JP4821059B2 - Resin composition and flame-retardant laminate and printed wiring board using the same - Google Patents

Resin composition and flame-retardant laminate and printed wiring board using the same Download PDF

Info

Publication number
JP4821059B2
JP4821059B2 JP2001198251A JP2001198251A JP4821059B2 JP 4821059 B2 JP4821059 B2 JP 4821059B2 JP 2001198251 A JP2001198251 A JP 2001198251A JP 2001198251 A JP2001198251 A JP 2001198251A JP 4821059 B2 JP4821059 B2 JP 4821059B2
Authority
JP
Japan
Prior art keywords
resin composition
flame
group
resin
novolak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001198251A
Other languages
Japanese (ja)
Other versions
JP2003012892A (en
Inventor
郁夫 菅原
昌久 尾瀬
伸治 島岡
富男 福田
正人 宮武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2001198251A priority Critical patent/JP4821059B2/en
Publication of JP2003012892A publication Critical patent/JP2003012892A/en
Application granted granted Critical
Publication of JP4821059B2 publication Critical patent/JP4821059B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明は、臭素化合物を含まない樹脂組成物、それを用いた、各種電子材料に用いられる難燃性を有する積層板、特に金属張積層板、および印刷配線板に関する。
【0002】
【従来の技術】
地球規模で環境破壊に関する問題意識が高まっている。大気や土壌を汚染し、人体にも有害となる可能性がある有機ハロゲン化合物や、アンチモン、鉛合金、鉛化合物等は、使用規制の対象となっている。このため、家電製品をはじめとして、パーソナルコンピュータ等の各種情報端末機器を中心に、ハロゲン化合物や鉛合金を含有しない製品への移行が進んでいる。このような電子機器に使用されるプリント配線板や実装部品も、例外ではない。
【0003】
一般に、プリント配線板やプラスチックパッケージに用いられる従来の基板材料の多くは、難燃化のために有機ハロゲン系化合物を使用している。また、実装部品のはんだ接続には、Sn−Pb系合金を使用しているのが現状である。
【0004】
鉛を含有しないはんだ材料に関する報告等によると、そのようなはんだは、融点が上昇する傾向があり、これに伴って、リフロー温度も上昇する可能性が高い。こうした状況において、基板材料としては、ハロゲン化合物を用いないことと同時に、特にはんだの溶融温度に耐えるために、これまで以上に高い耐熱性が要求されている。
【0005】
有機ハロゲン化合物を用いない難燃化方法としては、従来から、リン化合物や窒素化合物を添加したり、それらを樹脂骨格に導入すること等が行われている。しかしながら、リン化合物や窒素化合物により難燃性を確保するためには、ある程度の量を配合する必要があり、それによって、吸水率の増加、および耐熱性の低下等を引き起こす。そのため、リン化合物や窒素化合物の配合量の低減を目的に、金属酸化物の水和物を併用する方法も試みられている。
【0006】
しかしながら、金属酸化物の水和物は、燃焼時に冷却効果を発現する水を多くトラップしているため、ある程度の量以上配合すると、樹脂組成物や積層板の耐熱性が急激に低下する。これは、金属酸化物の水和物が水を放出する温度が、はんだの溶融温度よりも低いことに起因しており、このことは、必要な溶融温度がさらに高くなることが予想されている、鉛を含有しないはんだでは、より顕著になると思われる。
【0007】
本発明者らは、先に、積層板の基材や充填剤を、その水酸基と反応する官能基を有するシロキサンオリゴマーで処理することにより、基材や充填剤と樹脂との界面の接着性を向上させて、ドリル加工性および絶縁特性に優れた積層板および印刷配線板を製造しうることを見出している(特許国際公開WO97/01595号公報参照)。しかしながら、この技術を、このような積層板の難燃化に適用できるという知見は、今まで得られていなかった。
【0008】
【発明が解決しようとする課題】
本発明は、このような状況を前提としてなされたもので、有機ハロゲン化合物を含まず、かつ硬化して得られる積層板および印刷配線板が難燃性および耐熱性に優れる樹脂組成物;それを用いた、難燃性、耐熱性および加工性に優れた積層板;ならびに印刷配線板を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者らは、上記の課題を解決するために検討を重ねた結果、難燃剤として金属酸化物の水和物を配合し、かつ該水和物との反応性を有するケイ素官能性シロキサンオリゴマーを配合することによって、(C)金属酸化物の水和物による難燃効果を損なうことなく、多量の(C)を配合しても優れた機械的性質および加工性が得られること、ならびにそのことによって上記の目的を達成しうることを見出して、本発明を完成するに至った。
【0010】
すなわち、本発明の樹脂組成物は、
(A)エポキシ樹脂;
(B)軟化点が100℃以上の多官能性フェノール樹脂;
(C)金属酸化物の水和物;および
(D)ケイ素官能基を有するシロキサンオリゴマー
を含み、(C)の含有量が、(A)と(B)の合計量に対して50〜200体積%であり、かつ有機ハロゲン化合物を実質的に含有しないことを特徴とする。本発明の難燃性積層板は、該樹脂組成物から得られるプリプレグを積層し、硬化させて得られ、本発明の難燃性印刷配線板は、そのようにして得られた金属張積層板から回路を形成して得られる。
【0011】
【発明の実施の形態】
(A)成分のエポキシ樹脂としては、分子内に2個以上のエポキシ基を有する化合物であればよく、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、グリシジルエステル型エポキシ樹脂、イソシアヌラート型エポキシ樹脂、ヒダントイン型エポキシ樹脂、多官能フェノール類のグリシジルエーテル化合物、二官能アルコール類のグリシジルエーテル化合物、およびそれらの水素添加物等があり、1種を用いても、2種以上を併用してもよい。
【0012】
(B)成分の多官能性フェノール樹脂は、(A)成分の硬化剤である。(B)成分としては、フェノールノボラック、クレゾールノボラック、ビスフェノールAノボラック、ビスフェノールFノボラック、カテコールノボラックおよびこれらの芳香環をアルキル基で置換したもの等があり、1種を用いても、2種以上を併用してもよい。本発明においては、これらの多官能性フェノール樹脂のうち、軟化点が100℃以上、好ましくは100〜150℃のものを配合することにより、耐熱性、難燃性が良好な樹脂組成物を得ることができる。
