation distance). In the inverter configuration diagram in this embodiment, the coil current detection means 12 in FIG. 1A described in the first embodiment is changed from the inner coil current measurement position to the outer coil current between the outer coil 5b and the coil energization switching means 10. The description of the circuit configuration in FIG. 1 (2) moved to the measurement position is omitted.

次に動作について図1、図2、図7〜図8を用いて説明する。加熱コイル5(内コイル5a及び外コイル5b)の上面側に設置される天板(図示せず)上に被加熱体13が載置され、誘導加熱調理器の使用者が電源オンして電力設定が行われると(S0)、各スイッチング素子には駆動回路9を介して制御手段7から駆動信号が与えられ、フルブリッジインバータ動作が行われる(S1)。ここで定常動作時は、図2(A)に示す駆動信号波形(例)が制御手段7から与えられることで、スイッチング素子4a、4b、4c、4dで構成されるフルブリッジインバータが内コイル5aに、スイッチング素子4a、4b、4e、4fで構成されるフルブリッジインバータが外コイル5bに通電することになるが、加熱開始直後の鍋径判別時に於いては低電力設定で(例えば0.5kW程度を入力)、周波数は加熱動作時(例えば20kHzで動作)よりも高い周波数(例えば40kHzで動作)にて外コイル5bのみが通電されるようにコイル通電切替手段10によって通電経路が形成される。即ち、内コイル5aと共振コンデンサ6aの直列回路はフルブリッジインバータから切断された状態となり、外コイル5bと共振コンデンサ6bの直列回路はフルブリッジインバータに接続された状態が保持されるように、コイル通電切替手段10を制御手段7が制御する。このようにして外コイル5bのみを通電した(S11)後、入力電流検出手段11が入力電流値を検出する(S3)。   Next, the operation will be described with reference to FIGS. 1, 2, and 7 to 8. FIG. A heated body 13 is placed on a top plate (not shown) installed on the upper surface side of the heating coil 5 (inner coil 5a and outer coil 5b), and the user of the induction heating cooker turns on the power to power When the setting is performed (S0), a driving signal is given to each switching element from the control means 7 via the driving circuit 9, and a full bridge inverter operation is performed (S1). Here, at the time of steady operation, the drive signal waveform (example) shown in FIG. 2A is given from the control means 7 so that the full bridge inverter constituted by the switching elements 4a, 4b, 4c and 4d becomes the inner coil 5a. In addition, the full bridge inverter composed of the switching elements 4a, 4b, 4e, and 4f energizes the outer coil 5b. However, when determining the pot diameter immediately after the start of heating, a low power setting (for example, 0.5 kW) is used. The coil energization switching means 10 forms an energization path so that only the outer coil 5b is energized at a higher frequency (e.g., operation at 40 kHz) than the heating operation (e.g., operation at 20 kHz). . That is, the series circuit of the inner coil 5a and the resonance capacitor 6a is disconnected from the full bridge inverter, and the series circuit of the outer coil 5b and the resonance capacitor 6b is kept connected to the full bridge inverter. The control means 7 controls the energization switching means 10. After energizing only the outer coil 5b in this way (S11), the input current detecting means 11 detects the input current value (S3).

様々な材質や大きさの被加熱体13について、外コイル5bのみ通電時の入力電流値と外コイル電流値を測定し、次の結果を得た。入力電流値を横軸に、外コイル電流値を縦軸に様々な材質や大きさの被加熱体13における測定値をプロットしたところ、鍋ずれ0mm(=加熱コイル5の中心位置に被加熱体13を載置)、20mmの場合では図8(A)、(B)のマッピング図を得た。ここでポイントが大きくなるほど径の大きな被加熱体での測定値を意味し(ポイントの大きさは、データの分布を示すものではなく、被加熱体の大きさのみを表す)、図のように[閾値C]を設けると、鍋ずれが例えば鍋径の10%以下(加熱コイル5の略中心位置に被加熱体13を載置)であれば、[閾値C]以下で小径鍋、[閾値C]以上で大径鍋の被加熱体に区分けできる(但しアルミ材質の大径鍋を除く)。この測定例では入力電流I≦1.1Aで小径鍋、入力電流I>1.1Aで大径鍋と判別できる。 With respect to the heated body 13 of various materials and sizes, the input current value and the external coil current value when energizing only the outer coil 5b were measured, and the following results were obtained. When the measured values of the heated body 13 of various materials and sizes are plotted on the horizontal axis of the input current value and the vertical axis of the external coil current value, the pan displacement is 0 mm (= the heated body at the center position of the heating coil 5). 13), and in the case of 20 mm, the mapping diagrams of FIGS. 8A and 8B were obtained. Here, the larger the point, the larger the measured value of the object to be heated (the size of the point does not indicate the data distribution, only the size of the object to be heated), as shown in the figure If [threshold C] is provided, for example, if the pan shift is 10% or less of the pan diameter (the heated body 13 is placed at the approximate center position of the heating coil 5), C] Above, it can be divided into heated bodies of large-diameter pans (except for large-diameter pans made of aluminum). In this measurement example, it is possible to discriminate a small-diameter pan with an input current I ≦ 1.1A and a large-diameter pan with an input current I> 1.1A.

またさらに鍋ずれが起きた場合の、様々な材質や大きさの被加熱体13における測定値をプロットしたところ図8(C)〜(F)に示すマッピング図を得た。上記鍋径判別方法によれば、20mmを超える鍋ずれが起きた場合に於いては[閾値C]の値を不変とした場合は、大径鍋でも小径鍋と判別される。 Further, when the measured values in the heated body 13 of various materials and sizes when the pan shift occurred, the mapping diagrams shown in FIGS. 8C to 8F were obtained. According to the above-mentioned pan diameter discriminating method, even when a pan shift exceeding 20 mm occurs, if the value of [Threshold C] is not changed, a large-diameter pan is discriminated as a small-diameter pan.

また、被加熱体として、小物(ナイフ、フォーク等)、アルミ製のマグカップ等、耐熱ガラス鍋、土鍋等の陶磁器、又は人間や動物の身体の一部など不適被加熱体が置かれているときや何も置かれていない無負荷状態では、入力電流値と外コイル電流値がともに低くなる[閾値Y]により、不適被加熱体と無負荷状態の少なくとも一方を判別できる(図8には、図示せず)。判別結果により、速やかにインバータを停止することで、安全性を高める。 In addition, when heated objects such as small items (knives, forks, etc.), aluminum mugs, ceramics such as heat-resistant glass pots, earthenware pots, or parts of human or animal bodies are placed In the no-load state where nothing is placed, at least one of the inappropriately heated body and the no-load state can be determined by the [threshold value Y] in which both the input current value and the outer coil current value are low ( Not shown). The safety is improved by stopping the inverter promptly according to the determination result.

このように、鍋ずれが鍋径の約10%以下(加熱コイル5の略中心位置に被加熱体13を載置)であれば、入力電流検出手段11の出力が制御手段7の予め記憶する所定値C以上(S12)でなければ被加熱体13の大きさを小径鍋と判別(S13)、入力電流検出手段11の出力が所定値C以上(S12)であれば被加熱体13の大きさを大径鍋と判別する(S14)。但しアルミ材質の大径鍋は除く。S3のステップ直後に、検出結果が所定値Y以下であれば、被加熱体13が不適被加熱体、又は無負荷状態と判別し(S21)インバータ動作を停止するステップ(S15)を入れ、安全性を高められる。 Thus, if the pan deviation is about 10% or less of the pan diameter (the heated body 13 is placed at the substantially central position of the heating coil 5), the output of the input current detection means 11 is stored in advance by the control means 7. If it is not the predetermined value C or more (S12), the size of the heated body 13 is determined as a small diameter pan (S13), and if the output of the input current detection means 11 is the predetermined value C or more (S12), the size of the heated body 13 is determined. The thickness is determined as a large-diameter pan (S14). However, large-diameter pans made of aluminum are excluded. If the detection result is equal to or less than the predetermined value Y immediately after the step of S3, it is determined that the heated body 13 is an inappropriate heated body or a no-load state (S21), and a step (S15) for stopping the inverter operation is entered to Increases sex.

以上の測定結果は、様々な材質や大きさの被加熱体13について、外コイル5bのみ通電時の入力電流値と外コイル電流値を測定した場合の結果であるが、外コイル5bのみに通電した時に内コイル5aに発生する誘導電流を測定することでも、被加熱体13が小径鍋か大径鍋を同様に判別できる。このとき[閾値C]の値と[閾値Y]の値は変化するが同様に大きさを判別できる。内コイル5aに発生する誘導電流を測定する時は、図1(2)のコイル電流検出手段12を内コイル電流測定位置に設置した図1(1)の回路構成図を使用する。 The above measurement results are the results when the input current value and the external coil current value when only the outer coil 5b is energized are measured for the heated body 13 of various materials and sizes, but only the outer coil 5b is energized. By measuring the induced current generated in the inner coil 5a at the same time, the heated object 13 can be similarly identified as a small-diameter pan or a large-diameter pan. At this time, although the value of [Threshold C] and the value of [Threshold Y] change, the magnitude can be similarly determined. When measuring the induced current generated in the inner coil 5a, the circuit configuration diagram of FIG. 1 (1) in which the coil current detecting means 12 of FIG. 1 (2) is installed at the position of measuring the inner coil current is used.

このように、外コイル通電時の入力電流値から被加熱体の大きさを判別するようにしているので、実施の形態1と同様に電気回路を大型化させることなく容易な制御方法で大きさ判別できる。さらに、加熱コイルを内コイルと外コイルに分割しているため、被加熱体が鍋ずれを起こした場合には、大径鍋を小径鍋として判別できる。そのため、被加熱体の鍋ずれが大きく加熱効率が悪い場合には、内コイルのみ通電することで、電力節減や漏洩磁束低減を実現できるという効果がある。   As described above, since the size of the object to be heated is determined from the input current value when the outer coil is energized, the size can be controlled by an easy control method without increasing the size of the electric circuit as in the first embodiment. Can be determined. Furthermore, since the heating coil is divided into the inner coil and the outer coil, when the heated object causes a pan shift, the large-diameter pan can be identified as the small-diameter pan. For this reason, when the pan to be heated is large and the heating efficiency is poor, only the inner coil is energized so that power saving and leakage magnetic flux reduction can be realized.

本実施の形態に於いても、実施の形態1と同様にコイル通電切替手段10を削除した構成とし、図2(C)に示すようにスイッチング素子4c、4dを常時オフさせる、或いは図2(A)に示すようにスイッチング素子を通常駆動させても良い。図2(C)の駆動波形では外コイル5b通電で内コイル5aにスイッチング素子4c、4dの内蔵ダイオードを介した「誘導電流」が流れ、図2(A)の駆動波形では外コイル5b通電で内コイル5aにも通常の負荷電流が流れるが、いずれの通電方法に於いても図8のマッピング傾向とほぼ差異の無い測定結果を得ており、よって上記と同様の効果を得ることができる。 Also in the present embodiment, the configuration is such that the coil energization switching means 10 is deleted as in the first embodiment, and the switching elements 4c and 4d are always turned off as shown in FIG. The switching element may be normally driven as shown in A). In the drive waveform of FIG. 2 (C), “inductive current” flows through the internal diodes of the switching elements 4c, 4d when the outer coil 5b is energized, and in the drive waveform of FIG. 2 (A), the outer coil 5b is energized. A normal load current also flows through the inner coil 5a, but in any energization method, a measurement result almost the same as the mapping tendency of FIG. 8 is obtained, and the same effect as described above can be obtained.

