JP4055946B2 - Electromagnetic induction heating cooker - Google Patents

Electromagnetic induction heating cooker Download PDF

Info

Publication number
JP4055946B2
JP4055946B2 JP2003043827A JP2003043827A JP4055946B2 JP 4055946 B2 JP4055946 B2 JP 4055946B2 JP 2003043827 A JP2003043827 A JP 2003043827A JP 2003043827 A JP2003043827 A JP 2003043827A JP 4055946 B2 JP4055946 B2 JP 4055946B2
Authority
JP
Japan
Prior art keywords
circuit
signal
pan
detection
phase difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003043827A
Other languages
Japanese (ja)
Other versions
JP2004253297A (en
Inventor
真郎 横田
剛 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2003043827A priority Critical patent/JP4055946B2/en
Publication of JP2004253297A publication Critical patent/JP2004253297A/en
Application granted granted Critical
Publication of JP4055946B2 publication Critical patent/JP4055946B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Description

【0001】
【発明の属する技術分野】
本発明は、インバータ回路を使用して誘導加熱コイルに高周波電流を供給し電磁誘導で調理鍋を加熱する電磁誘導加熱調理器に係り、特に、誘導加熱コイルの上面のトッププレートに載置される鍋の有無を判別する技術に関する。
【0002】
【従来の技術】
図8は、従来技術の電磁誘導加熱調理器の電気接続図である。図8において、1は商用電源、2は商用電源1を整流する整流回路、10は整流回路2の出力を直流に平滑する平滑回路3と、誘導加熱コイル4と、共振コンデンサ4と、バイポーラトランジスタと逆並列ダイオードを有するスイッチング素子6を有するインバータ回路、7はスイッチング素子6のオンオフを制御する発振制御部、8は誘導加熱コイル4と磁気結合された負荷が適切か不適切かを判定する負荷検知装置、9は発振制御部7への負荷検知装置8の出力信号を入り切りするスイッチである。
【0003】
通常使用者は、スイッチ9を閉じた状態にしておく、負荷が適切である場合は負荷検知装置から信号は出力されず、発振制御部7はスイッチング素子6を駆動し、スイッチング素子6は誘導加熱コイル4に通電し負荷の過熱を行う。ナイフやフォーク等を誤って置いた等不適負荷である場合は負荷検知装置8は信号を出力し、発振制御部7はスイッチング素子6への発振を停止し、不適負荷の場合は加熱されない。
【0004】
次に負荷検知装置8により不適と判定される負荷、例えば形状の小さい負荷を加熱しようとする場合について説明する。使用者はスイッチ9を開いた状態にする。負荷検知装置8は不適負荷と判定し、信号を出力する。しかしスイッチ9が開いているため、発振制御部7には前記信号は入力されず、発振制御部7はスイッチング素子6への発振を行い、スイッチング素子6は誘導加熱コイル4に通電し不適負荷を加熱する。ただし、使用者がスイッチ9を閉じるのを忘れて開いた状態にしておくと不適負荷を加熱してしまう。(特許文献1参照)
【0005】
従来技術2の電磁誘導加熱調理器は、インバータ回路の出力電圧と電流との位相差を検出する位相差検出回路と、電流が電流設定器の設定値を越えたときインバータの出力周波数を上昇させ電流を上記設定値以下に保持する電流保持回路と、上記位相差検出値と位相差設定器の位相差設定値とを比較し、上記検出値が設定値より大のとき負荷容器が非磁性材料または無負荷であると判定し、上記検出値が設定値以下のとき負荷容器が磁性材料であると判定する負荷判別回路を備えたものである。ただし、インバータ回路の出力周波数が高くなると上記位相差検出値の精度が悪くなる。
【0006】
【特許文献1】
特開平5−10947号公報
【0007】
【発明が解決しようとする課題】
従来の電磁誘導加熱調理器では、トッププレート上に鍋等の載置を電気的に検出し、鍋無しと判別した場合は、電力の浪費防止等の目的でインバータの出力を停止する処置を行っていた。しかし、電力設定値を最小に設定して調理を行ったときに下記に示す鍋検出回路の判別精度に問題がありインバータ回路の出力が停止され調理ができないという問題があった。また、鍋の径の大きさの違いによって小さい鍋を鍋無しと判別してしまう問題があった。
【0008】
【課題を解決するための手段】
請求項1の発明は、共振コンデンサC2及びC3と、上記共振コンデンサC2及びC3とで直列共振を形成する誘導加熱コイルHLと、商用交流電源を整流して直流電圧に変換する整流回路DR1と、上記整流回路DR1の直流電圧を入力として上記誘導加熱コイルHLに高周波電流を供給するインバータ回路と、上記インバータ回路の入力電力を演算して電力演算信号Saを出力する電力演算回路SAと、予め定めた電力設定信号Pcを出力する電力設定回路PCと、上記電力演算信号Saと上記電力設定信号Pcとを差動増幅する差動増幅回路COと、上記差動増幅信号ΔIに応じて上記インバータ回路の出力周波数を制御するインバータ駆動回路SDと、上記インバータ回路の出力電圧Cv2と出力電流Ct2との位相差を検出して位相差検出信号Pdを出力する位相差検出回路PDと、上記位相差検出信号Pdの値が予め定めた位相差判別信号Prの値よりも大きいときに鍋が載置されていないと判別して鍋無検出信号Cpを出力して上記インバータ駆動回路SDの駆動を止めて上記高周波電流の供給を停止する鍋検出回路とを具備し、上記誘導加熱コイルHL上に載置した上記鍋を電磁誘導作用で加熱する電磁誘導加熱調理器において、上記インバータ回路の出力周波数が予め定めた周波数判別信号Frの値より高いときに上記鍋検出回路の動作を停止させ、上記出力周波数が上記周波数判別信号Frの値より低いときに上記鍋検出回路を動作させる周波数対応鍋検出制御回路を具備したことを特徴とする電磁誘導加熱調理器である。
【0009】
請求項2の発明は、上記インバータ回路の出力電流が予め定めた電流判別信号Erの値より小さいときに上記鍋検出回路の動作を停止させ、上記出力電流が上記電流判別信号Erの値より大きいときに上記鍋検出回路を動作させる電流対応鍋検出制御回路を上記周波数対応鍋検出制御回路に置換したことを特徴とする請求項1の電磁誘導加熱調理器である。
【0010】
請求項3の発明は、上記電力設定信号Pcが予め定めた電力判別信号Pfの値より小さいときに上記鍋検出回路の動作を停止させ、上記電力設定信号Pcが上記電力判別信号Pfの値より大きいときに上記鍋検出回路を動作させる電力対応鍋検出制御回路を上記周波数対応鍋検出制御回路に置換したことを特徴とする請求項1の電磁誘導加熱調理器である。
【0011】
請求項4の発明は、上記鍋検出回路の鍋無検出信号Cpが上記インバータ駆動回路SDに入力されているときに、表示器LEDによって鍋無し状態を表示することを特徴とする請求項1又は請求項2又は請求項3の電磁誘導加熱調理器。
【0012】
【発明の実施の形態】
本発明の実施の形態について、図面を参照して説明する。図1は、本発明の電磁誘導加熱調理器の電気接続図である。
【0013】
図1において、整流回路DR1は、商用交流電源の出力を整流して直流電圧に変換し、平滑コンデンサC1は、直流に変換した電圧を平滑する。
【0014】
入力電流検出回路IDは、入力電流値を検出して入力電流検出信号Idを出力し、入力電圧検出回路IVは、入力電圧値を検出して入力電圧検出信号Ivを出力する。
【0015】
スイッチング素子TR1及びスイッチング素子TR2は、ハーフブリッジ形のインバータ回路を形成するスイッチング素子で、例えば、MOSFET又はIGBTが使用されている。誘導加熱コイルHLは共振コンデンサC2及び共振コンデンサC3とで直列共振を形成する。鍋PBは誘導加熱コイルHLの上に載置され電磁誘導により加熱をされる。
【0016】
インバータ駆動回路SDは、制御演算回路SCからの制御処算信号Scの値に応じて、パルス幅の比率が一定でパルス周波数を変調するPFM制御をして、スイッチング素子TR1、スイッチング素子TR2を交互に駆動するスイッチング素子駆動信号Sd1及びスイッチング素子駆動信号Sd2を出力する。
【0017】
電力演算回路SAは、入力電流検出信号Idと入力電圧検出信号Ivとを入力してインバータの入力電力を演算する。また、電力設定回路PCは、予め定めた電力設定信号Pcを設定する。
【0018】
差動増幅回路COは、電力設定信号Pcと電力演算信号Saとを差動増幅して、差動増幅信号ΔIの値を出力する。制御演算回路SCは、加熱スイッチTSから加熱開始信号Tsが入力されると動作を開始し、差動増幅信号ΔIの値に応じて演算を行い、上記差動増幅信号ΔIの値が大きいときに制御処理信号Scの値を小さくし、逆に上記差動増幅信号ΔIの値が小さいときは上記制御処理信号Scの値を大きくする。更に、操作パネルOAによって入力される予め定めた位相差設定値及び予め定めた周波数設定値を演算して、位相差判別信号Pr及び周波数判別信号Frに変換して出力する。
【0019】
インバータ駆動回路SDは、制御演算回路SCから入力される制御処理演算信号Scの値が小さいとき、PFM制御の周波数を高くして誘導加熱コイルHLと共振コンデンサC2及びC3からなる共振タンクのインピーダンス値を大きくして誘導加熱コイルHLに流れる電流を小さくする。逆に上記制御演算信号Scの値が大きいときは、PFM制御の周波数を低くして共振タンクのインピーダンス値を小さくして誘導加熱コイルHLに流れる電流を大きくすることによって、誘導加熱コイルHLに流れる電流制御をおこなう。また、アンド回路ANDからの出力信号がHighレベルになると上記インバータ駆動回路SDの動作を停止する。
【0020】
鍋検出回路は、位相差検出回路PDと比較回路CPとで形成され、上記比較回路CPは位相差検出信号Pdと位相差判別信号Prとを比較して、上記位相差検出信号Pdが上記位相差判別信号Prより大きいときに鍋無しと判断して鍋無検出信号Cpを出力する。
【0021】
位相差検出回路PDは、図2に示すパルス化回路PKと位相差・電圧変換回路PEとで形成され、パルス化回路PKは、図3(B)に示す出力電流検出信号Ct2の正の時間幅を図3(C)に示すパルス信号Pkに変換する。出力電圧検出回路CV2は、図示省略のインバータ回路の交流出力電圧を半波整流して図3(A)に示す出力電圧検出信号Cv2を出力する。位相差・電圧変換回路PEは、上記パルス信号Pkと上記出力電圧検出信号Cv2との位相差θを検出し、この位相差θを電圧に変換して位相差検出信号Pdとして出力する。上記位相差θの値が大きいと出力電圧は高くなり、逆に位相差θの値が小さいと出力電圧は小さくなる。
【0022】
周波数対応鍋検出制御回路は、周波数・電圧変換回路FV、第2の比較回路CP2及びアンド回路ANDによって形成され、上記周波数・電圧変換回路FVは出力電圧検出信号Cv2の周波数を電圧に変換し、この周波数が高いときに出力電圧は大きくなり、逆に低いときに出力電圧は小さくなる。上記第2の比較回路CP2は、周波数・電圧変換信号Fvと周波数判別信号Frとを比較して、上記周波数・電圧変換信号Fvが上記周波数判別信号Frより大きいときに鍋検出制御信号Cp2をLowレベルにして出力する。アンド回路ANDは、上記鍋検出制御信号Cp2がLowレベルになると鍋無検出信号Cpに関係なくインバータ駆動回路SDを動作させる。
【0023】
図3は、本発明の動作を説明する波形図である。同図において、図3(A)は、出力電圧検出信号Cv2を示し、図3(B)は、鍋PBが載置されているとき又は載置されていないときの出力電流検出信号Ct2を示し、図3(C)は、鍋PBが載置されていないときのパルス信号Pkを示し、図3(D)は、鍋PBが載置されているときのパルス信号Pkを示し、図3(E)は、鍋PBが載置されているとき又は載置されていないときの位相差検出信号Pdを示し、図3(E)は、鍋PBが載置されているとき又は載置されていないときの周波数・電圧変換信号Fvを示す。
【0024】
次に、トッププレート上の鍋無し又は鍋有りを判別する動作を中心に図3に示す波形図を用いて説明する。
【0025】
まず、電力設定信号Pcの値を通常使用する予め定めた値に電力を設定して、鍋無し状態で加熱しているときに、鍋検出回路は位相差・電圧変換回路PEにより図3(A)の出力電圧検出信号Cv2と図3(C)のパルス信号Pkとの図3(D)に示す位相差θを検出する。このとき位相差θの値は大きくなり、この位相差θを電圧に変換して図3(E)に示す、位相差検出信号Pdとして出力する。比較回路CPは、上記位相差検出信号Pdと上記位相差判別信号Prとを比較して上記位相差検出信号Pdが上記位相差判別信号Prより大きくなり、鍋無しと判断して鍋無検出信号CpをHighレベルにしてアンド回路ANDに出力する。また、操作パネルより上記位相差判別信号Prの値を変更することにより、従来小さい鍋を鍋無しと判別していたものを鍋有りと判別することもできる。
【0026】
周波数対応鍋検出制御回路の周波数・電圧変換回路FVは、出力電圧検出信号Cv2の周波数を電圧に変換して、図3(F)に示す周波数・電圧変換信号Fvを出力する。このとき電力設定信号Pcが通常使用する電力に設定して、鍋無し状態で加熱しているときに誘導加熱コイルHLに電流が流れて上記出力電圧検出信号Cv2の周波数は低くなり、上記周波数・電圧変換信号Fvの値は小さくなる。第2の比較回路CP2は、上記周波数・電圧変換信号Fvと周波数判別信号Frとを比較して上記周波数・電圧変換信号Fvが上記周波数判別信号Frより小さくなり鍋検出制御信号をHighレベルにしてアンド回路ANDに出力する。上記アンド回路ANDは、上記鍋検出制御信号Cp2と上記鍋無検出信号CpとがHighレベルになるために出力信号をHighレベルにして上記インバータ駆動回路SDの動作を止める。
【0027】