【0013】
(B)成分の配合量は、硬化した樹脂に優れた耐熱性を与えることから、(B)成分の水酸基の数が、(A)成分のエポキシ基1個あたり0.8〜1.2個になる量が好ましい。
【0014】
(C)成分の金属酸化物の水和物は、本発明の組成物に難燃性を付与するものである。ここで、金属酸化物の水和物とは、金属水酸化物として表現されているものを含めた概念である。(C)成分としては、通常、周期律表2族または13族の金属酸化物の水和物が用いられ、酸化アルミニウム水和物、水酸化マグネシウムおよび水酸化カルシウムが好ましい。酸化アルミニウム水和物には、水酸化アルミニウムといわれるものを包含し、ベーマイト、ジアスポアのような一水和物;およびギブサイト、バイエライトのような三水和物(水酸化アルミニウム)が挙げられる。(C)成分は、1種を用いても、2種以上を併用してもよい。同一の配合量で優れた難燃性が得られることから、ギブサイトが特に好ましい。
【0015】
(C)成分の配合量は、(A)成分と(B)成分の合計量に対して50〜200体積%、好ましくは70〜150体積%が用いられる。(C)成分の量が50体積%未満の場合は、充分な難燃性が得られず、200体積%を越える場合は、成形性が不十分となる。
【0016】
(D)成分のシロキサンオリゴマーは、(C)成分および場合によっては配合される(C)成分以外の無機充填剤の表面処理剤である。(D)成分としては、シロキサン単位が2個以上で、基材表面の水酸基と反応するケイ素官能基を1個以上有するものであれば、特に限定はない。シロキサン骨格は、直鎖状、分岐状、環状、網状のいずれかであってもよく、(A)成分および(B)成分との相溶性から、分岐構造を有することが好ましい。また、取扱いが容易で処理むらを生じないことから、シロキサン単位の数は2〜70個が好ましく、5〜50個がさらに好ましい。ケイ素官能基としては、水酸基(ケイ素原子を含めてシラノール基ともいう);メトキシ、エトキシ、プロポキシのようなアルコキシ基;2−メトキシエトキシのようなアルコキシ置換アルコキシ基;および水素原子が例示され、合成が容易で、反応性が優れていることから、水酸基およびメトキシ基が好ましく、水酸基が特に好ましい。このようなケイ素官能性基は、シロキサン骨格が直鎖状の場合は、末端ケイ素原子に結合していることが好ましいが、その他の骨格構造の場合は、任意のケイ素原子に結合していてもよい。
【0017】
シロキサンオリゴマーには、ケイ素原子に、非置換または置換の1価の炭化水素基が結合している。このような基としては、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシルのようなアルキル基;フェニルのようなアリール基;ビニルのようなアルケニル基;および3−メトキシプロピルのような置換炭化水素基が例示され、硬化した樹脂に優れた耐熱性を与えることから、分子中に少なくとも1個のフェニル基を有することが好ましく、金属酸化物の水和物が水を放出する温度を上げて、はんだ付けなどの加工により樹脂にふくれを生じることがなく、かつ難燃性を損なうことがないことから、全シロキサン単位の25モル%以上が、少なくとも1個のフェニル基を有する単位であることがさらに好ましい。その他の基としては、合成および取扱いが容易なことから、メチル基が好ましい。
【0018】
このようなシロキサンオリゴマーは、たとえば、該オリゴマーを構成するシロキサン単位に対応する、アルコキシシラン類やクロロシラン類のようなケイ素官能性基含有シラン類および/またはその部分加水分解縮合物を、(共)加水分解または(共)アルコリシスおよび部分縮合させて得ることができる。たとえば、上記のシラン類を、メタノール、エタノール、2−メトキシエタノールのようなアルコール系溶媒;および/またはトルエン、キシレンのような炭化水素系溶媒に溶解して、水;酢酸のような酸で弱酸性にした水;アルコールなどを滴下し、あるいは逆に同様な水などの中に混合シラン溶液を加えて、所望の重合度になるまで撹拌を続け、分液して、油相をシロキサンオリゴマーとして回収することができる。
【0019】
(C)成分および場合によっては配合されるその他の無機充填剤に対するシロキサンオリゴマーの処理方法は、特に限定されるものではなく、シロキサンオリゴマーを直接添加する乾式法や、有機溶媒などで希釈された処理液を用いる湿式法等が好適である。
【0020】
(C)成分およびその他の無機充填剤へのシロキサンオリゴマーの処理量は、特に限定されないが、系に充分に分散して対象物の処理に有効であり、かつ(C)成分および必要に応じて配合されるその他の無機質充填剤の表面に適度の厚さのポリシロキサン層を形成して、(A)成分との間に優れた界面接着性を生じ、かつ残留応力を低減する効果があることと、樹脂に優れた耐熱性を与えることから、(C)成分とその他の無機充填剤との合計量に対して0.01〜5.0重量%が好適である。
【0021】
本発明の樹脂組成物には、上記の(A)成分〜(D)成分のほかに、任意に各種の成分を配合することができる。
【0022】
(A)成分の硬化を促進するために、必要に応じて硬化促進剤を配合することができる。硬化促進剤の種類や配合量は、特に限定するものではなく、例えばイミダゾール系化合物、第三級アミン、オニウム塩等が用いられ、1種を用いても、2種以上を併用してもよい。
【0023】
さらに、耐熱性、難燃性等の向上を目的として、また樹脂組成物および/またはその硬化物に適切な機械的性質を与えるために、(C)成分以外の無機充填剤を併用してもよい。このような無機充填剤としては、アルミナ、シリカ、酸化チタン、クレー、炭酸カルシウム、炭酸アルミニウム、ケイ酸マグネシウム、ケイ酸アルミニウム、マイカ、ガラス短繊維等が用いられ、またホウ酸アルミニウム、炭化ケイ素等の各種ウィスカーが用いられる。これらは、1種を用いても、2種以上を併用してもよい。
【0024】
また、金属酸化物の水和物と樹脂との親和性を高めるために、その表面処理に、シロキサンオリゴマーに加えて各種カップリング剤を併用してもよい。カップリング剤としては、シラン系カップリング剤、チタネート系カップリング剤等が用いられる。シラン系カップリング剤としては、炭素官能性シランが用いられ、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピル(メチル)ジメトキシシラン、2−(2,3−エポキシシクロヘキシル)エチルトリメトキシシランのようなエポキシ基含有シラン;3−アミノプロピルトリエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピル(メチル)ジメトキシシランのようなアミノ基含有シラン;3−(トリメトキシリル)プロピルテトラメチルアンモニウムクロリドのようなカチオン性シラン;ビニルトリエトキシシランのようなビニル基含有シラン;3−メタクリロキシプロピルトリメトキシシランのようなアクリル基含有シラン;および3−メルカプトプロピルトリメトキシシランのようなメルカプト基含有シランが例示される。チタネート系カップリング剤としては、チタンプロポキシド、チタンブトキシドのようなチタン酸アルキルエステルが例示される。このようなカップリング剤は、1種を用いても2種以上を併用してもよく、その配合量は、特に制限はない。
【0025】