実施の形態3.
以上の実施の形態1,2に対し、本実施の形態は実施の形態1,2それぞれの負荷判別を組み合わせたものである。
図9は、このような場合の、誘導加熱調理器の動作フローチャートである。
この発明の実施の形態におけるインバータ構成図は実施の形態1、2と同様に、図1または図6であるため説明を省略する。
Embodiment 3 FIG.
In contrast to the first and second embodiments described above, this embodiment is a combination of the load determinations of the first and second embodiments.
FIG. 9 is an operation flowchart of the induction heating cooker in such a case.
The inverter configuration diagram in the embodiment of the present invention is FIG. 1 or FIG.

次に動作について図2、図9、図10を用いて説明する。本実施の形態に於ける通電方法であるが、コイル通電切替手段10を用いることにより内コイルのみに通電や外コイルのみに通電とする、またはコイル通電切替手段10を削除した構成とし、内コイル通電時には図2(B)に示す駆動波形、外コイル通電時には図2(C)に示す駆動波形とすることで内外コイルは同時に通電しない方法とする。   Next, the operation will be described with reference to FIGS. The energization method in the present embodiment is such that the coil energization switching means 10 is used to energize only the inner coil or only the outer coil, or the coil energization switching means 10 is omitted. A driving waveform shown in FIG. 2B when energized and a driving waveform shown in FIG. 2C when the outer coil is energized are used so that the inner and outer coils are not energized simultaneously.

実施の形態1のように、内コイル5aのみを通電した(S2)後、入力電流検出手段11が入力電流値を検出し(S3)、コイル電流検出手段12が内コイル電流値を検出する(S4)。その後の動作は実施の形態1と同様のため説明を省略するが、被加熱体13の材質を磁性材質と判別(S7)、或いはアルミ材質を除く非磁性材質と判別(S9)した場合、次に実施の形態2のように、外コイル5bのみを通電し(S11)、入力電流検出手段11が入力電流値を検出する(S3)。その後の動作は実施の形態2と同様のため説明を省略するが、入力電流検出手段11の出力が制御手段7の予め記憶する所定値C以上(S12)でなければ被加熱体13の大きさを小径鍋と判別(S13)、入力電流検出手段11の出力が所定値C以上(S12)であれば被加熱体13の大きさを大径鍋と判別する(S14)。一方、被加熱体13の材質をアルミ材質と判別した(S10)場合は、不適正鍋が載置されたとみてインバータ動作を停止する(S15)。 As in the first embodiment, after energizing only the inner coil 5a (S2), the input current detecting means 11 detects the input current value (S3), and the coil current detecting means 12 detects the inner coil current value ( S4). Since the subsequent operation is the same as in the first embodiment, the description thereof will be omitted. However, if the material of the heated body 13 is determined as a magnetic material (S7), or is determined as a non-magnetic material excluding an aluminum material (S9), As in the second embodiment, only the outer coil 5b is energized (S11), and the input current detecting means 11 detects the input current value (S3). Since the subsequent operation is the same as that of the second embodiment, the description thereof will be omitted. However, if the output of the input current detection means 11 is not equal to or greater than the predetermined value C stored in advance in the control means 7 (S12), the size of the object to be heated 13 Is determined to be a small-diameter pan (S13), and if the output of the input current detection means 11 is equal to or greater than a predetermined value C (S12), the size of the heated body 13 is determined to be a large-diameter pan (S14). On the other hand, when the material of the body 13 to be heated is determined to be an aluminum material (S10), the inverter operation is stopped assuming that an inappropriate pan is placed (S15).

ここで、本実施の形態に於ける通電を、内コイル通電から外コイル通電の順番としているが、この限りではなく、外コイル通電から内コイル通電の順番としても良い(図10参照)。即ち鍋径判別を行った後に材質判別を行っても最終の負荷判別結果は同じとなるため、通電の順番は問わないことを記しておく。 Here, the energization in the present embodiment is the order from the inner coil energization to the outer coil energization. However, this is not restrictive, and the order from the outer coil energization to the inner coil energization may be used (see FIG. 10). That is, it is noted that the order of energization does not matter because the final load discrimination result is the same even if the material discrimination is performed after the pan diameter discrimination.

以上のように、内コイル通電により被加熱体の材質判別を行い、次に材質判別結果を受けて外コイル通電により被加熱体の大きさ判別を行うようにする、または外コイル通電により被加熱体の鍋径判別を行い、次に内コイル通電により被加熱体の材質判別を行うようにしているので、誘導加熱調理器の不適正鍋であるアルミ材質を確実に判別してインバータ動作を停止させられると共に、その他の材質判別(磁性材質とアルミ材質を除く非磁性材質)及び鍋径判別(大径鍋と小径鍋)を高精度で連動して行うことができる。この実施の形態の場合も内コイルに発生又は外コイルに発生する誘導電流を用いても被加熱体の材質や大きさ判別を行うことが出来る。   As described above, the material of the object to be heated is determined by energizing the inner coil, and then the size of the object to be heated is determined by energizing the outer coil in response to the material determination result, or the object to be heated by energizing the outer coil. Since the body diameter is discriminated, and the material of the heated object is then discriminated by energizing the inner coil, the inverter operation is stopped by reliably determining the aluminum material that is an inappropriate pan for induction heating cookers. In addition, other material discrimination (non-magnetic material excluding magnetic material and aluminum material) and pan diameter discrimination (large-diameter pan and small-diameter pan) can be performed in conjunction with high accuracy. In the case of this embodiment as well, the material and size of the object to be heated can be determined using the induced current generated in the inner coil or the outer coil.

実施の形態4.
以上の実施の形態3に対し、次に内外コイルを同時に通電した場合における実施の形態を示す。図11は、このような場合の、誘導加熱調理器の動作フローチャートである。この実施の形態におけるインバータ構成図は実施の形態1〜3と同様に、図1または図6であるため説明を省略する。
Embodiment 4 FIG.
In contrast to the third embodiment described above, an embodiment in which the inner and outer coils are simultaneously energized will be described. FIG. 11 is an operation flowchart of the induction heating cooker in such a case. Since the inverter configuration diagram in this embodiment is FIG. 1 or FIG. 6 as in the first to third embodiments, the description thereof is omitted.

次に動作について図2、図11を用いて説明する。本実施の形態に於ける通電方法であるが、コイル通電切替手段10を削除した構成とし、内コイルと外コイル通電時には図2(A)に示す駆動波形とすることで内外コイルを同時に通電する方法とする。   Next, the operation will be described with reference to FIGS. In the energization method according to the present embodiment, the coil energization switching means 10 is omitted, and the inner and outer coils are energized at the same time by using the drive waveform shown in FIG. The method.

内コイル5aを通電する(S2)と共に、外コイル5bを通電した(S11)後、入力電流検出手段11が入力電流値を検出し(S3)、コイル電流検出手段12が内コイル電流値を検出する(S4)。次に実施の形態1と同様、入力電流値と内コイル電流値より被加熱体13の材質判別を行う(S5〜S10)と共に、実施の形態2と同様、入力電流値より被加熱体13の鍋径判別を行う(S12〜S14)。 After energizing the inner coil 5a (S2) and energizing the outer coil 5b (S11), the input current detecting means 11 detects the input current value (S3), and the coil current detecting means 12 detects the inner coil current value. (S4). Next, as in the first embodiment, the material of the heated body 13 is determined from the input current value and the inner coil current value (S5 to S10), and the heated body 13 is determined from the input current value as in the second embodiment. The pot diameter is determined (S12 to S14).

ここで、被加熱体13の材質をアルミ材質と判別した(S10)場合は、不適正鍋が載置されたとみてインバータ動作を停止するが(S15)、鍋径判別の実施(S3、S12〜S14)如何に関わらずアルミ材質と判別した場合にはインバータ動作を停止する。 Here, when the material of the to-be-heated body 13 is discriminate | determined from aluminum material (S10), although an inverter operation | movement is stopped considering that the improper pan was mounted (S15), implementation of pan diameter discrimination | determination (S3, S12- S14) If it is determined that the material is aluminum, the inverter operation is stopped.

以上のように、内コイル5aへの通電と外コイル5bへの通電を同時に行うことで被加熱体の材質と大きさを判別しているので、負荷判別制御のアルゴリズムが容易となり、負荷判別時間が短くて済むという効果がある。 As described above, since the material and size of the object to be heated are discriminated by energizing the inner coil 5a and energizing the outer coil 5b at the same time, the load discriminating control algorithm becomes easy and the load discriminating time is increased. Has the effect of being short.

実施の形態5.
次に、制御手段により被加熱体の材質及び大きさに適した加熱条件で加熱制御を行う場合の実施の形態を示す。
図12は、判別された被加熱体の材質と大きさごとの加熱制御方法(例)である。磁性材質の大径鍋のときは、内コイル及び外コイルに通電し3.0kW出力させる。磁性材質の小径鍋のときは、内コイルに通電し1.5kW出力させる。非磁性材質(アルミ材質を除く)の大径鍋のときは、内コイル及び外コイルに通電し2.0kW出力させる。非磁性材質(アルミ材質を除く)の小径鍋のときは、内コイルに通電し1.0kW出力させる。アルミ材質の大径鍋のときは、インバータを停止させる。アルミ材質の小径鍋のときも、インバータを停止させる。不適被加熱体又は無負荷状態のときは、インバータを停止させる(図12には、図示せず)。また、この発明の実施の形態におけるインバータ構成図は実施の形態1〜4と同様に、図1又は図6であるため説明を省略する。
Embodiment 5 FIG.
Next, an embodiment in which the heating control is performed by the control means under the heating conditions suitable for the material and size of the object to be heated will be described.
FIG. 12 shows a heating control method (example) for each determined material and size of the object to be heated. In the case of a large-diameter pan made of magnetic material, the inner coil and the outer coil are energized to output 3.0 kW. When using a small-diameter pan made of magnetic material, the inner coil is energized to output 1.5 kW. When using a large-diameter pan made of non-magnetic material (excluding aluminum), the inner coil and outer coil are energized to output 2.0 kW. For small-diameter pans made of non-magnetic material (excluding aluminum), the inner coil is energized to output 1.0 kW. If the pan is made of aluminum, stop the inverter. The inverter is also stopped when using a small-diameter pan made of aluminum. In the case of an inappropriate heating object or no load, the inverter is stopped (not shown in FIG. 12). Further, the inverter configuration diagram in the embodiment of the present invention is FIG. 1 or FIG.