電力設定信号Pcの値を通常使用する電力に設定し、鍋有り状態で加熱しているとき、鍋検出回路は位相差・電圧変換回路PEにより図3(A)の出力電圧検出信号Cv2と図3(D)のパルス信号Pkとの図3(D)に示す位相差θを検出する。このとき鍋無し状態と比較して位相差θの値は小さくなり、位相差検出信号Pdは小さくなる。比較回路CPは、位相差検出信号Pdと位相差判別信号Prとを比較して上記位相差検出信号Pdが上記位相差判別信号Prより小さくなり鍋有りと判断して鍋無検出信号CpをLowレベルにしてアンド回路ANDに出力する。アンド回路ANDは、上記鍋無検出信号CpがLowレベルになると出力信号はLowレベルになり、インバータ駆動回路SDを動作させる。また、鍋PBの径の大きさによっても上記位相差θの値が変わり、径が小さいと上記位相差θの値が大きくなる。上記より位相差判別信号Prの値によっては径の小さい鍋を鍋無し状態と判別する場合もある。また、本発明では操作パネルOAによって位相差判別信号Prを最適な値に設定することにより上記径の小さい鍋PBでも鍋有り状態と判別することもできる。
【0028】
電力設定信号Pcの値を最小使用電力に設定して調理を行ったとき、インバータ回路の出力電圧及び出力電流の周波数が非常に高くなる。このとき位相差・電圧変換回路PEによる位相差θの値は出力電圧及び出力電流の周波数が非常に高くなるために位相差検出に誤差を生じてしまい、鍋有り又は鍋無しのは判別の信頼性に問題が生じる。
【0029】
周波数対応鍋検出制御回路は、電力設定信号Pcの値が最小使用電力に設定されると、出力電圧検出信号Cv2の周波数は高くなり、周波数・電圧変換信号Fvの値は大きくなる。第2の比較回路CP2は、上記周波数・電圧変換信号Fvと周波数判別信号とを比較して上記周波数・電圧変換信号Fvが上記周波数判別信号より大きくなり鍋検出制御信号をLowレベルにしてアンド回路ANDに出力する。上記アンド回路ANDは鍋検出制御信号Cp2がLowレベルなると上記鍋無検出信号Cpに関係なく出力信号がLowレベルになり、インバータ駆動回路SDを動作させる。上述より電力設定信号Pcを最小使用電力に設定して調理を行っても鍋検出回路によって調理が停止することはない。このとき、ナイフやフォーク等の小物が置かれていても最小電力なので熱せれない。
【0030】
[実施例2]
図4は、実施例2の電磁誘導加熱調理器の電気接続図である。同図において、図1に示す本発明の電磁誘導加熱調理器の電気接続図と同一符号は、同一動作をおこなうので説明は省略して相違する動作について説明する。
【0031】
電流対応鍋検出制御回路は、電流保持回路EP、第3の比較回路CP3及びアンド回路ANDによって形成されている。
【0032】
図5に示す電流保持回路EPは、両波整流回路WD、増幅回路OP、ダイオードDR2、コンデンサC4及び抵抗器R1によって構成されるピーク・ホールド動作を行なう。両波整流回路WDは、出力電流検出信号Ct2を両波整流する。上記電流保持回路EPは入力信号の最も高い信号値をコンデンサC4の両端に保持し、復帰抵抗R1によりコンデンサC4の電荷を予め定めた時間によって放電する。
【0033】
図6は、実施例2の動作を説明する波形図である。同図において、図6(A)は、出力電圧検出信号Cv2を示し、図6(B)は、鍋PBが載置されているとき又は載置されていないときの出力電流検出信号Ct2を示し、図6(C)は、鍋PBが載置されていないときのパルス信号Pkを示し、図6(D)は、鍋PBが載置されているときのパルス信号Pkを示し、図6(E)は、鍋PBが載置されているとき又は載置されていないときの位相差検出信号Pdを示し、図6(E)は、鍋PBが載置されているとき又は載置されていないときの電流保持信号Epを示す。
【0034】
まず、電力設定信号Pcの値を通常使用する電力に設定して、鍋無し状態で加熱しているときに、鍋検出回路は位相差・電圧変換回路PEにより図6(D)に示す位相差θを検出する。このとき位相差θの値は大きくなり、この位相差θを電圧に変換して図6(E)に示す位相差検出信号Pdとして出力する。比較回路CPは、上記位相差検出信号Pdと位相差判別信号Prとを比較して上記位相差検出信号Pdが上記位相差判別信号Prより大きくなり鍋無しと判断して鍋無検出信号CpをHighレベルにしてアンド回路ANDに出力する。
【0035】
電流対応鍋検出制御回路の電流保持回路EPは、出力電流検出信号Ct2のピーク電流を保持して、図6(F)に示す電流保持信号Epを出力する。このとき電力設定信号Pcが通常使用する電力に設定して、鍋無し状態で加熱しているとき、誘導加熱コイルHLに電流が流れ電流保持信号Epは図6(F)に示すように電流判別信号Frよりも大きくなり、第3の比較回路CP3は鍋検出制御信号Cp3をHighレベルにしてアンド回路ANDに出力する。上記アンド回路ANDは、上記鍋検出制御信号Cp3と上記鍋無検出信号CpとがHighレベルのために出力信号をHighレベルにしてインバータ駆動回路SDの動作を止める。
【0036】
電力設定信号Pcの値を通常使用する電力に設定し、鍋有り状態で加熱しているとき、上記位相差θの値は小さくなる。比較回路CPは、位相差検出信号Pdと位相差判別信号Prとを比較して上記位相差検出信号Pdが位相差判別信号Prより小さくなり鍋有りと判断して鍋無検出信号CpをLowレベルにしてアンド回路ANDに出力する。アンド回路ANDは、上記鍋無検出信号CpがLowレベルになると上記鍋検出制御信号Cp3に関係なく出力をLowレベルにしてインバータ駆動回路SDを動作させる。
【0037】
電流対応鍋検出制御回路は、電力設定信号Pcの値が最小使用電力に設定されると誘導加熱コイルHLに流れる電流が小さくなり電流保持信号Epは図6(F)に示すように電流判別信号Frよりも小さくなり第3の比較回路CPは、鍋検出制御信号Cp3をLowレベルにしてアンド回路ANDに出力する。上記アンド回路ANDは、上記鍋検出制御信号Cp3がLowレベルになると上記鍋無検出信号Cpに関係なく出力信号をLowレベルにしてインバータ駆動回路SDを動作させる。
【0038】
[実施例3]
図7は、実施例3の電磁誘導加熱調理器の電気接続図である。同図において、図1に示す本発明の電磁誘導加熱調理器の電気接続図と同一符号は、同一動作をおこなうので説明は省略して相違する動作について説明する。
【0039】
電力対応鍋検出制御回路は、第4の比較回路CP4及びアンド回路ANDによって形成されている。
【0040】
第4の比較回路CP4は、電力設定信号Pcと電力判別信号Pfとを比較して鍋検出制御信号Cp4を出力する。
【0041】
電力対応鍋検出制御回路は電力設定信号Pcの値が通常使用する電力に設定されると、電力設定信号Pcが電力判別信号Pfより大きくなり電力対応鍋検出制御回路の第4の比較回路CP4は鍋検出制御信号をHighレベルにしてアンド回路ANDに出力する。よって、上記アンド回路ANDは鍋無検出信号CpがHighレベルになると出力信号をHighレベルにしてインバータ駆動回路SDを停止させる。
【0042】
電力設定信号Pcの値が最小使用電力に設定されると、電力設定信号Pcが電力判別信号Pfより小さくなり電力対応鍋検出制御回路の第4の比較回路CP4は鍋検出制御信号Cp4をLowレベルにしてアンド回路ANDに出力される。上記アンド回路ANDは上記鍋検出制御信号CpがLowレベルなると上記鍋無検出信号Cpに関係なく出力信号がLowレベルになりインバータ駆動回路SDを動作させる。
【0043】
上記アンド回路ANDの出力信号がHighレベルになり上記インバータ駆動回路SDが停止しているきに、表示器LEDを点燈して鍋無し状態を表示する
【0044】
【発明の効果】
本発明の電磁誘導加熱調理器では、電力設定値を小さく設定して調理を行ったときに鍋検出回路の動作を自動的に止める、インバータ回路が停止することなく調理が継続できる。また、鍋の径の大きさの違いによって小さい鍋を鍋無しと判別してしまう問題も解決できる。
【図面の簡単な説明】
【図1】本発明の電磁誘導加熱調理器の電気接続図である。
【図2】図1に示す、位相差検出回路の詳細接続図である。
【図3】本発明の動作を説明する波形図である。
【図4】実施例2の電磁誘導加熱調理器の電気接続図である。
【図5】図4に示す、電流保持回路の詳細接続図である。
【図6】実施例2の動作を説明する波形図である。
【図7】実施例3の電磁誘導加熱調理器の電気接続図である。
【図8】従来技術の電磁誘導加熱調理器の電気接続図である。
【符号の説明】
AND アンド回路
CO 差動増幅回路
CP 比較回路
C1 平滑コンデンサ
C2 共振コンデンサ
C3 共振コンデンサ
C4 コンデンサ
CP2 第2の比較回路
CP3 第3の比較回路
CP4 第4の比較回路
CT2 出力電流検出回路
CV2 出力電圧検出回路
DR1 整流回路
DR2 ダイオード
EP 電流保持回路
FV 周波数・電圧変換回路
HL 誘導加熱コイル
ID 入力電流検出回路
IV 入力電圧検出回路
LED 表示器
OA 操作パネル
OP 増幅回路
PB 鍋
PC 電力設定回路
PD 位相差検出回路
PE 位相差・電圧変換回路
PK パルス化回路
PL トッププレート
R1 抵抗器
SA 電力演算回路
SC 制御演算回路
SD インバータ駆動回路
TS 加熱スイッチ
TR1 スイッチング素子
TR2 スイッチング素子
WD 両波整流回路
Cp 鍋無検出信号
Cp2 鍋検出制御信号
Ct2 出力電流検出信号
Cv2 出力電圧検出信号
Ep 電流保持信号
Er 電流判別信号
Fv 周波数・電圧変換信号
Fr 周波数判別信号
Id 入力電流検出信号
Iv 入力電圧検出信号
ΔI 差動増幅信号
Ld 表示信号
Oa 操作信号
Pc 電力設定信号
Pd 位相差検出信号
Pf 電力判別信号
Pk パルス信号
Pr 位相差判別信号
Sa 電力演算信号
Sc 制御演算信号
Ts 加熱開始信号
Sd1 スイッチング素子駆動信号
Sd2 スイッチング素子駆動信号
Wd 両波整流信号
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electromagnetic induction heating cooker that uses an inverter circuit to supply a high-frequency current to an induction heating coil to heat a cooking pan by electromagnetic induction, and is particularly mounted on a top plate on the upper surface of the induction heating coil. The present invention relates to a technique for determining the presence or absence of a pan.
[0002]
[Prior art]
FIG. 8 is an electrical connection diagram of a conventional electromagnetic induction heating cooker. In FIG. 8, 1 is a commercial power source, 2 is a rectifier circuit that rectifies the commercial power source 1, 10 is a smoothing circuit 3 that smoothes the output of the rectifier circuit 2 into a direct current, an induction heating coil 4, a resonant capacitor 4, and a bipolar transistor. And an inverter circuit having a switching element 6 having an antiparallel diode, 7 is an oscillation control unit for controlling on / off of the switching element 6, and 8 is a load for determining whether a load magnetically coupled to the induction heating coil 4 is appropriate or inappropriate. A detection device 9 is a switch for turning on and off the output signal of the load detection device 8 to the oscillation control unit 7.
[0003]
Normally, the user keeps the switch 9 closed. When the load is appropriate, no signal is output from the load detection device, the oscillation control unit 7 drives the switching element 6, and the switching element 6 is inductively heated. The coil 4 is energized to overheat the load. The load detection device 8 outputs a signal when the load is inappropriate such as a knife or fork placed incorrectly, and the oscillation control unit 7 stops oscillation to the switching element 6 and is not heated when the load is inappropriate.
[0004]
Next, a case where a load that is determined to be inappropriate by the load detection device 8, for example, a load having a small shape, is to be heated will be described. The user opens the switch 9. The load detection device 8 determines that the load is inappropriate and outputs a signal. However, since the switch 9 is open, the signal is not input to the oscillation control unit 7, the oscillation control unit 7 oscillates to the switching element 6, and the switching element 6 energizes the induction heating coil 4 to apply an inappropriate load. Heat. However, if the user forgets to close the switch 9 and keeps it open, the unsuitable load will be heated. (See Patent Document 1)