樹脂組成物の各成分および任意に配合される無機充填剤等を、希釈し、または分散させてワニスを形成させるために、溶媒が用いられる。溶媒としては、たとえばトルエン、キシレンのような炭化水素類;アセトン、メチルエチルケトン、メチルイソブチルケトンのようなケトン類;酢酸エチルのようなエステル類;エチレングリコールモノメチルエーテルのようなエーテルアルコール類;メタノール、エタノール、イソプロパノール、ブタノールのようなアルコール類;およびN,N−ジメチルホルムアミドのような非プロトン極性溶媒等が例示され、1種を用いても2種以上を混合して用いてもよい。また、分子中に1個のエポキシ基を有する反応性希釈剤を配合してもよい。
【0026】
ワニスの固形分濃度は、特に制限はなく、樹脂組成や無機充填剤の種類および配合量等により適宜変更できるが、プリプレグの樹脂分が、各層の絶縁性を保つのに充分であり、かつワニスの見掛け粘度の上昇により作業性を損ねたり、プリプレグの外観を損ねたりしないことから、50〜80重量%の範囲が好ましい。
【0027】
本発明の組成物に、必要に応じて、さらに着色剤、酸化防止剤、還元剤、紫外線遮離剤などを配合することができる。ただし、本発明の樹脂組成物は、その課題から、芳香族臭素化合物、臭素化エポキシ樹脂およびその末端基誘導体、臭素化アルコール、臭素化ペンタエリトリトール、臭素化ベンジルアクリラート、臭素化アルキルイソシアヌラートのような有機臭素化合物;塩素化パラフィン、塩素化ポリエチレンのような有機塩素化合物等の有機ハロゲン化合物を実質的に含有しない。
【0028】
前記各成分を配合して得た樹脂組成物、特にさらに溶媒および/または反応性希釈剤を配合して調製したワニスを、基材に含浸し、必要に応じて風乾した後、乾燥炉中で半硬化させることにより、印刷配線板用プリプレグを得る。処理条件は、通常80〜200℃、好ましくは100〜180℃の温度で3〜30分、好ましくは5〜15分である。基材としては、金属張積層板や多層印刷配線板を製造する際に用いられるものであれば特に制限されないが、通常、織布や不織布等の繊維基材が用いられる。繊維基材としては、たとえばガラス、シリカガラス、シリカアルミナガラス、アルミナ、ジルコニア、アスベスト、チラノ、炭化ケイ素、窒化ケイ素、炭化ホウ素のような無機繊維;カーボン繊維;芳香族ポリアミド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリエーテルスルホン、セルロースのような有機繊維等、ならびにこれらの混抄系があり、特にガラス繊維の織布が好ましく用いられる。
【0029】
本発明で用いるプリプレグは、温度150〜200℃、圧力約1.0〜8.0MPaの範囲で加熱加圧して硬化させ、積層板、特に銅張積層板のような金属張積層板や、さらに回路を形成した多層印刷配線板を製造するのに用いられる。
【0030】
【作用】
本発明の樹脂組成物において、金属酸化物の水和物を樹脂分の50〜200体積%配合することにより、燃焼の際に水和水を放出するので、組成物を硬化して得られた積層板に難燃性を付与できる。
【0031】
さらに、ケイ素官能性シロキサンオリゴマーを配合することにより、系中への該水和物の分散性を高め、その凝集による絶縁性の低下を防ぐとともに、良好な加工性を保つことができる。特に該シロキサンオリゴマーとして、全シロキサン単位の25モル%以上が少なくとも1個のフェニル基を有するものを用いると、金属酸化物の水和物が水を放出する温度を上げることができる。したがって、はんだ付けのような加工の際の温度で、水が放出されることがないので、それによって樹脂にふくれを生じることがない。また多官能性エポキシ樹脂と、軟化点が100℃以上の多官能性フェノール樹脂を使用することにより、該水和物からの水の放出に基因する耐熱性の低下を防ぐことができる。
【0032】
【実施例】
以下、本発明を実施例によって説明する。本発明は、これらの実施例によって限定されるものではない。実施例および比較例において、部は重量部を表す。
【0033】
実施例1
メタノール105部に、ジメチルジメトキシシラン20部およびテトラメトキシシラン25部を配合して、溶液を調製した。これを撹拌しながら、蒸留水17.8部と酢酸0.60部の溶液を滴下し、ついで50℃に8時間加熱して、共加水分解および部分縮合を進めた。分液して油相を、シラノール基含有シロキサンオリゴマーとして得た。
【0034】
このシロキサンオリゴマーをメチルエチルケトンに溶解して、固形分1重量%の溶液とした。以下の樹脂および無機充填剤からなるワニスを調製し、撹拌しながら、上記のシロキサンオリゴマー溶液を、シロキサン分換算0.5部添加した。
ビスフェノールA型エポキシ樹脂(エポキシ当量:245) 10部
ビスフェノールAノボラック型エポキシ樹脂(エポキシ当量:205) 90部
フェノールノボラック樹脂(水酸基当量:108、軟化点:108℃) 52部
2−エチル−4−メチルイミダゾール 0.5部
水酸化アルミニウム(ギブサイト) 90部
焼成クレー 30部
これにさらにメチルエチルケトンを加えて、固形分70重量%のワニスを調製した。
【0035】
実施例2
実施例1のフェノールノボラック樹脂の代わりに、水酸基当量108、軟化点120℃のフェノールノボラック樹脂52部を用いた以外は、実施例1と同様にして、固形分70重量%のワニスを調製した。
【0036】
実施例3
実施例1のフェノールノボラック樹脂の代わりに、クレゾールノボラック樹脂(水酸化当量:108、軟化点:121℃)52部を用いた以外は、実施例1と同様にして、固形分70重量%のワニスを調製した。
【0037】
実施例4
実施例1の水酸化アルミニウムの配合量を150部とした以外は、実施例1と同様にして、固形分70重量%のワニスを調製した。
【0038】
実施例5
実施例1のワニスに3−グリシドキシプロピルトリメトキシシランを0.5部添加した以外は、実施例1と同様にして、固形分70重量%のワニスを調製した。
【0039】
比較例1
実施例1のワニスに、水酸化アルミニウムを配合せずに、固形分70重量%のワニスを調製した。
【0040】
比較例2
実施例1のフェノールノボラック樹脂の代わりに、水酸化当量108、軟化点84℃のフェノールノボラック樹脂52重量部を配合した以外は、実施例1と同様にして、固形分70重量%のワニスを調製した。
【0041】
比較例3
実施例1のシロキサンオリゴマーを添加しない以外は、実施例1と同様にして、固形分70重量%のワニスを調製した。
【0042】
実施例1〜5及び比較例1〜3で調製したそれぞれのワニスを、厚さ約0.1mmのガラス布(#2116、E−ガラス)に含浸した後、150℃で3〜10分加熱乾燥して、樹脂分48重量%のプリプレグを得た。このプリプレグ4枚を重ね、その両側に厚さが18μmの銅箔を重ね、170℃、3.0MPaのプレス条件で90分間プレスして、両面銅張積層板を作製した。
【0043】
得られた両面銅張積層板について、難燃性、ガラス転移温度、耐熱性および耐電食性の評価を行った。その結果は、表1に示すとおりであった。
【0044】
試験方法は以下のとおりであった。
難燃性、ガラス転移温度(Tg):JIS C 6481に準じて測定した。
耐熱性:両面銅張積層板を、50mm×50mmに切断し、288℃のはんだにフローティングし、ふくれが発生するまでの時間を測定した。
耐電食性:両面銅張積層板を、直径0.4mmのドリルで、穴間隔0.3mmに加工し、穴の間に電圧50Vを印加して、85℃、85%RHの条件で500時間および1,000時間放置後の絶縁抵抗の測定を行った。
【0045】
【表1】