次に動作について図1、図2、図9、図12を用いて説明する。上記実施の形態1〜4に基づき、材質判別により被加熱体13の材質を磁性材質と判別した(S7)場合、大きさ判別により被加熱体13の大きさが大径鍋と判別されていれば(S14)、制御手段7は図2(A)に示す駆動波形をスイッチング素子4a〜4fに与えることで内コイル5aと外コイル5bが通電され、且つ入力電流検出手段11の出力を用いて例えば最大3.0kW程度の加熱出力が得られるように制御する。一方、大きさ判別により被加熱体13の大きさが小径鍋と判別されていれば(S13)、制御手段7は図2(B)に示す駆動波形をスイッチング素子4a〜4fに与えることで内コイル5aのみが通電され、且つ入力電流検出手段11の出力を用いて例えば最大1.5kW程度の加熱出力が得られるように制御する。なお内コイル5aのみの通電はコイル通電切替手段10を用いて行っても同様である。次に、材質判別により被加熱体13の材質を非磁性材質(アルミ材質を除く)と判別した(S9)場合、大きさ判別により被加熱体13の大きさが大径鍋と判別されていれば(S14)、制御手段7は図2(A)に示す駆動波形をスイッチング素子4a〜4fに与えることで内コイル5aと外コイル5bが通電され、且つ入力電流検出手段11の出力を用いて例えば最大2.0kW程度の加熱出力が得られるように制御する。一方、大きさ判別により被加熱体13の大きさが小径鍋と判別されていれば(S13)、制御手段7は図2(B)に示す駆動波形をスイッチング素子4a〜4fに与えることで内コイル5aのみが通電され、且つ入力電流検出手段11の出力を用いて例えば最大1.0kW程度の加熱出力が得られるように制御する。次に、材質判別により被加熱体13の材質をアルミ材質の鍋と判別した(S10)場合、不適正鍋が載置されたとみて鍋径に関わらずインバータ動作を停止させる(S15)ために、制御手段7はスイッチング素子4a〜4fの駆動信号を全てオフさせるなどして内コイル5aと外コイル5bが通電しないようにする。また、負荷判別により不適正鍋又は不適被加熱体又は無負荷状態と判別した場合、インバータ動作を停止させるステップにより、制御手段7はスイッチング素子4a〜4fの駆動信号を全てオフさせるなどして内コイル5aと外コイル5bが通電しないようにする。   Next, the operation will be described with reference to FIG. 1, FIG. 2, FIG. 9, and FIG. Based on the first to fourth embodiments, when the material of the heated body 13 is determined to be a magnetic material by the material determination (S7), the size of the heated body 13 is determined to be a large-diameter pan by the size determination. In step S14, the control unit 7 applies the drive waveforms shown in FIG. 2A to the switching elements 4a to 4f, thereby energizing the inner coil 5a and the outer coil 5b, and using the output of the input current detection unit 11. For example, control is performed so as to obtain a heating output of about 3.0 kW at the maximum. On the other hand, if the size of the body 13 to be heated is determined to be a small-diameter pan by size determination (S13), the control means 7 provides the switching waveforms 4a to 4f with the drive waveforms shown in FIG. Control is performed so that only the coil 5a is energized and a heating output of, for example, a maximum of about 1.5 kW is obtained using the output of the input current detection means 11. It is to be noted that energization of only the inner coil 5a is the same even when the coil energization switching means 10 is used. Next, if the material to be heated 13 is determined to be a non-magnetic material (excluding aluminum material) by the material determination (S9), the size of the object to be heated 13 is determined to be a large-diameter pan by the size determination. In step S14, the control unit 7 applies the drive waveforms shown in FIG. 2A to the switching elements 4a to 4f, thereby energizing the inner coil 5a and the outer coil 5b, and using the output of the input current detection unit 11. For example, control is performed so as to obtain a heating output of about 2.0 kW at the maximum. On the other hand, if the size of the body 13 to be heated is determined to be a small-diameter pan by size determination (S13), the control means 7 provides the switching waveforms 4a to 4f with the drive waveforms shown in FIG. Control is performed so that only the coil 5a is energized and a heating output of, for example, a maximum of about 1.0 kW is obtained using the output of the input current detecting means 11. Next, when it is determined that the material of the body 13 to be heated is an aluminum pan (S10), the inverter operation is stopped regardless of the pan diameter (S15). The control means 7 prevents the inner coil 5a and the outer coil 5b from being energized by turning off all the drive signals of the switching elements 4a to 4f. In addition, when it is determined by the load determination that the pot is improper, an improper heated body, or no load state, the control means 7 turns off all the drive signals of the switching elements 4a to 4f by stopping the inverter operation. The coil 5a and the outer coil 5b are not energized.

以上のように、負荷判別結果に応じたコイル通電方法や加熱出力といった加熱制御を行うようにしたので、被加熱体が非磁性材質の場合には、加熱制限を行うことでインバータのスイッチング素子に過電流が流れて破壊するのを防止することができ、また被加熱体が小径鍋の場合には、内コイルのみ通電することで漏洩磁束を低減できるという効果がある。又、内コイルのみ通電することで省電力をはかるという効果がある。 As described above, since the heating control such as the coil energization method and the heating output according to the load determination result is performed, when the heated object is a non-magnetic material, the heating switching is performed to the switching element of the inverter. Overcurrent can be prevented from flowing and breaking, and when the object to be heated is a small-diameter pan, leakage magnetic flux can be reduced by energizing only the inner coil. Further, there is an effect that power is saved by energizing only the inner coil.

実施の形態6.
被加熱体の材質及び大きさを判別する負荷判別を実施後、再度加熱制御(負荷判別制御)を行うタイミングについての実施の形態を示す。図13は、誘導加熱調理器の動作フローチャートである。この発明の実施の形態におけるインバータ構成図は実施の形態1〜5と同様に、図1または図6であるため説明を省略する。
Embodiment 6 FIG.
An embodiment of timing for performing heating control (load discrimination control) again after carrying out load discrimination for discriminating the material and size of an object to be heated will be described. FIG. 13 is an operation flowchart of the induction heating cooker. Since the inverter configuration diagram in the embodiment of the present invention is FIG. 1 or FIG. 6 as in the first to fifth embodiments, the description thereof is omitted.

次に負荷判別を実施するタイミング動作について図1、図13を用いて説明する。誘導加熱調理器の電源オン後(S0)、各スイッチング素子には駆動回路9を介して制御手段7からの駆動信号により、フルブリッジインバータ動作が行われる(S1)。制御手段7は上記実施の形態1〜4に示す負荷判別制御を実施して被加熱体13の材質及び大きさを判別し(SS)、負荷判別結果と電力設定手段8の出力に応じた加熱出力制御を実施する(S16)。その後加熱制御によって設定されたインバータ動作電力が使用者の手動操作又は子供又は動物等の誤った手動操作で変化したとき(S17)、制御手段7はインバータ再動作させ(S1)、再度負荷判別制御を実施し(SS)、負荷判別結果と電力設定手段8の出力を受けて新たに加熱出力制御を実施する(S16)。   Next, the timing operation for carrying out load determination will be described with reference to FIGS. After the induction heating cooker is turned on (S0), a full bridge inverter operation is performed on each switching element by a drive signal from the control means 7 via the drive circuit 9 (S1). The control means 7 performs the load determination control shown in the first to fourth embodiments to determine the material and size of the body 13 to be heated (SS), and performs heating according to the load determination result and the output of the power setting means 8. Output control is performed (S16). Thereafter, when the inverter operating power set by the heating control is changed by a manual operation of the user or an erroneous manual operation of a child or an animal (S17), the control means 7 restarts the inverter (S1), and the load determination control is performed again. (SS), and the heating output control is newly performed in response to the load determination result and the output of the power setting means 8 (S16).

また次のような負荷判別を実施するタイミングも示す。誘導加熱調理器は、電源オン後(S0)、各スイッチング素子には駆動回路9を介して制御手段7から駆動信号が与えられ、フルブリッジインバータ動作が行われる(S1)。制御手段7は上記実施の形態1〜4に示す負荷判別制御を実施して被加熱体13の材質と大きさ双方を判別し(SS)、負荷判別結果と電力設定手段8の出力に応じた加熱出力制御を実施する(S16)。その後被加熱体13の載置される位置が加熱コイル5に対して移動した時、鍋ずれを検知し(S19)、制御手段7はインバータ再動作させ(S1)、再度負荷判別制御を実施し(SS)、負荷判別結果と電力設定手段8の出力を受けて新たに加熱出力制御を実施する(S16)。鍋ずれ検知の一方法して、例えば以下の方法が挙げられる。外コイル5bと共振コンデンサ6bの直列回路上に設けられた外コイル電流検出手段を設け、外コイル電流と内コイル電流の電流位相の時間偏差が所定値以上となった時に鍋ずれが起きたと検出する。鍋ずれ検知は、前記方法を一例として説明したが、別の方法でも問題はないことを記しておく。 The timing for carrying out the following load determination is also shown. After the power is turned on (S0), the induction heating cooker is given a drive signal from the control means 7 via the drive circuit 9 to each switching element, and a full bridge inverter operation is performed (S1). The control means 7 performs the load determination control shown in the first to fourth embodiments to determine both the material and size of the heated body 13 (SS), and according to the load determination result and the output of the power setting means 8. Heating output control is performed (S16). Thereafter, when the position on which the object to be heated 13 is moved moves with respect to the heating coil 5, a pan shift is detected (S19), the control means 7 restarts the inverter (S1), and the load determination control is performed again. (SS), the heating output control is newly performed in response to the load determination result and the output of the power setting means 8 (S16). As a method of detecting the pan displacement, for example, the following method can be cited. An outer coil current detecting means provided on a series circuit of the outer coil 5b and the resonance capacitor 6b is provided, and it is detected that a pan deviation has occurred when the time deviation of the current phase between the outer coil current and the inner coil current exceeds a predetermined value. To do. Although the above-described method has been described as an example for detecting the pan displacement, it should be noted that there is no problem with another method.

また次のような負荷判別を実施するタイミングも示す。誘導加熱調理器は、電源オン後(S0)、各スイッチング素子には駆動回路9を介して制御手段7から駆動信号が与えられ、フルブリッジインバータ動作が行われる(S1)。制御手段7は上記実施の形態1〜4に示す負荷判別制御を実施して被加熱体13の材質と大きさ双方を判別し(SS)、負荷判別結果と電力設定手段8の出力に応じた加熱出力制御を実施する(S16)。加熱出力制御実施から加熱中は何時でも(一定時間経過後又は一定時間の連続等)(S18)負荷判別を実施する。最初の負荷判別値と差異があれば、制御手段7はインバータ再動作させ(S1)、再度負荷判別制御を実施し(SS)、負荷判別結果と電力設定手段8の出力を受けて新たに加熱出力制御を実施する(S16)。 The timing for carrying out the following load determination is also shown. After the power is turned on (S0), the induction heating cooker is given a drive signal from the control means 7 via the drive circuit 9 to each switching element, and a full bridge inverter operation is performed (S1). The control means 7 performs the load determination control shown in the first to fourth embodiments to determine both the material and size of the heated body 13 (SS), and according to the load determination result and the output of the power setting means 8. Heating output control is performed (S16). Load determination is performed at any time during the heating from the heating output control (after a certain period of time or after a certain period of time) (S18). If there is a difference from the initial load determination value, the control means 7 restarts the inverter (S1), performs load determination control again (SS), receives the load determination result and the output of the power setting means 8, and newly heats it. Output control is performed (S16).

以上のように、被加熱体の材質及び大きさを判別する負荷判別を実施後、再度の負荷判別を行うタイミングは、加熱制御によって設定されたインバータ動作電力が使用者の手動操作又は子供又は動物等の誤った手動操作で変化したとき又は鍋ずれが起きたことを検知したときとしている。再度の負荷判別は、加熱出力制御実施中は何時でも実施する。加熱制御は、インバータ動作電力設定の変化又は被加熱体の変化又は負荷判別値の変化に応じて、安全で最適なインバータ動作で行うことができる。   As described above, after performing the load determination for determining the material and size of the object to be heated, the timing for performing the load determination again is determined by whether the inverter operating power set by the heating control is manually operated by the user or the child or animal It is assumed that it has been changed due to an erroneous manual operation such as, or that it has been detected that a pan slip has occurred. The load determination is performed again at any time during the heating output control. The heating control can be performed by safe and optimal inverter operation in accordance with a change in inverter operating power setting, a change in a heated object, or a change in a load determination value.