[0005]
The electromagnetic induction heating cooker of Prior Art 2 increases the output frequency of the inverter when the current exceeds the set value of the current setter, and the phase difference detection circuit that detects the phase difference between the output voltage and current of the inverter circuit. The current holding circuit that holds the current below the set value, the phase difference detection value and the phase difference set value of the phase difference setter are compared, and when the detected value is larger than the set value, the load container is a non-magnetic material Alternatively, a load determination circuit is provided that determines that there is no load and determines that the load container is a magnetic material when the detected value is equal to or less than a set value. However, when the output frequency of the inverter circuit increases, the accuracy of the phase difference detection value deteriorates.
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 5-10947
[Problems to be solved by the invention]
In a conventional electromagnetic induction heating cooker, the placement of a pan or the like is electrically detected on the top plate, and when it is determined that there is no pan, a measure is taken to stop the output of the inverter for the purpose of preventing waste of power. It was. However, when cooking is performed with the power set value set to the minimum, there is a problem in the discrimination accuracy of the pot detection circuit shown below, and there is a problem that the output of the inverter circuit is stopped and cooking cannot be performed. Moreover, there existed a problem which discriminate | determined a small pan from having no pan by the difference in the magnitude | size of the diameter of a pan.
[0008]
[Means for Solving the Problems]
The invention of claim 1 includes resonant capacitors C2 and C3, an induction heating coil HL that forms a series resonance with the resonant capacitors C2 and C3, a rectifier circuit DR1 that rectifies a commercial AC power source and converts it into a DC voltage, An inverter circuit that supplies a high frequency current to the induction heating coil HL using the DC voltage of the rectifier circuit DR1 as an input, a power calculation circuit SA that calculates the input power of the inverter circuit and outputs a power calculation signal Sa, and a predetermined value. A power setting circuit PC that outputs the power setting signal Pc, a differential amplifier circuit CO that differentially amplifies the power calculation signal Sa and the power setting signal Pc, and the inverter circuit according to the differential amplification signal ΔI And detecting the phase difference between the output voltage Cv2 and the output current Ct2 of the inverter circuit. The phase difference detection circuit PD that outputs the difference detection signal Pd, and the pan is determined that the pan is not placed when the value of the phase difference detection signal Pd is larger than the value of the predetermined phase difference determination signal Pr. A pan detection circuit that outputs a non-detection signal Cp to stop the drive of the inverter drive circuit SD and stop the supply of the high-frequency current. The pan placed on the induction heating coil HL has an electromagnetic induction effect. When the output frequency of the inverter circuit is higher than a predetermined value of the frequency discrimination signal Fr, the operation of the pan detection circuit is stopped and the output frequency of the frequency discrimination signal Fr is An electromagnetic induction heating cooker comprising a frequency-compatible pan detection control circuit that operates the pan detection circuit when the value is lower than a value.
[0009]
The invention of claim 2 stops the operation of the pan detection circuit when the output current of the inverter circuit is smaller than a predetermined value of the current determination signal Er, and the output current is larger than the value of the current determination signal Er. 2. The electromagnetic induction heating cooker according to claim 1, wherein the current corresponding pan detection control circuit for operating the pan detection circuit is replaced with the frequency corresponding pan detection control circuit.
[0010]
The invention of claim 3 stops the operation of the pan detection circuit when the power setting signal Pc is smaller than a predetermined value of the power discrimination signal Pf, and the power setting signal Pc is greater than the value of the power discrimination signal Pf. 2. The electromagnetic induction heating cooker according to claim 1, wherein a power corresponding pot detection control circuit for operating the pot detection circuit when the size is large is replaced with the frequency corresponding pot detection control circuit.
[0011]
According to a fourth aspect of the present invention, when the pan no detection signal Cp of the pan detection circuit is input to the inverter drive circuit SD, the panless state is displayed by the indicator LED. The electromagnetic induction heating cooker of Claim 2 or Claim 3.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an electrical connection diagram of an electromagnetic induction heating cooker according to the present invention.
[0013]
In FIG. 1, the rectifier circuit DR1 rectifies the output of the commercial AC power source and converts it into a DC voltage, and the smoothing capacitor C1 smoothes the voltage converted into DC.
[0014]
The input current detection circuit ID detects an input current value and outputs an input current detection signal Id, and the input voltage detection circuit IV detects an input voltage value and outputs an input voltage detection signal Iv.
[0015]
The switching element TR1 and the switching element TR2 are switching elements that form a half-bridge type inverter circuit, and for example, MOSFETs or IGBTs are used. The induction heating coil HL forms a series resonance with the resonance capacitor C2 and the resonance capacitor C3. The pan PB is placed on the induction heating coil HL and heated by electromagnetic induction.
[0016]
The inverter drive circuit SD performs PFM control for modulating the pulse frequency with a constant pulse width ratio according to the value of the control processing signal Sc from the control arithmetic circuit SC, and alternately switches the switching element TR1 and the switching element TR2. The switching element drive signal Sd1 and the switching element drive signal Sd2 are output.
[0017]