Figure 0004821059
【0046】
表1の結果より、実施例1〜5で得られた銅張積層板は、難燃性および耐熱性に優れており、かつ耐電食性に優れていた。それに対して、比較例1で得られた積層板は、難燃性が著しく劣り、比較例2で得られた積層板は、難燃性と耐熱性が劣り、比較例3で得られた積層板は、耐熱性が劣るほか、耐電食性が著しく劣っていた。
【0047】
実施例6
ジメチルジエトキシシラン14.8部とフェニルトリクロロシラン21.1部をトルエン36.0部に溶解して得た溶液を、温度70℃で激しく撹拌している水100部に滴下し、ついでトルエンの還流温度で2時間撹拌して、共加水分解および部分縮合を行った。静置して分液し、常法により油層を中和、水洗した後脱水、ろ過し、さらに一部のトルエンを留去して、シロキサンオリゴマーの60重量%トルエン溶液を得た。得られたシロキサンオリゴマーは、(CH32SiO単位とC65SiO3/2単位を等モル含有し、6重量%の水酸基を含有していた。
【0048】
このようにして得られたシロキサンオリゴマーを、実施例1で用いたのと同じエポキシ樹脂ワニスに、シロキサン分換算で0.5重量%配合し、撹拌して溶解させ、シロキサンオリゴマー含有エポキシ樹脂ワニスを調製した。これを用いて、実施例1と同様にして両面銅張積層板を作製して、実施例1と同様の方法で難燃性および耐熱性を評価したところ、難燃性は94V−0、耐熱性は>300秒であった。
【0049】
実施例7
ジメチルジメトキシシラン20部とジフェニルジメトキシシラン20部をエチレングリコールモノメチルエーテル50部に溶解して、混合シラン溶液を調製した。これを撹拌しながら、室温で蒸留水50部と酢酸0.28部の溶液を滴下し、ついで50℃に8時間加熱して、共加水分解および部分縮合を進めた。
【0050】
このようにして得られたシロキサンオリゴマーを、実施例1で用いたのと同じエポキシ樹脂ワニスに、シロキサン分換算で0.5重量%配合し、撹拌して溶解させ、シロキサンオリゴマー含有エポキシ樹脂ワニスを調製した。これを用いて、実施例1と同様にして両面銅張積層板を作製して、実施例1と同様の方法で難燃性、耐熱性、Tgおよび耐電食性を評価した。その結果は次のとおりであった。
難燃性: 94V−0
耐熱性: >300秒
Tg: 163℃
耐電食性(500h): 1×1012
耐電食性(1,000h): 1×1012
【0051】
【発明の効果】
本発明の樹脂組成物より作製した積層板は、ハロゲン化合物を含有しない材料でありながら、難燃性、耐熱性および作業性に優れ、かつ耐電食性に優れている。このような積層板から回路を形成して得られたプリント配線板は、信頼性が高く、ワイヤボンディング性が優れている。したがって、本発明の樹脂組成物、ならびにそれを用いた積層板および印刷配線板は、電子機器用の絶縁材料やプリント配線板として、きわめて有用である。[0001]
[Industrial application fields]
The present invention relates to a resin composition that does not contain a bromine compound, and a flame-retardant laminate, particularly a metal-clad laminate, and a printed wiring board, which are used for various electronic materials.
[0002]
[Prior art]
Awareness of environmental destruction is increasing on a global scale. Organohalogen compounds, antimony, lead alloys, lead compounds, and the like that pollute the air and soil and may be harmful to the human body are subject to use restrictions. For this reason, the shift to products that do not contain halogen compounds or lead alloys is progressing mainly in home appliances and various information terminal devices such as personal computers. Printed wiring boards and mounting parts used in such electronic devices are no exception.
[0003]
In general, many of the conventional substrate materials used for printed wiring boards and plastic packages use organic halogen compounds for flame resistance. Moreover, the present condition is using the Sn-Pb type-alloy for the solder connection of mounting components.
[0004]
According to reports on solder materials that do not contain lead, such solders tend to have a higher melting point, and the reflow temperature is likely to increase accordingly. Under such circumstances, the substrate material is required not only to use a halogen compound, but also to have higher heat resistance than ever in order to withstand the melting temperature of the solder.
[0005]
As a flame-retarding method not using an organic halogen compound, conventionally, a phosphorus compound or a nitrogen compound is added, or they are introduced into a resin skeleton. However, in order to ensure flame retardancy with a phosphorus compound or nitrogen compound, it is necessary to add a certain amount, thereby causing an increase in water absorption and a decrease in heat resistance. Therefore, a method of using a metal oxide hydrate in combination for the purpose of reducing the compounding amount of a phosphorus compound or a nitrogen compound has been attempted.
[0006]
However, since the metal oxide hydrate traps a large amount of water that exhibits a cooling effect during combustion, the heat resistance of the resin composition or the laminate is drastically reduced when mixed in a certain amount or more. This is due to the fact that the temperature at which the metal oxide hydrate releases water is lower than the melting temperature of the solder, which is expected to require a higher melting temperature. This is likely to be more noticeable with solders that do not contain lead.
[0007]
The present inventors first processed the substrate and filler of the laminate with a siloxane oligomer having a functional group that reacts with the hydroxyl group, thereby improving the adhesion at the interface between the substrate and the filler and the resin. It has been found that a laminated board and a printed wiring board excellent in drilling workability and insulation characteristics can be manufactured by improving the process (see Patent International Publication No. WO 97/01595). However, the knowledge that this technique can be applied to the flame retardancy of such a laminate has not been obtained so far.
[0008]
[Problems to be solved by the invention]
The present invention has been made on the assumption of such a situation, and is a resin composition that does not contain an organic halogen compound and that is obtained by curing and is excellent in flame retardancy and heat resistance; An object of the present invention is to provide a laminated board excellent in flame retardancy, heat resistance and processability; and a printed wiring board.
[0009]
[Means for Solving the Problems]
As a result of repeated studies to solve the above problems, the present inventors have formulated a metal-functional siloxane oligomer containing a hydrate of a metal oxide as a flame retardant and having reactivity with the hydrate. By blending (C), excellent mechanical properties and workability can be obtained even if a large amount of (C) is blended without impairing the flame retardant effect due to the hydrate of the metal oxide. Thus, the inventors have found that the above object can be achieved, and have completed the present invention.
[0010]
That is, the resin composition of the present invention is
(A) epoxy resin;
(B) a polyfunctional phenol resin having a softening point of 100 ° C. or higher;
(C) a metal oxide hydrate; and (D) a siloxane oligomer having a silicon functional group, wherein the content of (C) is 50 to 200 volumes with respect to the total amount of (A) and (B) % And substantially free of organic halogen compounds. The flame-retardant laminate of the present invention is obtained by laminating and curing a prepreg obtained from the resin composition, and the flame-retardant printed wiring board of the present invention is a metal-clad laminate obtained as described above. Is obtained by forming a circuit.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The epoxy resin as the component (A) may be any compound having two or more epoxy groups in the molecule, such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, Phenol novolac epoxy resin, cresol novolac epoxy resin, bisphenol A novolac epoxy resin, bisphenol F novolac epoxy resin, dicyclopentadiene epoxy resin, alicyclic epoxy resin, aliphatic chain epoxy resin, glycidyl ester epoxy Resins, isocyanurate type epoxy resins, hydantoin type epoxy resins, glycidyl ether compounds of polyfunctional phenols, glycidyl ether compounds of bifunctional alcohols, and hydrogenated products thereof It is used alone or in combination of two or more thereof.
[0012]
The polyfunctional phenol resin as the component (B) is a curing agent as the component (A). Component (B) includes phenol novolak, cresol novolak, bisphenol A novolak, bisphenol F novolak, catechol novolak, and those obtained by substituting these aromatic rings with an alkyl group. You may use together. In the present invention, among these polyfunctional phenol resins, a resin composition having good heat resistance and flame retardancy is obtained by blending those having a softening point of 100 ° C. or higher, preferably 100 to 150 ° C. be able to.
[0013]
Since the blending amount of the component (B) gives excellent heat resistance to the cured resin, the number of hydroxyl groups in the component (B) is 0.8 to 1.2 per epoxy group in the component (A). The amount to be is preferred.
[0014]
The (C) component metal oxide hydrate imparts flame retardancy to the composition of the present invention. Here, the hydrate of a metal oxide is a concept including what is expressed as a metal hydroxide. As the component (C), a hydrate of a metal oxide of Group 2 or 13 of the periodic table is usually used, and aluminum oxide hydrate, magnesium hydroxide and calcium hydroxide are preferable. Aluminum oxide hydrates include what are called aluminum hydroxides, and include monohydrates such as boehmite and diaspore; and trihydrates (aluminum hydroxide) such as gibbsite and bayerite. As the component (C), one type may be used, or two or more types may be used in combination. Gibbsite is particularly preferred because excellent flame retardancy can be obtained with the same blending amount.
[0015]
(C) The compounding quantity of component is 50-200 volume% with respect to the total amount of (A) component and (B) component, Preferably 70-150 volume% is used. When the amount of the component (C) is less than 50% by volume, sufficient flame retardancy cannot be obtained, and when it exceeds 200% by volume, the moldability becomes insufficient.
[0016]