実施の形態7.
次に、負荷判別結果(材質判別、鍋径判別)を表示する実施の形態を示す。
この発明における実施の形態1〜6での判別(材質の判別実施、鍋径の判別実施)後、判別の結果を誘導加熱調理器本体に表示する。
図14は、誘導加熱調理器の全体図を示しており、上面には加熱コイルの位置を示す円15a、15bが示されている。加熱コイルの位置を示す円15a、15bの中心の間隔は、例えば290mmから310mmとなっている。判別した結果を誘導加熱調理器の上面に表示する表示面16a、側面に表示する表示面16bを示している。表示面16は誘導加熱調理器の上面、側面の少なくとも一方に備えられている。
Embodiment 7 FIG.
Next, an embodiment for displaying a load discrimination result (material discrimination, pan diameter discrimination) will be shown.
After discrimination (embodiment discrimination of material and discrimination of pan diameter) in Embodiments 1 to 6 in this invention, the discrimination result is displayed on the induction heating cooker body.
FIG. 14 shows an overall view of the induction heating cooker, and circles 15a and 15b indicating the positions of the heating coils are shown on the upper surface. The distance between the centers of the circles 15a and 15b indicating the position of the heating coil is, for example, 290 mm to 310 mm. The display surface 16a which displays the discriminated result on the upper surface of the induction heating cooker and the display surface 16b which is displayed on the side surface are shown. The display surface 16 is provided on at least one of the upper surface and the side surface of the induction heating cooker.

次に動作を誘導加熱調理器の動作フローチャート図3、図7、図9、図10、図11、図14において説明する。動作フローチャートにおいて、鍋の材質を判別する(S7)、(S9)、(S10)と、鍋の径を判別する(S13)、(S14)の直後のステップとして例えばLEDを用いて、判別した結果(例えば、「磁性体」、「非磁性体」、「アルミ材質」等)を表示面16aや表示面16bに表示する(S23図示せず)。   Next, the operation will be described with reference to FIG. 3, FIG. 7, FIG. 9, FIG. 10, FIG. In the operation flowchart, the material of the pan is determined (S7), (S9), (S10), and the diameter of the pan is determined (S13). (For example, “magnetic material”, “non-magnetic material”, “aluminum material”, etc.) are displayed on the display surface 16a and the display surface 16b (S23 not shown).

判別した結果を表示する方法として、一例としてLEDを用いた方法を示したが、判別した結果を表示できるのであれば、液晶、蛍光ランプ等でも良い。また、判別した結果を電子音等の音声で示しても良い。表示、音声の少なくとも一方であれば効果は同様であることを記しておく。   As a method of displaying the determined result, a method using an LED has been shown as an example. However, a liquid crystal, a fluorescent lamp, or the like may be used as long as the determined result can be displayed. Further, the determined result may be indicated by a sound such as an electronic sound. It should be noted that the effect is the same if it is at least one of display and sound.

以上のように、判別した結果が表示されることによって、使用者は不適被加熱体が誘導加熱調理器の上に乗っていたとき速やかに誘導加熱調理器の停止等の適切な手段をとることが出来る。また、鍋ずれが大きいときは、鍋の位置を正しい位置に速やかに戻すことが出来る効果がある。   As described above, by displaying the determined result, the user should take appropriate measures such as stopping the induction heating cooker immediately when the inappropriate heating target is on the induction heating cooker. I can do it. Moreover, when the pan shift is large, there is an effect that the pan position can be quickly returned to the correct position.

実施の形態8.
以上のような実施の形態では、入力電流、負荷電流(内コイル電流、外コイル電流)を検出して負荷判別を実施したものを示したが、本実施の形態は、検出した入力電流値、コイル電流値をそのまま使用せず,入力電流検出電圧(内コイル又は外コイルの少なくとも片方に通電し、入力電流検出手段11により求めた入力電流から制御手段7で変換した電圧を以下「入力電流検出電圧」と記す)と内コイル電流検出電圧(内コイルの入力電流検出手段12の出力電流を制御手段7で変換した電圧値を「内コイル電流検出電圧」と記す)から被加熱体の有無,即ち被加熱体が加熱コイル上方に設けられた天板(図示せず)上に載置されているか否かを判別するものである。
図15は,この実施の形態における誘導加熱調理器の回路構成図、図16はこの誘導加熱調理器の動作フローチャート,図17は、この実施の形態において本発明者が実験で得た、様々な材質、鍋径の被加熱体13の入力電流検出電圧-内コイル電流検出電圧測定値データのマッピング図であり、鍋ずれ距離毎に図17(A)〜(F)を示す。図18はこの実施の形態にて本発明者が実験で得た入力電流検出電圧-内コイル電流検出電圧データのマッピング図であり、電源電圧毎に図18(A)〜(F)の図を示す。図17において、整流回路2の出力電圧を検出するために,電源電圧検出手段17が整流回路2の出力に接続される。電源電圧検出手段17の接続位置は,この他に平滑回路3の出力としてもよい。なお、前述の実施の形態と同一部分には同一符号を付け、説明を省略する。
Embodiment 8 FIG.
In the embodiment as described above, the input current and the load current (inner coil current, outer coil current) are detected and the load determination is performed. However, the present embodiment shows the detected input current value, The coil current value is not used as it is, but the input current detection voltage (at least one of the inner coil and the outer coil is energized, and the voltage converted by the control means 7 from the input current obtained by the input current detection means 11 is hereinafter referred to as “input current detection. From the inner coil current detection voltage (the voltage value obtained by converting the output current of the input current detection means 12 of the inner coil by the control means 7 is referred to as “inner coil current detection voltage”), That is, it is determined whether or not the object to be heated is placed on a top plate (not shown) provided above the heating coil.
Figure 15 is a circuit diagram of the induction heating cooker of this embodiment, FIG. 16 is the operation flow chart of the induction heating cooker, Fig. 17, the present inventor in the present embodiment is obtained by experiments, various It is a mapping figure of the input current detection voltage-inner coil current detection voltage measured value data of the to-be-heated body 13 of a material and a pan diameter, and shows (A)-(F) for every pan deviation distance. Figure 18 is an input current detection voltage obtained by the present inventors have experimentally in this embodiment - a mapping diagram of the inner coil current detection voltage data, the diagram of FIG. 18 for each power supply voltage (A) ~ (F) Show. In FIG. 17, power supply voltage detection means 17 is connected to the output of the rectifier circuit 2 in order to detect the output voltage of the rectifier circuit 2. In addition to this, the connection position of the power supply voltage detection means 17 may be the output of the smoothing circuit 3. Note that the same reference numerals are given to the same parts as those of the above-described embodiment, and the description thereof is omitted.

次に動作について図15〜図18を用いて説明する。図16のS0〜S2までの動作は実施の形態1と同様であり説明を省略する。
本実施の形態では,入力電流検出手段11の出力は電流を制御手段7で変換した入力電流検出電圧値とする(S31)。同様にコイル電流検出手段12の出力は電流を制御手段7で変換した内コイル電流検出電圧値とする(S41)。
Next, the operation will be described with reference to FIGS. The operations from S0 to S2 in FIG. 16 are the same as those in the first embodiment, and a description thereof will be omitted.
In the present embodiment, the output of the input current detection means 11 is an input current detection voltage value obtained by converting the current by the control means 7 (S31). Similarly, the output of the coil current detection means 12 is set to the inner coil current detection voltage value obtained by converting the current by the control means 7 (S41).

様々な材質や大きさの被加熱体13について,内コイル5aのみ通電時の入力電流検出電圧値と内コイル電流検出電圧値を測定し,次の結果を得た。電源電圧200V時で鍋ずれ0mm(=加熱コイル5の中心位置に被加熱体13を載置)の場合では図17(A)のマッピング図を得た。図のように入力電流検出電圧値と内コイル電流検出電圧値で規定される[閾値X](図の塗りつぶし部)を設けると,[閾値X]の領域内では無負荷状態(ナイフ,フォーク等の小物が載置された状態を含む),[閾値X]の領域外では負荷有り状態に区分けできる。この測定例では入力電流検出電圧0.25V以下,且つ内コイル電流検出電圧1.0V以下で無負荷,それ以外で負荷有りと判別できる。無負荷状態と判別された時は,速やかにインバータを停止する(S15)ことで,安全性を高められる。 For the heated body 13 of various materials and sizes, the input current detection voltage value and the inner coil current detection voltage value when only the inner coil 5a was energized were measured, and the following results were obtained. In the case of a power source voltage of 200 V and a pan displacement of 0 mm (= the heated body 13 is placed at the center position of the heating coil 5), the mapping diagram of FIG. If a [threshold X] (filled area in the figure) defined by the input current detection voltage value and the inner coil current detection voltage value is provided as shown in the figure, there is no load (knife, fork, etc.) within the [threshold X] region. In other words, it can be classified into a loaded state outside the area of [threshold X]. In this measurement example, it can be determined that there is no load when the input current detection voltage is 0.25 V or less and the inner coil current detection voltage is 1.0 V or less, and there is a load other than that. When it is determined that there is no load, safety can be improved by quickly stopping the inverter (S15).

また電源電圧200V時に鍋ずれが起きた場合の,様々な材質や大きさの被加熱体13における測定値をプロットしたところ図17(B)〜(F)に示すマッピング図を得た。上記負荷の有無判別方法によれば,[閾値X]の値を不変とした場合,40mmを超える鍋ずれが起きた場合に於いては負荷有りでも無負荷と判別される。無負荷状態と判別できることで,速やかにインバータを停止でき,安全性を高められる。 Moreover, when the pan shift occurred when the power source voltage was 200 V, the measured values in the heated body 13 of various materials and sizes were plotted, and mapping diagrams shown in FIGS. 17B to 17F were obtained. According to the method for determining whether or not there is a load, if the value of [Threshold X] is not changed, if there is a pan shift exceeding 40 mm, it is determined that there is no load even if there is a load. Since it can be determined that there is no load, the inverter can be stopped quickly and safety can be improved.

次に,鍋ずれ0mm時に電源電圧変動が起きた場合の,様々な材質や大きさの被加熱体13について,内コイル5aのみ通電時の入力電流検出電圧値と内コイル電流検出電圧値を測定し,図18(A)〜(E)のマッピング図を得た。図のように入力電流検出電圧値と内コイル電流検出電圧値で規定される[閾値X](図の塗りつぶし部)を電源電圧検出手段17の出力(S24)に応じて変更する(S25)ことで,電源電圧変動が起きても正確に負荷の有無を判別することができる。この測定例では入力電流検出電圧の閾値と内コイル電流検出電圧の閾値を表1に示すように電源電圧に応じて変更させている。 Next, when the power supply voltage fluctuates when the pan deviation is 0 mm, the input current detection voltage value and the internal coil current detection voltage value when the inner coil 5a is energized are measured for the heated body 13 of various materials and sizes. Thus, the mapping diagrams of FIGS. 18 (A) to (E) were obtained. As shown in the figure, the [threshold X] (filled portion in the figure) defined by the input current detection voltage value and the inner coil current detection voltage value is changed according to the output (S24) of the power supply voltage detection means 17 (S25). Thus, it is possible to accurately determine the presence or absence of a load even when the power supply voltage fluctuates. In this measurement example, the threshold of the input current detection voltage and the threshold of the inner coil current detection voltage are changed according to the power supply voltage as shown in Table 1.