The power calculation circuit SA inputs the input current detection signal Id and the input voltage detection signal Iv and calculates the input power of the inverter. The power setting circuit PC sets a predetermined power setting signal Pc.
[0018]
The differential amplifier circuit CO differentially amplifies the power setting signal Pc and the power calculation signal Sa, and outputs the value of the differential amplification signal ΔI. The control arithmetic circuit SC starts operation when a heating start signal Ts is input from the heating switch TS, performs an operation according to the value of the differential amplification signal ΔI, and when the value of the differential amplification signal ΔI is large. The value of the control processing signal Sc is decreased, and conversely, when the value of the differential amplification signal ΔI is small, the value of the control processing signal Sc is increased. Further, a predetermined phase difference setting value and a predetermined frequency setting value input by the operation panel OA are calculated, converted into a phase difference determination signal Pr and a frequency determination signal Fr, and output.
[0019]
When the value of the control processing calculation signal Sc input from the control calculation circuit SC is small, the inverter drive circuit SD increases the frequency of the PFM control to increase the impedance value of the resonance tank including the induction heating coil HL and the resonance capacitors C2 and C3. To increase the current flowing through the induction heating coil HL. On the contrary, when the value of the control calculation signal Sc is large, the current flowing through the induction heating coil HL is increased by lowering the frequency of the PFM control and decreasing the impedance value of the resonance tank to increase the current flowing through the induction heating coil HL. Perform current control. Further, when the output signal from the AND circuit AND becomes High level, the operation of the inverter drive circuit SD is stopped.
[0020]
The pan detection circuit is formed of a phase difference detection circuit PD and a comparison circuit CP. The comparison circuit CP compares the phase difference detection signal Pd with the phase difference determination signal Pr, and the phase difference detection signal Pd When it is larger than the phase difference determination signal Pr, it is determined that there is no pan and a pan non-detection signal Cp is output.
[0021]
The phase difference detection circuit PD is formed by the pulsing circuit PK and the phase difference / voltage conversion circuit PE shown in FIG. 2, and the pulsing circuit PK is a positive time of the output current detection signal Ct2 shown in FIG. The width is converted into a pulse signal Pk shown in FIG. The output voltage detection circuit CV2 performs half-wave rectification on the AC output voltage of an inverter circuit (not shown) and outputs an output voltage detection signal Cv2 shown in FIG. The phase difference / voltage conversion circuit PE detects the phase difference θ between the pulse signal Pk and the output voltage detection signal Cv2, converts this phase difference θ into a voltage, and outputs it as a phase difference detection signal Pd. When the value of the phase difference θ is large, the output voltage becomes high. Conversely, when the value of the phase difference θ is small, the output voltage becomes small.
[0022]
The frequency corresponding pan detection control circuit is formed by the frequency / voltage conversion circuit FV, the second comparison circuit CP2, and the AND circuit AND, and the frequency / voltage conversion circuit FV converts the frequency of the output voltage detection signal Cv2 into a voltage, When this frequency is high, the output voltage increases. Conversely, when the frequency is low, the output voltage decreases. The second comparison circuit CP2 compares the frequency / voltage conversion signal Fv with the frequency discrimination signal Fr, and when the frequency / voltage conversion signal Fv is larger than the frequency discrimination signal Fr, the pan detection control signal Cp2 is set to Low. Output as level. The AND circuit AND operates the inverter drive circuit SD regardless of the pan non-detection signal Cp when the pan detection control signal Cp2 becomes Low level.
[0023]
FIG. 3 is a waveform diagram for explaining the operation of the present invention. 3A shows the output voltage detection signal Cv2, and FIG. 3B shows the output current detection signal Ct2 when the pan PB is placed or not. 3 (C) shows the pulse signal Pk when the pan PB is not placed, FIG. 3 (D) shows the pulse signal Pk when the pan PB is placed, and FIG. E) shows the phase difference detection signal Pd when the pan PB is placed or not, and FIG. 3E shows when the pan PB is placed or placed. The frequency / voltage conversion signal Fv when not present is shown.
[0024]
Next, the operation for determining whether or not there is a pan on the top plate will be described with reference to the waveform diagram shown in FIG.
[0025]
First, when the power is set to a predetermined value that is normally used for the value of the power setting signal Pc and heating is performed without a pan, the pan detection circuit uses the phase difference / voltage conversion circuit PE to perform the operation shown in FIG. ) Of the output voltage detection signal Cv2 of FIG. 3 and the pulse signal Pk of FIG. 3C are detected. At this time, the value of the phase difference θ increases, and the phase difference θ is converted into a voltage and output as a phase difference detection signal Pd shown in FIG. The comparison circuit CP compares the phase difference detection signal Pd with the phase difference determination signal Pr, the phase difference detection signal Pd becomes larger than the phase difference determination signal Pr, and determines that there is no pan and no pan detection signal. Cp is set to High level and output to the AND circuit AND. In addition, by changing the value of the phase difference determination signal Pr from the operation panel, it is possible to determine that a conventional small pan is determined to have no pan as having a pan.
[0026]