The (D) component siloxane oligomer is a surface treatment agent for an inorganic filler other than the (C) component and optionally the (C) component. The component (D) is not particularly limited as long as it has two or more siloxane units and has at least one silicon functional group that reacts with a hydroxyl group on the substrate surface. The siloxane skeleton may be linear, branched, cyclic, or network-like, and preferably has a branched structure from the compatibility with the component (A) and the component (B). Moreover, since it is easy to handle and processing unevenness does not occur, the number of siloxane units is preferably 2 to 70, and more preferably 5 to 50. Examples of silicon functional groups include hydroxyl groups (also referred to as silanol groups including silicon atoms); alkoxy groups such as methoxy, ethoxy and propoxy; alkoxy-substituted alkoxy groups such as 2-methoxyethoxy; and hydrogen atoms. Are preferable, and a hydroxyl group and a methoxy group are preferable, and a hydroxyl group is particularly preferable. Such a silicon functional group is preferably bonded to a terminal silicon atom when the siloxane skeleton is linear, but may be bonded to any silicon atom in the case of other skeleton structures. Good.
[0017]
In the siloxane oligomer, an unsubstituted or substituted monovalent hydrocarbon group is bonded to a silicon atom. Such groups include alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, hexyl; aryl groups such as phenyl; alkenyl groups such as vinyl; and substituted hydrocarbon groups such as 3-methoxypropyl. In order to give excellent heat resistance to the cured resin, it is preferable to have at least one phenyl group in the molecule, and raise the temperature at which the metal oxide hydrate releases water, Since the processing does not cause blistering due to processing such as attaching, and flame retardancy is not impaired, 25 mol% or more of all siloxane units are units having at least one phenyl group. preferable. The other group is preferably a methyl group because it is easy to synthesize and handle.
[0018]
Such a siloxane oligomer includes, for example, silicon functional group-containing silanes such as alkoxysilanes and chlorosilanes and / or partial hydrolysis condensates thereof corresponding to the siloxane units constituting the oligomer. It can be obtained by hydrolysis or (co) alcolysis and partial condensation. For example, the above silanes are dissolved in an alcohol solvent such as methanol, ethanol, 2-methoxyethanol; and / or a hydrocarbon solvent such as toluene, xylene, and weakened with water; an acid such as acetic acid. Acidified water; dripping alcohol or the like, or conversely adding a mixed silane solution in similar water, etc., stirring until the desired degree of polymerization is reached, and separating the oil phase as a siloxane oligomer It can be recovered.
[0019]
(C) The processing method of the siloxane oligomer with respect to component and other inorganic fillers mix | blended with the case is not specifically limited, The dry method which adds a siloxane oligomer directly, or the process diluted with the organic solvent etc. A wet method using a liquid is suitable.
[0020]
The processing amount of the siloxane oligomer in the component (C) and other inorganic fillers is not particularly limited, but is sufficiently dispersed in the system and effective for the treatment of the object, and the component (C) and as required Forming a moderately thick polysiloxane layer on the surface of other inorganic fillers to be blended to produce excellent interfacial adhesion with the component (A) and reducing residual stress And since it gives the resin the outstanding heat resistance, 0.01 to 5.0 weight% is suitable with respect to the total amount of (C) component and another inorganic filler.
[0021]
In addition to the above components (A) to (D), various components can be arbitrarily blended in the resin composition of the present invention.
[0022]
In order to accelerate the curing of the component (A), a curing accelerator can be blended as necessary. The type and blending amount of the curing accelerator are not particularly limited. For example, imidazole compounds, tertiary amines, onium salts and the like are used, and one type may be used or two or more types may be used in combination. .
[0023]
Furthermore, in order to improve heat resistance, flame retardancy, etc., and to give appropriate mechanical properties to the resin composition and / or its cured product, an inorganic filler other than the component (C) may be used in combination. Good. As such inorganic filler, alumina, silica, titanium oxide, clay, calcium carbonate, aluminum carbonate, magnesium silicate, aluminum silicate, mica, short glass fiber, etc. are used, and aluminum borate, silicon carbide, etc. Various whiskers are used. These may be used alone or in combination of two or more.
[0024]
In order to increase the affinity between the metal oxide hydrate and the resin, various coupling agents may be used in combination with the surface treatment in addition to the siloxane oligomer. As the coupling agent, a silane coupling agent, a titanate coupling agent, or the like is used. As the silane coupling agent, carbon functional silane is used, and 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyl (methyl) dimethoxysilane, 2- (2,3-epoxycyclohexyl) ethyltri Epoxy group-containing silane such as methoxysilane; 3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyl (methyl) ) Amino group-containing silane such as dimethoxysilane; Cationic silane such as 3- (trimethoxylyl) propyltetramethylammonium chloride; Vinyl group-containing silane such as vinyltriethoxysilane; 3-Methacryloxypropyltrimethoxysilane Acrylic group-containing silane such as Mercapto group-containing silane such as beauty 3-mercaptopropyltrimethoxysilane and the like. Examples of titanate coupling agents include alkyl titanates such as titanium propoxide and titanium butoxide. Such a coupling agent may use 1 type, or may use 2 or more types together, and the compounding quantity does not have a restriction | limiting in particular.
[0025]
A solvent is used in order to dilute or disperse | distribute each component of a resin composition, the inorganic filler etc. which are mix | blended arbitrarily, or to form a varnish. Examples of the solvent include hydrocarbons such as toluene and xylene; ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; esters such as ethyl acetate; ether alcohols such as ethylene glycol monomethyl ether; methanol, ethanol , Alcohols such as isopropanol and butanol; and aprotic polar solvents such as N, N-dimethylformamide are exemplified, and one kind or a mixture of two or more kinds may be used. Moreover, you may mix | blend the reactive diluent which has one epoxy group in a molecule | numerator.
[0026]
The solid content concentration of the varnish is not particularly limited and can be appropriately changed depending on the resin composition and the type and blending amount of the inorganic filler. However, the resin content of the prepreg is sufficient to maintain the insulation of each layer, and the varnish Since the workability is not impaired by the increase in the apparent viscosity, and the appearance of the prepreg is not impaired, the range of 50 to 80% by weight is preferable.
[0027]
If necessary, the composition of the present invention may further contain a colorant, an antioxidant, a reducing agent, an ultraviolet blocking agent and the like. However, the resin composition of the present invention has an aromatic bromine compound, a brominated epoxy resin and a terminal group derivative thereof, brominated alcohol, brominated pentaerythritol, brominated benzyl acrylate, brominated alkyl isocyanurate due to its problems. Organic bromine compounds such as: Organic halogen compounds such as chlorinated paraffin and chlorinated polyethylene are not substantially contained.
[0028]
A resin composition obtained by blending each of the above components, particularly a varnish prepared by further blending a solvent and / or a reactive diluent, is impregnated into a substrate, air-dried as necessary, and then in a drying furnace. By semi-curing, a printed wiring board prepreg is obtained. The treatment conditions are usually 80 to 200 ° C., preferably 100 to 180 ° C. for 3 to 30 minutes, preferably 5 to 15 minutes. The substrate is not particularly limited as long as it is used when producing a metal-clad laminate or a multilayer printed wiring board, but a fiber substrate such as a woven fabric or a nonwoven fabric is usually used. Examples of the fiber substrate include inorganic fibers such as glass, silica glass, silica alumina glass, alumina, zirconia, asbestos, tyrano, silicon carbide, silicon nitride, and boron carbide; carbon fibers; aromatic polyamide, polyether ether ketone, There are organic fibers such as polyetherimide, polyethersulfone, and cellulose, and mixed papers thereof. In particular, a woven fabric of glass fibers is preferably used.
[0029]
The prepreg used in the present invention is cured by heating and pressing at a temperature of 150 to 200 ° C. and a pressure of about 1.0 to 8.0 MPa, and a laminated sheet, particularly a metal-clad laminated sheet such as a copper-clad laminated sheet, It is used to manufacture a multilayer printed wiring board on which a circuit is formed.