Figure 0004821677
Figure 0004821677

このように,入力電流検出手段11の出力及びコイル電流検出手段12の出力の両方が制御手段7の予め記憶する閾値X以上(S22)でなければ被加熱体13が載置されていない(無負荷状態)と判別(S23),入力電流検出手段11の出力及びコイル電流検出手段12の出力の両方もしくは一方が閾値X以上(S22)であれば被加熱体13が載置されていると判別する。そしてこの閾値Xを電源電圧値(S24)に応じて変更する(S25)ようにする。 Thus, the object to be heated 13 is not placed unless both the output of the input current detection means 11 and the output of the coil current detection means 12 are equal to or greater than the threshold value X stored in advance by the control means 7 (S22). Load state) and discrimination (S23), and if both or one of the output of the input current detection means 11 and the output of the coil current detection means 12 is equal to or greater than the threshold value X (S22), it is determined that the heated object 13 is placed. To do. The threshold value X is changed according to the power supply voltage value (S24) (S25).

以上のように,入力電流検出電圧値と内コイル電流検出電圧値による閾値を設けることで被加熱体の有無を判別するようにしているので、制御手段7を大型化させることなく容易な制御方法で負荷の有無判別をすることができる。更にこの閾値を電源電圧値に応じて変更するようにしているので,電源電圧変動時も精度良く確実な判別が可能となる。また無負荷状態と判別したときは、速やかにインバータを停止することで、安全性を高められる。   As described above, since the presence / absence of the object to be heated is determined by providing the threshold value based on the input current detection voltage value and the inner coil current detection voltage value, an easy control method without increasing the size of the control means 7 It is possible to determine the presence or absence of a load. Furthermore, since this threshold value is changed according to the power supply voltage value, accurate and reliable determination can be performed even when the power supply voltage fluctuates. Also, when it is determined that there is no load, safety can be improved by quickly stopping the inverter.

実施の形態9.
以上の実施の形態8では,内コイル通電による入力電流検出電圧値と内コイル電流検出電圧値から被加熱体の有無を判別するようにしたものを示したが、本実施の形態は、外コイル通電において,入力電流検出電圧値と外コイル電流検出電圧値(外コイルの入力電流検出手段12の出力電流を制御手段7で変換した電圧値を「外コイル電流検出電圧」と記す)から被加熱体の大きさを判別するものである。
図19は,この実施の形態における誘導加熱調理器の回路構成図、図20はこの誘導加熱調理器の動作フローチャート,図21は、この実施の形態において本発明者が実験で得た、様々な材質、鍋径の被加熱体13の入力電流検出電圧-外コイル電流検出電圧測定値データのマッピング図であり、鍋ずれ距離毎に図21(A)〜(F)を示す。図22はこの実施の形態にて本発明者が実験で得た入力電流検出電圧-外コイル電流検出電圧データの関係をプロットしたマッピング図であり、電源電圧毎に図22(A)〜(F)を示す。図19において,整流回路2の出力電圧を検出するために,電源電圧検出手段17が整流回路2の出力に接続される。電源電圧検出手段17の接続位置は,この他に平滑回路3の出力としてもよい。なお、前述の実施の形態と同一部分には同一符号を付け、説明を省略する。
Embodiment 9 FIG.
In the above-described eighth embodiment, the presence or absence of the object to be heated is determined from the input current detection voltage value by the inner coil energization and the inner coil current detection voltage value. In energization, the input current detection voltage value and the outer coil current detection voltage value (the voltage value obtained by converting the output current of the input current detection means 12 of the outer coil by the control means 7 is referred to as “outer coil current detection voltage”) to be heated. It is to determine the size of the body.
Figure 19 is a circuit diagram of the induction heating cooker of this embodiment, FIG. 20 is the operation flow chart of the induction heating cooker, Fig. 21, the present inventor in the present embodiment is obtained by experiments, various It is a mapping figure of the input electric current detection voltage-outer coil electric current detection voltage measured value data of the to-be-heated body 13 of a material and a pan diameter, and shows (A)-(F) for every pan deviation distance. FIG. 22 is a mapping diagram in which the relationship between the input current detection voltage and the outer coil current detection voltage data obtained by the inventors in this embodiment is plotted. FIG. 22A to FIG. ). In FIG. 19, power supply voltage detection means 17 is connected to the output of the rectifier circuit 2 in order to detect the output voltage of the rectifier circuit 2. In addition to this, the connection position of the power supply voltage detection means 17 may be the output of the smoothing circuit 3. Note that the same reference numerals are given to the same parts as those of the above-described embodiment, and the description thereof is omitted.

次に動作について図19〜図22を用いて説明する。図20のS0,S1,S11の動作は実施の形態1と同様であり説明を省略する。
本実施の形態においても,入力電流検出手段11の出力は電流を制御手段7で変換した入力電流検出電圧値とする(S31)。同様にコイル電流検出手段12の出力は電流を制御手段7で変換した外コイル電流検出電圧値とする(S42)。
Next, the operation will be described with reference to FIGS. The operations in S0, S1, and S11 in FIG. 20 are the same as those in the first embodiment, and a description thereof is omitted.
Also in the present embodiment, the output of the input current detection means 11 is set to the input current detection voltage value obtained by converting the current by the control means 7 (S31). Similarly, the output of the coil current detection means 12 is set to the outer coil current detection voltage value obtained by converting the current by the control means 7 (S42).

様々な材質や大きさの被加熱体13について,外コイル5bのみ通電時の入力電流検出電圧値と外コイル電流検出電圧値を測定し,次の結果を得た。電源電圧200V時で鍋ずれ0mm(=加熱コイル5の中心位置に被加熱体13を載置)の場合では図21(A)のマッピング図を得た。図のように入力電流検出電圧値と外コイル電流検出電圧値で規定される[閾値C]を設けると,鍋ずれが例えば鍋径の10%以下(加熱コイル5の略中心位置に被加熱体13を載置)であれば,[閾値C]の領域内では(S26)小径鍋(S13),[閾値C]の領域外(S26)では大径鍋(S14)の被加熱体に区分けできる。この測定例では入力電流検出電圧0.27V以下,且つ外コイル電流検出電圧1.4V以下で小径鍋,それ以外で大径鍋と判別できる。 For the heated body 13 of various materials and sizes, the input current detection voltage value and the outer coil current detection voltage value when only the outer coil 5b was energized were measured, and the following results were obtained. In the case of a power source voltage of 200 V and a pan shift of 0 mm (= the heated body 13 is placed at the center position of the heating coil 5), the mapping diagram of FIG. If a [threshold C] defined by the input current detection voltage value and the outer coil current detection voltage value is provided as shown in the figure, the pan deviation is, for example, 10% or less of the pan diameter (the object to be heated at the approximate center position of the heating coil 5) 13), within the area of [Threshold C] (S26), the small-diameter pan (S13), and outside the area of [Threshold C] (S26), the large-diameter pan (S14) can be classified. . In this measurement example, a small-diameter pan can be discriminated from an input current detection voltage of 0.27 V or less and an outer coil current detection voltage of 1.4 V or less.

また電源電圧200V時に鍋ずれが起きた場合の,様々な材質や大きさの被加熱体13における測定値をプロットしたところ図21(B)〜(F)に示すマッピング図を得た。上記鍋径判別方法によれば,[閾値C]の値を不変とした場合,20mmを超える鍋ずれが起きた場合に於いては大径鍋でも小径鍋と判別される。 Further, when the measured values in the heated body 13 of various materials and sizes when the pan shift occurred when the power source voltage was 200 V, mapping diagrams shown in FIGS. 21B to 21F were obtained. According to the pan diameter discriminating method described above, when the value of [Threshold C] is unchanged, when a pan shift exceeding 20 mm occurs, a large-diameter pan is discriminated as a small-diameter pan.

次に,鍋ずれ0mm時に電源電圧変動が起きた場合の,様々な材質や大きさの被加熱体13について,外コイル5bのみ通電時の入力電流検出電圧値と外コイル電流検出電圧値を測定し,図22(A)〜(E)のマッピング図を得た。図のように入力電流検出電圧値と外コイル電流検出電圧値で規定される[閾値C]を電源電圧検出手段17の出力(S24)に応じて変更する(S27)ことで,電源電圧変動が起きても正確に鍋径を判別することができる。この測定例では入力電流検出電圧の閾値と外コイル電流検出電圧の閾値を表2に示すように電源電圧に応じて変更させている。 Next, when the power supply voltage fluctuates when the pan deviation is 0 mm, the input current detection voltage value and the outer coil current detection voltage value when only the outer coil 5 b is energized are measured for the heated body 13 of various materials and sizes. 22A to 22E were obtained. By changing the [threshold C] defined by the input current detection voltage value and the outer coil current detection voltage value according to the output (S24) of the power supply voltage detection means 17 (S27) as shown in FIG. Even if you get up, you can accurately determine the pot diameter. In this measurement example, the threshold of the input current detection voltage and the threshold of the outer coil current detection voltage are changed according to the power supply voltage as shown in Table 2.

Figure 0004821677
Figure 0004821677

このように,入力電流検出手段11の出力及びコイル電流検出手段12の出力の両方が制御手段7の予め記憶する閾値C以上(S26)でなければ被加熱体13の大きさを小径鍋と判別(S13),入力電流検出手段11の出力及びコイル電流検出手段12の出力の両方もしくは一方が閾値C以上(S22)であれば被加熱体13の大きさを大径鍋と判別する(S14)。そしてこの閾値Cを電源電圧値(S24)に応じて変更する(S25)ようにする。 Thus, if both the output of the input current detection means 11 and the output of the coil current detection means 12 are not less than the threshold C stored in advance in the control means 7 (S26), the size of the heated body 13 is determined as a small diameter pan. (S13) If both or one of the output of the input current detection means 11 and the output of the coil current detection means 12 is equal to or greater than the threshold C (S22), the size of the heated body 13 is determined as a large-diameter pan (S14). . The threshold C is changed according to the power supply voltage value (S24) (S25).

以上のように,外コイル通電時の入力電流検出電圧値と外コイル電流検出電圧値から被加熱体の大きさを判別するようにしているので,実施の形態1と同様に制御手段7を大型化させることなく容易な制御方法で大きさ判別できる。また,加熱コイルを内コイルと外コイルに分割しているため,被加熱体が鍋ずれを起こした場合には,大径鍋を小径鍋として判別できる。そのため,被加熱体の鍋ずれが大きく加熱効率が悪い場合には,内コイルのみ通電することで,電力節減や漏洩磁束低減を実現できるという効果がある。
更にこの閾値を電源電圧値に応じて変更するようにしているので,電源電圧変動時も精度良く確実な鍋径判別が可能となる。
As described above, since the size of the object to be heated is discriminated from the input current detection voltage value when the outer coil is energized and the outer coil current detection voltage value, the control means 7 is made large as in the first embodiment. The size can be discriminated by an easy control method without making it. Moreover, since the heating coil is divided into the inner coil and the outer coil, when the heated object causes a pan shift, the large-diameter pan can be identified as the small-diameter pan. Therefore, when the pan of the object to be heated is large and the heating efficiency is poor, the power can be saved and the leakage magnetic flux can be reduced by energizing only the inner coil.
Furthermore, since this threshold value is changed according to the power supply voltage value, it is possible to accurately and reliably discriminate the pot diameter even when the power supply voltage fluctuates.