The frequency / voltage conversion circuit FV of the frequency corresponding pan detection control circuit converts the frequency of the output voltage detection signal Cv2 into a voltage and outputs a frequency / voltage conversion signal Fv shown in FIG. At this time, the power setting signal Pc is set to the power to be normally used, and when heating without a pan, a current flows through the induction heating coil HL, and the frequency of the output voltage detection signal Cv2 becomes lower. The value of the voltage conversion signal Fv becomes small. The second comparison circuit CP2 compares the frequency / voltage conversion signal Fv with the frequency discrimination signal Fr, the frequency / voltage conversion signal Fv becomes smaller than the frequency discrimination signal Fr, and the pan detection control signal is set to High level. Output to the AND circuit AND. The AND circuit AND stops the operation of the inverter drive circuit SD by setting the output signal to a high level because the pan detection control signal Cp2 and the pan non-detection signal Cp are at a high level.
[0027]
When the value of the power setting signal Pc is set to the power to be used normally and heating is performed with a pan, the pan detection circuit detects the output voltage detection signal Cv2 of FIG. The phase difference θ shown in FIG. 3D with respect to the 3 (D) pulse signal Pk is detected. At this time, the value of the phase difference θ is smaller than that in the no pan state, and the phase difference detection signal Pd is smaller. The comparison circuit CP compares the phase difference detection signal Pd with the phase difference determination signal Pr, determines that the phase difference detection signal Pd is smaller than the phase difference determination signal Pr, and has a pan, and sets the pan no detection signal Cp to Low. The level is output to the AND circuit AND. In the AND circuit AND, when the panless detection signal Cp becomes low level, the output signal becomes low level, and the inverter drive circuit SD is operated. Further, the value of the phase difference θ varies depending on the size of the diameter of the pan PB, and the value of the phase difference θ increases when the diameter is small. From the above, depending on the value of the phase difference determination signal Pr, a pot having a small diameter may be determined as a no pan state. Further, in the present invention, the phase difference determination signal Pr is set to an optimum value by the operation panel OA, so that the pan having a small diameter can be determined as having a pan.
[0028]
When cooking is performed by setting the value of the power setting signal Pc to the minimum power consumption, the frequency of the output voltage and output current of the inverter circuit becomes very high. At this time, the value of the phase difference θ by the phase difference / voltage conversion circuit PE causes an error in the detection of the phase difference because the frequency of the output voltage and output current becomes very high. There is a problem with sex.
[0029]
When the value of the power setting signal Pc is set to the minimum operating power, the frequency corresponding pan detection control circuit increases the frequency of the output voltage detection signal Cv2 and increases the value of the frequency / voltage conversion signal Fv. The second comparison circuit CP2 compares the frequency / voltage conversion signal Fv with the frequency discrimination signal, the frequency / voltage conversion signal Fv becomes larger than the frequency discrimination signal, and the pan detection control signal is set to Low level. Output to AND. When the pan detection control signal Cp2 becomes low level, the AND circuit AND makes the output signal low level regardless of the pan non-detection signal Cp, and operates the inverter drive circuit SD. As described above, cooking is not stopped by the pan detection circuit even when cooking is performed with the power setting signal Pc set to the minimum power consumption. At this time, even if small items such as knives and forks are placed, it is the minimum power and cannot be heated.
[0030]
[Example 2]
FIG. 4 is an electrical connection diagram of the electromagnetic induction heating cooker according to the second embodiment. In the figure, the same reference numerals as those in the electrical connection diagram of the electromagnetic induction heating cooker of the present invention shown in FIG.
[0031]
The current corresponding pan detection control circuit is formed by a current holding circuit EP, a third comparison circuit CP3, and an AND circuit AND.
[0032]
The current holding circuit EP shown in FIG. 5 performs a peak hold operation constituted by the double-wave rectifier circuit WD, the amplifier circuit OP, the diode DR2, the capacitor C4, and the resistor R1. Both-wave rectifier circuit WD rectifies both-wave output current detection signal Ct2. The current holding circuit EP holds the highest signal value of the input signal at both ends of the capacitor C4, and discharges the charge of the capacitor C4 by a return resistor R1 for a predetermined time.
[0033]
FIG. 6 is a waveform diagram for explaining the operation of the second embodiment. 6A shows the output voltage detection signal Cv2, and FIG. 6B shows the output current detection signal Ct2 when the pan PB is placed or not. 6 (C) shows the pulse signal Pk when the pan PB is not placed, FIG. 6 (D) shows the pulse signal Pk when the pan PB is placed, and FIG. E) shows the phase difference detection signal Pd when the pan PB is placed or not, and FIG. 6E shows when the pan PB is placed or placed. The current holding signal Ep when not present is shown.
[0034]
First, when the value of the power setting signal Pc is set to the power to be used normally and heating is performed without the pan, the pan detection circuit uses the phase difference / voltage conversion circuit PE to display the phase difference shown in FIG. θ is detected. At this time, the value of the phase difference θ increases, and the phase difference θ is converted into a voltage and output as a phase difference detection signal Pd shown in FIG. The comparison circuit CP compares the phase difference detection signal Pd with the phase difference determination signal Pr, determines that the phase difference detection signal Pd is greater than the phase difference determination signal Pr and that there is no pan, and uses the pan no detection signal Cp. High level is output to the AND circuit AND.
[0035]
The current holding circuit EP of the current corresponding pan detection control circuit holds the peak current of the output current detection signal Ct2, and outputs a current holding signal Ep shown in FIG. At this time, when the electric power setting signal Pc is set to the electric power normally used and heating is performed without the pan, current flows through the induction heating coil HL and the current holding signal Ep is determined as shown in FIG. 6 (F). The third comparison circuit CP3 sets the pan detection control signal Cp3 to the High level and outputs it to the AND circuit AND. The AND circuit AND stops the operation of the inverter drive circuit SD because the pan detection control signal Cp3 and the pan non-detection signal Cp are at a high level because the output signal is at a high level.