[0030]
[Action]
In the resin composition of the present invention, by adding 50 to 200% by volume of the metal oxide hydrate in the resin component, hydration water is released upon combustion, and thus obtained by curing the composition. Flame retardancy can be imparted to the laminate.
[0031]
Furthermore, by blending the silicon functional siloxane oligomer, the dispersibility of the hydrate in the system can be improved, the deterioration of insulation due to the aggregation can be prevented, and good processability can be maintained. In particular, when the siloxane oligomer has at least one phenyl group and 25 mol% or more of all siloxane units are used, the temperature at which the metal oxide hydrate releases water can be increased. Accordingly, since water is not released at the temperature during processing such as soldering, the resin does not bulge. Further, by using a polyfunctional epoxy resin and a polyfunctional phenol resin having a softening point of 100 ° C. or higher, it is possible to prevent a decrease in heat resistance due to the release of water from the hydrate.
[0032]
【Example】
Hereinafter, the present invention will be described by way of examples. The present invention is not limited by these examples. In Examples and Comparative Examples, parts represent parts by weight.
[0033]
Example 1
A solution was prepared by blending 20 parts of dimethyldimethoxysilane and 25 parts of tetramethoxysilane with 105 parts of methanol. While stirring this, a solution of 17.8 parts of distilled water and 0.60 part of acetic acid was added dropwise, and then heated to 50 ° C. for 8 hours to proceed the cohydrolysis and partial condensation. Liquid separation was performed to obtain an oil phase as a silanol group-containing siloxane oligomer.
[0034]
This siloxane oligomer was dissolved in methyl ethyl ketone to obtain a solution having a solid content of 1% by weight. A varnish composed of the following resin and inorganic filler was prepared, and 0.5 parts of the siloxane oligomer solution was added to the siloxane oligomer solution while stirring.
Bisphenol A type epoxy resin (epoxy equivalent: 245) 10 parts bisphenol A novolak type epoxy resin (epoxy equivalent: 205) 90 parts phenol novolak resin (hydroxyl equivalent: 108, softening point: 108 ° C.) 52 parts 2-ethyl-4- Methylimidazole 0.5 part Aluminum hydroxide (Gibsite) 90 parts Calcined clay 30 parts Methyl ethyl ketone was further added to prepare a varnish having a solid content of 70% by weight.
[0035]
Example 2
A varnish having a solid content of 70% by weight was prepared in the same manner as in Example 1 except that 52 parts of a phenol novolak resin having a hydroxyl equivalent weight of 108 and a softening point of 120 ° C. was used instead of the phenol novolak resin of Example 1.
[0036]
Example 3
A varnish having a solid content of 70% by weight was obtained in the same manner as in Example 1 except that 52 parts of cresol novolak resin (hydroxylation equivalent: 108, softening point: 121 ° C.) was used instead of the phenol novolak resin of Example 1. Was prepared.
[0037]
Example 4
A varnish having a solid content of 70% by weight was prepared in the same manner as in Example 1 except that the blending amount of aluminum hydroxide in Example 1 was changed to 150 parts.
[0038]
Example 5
A varnish having a solid content of 70% by weight was prepared in the same manner as in Example 1 except that 0.5 part of 3-glycidoxypropyltrimethoxysilane was added to the varnish of Example 1.
[0039]
Comparative Example 1
A varnish having a solid content of 70% by weight was prepared without adding aluminum hydroxide to the varnish of Example 1.
[0040]
Comparative Example 2
A varnish having a solid content of 70% by weight was prepared in the same manner as in Example 1 except that 52 parts by weight of a phenol novolak resin having a hydroxylation equivalent of 108 and a softening point of 84 ° C. was blended in place of the phenol novolac resin of Example 1. did.
[0041]
Comparative Example 3
A varnish having a solid content of 70% by weight was prepared in the same manner as in Example 1 except that the siloxane oligomer of Example 1 was not added.
[0042]
Each varnish prepared in Examples 1 to 5 and Comparative Examples 1 to 3 was impregnated into a glass cloth (# 2116, E-glass) having a thickness of about 0.1 mm, and then dried by heating at 150 ° C. for 3 to 10 minutes. Thus, a prepreg having a resin content of 48% by weight was obtained. Four prepregs were stacked, a copper foil having a thickness of 18 μm was stacked on both sides thereof, and pressed for 90 minutes under a pressing condition of 170 ° C. and 3.0 MPa to prepare a double-sided copper-clad laminate.
[0043]
The obtained double-sided copper clad laminate was evaluated for flame retardancy, glass transition temperature, heat resistance and electric corrosion resistance. The results were as shown in Table 1.
[0044]
The test method was as follows.
Flame retardancy, glass transition temperature (Tg): Measured according to JIS C 6481.
Heat resistance: A double-sided copper-clad laminate was cut into 50 mm x 50 mm, floated on solder at 288 ° C, and the time until blistering was measured.
Electric corrosion resistance: Double-sided copper-clad laminate was processed with a drill with a diameter of 0.4 mm to a hole interval of 0.3 mm, a voltage of 50 V was applied between the holes, and the conditions were 85 ° C. and 85% RH for 500 hours. The insulation resistance after leaving for 1,000 hours was measured.
[0045]
[Table 1]
Figure 0004821059
[0046]
From the result of Table 1, the copper clad laminated board obtained in Examples 1-5 was excellent in the flame retardance and heat resistance, and was excellent in the electrical corrosion resistance. On the other hand, the laminate obtained in Comparative Example 1 is significantly inferior in flame retardancy, and the laminate obtained in Comparative Example 2 is inferior in flame retardancy and heat resistance, and the laminate obtained in Comparative Example 3 is used. In addition to being inferior in heat resistance, the plate was inferior in electric corrosion resistance.
[0047]
Example 6
A solution obtained by dissolving 14.8 parts of dimethyldiethoxysilane and 21.1 parts of phenyltrichlorosilane in 36.0 parts of toluene was added dropwise to 100 parts of water which was vigorously stirred at a temperature of 70 ° C. The mixture was stirred at reflux temperature for 2 hours to carry out cohydrolysis and partial condensation. The mixture was allowed to stand and separated, and the oil layer was neutralized and washed with water by a conventional method, followed by dehydration and filtration. A part of toluene was distilled off to obtain a 60 wt% toluene solution of a siloxane oligomer. The obtained siloxane oligomer contained equimolar amounts of (CH 3 ) 2 SiO units and C 6 H 5 SiO 3/2 units, and contained 6% by weight of hydroxyl groups.
[0048]
The siloxane oligomer thus obtained was blended in the same epoxy resin varnish used in Example 1 in an amount of 0.5% by weight in terms of siloxane, and dissolved by stirring to obtain a siloxane oligomer-containing epoxy resin varnish. Prepared. Using this, a double-sided copper clad laminate was prepared in the same manner as in Example 1, and the flame retardancy and heat resistance were evaluated in the same manner as in Example 1. The flame retardancy was 94 V-0, Sex was> 300 seconds.
[0049]
Example 7
20 parts of dimethyldimethoxysilane and 20 parts of diphenyldimethoxysilane were dissolved in 50 parts of ethylene glycol monomethyl ether to prepare a mixed silane solution. While stirring this, a solution of 50 parts of distilled water and 0.28 part of acetic acid was added dropwise at room temperature, and then heated to 50 ° C. for 8 hours to proceed co-hydrolysis and partial condensation.
[0050]
The siloxane oligomer thus obtained was blended in the same epoxy resin varnish used in Example 1 in an amount of 0.5% by weight in terms of siloxane, and dissolved by stirring to obtain a siloxane oligomer-containing epoxy resin varnish. Prepared. Using this, a double-sided copper-clad laminate was prepared in the same manner as in Example 1, and the flame retardancy, heat resistance, Tg and electric corrosion resistance were evaluated in the same manner as in Example 1. The results were as follows.
Flame retardancy: 94V-0
Heat resistance:> 300 seconds Tg: 163 ° C
Electric corrosion resistance (500h): 1 × 10 12
Electric corrosion resistance (1,000h): 1 × 10 12
[0051]
【The invention's effect】
The laminate produced from the resin composition of the present invention is a material that does not contain a halogen compound, but has excellent flame retardancy, heat resistance, workability, and excellent electric corrosion resistance. A printed wiring board obtained by forming a circuit from such a laminate has high reliability and excellent wire bonding. Therefore, the resin composition of the present invention, and a laminate and a printed wiring board using the resin composition are extremely useful as an insulating material for electronic equipment and a printed wiring board.