実施の形態10.
以上の実施の形態9では,外コイル通電により入力電流検出電圧値と外コイル電流検出電圧値を検出し,その検出電圧値から被加熱体の大きさを判別するようにしたものである。次に外コイル通電により入力電流検出電圧値と外コイル電流検出電圧値を検出し,その検出電圧値から被加熱体の材質を判別するようにした場合の実施の形態を示す。
図23は,この実施の形態における誘導加熱調理器の動作フローチャート,図24は、この実施の形態において本発明者が実験で得た、様々な材質、鍋径の被加熱体13の入力電流検出電圧-外コイル電流検出電圧測定値データのマッピング図であり、鍋ずれ距離毎に図24(A)〜(F)を示す。図25はこの実施の形態にて本発明者が実験で得た入力電流検出電圧-外コイル電流検出電圧データのマッピング図であり、電源電圧毎に図25(A)〜(F)を示す。
なお、この誘導加熱調理器の回路構成図は、図19を流用する。
Embodiment 10 FIG.
In Embodiment 9 described above, the input current detection voltage value and the outer coil current detection voltage value are detected by energization of the outer coil, and the size of the object to be heated is determined from the detected voltage value. Next, an embodiment in which the input current detection voltage value and the outer coil current detection voltage value are detected by energizing the outer coil and the material of the object to be heated is discriminated from the detected voltage value will be described.
Figure 23 is a flowchart of the induction heating cooker of this embodiment, FIG. 24, the present inventor in the present embodiment was obtained in the experiment various materials, the input current detection of the object to be heated 13 Nabe径FIG. 24 is a mapping diagram of voltage-outer coil current detection voltage measurement value data, and FIGS. 24A to 24F are shown for each pan displacement distance. Figure 25 is an input current sense voltage present inventors in this embodiment is obtained in Experiment - a mapping diagram of the outer coil current detection voltage data shows a diagram 25 (A) ~ (F) for each power supply voltage.
In addition, FIG. 19 is diverted for the circuit block diagram of this induction heating cooking appliance.

次に動作について図23〜図25を用いて説明する。図23のS0,S1,S11の動作は実施の形態1と同様であり説明を省略する。
本実施の形態においても,入力電流検出手段11の出力は電流を制御手段7で変換した入力電流検出電圧値とする(S31)。同様にコイル電流検出手段12の出力は電流を制御手段7で変換した外コイル電流検出電圧値とする(S42)。
Next, the operation will be described with reference to FIGS. The operations in S0, S1, and S11 in FIG. 23 are the same as those in the first embodiment, and a description thereof is omitted.
Also in the present embodiment, the output of the input current detection means 11 is set to the input current detection voltage value obtained by converting the current by the control means 7 (S31). Similarly, the output of the coil current detection means 12 is set to the outer coil current detection voltage value obtained by converting the current by the control means 7 (S42).

様々な材質や大きさの被加熱体13について,外コイル5bのみ通電時の入力電流検出電圧値と外コイル電流検出電圧値を測定し,次の結果を得た。電源電圧200V時で鍋ずれ0mm(=加熱コイル5の中心位置に被加熱体13を載置)の場合では図24(A)のマッピング図を得た。図のように入力電流検出電圧値と外コイル電流検出電圧値で規定される[閾値A] と[閾値B]を設けると,[閾値A]以下で磁性材質(S7),[閾値A]と[閾値B]の間でアルミ材質を除く非磁性材質(S9),[閾値B]以上でアルミ材質(S10)の被加熱体に区分けできる。ここで,[閾値A]や[閾値B]はそれぞれ入力電流検出電圧と外コイル電流検出電圧の比率を表す直線であり,この測定例では検出電圧比率β≦4.1で磁性材質,4.1<β<5.5でアルミ材質を除く非磁性材質,β≧5.5でアルミ材質と判別できる。 For the heated body 13 of various materials and sizes, the input current detection voltage value and the outer coil current detection voltage value when only the outer coil 5b was energized were measured, and the following results were obtained. In the case of a pan displacement of 0 mm at the power supply voltage of 200 V (= the heated body 13 is placed at the center position of the heating coil 5), the mapping diagram of FIG. If [Threshold A] and [Threshold B] defined by the input current detection voltage value and the outer coil current detection voltage value are provided as shown in the figure, the magnetic material (S7), [Threshold A] It can be classified into a non-magnetic material (S9) excluding an aluminum material between [threshold B] and an object to be heated of aluminum material (S10) above [threshold B]. Here, [Threshold A] and [Threshold B] are straight lines representing the ratio between the input current detection voltage and the outer coil current detection voltage, respectively. In this measurement example, the detection voltage ratio β ≦ 4.1 and the magnetic material 4.1 <β < It can be distinguished from non-magnetic material except aluminum material at 5.5, and aluminum material at β ≧ 5.5.

また電源電圧200V時に鍋ずれが起きた場合の,様々な材質や大きさの被加熱体13における測定値をプロットしたところ図24(B)〜(F)に示すマッピング図を得た。上記材質判別方法によれば,鍋ずれ100mm(=加熱コイル5の中心に対し被加熱体13の中心が100mmの距離に載置)までに於いても,[閾値A]の値と[閾値B]の値を可変することなく同様に各材質を判別することができる。 Moreover, when the pan shift occurred when the power source voltage was 200 V, the measured values in the heated body 13 of various materials and sizes were plotted, and the mapping diagrams shown in FIGS. 24B to 24F were obtained. According to the above material discrimination method, the value of [threshold A] and [threshold B] are up to 100 mm in pan displacement (= the center of the heated object 13 is placed at a distance of 100 mm with respect to the center of the heating coil 5). Each material can be similarly identified without changing the value of].

次に,鍋ずれ0mm時に電源電圧変動が起きた場合の,様々な材質や大きさの被加熱体13について,外コイル5bのみ通電時の入力電流検出電圧値と外コイル電流検出電圧値を測定し,図25(A)〜(E)のマッピング図を得た。図のように入力電流検出電圧値と外コイル電流検出電圧値で規定される[閾値A]と[閾値B]のうち,[閾値A]のみを電源電圧検出手段17の出力(S24)に応じて変更する(S30)ことで,電源電圧変動が起きても正確に鍋材質を判別することができる。この測定例では,[閾値A]の検出電圧比率を表3に示すように電源電圧に応じて変更させている。 Next, when the power supply voltage fluctuates when the pan deviation is 0 mm, the input current detection voltage value and the outer coil current detection voltage value when only the outer coil 5 b is energized are measured for the heated body 13 of various materials and sizes. 25A to 25E were obtained. As shown in the figure, among [Threshold A] and [Threshold B] defined by the input current detection voltage value and the outer coil current detection voltage value, only [Threshold A] is determined according to the output (S24) of the power supply voltage detection means 17. By changing (S30), it is possible to accurately determine the material of the pan even if the power supply voltage fluctuates. In this measurement example, the detection voltage ratio of [Threshold A] is changed according to the power supply voltage as shown in Table 3.

Figure 0004821677
Figure 0004821677

このように,入力電流検出手段11の出力及びコイル電流検出手段12の出力から得られる検出電圧比率(=外コイル電流検出電圧/入力電流検出電圧)を制御手段7が演算し(S5),その演算結果が制御手段7の予め記憶する閾値A以上(S28)でなければ被加熱体13の材質を磁性材質と判別(S7),演算結果が閾値A以上(S28)で且つ閾値B以上(S29)でなければ被加熱体13の材質はアルミ材質を除く非磁性材質と判別(S9),演算結果が閾値B以上(S29)であれば被加熱体13の材質をアルミ材質の鍋と判別する(S10)。アルミ材質の鍋とは,純アルミニウム又はアルミニウム合金の少なくとも一方で作られた鍋のことをいう。そしてこの閾値Aを電源電圧値(S24)に応じて変更する(S30)ようにする。また,被加熱体13の材質をアルミ材質の鍋と判別した(S10)場合は,不適正鍋が載置されたとみてインバータ動作を停止する(S15)。 Thus, the control means 7 calculates the detection voltage ratio (= outer coil current detection voltage / input current detection voltage) obtained from the output of the input current detection means 11 and the output of the coil current detection means 12 (S5). If the calculation result is not more than the threshold A stored in advance in the control means 7 (S28), the material of the heated body 13 is determined as a magnetic material (S7), the calculation result is not less than the threshold A (S28) and not less than the threshold B (S29). If not, the material of the heated body 13 is determined as a non-magnetic material excluding the aluminum material (S9). If the calculation result is equal to or greater than the threshold value B (S29), the material of the heated body 13 is determined as an aluminum pan. (S10). An aluminum pan is a pan made of pure aluminum or aluminum alloy. The threshold A is changed according to the power supply voltage value (S24) (S30). When the material of the heated body 13 is determined to be an aluminum pan (S10), the inverter operation is stopped assuming that an inappropriate pan is placed (S15).

以上のように,入力電流検出電圧値と外コイル電流検出電圧値の検出電圧比率を演算することにより被加熱体の材質を判別するようにしているので、実施の形態9と同様に制御手段7を大型化させることなく容易な制御方法で材質判別することができる。また,制御手段7に所定値を2つ設けることで,非磁性材質のうちアルミ材質を確実に判別することができる。また加熱コイルを内コイルと外コイルに分割しているため,被加熱体が鍋ずれを起こしても精度良く確実に材質判別することができる。また,アルミ材質の鍋と判別したときは,速やかにインバータを停止することで,安全性を高められる。
更に閾値の1つを電源電圧値に応じて変更するようにしているので,電源電圧変動時も精度良く確実な鍋材質判別が可能となる。
As described above, since the material of the object to be heated is determined by calculating the detection voltage ratio between the input current detection voltage value and the outer coil current detection voltage value, the control means 7 is the same as in the ninth embodiment. The material can be identified by an easy control method without increasing the size. Further, by providing two predetermined values in the control means 7, it is possible to reliably determine the aluminum material among the non-magnetic materials. In addition, since the heating coil is divided into an inner coil and an outer coil, the material can be accurately and reliably discriminated even if the object to be heated causes a pan shift. In addition, when it is determined that the pan is made of aluminum, safety can be improved by quickly stopping the inverter.
Furthermore, since one of the threshold values is changed according to the power supply voltage value, it is possible to accurately and reliably discriminate the pot material even when the power supply voltage fluctuates.

実施の形態11.
以上の実施の形態8,9,10に対し,本実施の形態は実施の形態8,9,10における負荷判別を合わせたものである。
図26は,本実施の形態11の誘導加熱調理器の回路構成図、図27はこの誘導加熱調理器の動作フローチャートである。
なお、前述の実施の形態と同一の部分には同一符号をつけ説明を省略する。
Embodiment 11 FIG.
In contrast to the above-described eighth, ninth, and tenth embodiments, the present embodiment combines the load determination in the eighth, ninth, and tenth embodiments.
FIG. 26 is a circuit configuration diagram of the induction heating cooker according to the eleventh embodiment, and FIG. 27 is an operation flowchart of the induction heating cooker.
Note that the same parts as those of the above-described embodiment are denoted by the same reference numerals and description thereof is omitted.