[0036]
When the value of the power setting signal Pc is set to the power that is normally used and heating is performed with the pan present, the value of the phase difference θ is small. The comparison circuit CP compares the phase difference detection signal Pd with the phase difference determination signal Pr, determines that the phase difference detection signal Pd is smaller than the phase difference determination signal Pr, and that there is a pan, and sets the pan no detection signal Cp to the low level. And output to the AND circuit AND. When the panless detection signal Cp becomes the Low level, the AND circuit AND sets the output to the Low level regardless of the pan detection control signal Cp3 and operates the inverter drive circuit SD.
[0037]
In the current corresponding pan detection control circuit, when the value of the power setting signal Pc is set to the minimum operating power, the current flowing through the induction heating coil HL becomes small and the current holding signal Ep is a current discrimination signal as shown in FIG. The third comparison circuit CP becomes lower than Fr and sets the pan detection control signal Cp3 to the Low level and outputs it to the AND circuit AND. When the pan detection control signal Cp3 becomes low level, the AND circuit AND sets the output signal to low level and operates the inverter drive circuit SD regardless of the pan non-detection signal Cp.
[0038]
[Example 3]
FIG. 7 is an electrical connection diagram of the electromagnetic induction heating cooker according to the third embodiment. In the figure, the same reference numerals as those in the electrical connection diagram of the electromagnetic induction heating cooker of the present invention shown in FIG.
[0039]
The power corresponding pan detection control circuit is formed by the fourth comparison circuit CP4 and the AND circuit AND.
[0040]
The fourth comparison circuit CP4 compares the power setting signal Pc with the power discrimination signal Pf and outputs a pan detection control signal Cp4.
[0041]
When the value of the power setting signal Pc is set to the power that is normally used in the power corresponding pan detection control circuit, the power setting signal Pc becomes larger than the power determination signal Pf, and the fourth comparison circuit CP4 of the power corresponding pan detection control circuit The pan detection control signal is set to High level and output to the AND circuit AND. Therefore, the AND circuit AND sets the output signal to the high level and stops the inverter drive circuit SD when the panless detection signal Cp becomes the high level.
[0042]
When the value of the power setting signal Pc is set to the minimum power consumption, the power setting signal Pc becomes smaller than the power discrimination signal Pf, and the fourth comparison circuit CP4 of the power corresponding pan detection control circuit sets the pan detection control signal Cp4 to the low level. And output to the AND circuit AND. When the pan detection control signal Cp becomes low level, the AND circuit AND causes the output signal to go low regardless of the pan non-detection signal Cp and operates the inverter drive circuit SD.
[0043]
When the output signal of the AND circuit AND becomes High level and the inverter drive circuit SD is stopped, the indicator LED is turned on to display the no pan state.
【The invention's effect】
In the electromagnetic induction heating cooker of the present invention, cooking can be continued without stopping the inverter circuit, which automatically stops the operation of the pan detection circuit when cooking is performed with a small power set value. Moreover, the problem of discriminating a small pan from the absence of a pan due to the difference in the diameter of the pan can be solved.
[Brief description of the drawings]
FIG. 1 is an electrical connection diagram of an electromagnetic induction heating cooker according to the present invention.
FIG. 2 is a detailed connection diagram of the phase difference detection circuit shown in FIG.
FIG. 3 is a waveform diagram illustrating the operation of the present invention.
FIG. 4 is an electrical connection diagram of the electromagnetic induction heating cooker according to the second embodiment.
FIG. 5 is a detailed connection diagram of the current holding circuit shown in FIG. 4;
FIG. 6 is a waveform diagram for explaining the operation of the second embodiment.
7 is an electrical connection diagram of the electromagnetic induction heating cooker of Example 3. FIG.
FIG. 8 is an electrical connection diagram of a conventional electromagnetic induction heating cooker.
[Explanation of symbols]
AND AND circuit CO differential amplifier circuit CP comparison circuit C1 smoothing capacitor C2 resonance capacitor C3 resonance capacitor C4 capacitor CP2 second comparison circuit CP3 third comparison circuit CP4 fourth comparison circuit CT2 output current detection circuit CV2 output voltage detection circuit DR1 Rectifier circuit DR2 Diode EP Current holding circuit FV Frequency / voltage conversion circuit HL Induction heating coil ID Input current detection circuit IV Input voltage detection circuit LED Display OA Operation panel OP Amplification circuit PB Pan PC Power setting circuit PD Phase difference detection circuit PE Phase difference / voltage conversion circuit PK Pulsing circuit PL Top plate R1 Resistor SA Power operation circuit SC Control operation circuit SD Inverter drive circuit TS Heating switch TR1 Switching element TR2 Switching element WD Both-wave rectification circuit Cp Panless detection signal Cp2 Pan detection control signal Ct2 Output current detection signal Cv2 Output voltage detection signal Ep Current holding signal Er Current discrimination signal Fv Frequency / voltage conversion signal Fr Frequency discrimination signal Id Input current detection signal Iv Input voltage detection signal ΔI Differential amplification signal Ld Display signal Oa operation signal Pc power setting signal Pd phase difference detection signal Pf power discrimination signal Pk pulse signal Pr phase difference discrimination signal Sa power calculation signal Sc control calculation signal Ts heating start signal Sd1 switching element drive signal Sd2 switching element drive signal Wd both-wave rectification signal