Claims (7)

実装部品が鉛を有しないはんだ材料ではんだ接続される難燃性印刷配線板用の樹脂組成物であって、
(A)エポキシ樹脂;
(B)軟化点が100〜150℃の多官能性フェノール樹脂;
(C)金属酸化物の水和物;および
(D)ケイ素官能基を有するシロキサンオリゴマーを含み、
前記(B)が、フェノールノボラック、クレゾールノボラック、ビスフェノールAノボラック、ビスフェノールFノボラック、カテコールノボラックおよびこれらの芳香環をアルキル基で置換したものからなる群から選ばれる少なくとも1つの多官能性フェノール樹脂であり、
前記(C)が、酸化アルミニウム水和物、水酸化マグネシウムおよび水酸化カルシウムからなる群より選ばれる1種または2種以上であり、
前記(D)の全シロキサン単位の25%以上が少なくとも1個のフェニル基を有し、
前記(B)の配合量が、前記(B)の水酸基の数が、前記(A)のエポキシ基1個あたり0.8〜1.2個の量となる量であり、
前記(D)は、前記(C)の表面処理剤、又は、(E)その他の無機充填材が含まれる場合は前記(C)と前記(E)の表面処理剤であり、
前記(D)の処理量が、前記(C)と前記(E)の合計の重量に対して0.01〜5.0重量%であることを特徴とする樹脂組成物。
A resin composition for a flame-retardant printed wiring board in which a mounted component is soldered with a solder material that does not have lead,
(A) epoxy resin;
(B) a polyfunctional phenol resin having a softening point of 100 to 150 ° C;
(C) a hydrate of a metal oxide; and (D) a siloxane oligomer having a silicon functional group,
(B) is at least one multifunctional phenol resin selected from the group consisting of phenol novolak, cresol novolak, bisphenol A novolak, bisphenol F novolak, catechol novolak and those aromatic rings substituted with alkyl groups. ,
(C) is one or more selected from the group consisting of aluminum oxide hydrate, magnesium hydroxide and calcium hydroxide,
25% or more of the total siloxane units of (D) have at least one phenyl group,
The blending amount of (B) is such that the number of hydroxyl groups of (B) is 0.8 to 1.2 per epoxy group of (A),
(D) is the surface treatment agent of (C) or (E) when the surface treatment agent of (C) or (E) other inorganic filler is included,
The resin composition, wherein the treatment amount of (D) is 0.01 to 5.0% by weight with respect to the total weight of (C) and (E).
前記(B)の軟化点が100〜121℃である請求項1記載の樹脂組成物。  The resin composition according to claim 1, wherein the softening point of (B) is 100 to 121 ° C. 前記(D)のケイ素官能基が水酸基である、請求項1又は2記載の樹脂組成物。  The resin composition according to claim 1 or 2, wherein the silicon functional group (D) is a hydroxyl group. 前記(D)のシロキサン単位が、2〜70個である、請求項1〜3いずれか記載の樹脂組成物。  The resin composition according to any one of claims 1 to 3, wherein the number of the siloxane units (D) is 2 to 70. 請求項1〜4のいずれか1項記載の樹脂組成物から得られるプリプレグを積層し、硬化させて得られる難燃性積層板。  The flame-retardant laminated board obtained by laminating | stacking and hardening the prepreg obtained from the resin composition of any one of Claims 1-4. 金属積層板である、請求項5記載の難燃性積層板。  The flame-retardant laminate according to claim 5, which is a metal laminate. 請求項6記載の金属積層板から回路を形成して得られる難燃性印刷配線板。  A flame-retardant printed wiring board obtained by forming a circuit from the metal laminate according to claim 6.
JP2001198251A 2001-06-29 2001-06-29 Resin composition and flame-retardant laminate and printed wiring board using the same Expired - Lifetime JP4821059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001198251A JP4821059B2 (en) 2001-06-29 2001-06-29 Resin composition and flame-retardant laminate and printed wiring board using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001198251A JP4821059B2 (en) 2001-06-29 2001-06-29 Resin composition and flame-retardant laminate and printed wiring board using the same