次に動作について図26、27を用いて説明する。実施の形態8のように,内コイル5aのみを通電した(S2)後,入力電流検出手段11が入力電流検出電圧値を検出し(S31),コイル電流検出手段12aが内コイル電流検出電圧値を検出する(S41)。その後の動作は実施の形態8と同様のため説明を省略するが,入力電流検出手段11の出力とコイル電流検出手段12aの出力が制御手段7の予め記憶する閾値Xの領域外(S22)であれば被加熱体13が天板(図示せず)上に載置されていると判別する。次に実施の形態9のように,外コイル5bのみを通電し(S11),入力電流検出手段11が入力電流検出電圧値を検出し(S31),コイル電流検出手段12bが外コイル電流検出電圧値を検出する(S42)。その後の動作は実施の形態9と同様のため説明を省略するが,入力電流検出手段11の出力とコイル電流検出手段12bの出力が制御手段7の予め記憶する閾値Cの領域外(S26)でなければ被加熱体13の大きさを小径鍋と判別(S13),閾値Cの領域外(S26)であれば被加熱体13の大きさを大径鍋と判別する(S14)。またこの外コイル5bのみを通電して(S11)入力電流検出手段11が入力電流検出電圧値を検出し(S31),コイル電流検出手段12bが外コイル電流検出電圧値を検出した時(S42),実施の形態10のように,入力電流とコイル電流の検出電圧比率が閾値A以下で被加熱体13の材質を磁性材質と判別(S7),閾値Aと閾値Bの間でアルミ材質を除く非磁性材質と判別(S9),閾値B以上でアルミ材質と判別(S10)する。アルミ材質と判別した場合は不適正鍋が載置されたとみてインバータ動作を停止する(S15)。   Next, the operation will be described with reference to FIGS. As in the eighth embodiment, after energizing only the inner coil 5a (S2), the input current detection means 11 detects the input current detection voltage value (S31), and the coil current detection means 12a detects the inner coil current detection voltage value. Is detected (S41). Since the subsequent operation is the same as that in the eighth embodiment, the description thereof will be omitted. However, the output of the input current detecting means 11 and the output of the coil current detecting means 12a are outside the threshold value X area stored in advance in the control means 7 (S22). If there is, it is determined that the heated body 13 is placed on a top plate (not shown). Next, as in the ninth embodiment, only the outer coil 5b is energized (S11), the input current detection means 11 detects the input current detection voltage value (S31), and the coil current detection means 12b is the outer coil current detection voltage. A value is detected (S42). Since the subsequent operation is the same as that of the ninth embodiment, the description thereof will be omitted. However, the output of the input current detection means 11 and the output of the coil current detection means 12b are outside the threshold C area stored in advance in the control means 7 (S26). If not, the size of the heated body 13 is determined as a small-diameter pan (S13), and if it is outside the threshold C region (S26), the size of the heated body 13 is determined as a large-diameter pan (S14). When only the outer coil 5b is energized (S11), the input current detection means 11 detects the input current detection voltage value (S31), and the coil current detection means 12b detects the outer coil current detection voltage value (S42). As in the tenth embodiment, when the detection voltage ratio of the input current and the coil current is equal to or less than the threshold A, the material of the heated body 13 is determined as a magnetic material (S7), and the aluminum material is excluded between the threshold A and the threshold B. It is determined that the material is a non-magnetic material (S9). If it is determined that the material is aluminum, the inverter operation is stopped assuming that an inappropriate pan is placed (S15).

また閾値X,閾値C,閾値Aを電源電圧の検出値(S24)に応じて変更することで(S25,S27,S30),電源電圧変動時も精度良く確実な判別を可能とする。 Further, by changing the threshold value X, threshold value C, and threshold value A according to the detected value (S24) of the power supply voltage (S25, S27, S30), accurate determination can be made even when the power supply voltage fluctuates.

ここで,本実施の形態に於ける通電を,内コイル通電から外コイル通電の順番としているが,この限りではなく,外コイル通電から内コイル通電の順番としても良い。即ち鍋径判別と鍋材質判別を行った後に鍋の有無判別を行っても最終の負荷判別結果は同じとなるため,通電の順番は問わないことを記しておく。 Here, the energization in the present embodiment is the order from the inner coil energization to the outer coil energization. However, the order is not limited to this, and the order from the outer coil energization to the inner coil energization may be used. That is, it is noted that even if the pan presence / absence discrimination is performed after the pan diameter discrimination and the pan material discrimination, the final load discrimination result is the same, so the order of energization does not matter.

以上のように,内コイル通電により被加熱体の有無判別を行い,次に有無判別結果を受けて外コイル通電により被加熱体の大きさと材質判別を行うようにする,または外コイル通電により被加熱体の大きさと材質判別を行い,次に内コイル通電により被加熱体の有無判別を行うようにしているので,誘導加熱調理器の不適正鍋であるアルミ材質を確実に判別してインバータ動作を停止させられると共に,その他の材質判別(磁性材質とアルミ材質を除く非磁性材質)及び鍋径判別(大径鍋と小径鍋)を高精度で連動して行うことができる。   As described above, the presence / absence determination of the object to be heated is performed by energizing the inner coil, and then the size and material of the object to be heated are determined by energizing the outer coil based on the result of the presence / absence determination, or The size and material of the heating element are determined, and then the presence or absence of the object to be heated is determined by energizing the inner coil. Can be stopped, and other material discrimination (non-magnetic material excluding magnetic material and aluminum material) and pan diameter discrimination (large-diameter pan and small-diameter pan) can be performed in conjunction with high accuracy.

実施の形態12.
次に、インバータを構成する複数のスイッチング素子を1つのモジュール(パワーモジュール)に収める場合の実施の形態を示す。
図1のインバータ構成は、6つのスイッチング素子(IGBT等)4a〜4fを使用している回路構成図を示したが、実施の形態は、これら6つのスイッチング素子のディスクリート部品による構成を、複数のスイッチング素子入りIPM(Intelligent Power Module)に収めた構成に変更したものである。このことで,ノイズ耐性向上による信頼性の改善,また部品数削減による工作性の改善が得られる。
Embodiment 12 FIG.
Next, an embodiment in the case where a plurality of switching elements constituting the inverter are housed in one module (power module) will be described.
The inverter configuration in FIG. 1 is a circuit configuration diagram using six switching elements (IGBTs, etc.) 4a to 4f. However, in the embodiment, a configuration in which these six switching elements are configured by discrete components is used. The configuration is changed to an IPM (Intelligent Power Module) with a switching element. As a result, reliability is improved by improving noise resistance, and workability is improved by reducing the number of parts.

本発明の活用例として、内外の渦巻形状で形成された加熱コイルを用いて負荷判別を行う誘導加熱調理器がある。   As an application example of the present invention, there is an induction heating cooker that performs load discrimination using a heating coil formed in an inner and outer spiral shape.

施の形態1と実施の形態2とを示す誘導加熱調理器の回路構成図である。Is a circuit diagram of an induction heating cooker showing the a form 1 of implementation and the second embodiment. 施の形態1を示すフルブリッジインバータの駆動信号波形(例)示す説明図である。It is an explanatory view showing a driving signal waveform (example) of the full bridge inverter shown in the form 1 of implementation. 施の形態1を示す誘導加熱調理器の動作フローチャートである。An operation flowchart of the induction heating cooker showing Embodiment 1 of implementation. 施の形態1にて本発明者が実験で得た入力電流-コイル電流データのマッピング図(被加熱体の鍋ずれ距離ごと)である。Input current inventors in the form 1 of implementation is obtained in Experiment - is a mapping diagram of the coil current data (each pot deviation distance object to be heated). 図4の鍋ずれ0mm時データにおいて電流比率(=コイル電流/入力電流)を縦軸に書き換えた図である。FIG. 5 is a diagram in which the current ratio (= coil current / input current) is rewritten on the vertical axis in the data when the pan deviation is 0 mm in FIG. 4. 図1のインバータ構成を異ならせた場合の回路構成図である。It is a circuit block diagram at the time of making the inverter structure of FIG. 1 different. 施の形態2を示す誘導加熱調理器の動作フローチャートである。An operation flowchart of the induction heating cooker showing Embodiment 2 of implementation. 施の形態2にて本発明者が実験で得た入力電流-コイル電流データのマッピング図(被加熱体の鍋ずれ距離ごと)を示す説明図である。Input current inventors in the implementation of Embodiment 2 was obtained in the experiment - is an explanatory view showing mapping diagram of the coil current data (each pot deviation distance object to be heated). 施の形態3を示す誘導加熱調理器の動作フローチャートである。An operation flowchart of the induction heating cooker showing Embodiment 3 of implementation. 図9において外コイル通電と内コイル通電の順番を逆にした場合の動作フローチャートである。10 is an operation flowchart in the case where the order of the outer coil energization and the inner coil energization is reversed in FIG. 9. 施の形態4を示す誘導加熱調理器の動作フローチャートである。An operation flowchart of the induction heating cooker showing a fourth implementation. 施の形態5を示す被加熱体の材質と大きさごとの加熱制御方法(例)である。A heating control method for each material and the size of the object to be heated (eg) indicating the fifth implementation. 施の形態6を示す誘導加熱調理器の動作フローチャートである。An operation flowchart of the induction heating cooker showing a sixth implementation. 施の形態7を示す誘導加熱調理器の説明図である。It is an explanatory view of an induction heating cooker showing a seventh implementation. 施の形態8を示す誘導加熱調理器の回路構成図である。It is a circuit diagram of an induction heating cooker showing the eighth implementation. 施の形態8を示す誘導加熱調理器の動作フローチャートである。An operation flowchart of the induction heating cooker showing the eighth implementation. 施の形態8にて本発明者が実験で得た入力電流検出電圧-内コイル電流検出電圧データのマッピング図である。(鍋ずれ距離毎に(A)〜(F)を描画)Input current detection voltage present inventors in the implementation of embodiment 8 were obtained in the experiment - a mapping diagram of the inner coil current detection voltage data. (Draw (A) to (F) for each pan shift distance) 施の形態8にて本発明者が実験で得た入力電流検出電圧-内コイル電流検出電圧データのマッピング図である。(電源電圧毎に(A)〜(F)を描画)Input current detection voltage present inventors in the implementation of embodiment 8 were obtained in the experiment - a mapping diagram of the inner coil current detection voltage data. (Draw (A) to (F) for each power supply voltage) 施の形態9を示す誘導加熱調理器の回路構成図である。It is a circuit diagram of an induction heating cooker showing the ninth implementation. 施の形態9を示す誘導加熱調理器の動作フローチャートである。An operation flowchart of the induction heating cooker showing the ninth implementation. 施の形態9にて本発明者が実験で得た入力電流検出電圧-外コイル電流検出電圧データのマッピング図である。(鍋ずれ距離毎に(A)〜(F)を描画)Input current detection voltage present inventors have obtained in Experiment in the implementation of embodiment 9 - is a mapping diagram of the outer coil current detection voltage data. (Draw (A) to (F) for each pan shift distance) 施の形態9にて本発明者が実験で得た入力電流検出電圧-外コイル電流検出電圧データのマッピング図である。(電源電圧毎に(A)〜(F)を描画)Input current detection voltage present inventors have obtained in Experiment in the implementation of embodiment 9 - is a mapping diagram of the outer coil current detection voltage data. (Draw (A) to (F) for each power supply voltage) 施の形態10を示す誘導加熱調理器の動作フローチャートである。An operation flowchart of the induction heating cooker showing a tenth implementation. 施の形態10にて本発明者が実験で得た入力電流検出電圧-外コイル電流検出電圧データのマッピング図である。(鍋ずれ距離毎に(A)〜(F)を描画)Input current detection voltage present inventors have obtained in Experiment in the form 10 of the implementation - a mapping diagram of the outer coil current detection voltage data. (Draw (A) to (F) for each pan shift distance) 施の形態10にて本発明者が実験で得た入力電流検出電圧-外コイル電流検出電圧データのマッピング図である。(電源電圧毎に(A)〜(F)を描画)Input current detection voltage present inventors have obtained in Experiment in the form 10 of the implementation - a mapping diagram of the outer coil current detection voltage data. (Draw (A) to (F) for each power supply voltage) 施の形態11を示す誘導加熱調理器の回路構成図である。It is a circuit diagram of an induction heating cooker showing the eleventh implementation. 施の形態11を示す誘導加熱調理器の動作フローチャートである。An operation flowchart of the induction heating cooker showing the eleventh implementation.