Claims (2)

共振コンデンサと、前記共振コンデンサとともに直列共振を形成する誘導加熱コイルと、商用交流電源を整流して直流電圧に変換する整流回路と、前記整流回路の直流電圧を入力として前記誘導加熱コイルに高周波電流を供給するインバータ回路と、前記インバータ回路の入力電力を演算して電力演算信号を出力する電力演算回路と、電力設定信号を出力する電力設定回路と、前記電力演算信号と前記電力設定信号とを差動増幅する差動増幅回路と、前記差動増幅信号に応じて前記インバータ回路の出力周波数を制御するインバータ駆動回路と、前記インバータ回路の出力電圧と出力電流との位相差を検出して位相差検出信号を出力する位相差検出回路と、前記位相差検出信号の値が予め定めた位相差判別値よりも大きいときに鍋が載置されていないと判別して鍋無検出信号を出力し前記インバータ駆動回路の駆動を止めて前記高周波電流の供給を停止する鍋検出回路とを具備し、前記誘導加熱コイル上に載置した前記鍋を電磁誘導作用で加熱する電磁誘導加熱調理器において、前記インバータ回路の出力周波数を検出し、前記位相差の検出精度が減少する予め定めた周波数判別値より高いときに前記鍋検出回路の動作を停止させ、前記出力周波数が前記周波数判別値より低いときに前記鍋検出回路を動作させる周波数対応鍋検出制御回路を具備したことを、特徴とする電磁誘導加熱調理器。 A resonant capacitor; an induction heating coil that forms a series resonance with the resonant capacitor; a rectifier circuit that rectifies a commercial AC power supply to convert it into a DC voltage; and a high-frequency current in the induction heating coil using the DC voltage of the rectifier circuit as an input An inverter circuit that supplies power, a power calculation circuit that calculates input power of the inverter circuit and outputs a power calculation signal, a power setting circuit that outputs a power setting signal, the power calculation signal and the power setting signal A differential amplifier circuit for differential amplification, an inverter drive circuit for controlling the output frequency of the inverter circuit according to the differential amplification signal, and a phase difference between the output voltage and the output current of the inverter circuit A phase difference detection circuit that outputs a phase difference detection signal, and a pan is placed when the value of the phase difference detection signal is greater than a predetermined phase difference determination value. A pan detection circuit that discriminates that there is no pan and outputs a no pan detection signal to stop the drive of the inverter drive circuit and stop the supply of the high frequency current, and the pan placed on the induction heating coil is electromagnetic In an electromagnetic induction heating cooker that heats by induction, the output frequency of the inverter circuit is detected, and the operation of the pan detection circuit is stopped when the detection accuracy of the phase difference is higher than a predetermined frequency discrimination value that decreases. An electromagnetic induction heating cooker comprising a frequency corresponding pan detection control circuit that operates the pan detection circuit when the output frequency is lower than the frequency discrimination value. 前記インバータ回路の出力電流のピーク値を検出し、前記位相差の検出精度が減少する予め定めた電流判別値より小さいときに前記鍋検出回路の動作を停止させ、前記ピーク値が前記電流判別値より大きいときに前記鍋検出回路を動作させる電流対応鍋検出制御回路を前記周波数対応鍋検出制御回路に置換したことを、特徴とする請求項1記載の電磁誘導加熱調理器。  When the peak value of the output current of the inverter circuit is detected and the detection accuracy of the phase difference is smaller than a predetermined current discrimination value, the operation of the pan detection circuit is stopped, and the peak value is the current discrimination value 2. The electromagnetic induction heating cooker according to claim 1, wherein the current corresponding pot detection control circuit for operating the pot detection circuit when the value is larger is replaced with the frequency corresponding pot detection control circuit.
JP2003043827A 2003-02-21 2003-02-21 Electromagnetic induction heating cooker Expired - Fee Related JP4055946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003043827A JP4055946B2 (en) 2003-02-21 2003-02-21 Electromagnetic induction heating cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003043827A JP4055946B2 (en) 2003-02-21 2003-02-21 Electromagnetic induction heating cooker