Publications (2)

Publication Number Publication Date
JP2003012892A JP2003012892A (en) 2003-01-15
JP4821059B2 true JP4821059B2 (en) 2011-11-24

Family

ID=19035726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001198251A Expired - Lifetime JP4821059B2 (en) 2001-06-29 2001-06-29 Resin composition and flame-retardant laminate and printed wiring board using the same

Country Status (1)

Country Link
JP (1) JP4821059B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4572661B2 (en) * 2004-11-05 2010-11-04 日立化成工業株式会社 Resin composition, prepreg, laminate and printed wiring board using the same
JP5153141B2 (en) * 2004-11-11 2013-02-27 株式会社カネカ Epoxy resin composition
JP2006249343A (en) * 2005-03-14 2006-09-21 Mitsui Chemicals Inc Epoxy resin composition and package for housing semiconductor element
JP4905052B2 (en) * 2005-10-21 2012-03-28 三菱瓦斯化学株式会社 Prepreg and copper clad laminate
JP5407973B2 (en) * 2010-03-23 2014-02-05 日立化成株式会社 Resin composition, prepreg, laminate and printed wiring board using the same
KR101433556B1 (en) 2011-05-27 2014-08-22 아지노모토 가부시키가이샤 Resin composition
US20210395513A1 (en) 2018-09-27 2021-12-23 Basf Se Epoxy resin composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0837090B1 (en) * 1995-06-27 2001-08-29 Hitachi Chemical Co., Ltd. Prepreg for printed wiring boards, resin varnish, resin composition, and laminate for printed wiring boards produced by using these substances
JP4164883B2 (en) * 1997-08-19 2008-10-15 日立化成工業株式会社 Resin composition for printed wiring board, prepreg using the same, and metal-clad laminate
JP4538873B2 (en) * 1999-10-28 2010-09-08 日立化成工業株式会社 Thermosetting resin composition, prepreg using the same, and laminate for electric wiring board
JP3664124B2 (en) * 2000-10-13 2005-06-22 日立化成工業株式会社 Flame retardant resin composition, prepreg, laminate, metal-clad laminate, printed wiring board and multilayer printed wiring board using the same

Also Published As

Publication number Publication date
JP2003012892A (en) 2003-01-15

Similar Documents

Publication Publication Date Title
JP5186221B2 (en) Flame retardant resin composition, prepreg, laminate, metal-clad laminate, printed wiring board and multilayer printed wiring board using the same
KR100890313B1 (en) Thermosetting Resin Composition, Resin Film, Metal Foil with Insulating Material, Insulating Film with Metal Foil on Each Side, Metal-Clad Laminate, Multilayered Metal-Clad Laminate, and Multilayered Printed Circuit Board
JP2007308640A (en) Resin composition for laminate, organic substrate prepreg, metal foil-clad laminate and printed circuit board
JP2007051267A (en) Resin composition, prepreg using the same, flame-retardant laminate and printed wiring board
JP4821059B2 (en) Resin composition and flame-retardant laminate and printed wiring board using the same
JP3664124B2 (en) Flame retardant resin composition, prepreg, laminate, metal-clad laminate, printed wiring board and multilayer printed wiring board using the same
WO2000049070A1 (en) Prepreg, metal-clad laminate, and printed circuit board obtained from these
CN109608619B (en) Phosphorus-containing epoxy resin composition, and prepreg and laminated board prepared from same
JP4572661B2 (en) Resin composition, prepreg, laminate and printed wiring board using the same
JP4706332B2 (en) Resin composition, prepreg, laminate and printed wiring board using the same
KR20200138231A (en) Thermosetting resin composition, prepreg, metal foil with resin, laminate, printed wiring board, and semiconductor package
JP4619084B2 (en) Flame retardant resin composition, prepreg, laminate, metal-clad laminate, printed wiring board and multilayer printed wiring board using the same
JP4899280B2 (en) Composite material for wiring board and manufacturing method thereof
JP4961903B2 (en) Epoxy resin composition, epoxy resin prepreg, metal-clad laminate and printed wiring board
JP4706468B2 (en) Resin composition, prepreg, and laminate and printed wiring board using the same
JP5407973B2 (en) Resin composition, prepreg, laminate and printed wiring board using the same
JP2010258462A (en) Composite material for wiring board and production method thereof
JP2005247889A (en) Thermosetting resin composition, prepreg, and laminate using the same
JPH11106530A (en) Production of prepreg for printed-wiring board and metal-clad laminated sheet using it
JP2006137826A (en) Flame retardant resin composition and its application
JP2006176726A (en) Prepreg for printed wiring board and metal clad laminated board using it
JP2012084923A (en) Composite material for wiring board and manufacturing method thereof
JPH1171475A (en) Preparation of printed circuit board prepreg and metal clad laminate using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20110127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

R151 Written notification of patent or utility model registration

Ref document number: 4821059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term