符号の説明Explanation of symbols

1 商用電源、 2 整流回路、 3 平滑回路、 4a〜4d スイッチング素子、 5a 加熱コイル(内コイル)、 5b 加熱コイル(外コイル)、6a 共振コンデンサ(内コイル用)、 6b 共振コンデンサ(外コイル用)、7 制御手段、 8 電力設定手段、 9 駆動回路、 10 コイル通電切替手段、 11 入力電流検出手段、 12 コイル電流検出手段、 13 被加熱体、 14 誘導加熱調理器、 15a 加熱コイルの位置を示す円(右側)、 15b 加熱コイルの位置を示す円(左側)、 16a 判別結果表示面(上面側)、 16b 判別結果表示面(側面側),17 電源電圧検出手段。   DESCRIPTION OF SYMBOLS 1 Commercial power supply, 2 Rectifier circuit, 3 Smoothing circuit, 4a-4d Switching element, 5a Heating coil (inner coil), 5b Heating coil (outer coil), 6a Resonance capacitor (for inner coil), 6b Resonance capacitor (for outer coil) ), 7 control means, 8 power setting means, 9 drive circuit, 10 coil energization switching means, 11 input current detection means, 12 coil current detection means, 13 object to be heated, 14 induction heating cooker, 15a position of heating coil Circle (right side), 15b Circle (left side) showing the position of the heating coil, 16a Discrimination result display surface (upper surface side), 16b Discrimination result display surface (side surface side), 17 Power supply voltage detection means.

Claims (3)

電源からの交流電流を全波整流する整流回路に接続され、前記整流回路の出力電圧を平滑する平滑回路と、
複数のスイッチング素子で構成し、前記平滑回路の出力段に接続され前記平滑回路の出力電圧を高周波の交流電圧に変換するインバータと、
前記インバータの出力段に接続され、それぞれ共振コンデンサとともに直列共振回路を形成する略同心上且つ略同一平面上に配された径の異なる渦巻形状で形成される複数の加熱コイルと、
該加熱コイルのうち、径の大きい加熱コイル側に流れる電流を検出するコイル電流検出手段と、
前記インバータへの入力電流を検出する入力電流検出手段とを備え、
前記入力電流値に対する前記コイル電流値の比率に基づいて被加熱体の材質を判別する際に、
前記被加熱体の材質は、径の異なる内外の渦巻き形状で形成された前記加熱コイルのうち、径の小さい加熱コイル側通電するとともに、前記平滑回路からの出力電圧が前記径の大きい加熱コイル側に流れないように前記径の大きい加熱コイルに接続された前記スイッチング素子を切り替えて前記径の大きい加熱コイルに誘導電流を発生させ、前記コイル電流検出手段にて検出された前記誘導電流値及び前記入力電流値に基づいて判別し、
前記入力電流値に対する前記誘導電流値の比率が、所定値Bよりも大きい場合は前記被加熱体の材質を前記インバータの駆動を停止させる不適正鍋と判別することを特徴とする誘導加熱調理器。
A smoothing circuit connected to a rectifying circuit for full-wave rectification of an alternating current from a power source, and smoothing an output voltage of the rectifying circuit;
An inverter configured by a plurality of switching elements and connected to an output stage of the smoothing circuit to convert the output voltage of the smoothing circuit into a high-frequency AC voltage;
A plurality of heating coils connected to the output stage of the inverter, each formed in a spiral shape having different diameters arranged substantially concentrically and substantially on the same plane to form a series resonance circuit together with a resonance capacitor ;
Among the heating coils , coil current detection means for detecting a current flowing on the heating coil side having a large diameter ,
An input current detecting means for detecting an input current value to the inverter;
When determining the material of the object to be heated based on the ratio of the coil current value to the input current value ,
Among the heating coils formed in inner and outer spiral shapes having different diameters, the material to be heated is energized to the heating coil side having a smaller diameter, and the output voltage from the smoothing circuit has a larger diameter. Switching the switching element connected to the heating coil having a large diameter so as not to flow to the side to generate an induction current in the heating coil having a large diameter, and the induced current value detected by the coil current detecting means and Determine based on the input current value,
When the ratio of the induction current value to the input current value is greater than a predetermined value B, the material of the heated object is determined as an inappropriate pan that stops driving the inverter . .
前記入力電流値と前記誘導電流値が所定値よりも小さい場合には前記被加熱体が前記インバータの駆動を停止させる不適被加熱体又は無負荷状態であると判別することを特徴とする請求項1に記載の誘導加熱調理器。 When the input current value and the induced current value are smaller than a predetermined value X , it is determined that the heated body is an inappropriate heated body that stops driving the inverter or is in an unloaded state. Item 2. An induction heating cooker according to item 1. 前記被加熱体の材質を判別する際、
前記径の小さい加熱コイルに通電する周波数を加熱動作時の周波数よりも高くしたことを特徴とする請求項1又は請求項2に記載の誘導加熱調理器。
When determining the material of the heated object ,
The induction heating cooker according to claim 1 or 2 , wherein a frequency of energizing the heating coil having a small diameter is set higher than a frequency during a heating operation.
JP2007087936A 2006-03-30 2007-03-29 Induction heating cooker Active JP4821677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007087936A JP4821677B2 (en) 2006-03-30 2007-03-29 Induction heating cooker

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006093894 2006-03-30
JP2006093894 2006-03-30
JP2007087936A JP4821677B2 (en) 2006-03-30 2007-03-29 Induction heating cooker

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2010191663A Division JP5235955B2 (en) 2006-03-30 2010-08-30 Induction heating cooker
JP2010191664A Division JP5197693B2 (en) 2006-03-30 2010-08-30 Induction heating cooker

Publications (2)

Publication Number Publication Date
JP2007294439A JP2007294439A (en) 2007-11-08
JP4821677B2 true JP4821677B2 (en) 2011-11-24

Family

ID=38764820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007087936A Active JP4821677B2 (en) 2006-03-30 2007-03-29 Induction heating cooker

Country Status (1)

Country Link
JP (1) JP4821677B2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4804450B2 (en) * 2007-12-26 2011-11-02 三菱電機株式会社 Induction heating cooker
JP5188215B2 (en) * 2008-03-10 2013-04-24 パナソニック株式会社 Induction heating cooker
JP5142778B2 (en) * 2008-03-24 2013-02-13 三菱電機株式会社 Cooker
JP2010003482A (en) * 2008-06-19 2010-01-07 Panasonic Corp Induction heating cooking appliance
JP2010050068A (en) * 2008-08-25 2010-03-04 Chubu Corporation Electromagnetic induction heater
JP2010055873A (en) * 2008-08-27 2010-03-11 Mitsubishi Electric Corp Induction-heating cooker
JP2010113886A (en) * 2008-11-05 2010-05-20 Mitsubishi Electric Corp Induction heating cooking appliance
JP5355197B2 (en) * 2009-04-20 2013-11-27 三菱電機株式会社 Induction heating cooker
JP5183563B2 (en) * 2009-04-27 2013-04-17 三菱電機株式会社 Induction heating cooker
JP5424309B2 (en) * 2009-05-27 2014-02-26 東京電力株式会社 Electromagnetic induction heating cooker and electromagnetic induction heating cooker set
JP2011034712A (en) * 2009-07-30 2011-02-17 Mitsubishi Electric Corp Induction heating cooker
JP5493648B2 (en) * 2009-09-28 2014-05-14 パナソニック株式会社 Induction heating cooker
JP5458903B2 (en) * 2010-01-19 2014-04-02 パナソニック株式会社 Induction heating cooker and program thereof
WO2011148568A1 (en) 2010-05-28 2011-12-01 三菱電機株式会社 Induction heating cooker
JP5538546B2 (en) 2010-09-03 2014-07-02 三菱電機株式会社 Induction heating cooker
EP3280223B1 (en) 2010-09-13 2018-09-26 Mitsubishi Electric Corporation Induction cooking system
JP5697408B2 (en) * 2010-11-11 2015-04-08 三菱電機株式会社 Induction heating cooker
JP5654667B2 (en) 2011-03-29 2015-01-14 三菱電機株式会社 Induction heating cooker
JP5877302B2 (en) * 2011-05-25 2016-03-08 パナソニックIpマネジメント株式会社 Induction heating device
JP5174222B2 (en) * 2011-08-09 2013-04-03 三菱電機株式会社 Induction heating cooker
JP5236052B2 (en) * 2011-08-10 2013-07-17 三菱電機株式会社 Induction heating cooker
JP5854874B2 (en) * 2012-02-21 2016-02-09 三菱電機株式会社 Induction heating cooker
JP5100910B2 (en) * 2012-07-30 2012-12-19 三菱電機株式会社 Induction heating cooker
JP5500296B2 (en) * 2013-05-28 2014-05-21 パナソニック株式会社 Induction heating device
ES2661834T3 (en) * 2013-06-11 2018-04-04 Panasonic Intellectual Property Management Co., Ltd. Induction heating device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60212991A (en) * 1984-04-06 1985-10-25 松下電器産業株式会社 Method of detecting adaptive load of induction heating cooking device
JPS6297286A (en) * 1985-10-23 1987-05-06 シャープ株式会社 Detector of object not suitable to be heated in radio frequency induction heating cooker
JP4193095B2 (en) * 2001-11-08 2008-12-10 三菱電機株式会社 Induction heating cooker
JP2004127821A (en) * 2002-10-04 2004-04-22 Tiger Vacuum Bottle Co Ltd Induction heating cooking device
JP2005085514A (en) * 2003-09-05 2005-03-31 Mitsubishi Electric Corp Induction heating cooker

Also Published As

Publication number Publication date
JP2007294439A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
JP4821677B2 (en) Induction heating cooker
US7368688B2 (en) Apparatus and method for sensing load of electric cooker
US9554425B2 (en) Induction heating device
JP4874163B2 (en) Induction heating cooker and control method of induction heating cooker
JP5235955B2 (en) Induction heating cooker
EP2827679B1 (en) Induction heat cooker
JP2008204759A (en) Induction heating cooker
JP5355442B2 (en) Induction heating cooker
JP4193143B2 (en) Induction heating cooker
US7157674B2 (en) Induction heater with controlled current to heating coil
JP4494336B2 (en) Induction heating cooker
JP4055946B2 (en) Electromagnetic induction heating cooker
JP2011071004A (en) Induction heating cooker
JP2011113948A (en) Induction heating cooker
JP2008027922A (en) Induction heating cooking device
JP2010182561A (en) Induction heating cooking device
KR100241449B1 (en) Apparatus and method for judging small load of induction heating cooker
JP4151494B2 (en) Induction heating device
JP5076508B2 (en) Induction heating rice cooker
JP5076507B2 (en) Induction heating rice cooker
JP2013026105A (en) Induction heating cooker
JP2009259851A (en) Induction heating device and cooker
KR20090005142U (en) Induction heating cooker
JP2002151243A (en) Induction heating cooker
JP2022140333A (en) Induction heating circuit for induction heating cooker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110530

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

R151 Written notification of patent or utility model registration

Ref document number: 4821677

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250