Publications (2)

Publication Number Publication Date
JP2004253297A JP2004253297A (en) 2004-09-09
JP4055946B2 true JP4055946B2 (en) 2008-03-05

Family

ID=33026723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003043827A Expired - Fee Related JP4055946B2 (en) 2003-02-21 2003-02-21 Electromagnetic induction heating cooker

Country Status (1)

Country Link
JP (1) JP4055946B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4970829B2 (en) * 2006-04-12 2012-07-11 株式会社ダイヘン Electromagnetic induction heating cooker
JP2009016210A (en) * 2007-07-05 2009-01-22 Toshiba Corp Induction heating cooker
JP5275784B2 (en) * 2008-12-24 2013-08-28 ホシザキ電機株式会社 Electromagnetic induction heating device
JP5275783B2 (en) * 2008-12-24 2013-08-28 ホシザキ電機株式会社 Control device for electromagnetic induction heating device
JP6356416B2 (en) * 2013-12-19 2018-07-11 株式会社ダイヘン Control circuit for inverter circuit, inverter device provided with this control circuit, induction heating device provided with this inverter device, and control method
CN107050474A (en) * 2017-02-21 2017-08-18 张冬辉 Chopsticks local quick sterilization sterilization method, device and its applicable chopsticks

Also Published As

Publication number Publication date
JP2004253297A (en) 2004-09-09

Similar Documents

Publication Publication Date Title
JP4821677B2 (en) Induction heating cooker
JP4900248B2 (en) Induction heating device
EP1414276B1 (en) Induction heating device
EP2166817B1 (en) Induction heater
KR20090048789A (en) Induction heating cooker
JP4821791B2 (en) Induction heating cooker
JP4055946B2 (en) Electromagnetic induction heating cooker
JP2006114311A (en) Induction heating cooker
US7157674B2 (en) Induction heater with controlled current to heating coil
JP5235955B2 (en) Induction heating cooker
JP2007250503A (en) Induction heating cooker
KR101462093B1 (en) Electric range with oven detection function
JP3928587B2 (en) Induction heating device
JPH11121159A (en) Induction heating cooker
KR100241449B1 (en) Apparatus and method for judging small load of induction heating cooker
JP2006120394A (en) Induction heating device
JP5009118B2 (en) Electromagnetic induction heating cooker
JP4970829B2 (en) Electromagnetic induction heating cooker
JP2004247237A (en) Induction heating cooker
KR102153499B1 (en) Heating device and power control method
JP2013026105A (en) Induction heating cooker
EP4061095A1 (en) Induction heating apparatus and method for controlling the same
JP2004288487A (en) Electromagnetic induction cooker
JPH08148266A (en) Induction heating cooker
JP2007165122A (en) Induction heating cooking device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4055946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees