JP4819664B2 - 電磁波変調装置 - Google Patents

電磁波変調装置 Download PDF

Info

Publication number
JP4819664B2
JP4819664B2 JP2006339296A JP2006339296A JP4819664B2 JP 4819664 B2 JP4819664 B2 JP 4819664B2 JP 2006339296 A JP2006339296 A JP 2006339296A JP 2006339296 A JP2006339296 A JP 2006339296A JP 4819664 B2 JP4819664 B2 JP 4819664B2
Authority
JP
Japan
Prior art keywords
plasma
terahertz wave
electron density
terahertz
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006339296A
Other languages
English (en)
Other versions
JP2008151619A5 (ja
JP2008151619A (ja
Inventor
信太郎 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006339296A priority Critical patent/JP4819664B2/ja
Publication of JP2008151619A publication Critical patent/JP2008151619A/ja
Publication of JP2008151619A5 publication Critical patent/JP2008151619A5/ja
Application granted granted Critical
Publication of JP4819664B2 publication Critical patent/JP4819664B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、電磁波の伝播方向、断面パターンなどの伝播状態を、プラズマを用いて任意に変調する技術に関する。特には、周波数30GHz乃至30THzの周波数領域内の電磁波(本明細書では、テラヘルツ波と呼ぶ。)の伝播方向などを、プラズマを用いて任意に変化させる電磁波変調装置に関わる。
近年、テラヘルツ波を利用した技術開発が盛んである。特に、テラヘルツ波の様々な物質に対する透過性を利用して、透視イメージングを行う試みや、テラヘルツ波を用いた物質の分光とイメージングを組み合わせた分光イメージングが、行なわれている。
こうした技術について、郵便物等を開封せずに内在物の成分分析とイメージングを同時に行うという目的で、次のことが行われている。すなわち、テラヘルツ波を対象物(この場合、郵便物等)の一点に集光させ、対象物を分光しつつ、対象物を機械的にスキャンすることで分光イメージを得ている(特許文献1参照)。
また、マイクロボロメータアレイなどの2次元テラヘルツ波検出素子を用いて、2次元像を得る方法も、知られている。ただし、充分な強度を得られるテラヘルツ波光源や充分な感度を持った2次元テラヘルツ波検出素子は、入手容易ではない。こうしたことなどから、テラヘルツ波を一点に集光させ、対象物を機械的に走査させて像を得る方法は、広く用いられている。テラヘルツ波の伝播方向を変化させ(すなわち、テラヘルツ波ビームを偏向させ)、集光点を対象物上で走査することで像を得る方法も用いられている。
テラヘルツ波ビームの偏向は、テラヘルツ波ビームをミラーやプリズムで反射させたり屈折させたりし、かつ前記ミラー又はプリズムを回転させることで達成できる。前記ミラー又はプリズムを2軸で回転させれば、テラヘルツ波ビームを任意の方向に偏向することもできる。
一方、より波長が短い赤外線の領域では、液晶を用いたフェーズドアレイ方式によるビーム偏向が知られている(特許文献2参照)。ここで述べたパッシブ型フェーズドアレイ方式では、同位相で入射した電磁波に対して、入射電磁波の波長以下の周期で多数配置された移相器が各々適切な位相遅延を電磁波の各部に発生させる。そして、このことにより、各移相器から出射した電磁波の各部が最も強め合う方向に伝播する性質を利用して、電磁波の伝播方向を変える。
特許文献2の装置は、半波長周期で2次元に並べられた液晶セルから構成されており、各セル中の液晶に独立に電界を印加できる。そして、液晶セルに赤外線ビームを透過させ、各セル中の液晶の配向を適切に変化させることで、各セルを透過する赤外線に任意の位相遅延を与える。こうして、各セルから出射した電磁波の位相差により、液晶セルを透過した赤外線ビームは伝播方向を変える。これにより、機械的駆動を要せず、赤外線ビーム偏向を達成している。また、各セルで発生する位相差を適切に調節することで、赤外線ビームを任意の方向に偏向させるのみならず、赤外線ビームにより任意のパターンを描くことも可能である。更に、赤外線ビームの集光・発散も可能である。
特開2004−286716号公報 特開平5−66427号公報
ミラーやプリズムを回転させることでテラヘルツ波ビームを偏向させるという上記方法では、ミラーやプリズムの回転という機械的動作を伴う上、装置が大きくなる。特に、テラヘルツ波は1THzにおいて波長が300μmであるため、細いビーム(例えば1mm)は、伝播に伴い回折効果で広がっていくことになる。ビームの広がりを抑制するには太いビーム(例えば10mm以上)を用いるのが望ましい。しかし、そうすると、用いるミラーやプリズムがビーム径以上の大きさとなり、これを回転させるとミラーやプリズムが占有する体積が大きくなる。また、機械的動作を伴う以上、動作速度に限界がある。
一方、液晶を用いたフェーズドアレイ方式である特許文献2の方法では、その特性が入射電磁波の偏波方向に強く依存する。その理由は、入射電磁波のうち、液晶の配向方向と一致する成分のみが透過でき、液晶の配向方向と垂直な偏波成分は減衰が大きいからである。
上記課題に鑑み、本発明の電磁波変調装置は、電磁波の波面を受ける面を含む伝播経路において、波面内の少なくとも1つの方向にプラズマの電子密度が変化する空間的な電子密度分布を形成して電磁波の伝播状態を変化させることを特徴とする。そして、本発明の電磁波変調装置は、プラズマを発生させる発生手段と、プラズマの空間的な電子密度分布を調節する電子密度分布調節手段を有する。前記電磁波は、典型的には、テラヘルツ波である。
また、上記課題に鑑み、本発明の画像化装置は、物体に電磁波を照射し、上記電磁波変調装置を用いて電磁波の照射位置を移動させ、電磁波の透過波、反射波、又は散乱波を検出することにより物体の像の情報を得ることを特徴とする。
本発明によれば、上記の如きプラズマの電子密度が変化する空間的な電子密度分布を調節することでテラヘルツ波などの電磁波の伝播状態を任意に変化させる。従って、電磁波偏波方向依存性が小さい特性を有し、かつ機械的動作を要しないことで、小型で高速動作が可能な電磁波変調装置を実現することができる。
以下、本発明の考え方の原理を説明した後に、本発明の電磁波変調装置の実施形態を説明する。テラヘルツ波で説明するが、その範囲を多少外れた電磁波でも原理は同じである。
テラヘルツ波の波長程度の空間的領域(例えばmmからμmのオーダーの空間)に発生する放電プラズマは、電子密度が1016cm-3程度に達し、プラズマ振動数が1THz程度にまで達する(応用物理 第75巻 第4号 p.399-410
(2006)参照)。これは、気体放電を用いてプラズマを発生させるマイクロプラズマと呼ばれるもので、電子密度が1013乃至1018cm-3程度にまで達することがあり、それに対応するプラズマ振動数は10GHz乃至10THzにもなり得る。この時、プラズマはテラヘルツ波に対して誘電体として振舞う。
こうしたプラズマの放電電圧や放電電流の値を調節することにより、プラズマ中の電子密度を調節することが可能である。よって、プラズマ振動数を調節することが可能である。すなわち、テラヘルツ波に対する誘電体の誘電率を調節することが可能である。このテラヘルツ波に対する誘電率調整機能を、本発明では主として用いる。ただし、本発明では、入射電磁波に対してプラズマが金属の様に振舞う後述の現象を部分的に利用することを排除するものではない。例えば、入射電磁波を任意の断面模様に形成して投影する空間光学変調装置を構成する場合、入射電磁波に対して一部のプラズマが金属の様に振舞って任意の断面模様の出射電磁波を形成することがあり得る。
上記誘電率調整機能を説明する。プラズマ内の電子密度neが与えられた時、プラズマ振動数fpeは次式(1)で与えられる。
Figure 0004819664
ここで、eは電荷素量であり、ε0は真空の誘電率であり、meは電子の静止質量である。プラズマ振動数以下の周波数の電磁波に対して、前記プラズマは金属の様に振舞い、入射電磁波は反射される。一方、プラズマ振動数以上の周波数の電磁波に対しては、前記プラズマは誘電体のごとく振舞い、入射電磁波はプラズマを透過する。
プラズマ中の電子密度は、次の様な手段によって可変である。例えば、放電電圧や放電電流を変更する電極などの手段、プラズマ媒質密度を変更する手段、気体圧力を変更する手段、外部から照射した可視光乃至紫外光による電離によってプラズマの電子密度を調節する手段がある。また、プラズマ中を伝播する電磁波とは異なる外部から照射した電磁波によりプラズマ中の電子を加速させることで電離を促進させる手段なども挙げられる。よって、放電電圧や気体圧力などを適切に調節することで、所望のプラズマ振動数を得ることができる。
また、プラズマ中を伝播する電磁波の分散関係式は、次式(2)で求まる。
Figure 0004819664
ここで、ω0は入射電磁波の角周波数であり、ωpeはプラズマ角振動数であり、kはプラズマ中を伝播する電磁波の波数であり、cは真空中における光速である。入射電磁波の角周波数と、入射電磁波の周波数にはω0=2πf0の関係があり、プラズマ角振動数とプラズマ振動数にはωpe=2πfpeの関係がある。
これらより、プラズマ中を距離Lだけ伝播した電磁波と、真空中を距離Lだけ伝播した電磁波には、次式(3)で与えられる位相差Δφが発生する。
Figure 0004819664
従って、図1に示す様にプラズマ10中の電子密度が不均一であれば(図1の濃淡は電子密度の不均一性を示す)、プラズマ10中を伝播する電磁波には、電子密度分布に応じた位相差が生じることとなる。この電子密度分布は、入射電磁波24の波面26を受ける面を含む伝播経路において、波面内の少なくとも1つの方向にプラズマの電子密度が変化する空間的な電子密度分布である。ここで、プラズマに外部から磁場が印加されていないとき、プラズマの電磁波に対する偏波方向依存性は小さい。なお、図1において、25は出射テラヘルツ、27は出射テラヘルツの波面である。
本発明の電磁波変調装置は、プラズマの電子密度分布を適切に調節することにより、プラズマ中を伝播する電磁波中の同一波面における任意の異なる部分に適切な位相差を与えることでテラヘルツ波に位相差の分布を与える。こうして、テラヘルツ波の伝播状態を変化させる。具体的には、テラヘルツ波ビームの伝播方向を偏向したり、集光・発散したり、或いは任意のパターンを形成したりする。
以上に述べた原理に基づく本発明の実施形態を、図面を用いて以下に説明する。
本発明は、上述した様に、プラズマ中の電子密度に分布を持たせることで電磁波変調を実現する。すなわち、電磁波の波面を受ける面を含む伝播経路において、波面内の少なくとも1つの方向にプラズマの空間的電子密度分布を形成して電磁波の伝播状態を変化させる。その為の構成として、プラズマを発生させる発生手段と、プラズマの空間的な電子密度分布を調節する電子密度分布調節手段を有する。発生手段と電子密度分布調節手段は、互いに独立に機能する様に設けられてもよいし、一部ないし全部が共通していてもよい。例えば、後述する電極は、両者の機能を担う手段として構成し得る。
そこで、本発明の一実施形態では、多数の小さな(空間的大きさが電磁波の波長程度以下)プラズマを個別に発生させ、各プラズマの電子密度を各々適切な値に調節することで、全体としてプラズマ中の電子密度分布を実現させる。典型的には、電磁波の波面を受ける面に沿って、隣接して配置された複数の空洞の区画部を設ける。そして、発生手段を、複数の区画部で夫々プラズマを発生させる複数の区画部発生手段(例えば、後述する電極)を含んで構成する。また、電子密度分布調節手段を、複数の区画部(例えば、後述するプラズマセル)、及びその中で夫々プラズマの電子密度を調節する複数の電子密度調節手段(例えば、後述する電極)を含んで構成する。
図2は、本実施形態の電磁波変調装置すなわちテラヘルツ波ビーム変調装置の概略図である。装置を形付けている基板20に、他と仕切られた密閉空間(この空間は必ずしも密閉でなくてもよく、互いに通じていてもよい)が、電磁波24の波面26を受ける面に沿って、平行に多数配置されている。この密閉空間においてプラズマ28を発生させるため、これをプラズマセル21と呼ぶ。図2には8つのプラズマセル21が記載されているが、便宜上左端のセルにのみ引き出し線で番号を付した。他の図面でも、他の部分について、複数ある場合は、これに準じた番号の付し方をする。基板20には、例えば石英基板を用いる。
プラズマセル21は、基板20を貫通していて、使用するテラヘルツ波24の波長の半分程度の長さの周期(電磁波の波長以下の周期であればよい)で配置されている。また、プラズマセル21は、基板20の両面に貼り付けられテラヘルツ波24を透過させる窓部材22によって封止されている。窓部材22には、例えば、基板20と同じく石英基板を用いてもよいし、サファイア基板を用いてもよい。ただし、窓部材22には、テラヘルツ波24を良く透過させる材料が望ましい。
各プラズマセル21の詳細な構成は図3を用いて後述するが、少なくとも一対の電極23を備えている。電極23は、窓部材22の面に対してほぼ垂直に伸びて形成されている。すなわち、窓部材22の面に対してほぼ垂直にテラヘルツ波24が入射してくるとき、その波面26に対して対向しない様に電極23は設けられている。この様に、複数の電極が設けられるが、複数の電極間の距離のうち少なくとも一つの電極間距離は、前記電磁波の波長以下に設定される。
プラズマセル21中には気体が封入されている。気体の種類としては、例えば、アルゴンなどの希ガスが挙げられる。また、気体の圧力は、例えば、104乃至107Pa程度である。
プラズマセル21の大きさ(一対の電極23間の距離)は、前述した様に、電磁波24の波長の半分程度の大きさが望ましい。また、基板20の厚さは、電磁波24の波長と同程度が望ましいが、波長より大きくても小さくてもテラヘルツ波ビーム変調の効果は発揮する。
図3を用いて、プラズマセル21の詳細を説明する。図3に示す様に、基板20を貫通する様に形成された穴(プラズマセル21の空間)の両端面(これは窓部材22の面に対してほぼ垂直)に電極23が設置されている。プラズマセル21の内壁は、電極23を覆う様に誘電体30(例えばMgO)でコーティングされている。コーティングすることで、プラズマによる電極23の侵食(例えば、スパッタ効果による)を防ぐことができる。
電源29により、電極23に、例えば、交流電圧を与えることで、プラズマセル21中にパルス放電が起こり、誘電体バリア放電プラズマ28が発生する。与える電圧は、例えば1kVである。また、交流電圧の周波数は、例えば10kHzである。或いは、デューティー比0.05程度のパルス電圧を正負交互に与える方式でもよい。この電圧を変調することで、プラズマ28の電子密度を調節することができる。
このとき、プラズマ28のスケールがmm以下のオーダーで、かつ内部の気体圧力が104乃至107Paオーダーである時のプラズマは、上述した様に、通常マイクロプラズマと呼ばれ、プラズマ内の電子密度は1014乃至1016cm-3に達する。
上記の如き構成により、入射電磁波の波面内の少なくとも1つの方向にプラズマの空間的電子密度分布が調整可能に形成される。こうして、テラヘルツ波ビームの伝播状態が変化させられて、テラヘルツ波ビーム変調が起こる。このプラズマの空間的電子密度分布は、電磁波に対して偏波方向依存性が小さい特性を有し、かつ機械的動作を要しないで発生・調整できるので、小型で高速動作が可能な低偏波方向依存性の電磁波変調装置を実現できる。
以下に、具体的な数値例を交えながら実施例を説明する。
(実施例1)
実施例1を説明する。前述した様に、一般に、プラズマ内の電子密度neが与えられた時、プラズマ振動数fpeは式(1)で与えられる。そして、前述した式(1)、式(2)より、プラズマ中を距離Lだけ伝播した電磁波と、真空中を距離Lだけ伝播した電磁波には、上記式(3)で与えられる位相差が発生する。
例えば、プラズマ振動数0.3THzのプラズマ28に、周波数0.5THzのテラヘルツ波が入射した場合を考える。二つのプラズマセル21中の一方にはプラズマが発生しており、もう一方にはプラズマが発生していないとする。プラズマ28の厚さ(テラヘルツ波伝播方向)が約0.5mmとする。
このとき、プラズマ28が発生している方のプラズマセル21を透過したテラヘルツ波と、プラズマが発生していない方のプラズマセル21を透過したテラヘルツ波では、位相差が約π/3になる。これにより、プラズマ28を透過した方のテラヘルツ波の位相が進む。二つのプラズマセル21の中心間距離が波長の半分(よって300μm)であれば、干渉・回折効果により、二つのプラズマセル21を出射したテラヘルツ波は、その位相差より、強め合う方向に放射される。
この様なプラズマセル21が図2(或いは図4)の様に多数配置されていて、隣り合うプラズマセル21を透過したテラヘルツ波が各々π/3ずつ位相が異なれば、干渉によりテラヘルツ波ビームは約19°折れ曲がった方向に偏向される。例えば、図2に示す入射テラヘルツ波24は、多数のプラズマセル21を透過することで、出射テラヘルツ波25で示す様に進行方向が偏向される。
ただしこの時、或る周期ごと(この場合、プラズマセル6個周期)で、位相差Δφが2πを超える。位相差2πは位相差ゼロと同じなので、位相差2πを超えた分については、Δφ−2πで位相差を達成できる様にプラズマ28の電子密度を調節すればよい。
また、プラズマセル21の配置の周期がテラヘルツ波の波長以上であれば、回折されるテラヘルツ波が複数発生する。用途によってはこの高次回折光は不要であるので、その場合はプラズマセル21の配置の周期をテラヘルツ波の波長以下とすべきである。回折されたテラヘルツ波が複数発生する構成は、例えば、ビームスプリッタとして用いることができる。
図4の様にプラズマセル21を2次元的に平行に多数配置する場合について述べる。今、テラヘルツ波ビームが−Zの方向から+Zの方向へ入射したとする。テラヘルツ波ビームをY方向へ偏向させるのであれば、各プラズマセル21中の電子密度は、X方向に関しては一様とする。そして、Y方向に関して、上に述べた様に適切な位相差を発生できる様にプラズマ28の電子密度を調節すればよい。
また同様に、テラヘルツ波ビームをX方向に偏向させるのであれば、各プラズマセル21中の電子密度をY方向に関しては一様とする。そして、X方向に関しては、上に述べた様に適切な位相差を発生できる様に電子密度を調節すればよい。
また、図4の様にプラズマセル21を2次元的に多数配置する場合は、テラヘルツ波ビーム変調装置全体で電子密度分布が同心円状になる様に各プラズマセルの電子密度を調節することができる。これにより、テラヘルツ波ビームを集光させたり、発散させたりすることができる。
例えば、図5に示す様に、2次元的に多数配置されたプラズマセル21のうち中心付近のプラズマセル21中の電子密度を低くし(すなわち、プラズマ振動数を低くし)、外側に移行するに従い電子密度を高くする(すなわち、プラズマ振動数を高くする)。そうすることで、外側のプラズマセル21を通ったテラヘルツ波と内側のプラズマセルを通ったテラヘルツ波に位相差が生じる(外側を通ったテラヘルツ波の位相が進む)。そして、干渉・回折の原理より、その位相差が解消される方向、すなわち中心付近に向かってテラヘルツ波ビームは強く出射される。これは、テラヘルツ波ビームが集光することに相当する。フレネル輪帯板やレンズも、中心と外側で位相差を発生させてビームを集光(又は発散)させており、原理的には、これらフレネル輪帯板やレンズと同様である。
また、テラヘルツ波ビーム変調装置を用いて適切な位相差を与えることで、テラヘルツ波を一点に集光させるだけでなく、十字状、線状、同心円状など任意のパターンを形成して投射することも可能である。この様な波面の強度分布パターンを持つテラヘルツ波は、例えば、照射される物体の凹凸などを観測するのに用いられる。
また、テラヘルツ波ビーム変調装置を用いて適切な位相差を与えることで、あたかも負の屈折率を持った様なビーム偏向ができる。例えば、テラヘルツ波ビーム変調装置の法線と入射テラヘルツ波ビームの成す角を入射角とし、装置の法線と出射テラヘルツ波ビームの成す角を出射角とする。出射角は、入射テラヘルツビームを延長した方向を正とする。このとき、テラヘルツ波ビーム変調装置を用いて適切な位相差を与えれば、出射角を負にすることができる。これは、あたかも負の屈折率を持った素子のごとく振舞い、大きなビーム偏向を可能とする。
なお、プラズマセル21は図4中では便宜上5×5の25個配置しているが、プラズマセル21の個数が多いほど、変調された後のビームは所望の整形パターンに近づく。例えば、入射テラヘルツ波ビームの直径が10mmであるとき、各プラズマセル21を300μm周期で配置するならば、一辺約33個のプラズマセルを配置できる。
例えば、テラヘルツ波ビームを偏向させる場合、プラズマセル21の数が図4の様に25個の場合、偏向されたビームは伝播するに従い発散していく。これに対して、1000個のプラズマセル21を配置したビーム変調装置を用いれば、偏向されたビームの伝播に伴うビームの発散が少ない。
本実施例のテラヘルツ波ビーム変調装置では、各プラズマセル21の枠の部分が格子状になっており、枠の部分に電極23や電気配線など導電性材料が設置されている。一般に、電磁波に対して、誘電体や金属の板状の物に規則的な穴が設置されている物はメッシュフィルターと呼ばれ、特定の周波数の電磁波を強く透過する性質を持つ。
本実施例のテラヘルツ波ビーム変調装置は、プラズマセルの形状や配置によってはメッシュフィルターとして機能する可能性も考えられる。従って、使用するテラヘルツ波の波長の選択等には上記事項も考慮に入れる必要がある。波長を適切に選択すれば、メッシュフィルターの働きをも利用して、フィルターと偏向の両機能を行わせることもできる。
プラズマの寿命は一般に1 ns乃至100ns(ナノ秒)程度なので、誘電体バリア放電では、印加電圧の周波数やデューティー比によっては、プラズマは点滅することになる。プラズマが点灯(発生・持続)している間は、プラズマはテラヘルツ波に対して誘電体として振舞い、位相遅延をもたらす。しかし、プラズマが消灯(消滅)している間は、プラズマセル中は単なる気体でしかないため、テラヘルツ波に対して位相遅延をもたらすことができない。これに対処するための手段として、入射させるテラヘルツ波をプラズマの発生と同期させ、プラズマが発生・持続している間のみ、テラヘルツ波がプラズマセルに入射する様にするといった手段がある。
また、プラズマセルをテラヘルツ波の伝播方向に隣接して二つ設置し、一方のプラズマセルのプラズマが点灯しているときに、もう一方のプラズマセルのプラズマが消灯している様に印加電圧などの位相を調節する手段もある。このことで、テラヘルツ波に対して仮想的に常時点灯しているプラズマを作ることができる。こうして、電磁波に対する変調作用を常に確実に実行する電磁波変調装置を実現できる。
(実施例2)
本発明の第2の実施例を、図6を用いて説明する。図6に示すテラヘルツ波ビーム変調装置は、プラズマセル21中に複数の電極対23を設置し、一つのプラズマセル21中に多数のプラズマ28を発生させることができる構造を持つ。
テラヘルツ波が−Z方向から入射し、X方向にビームを偏向させる用途があり、かつY方向にビームを偏向させる用途がないときは、本実施例の様にY方向に対して共通の大きなプラズマセル21を用いた方が、Y方向のプラズマの一様性が得られやすい。なぜなら、Y方向に関して気体圧力が常に一定であるからである。Y方向のプラズマの一様性が得らやすいため、X方向にビームを偏向させる際に、より精密なビーム偏向が可能である。また、この構成により、偏向された後のビームの波面の乱れを抑えられやすい。
(実施例3)
本発明の第3の実施例を、図7を用いて説明する。本実施例の導波管型のテラヘルツ波ビーム変調装置は、複数の区画部として多数の導波管71が束ねられた構造を有する。複数の導波管71は、入射テラヘルツ波24の波面26のほぼ面内方向に、入射テラヘルツ波の半波長周期程度で配置されている。
各導波管71には、電磁波の伝播方向に沿って多数の電極対23が設置されている。実施例1で説明したのと同様、これら電極対は誘電体(例えばMgO)でコーティングされている。また、入射テラヘルツ波24の伝播方向の導波管71の両端面は、実施例1で説明したのと同様、窓材(例えば石英基板)で封止されている。各導波管71中には気体が封入されている。
各電極対23には夫々独立に電圧をかけることができ、導波管71中で部分的にプラズマを発生させることができる。実施例1では、プラズマ中の電子密度を調節することでプラズマの誘電率を調節した。これに対し、本実施例では、プラズマ発生数を調節することで、導波管71の光路長を調節し、導波管71出射側から出射するテラヘルツ波25の位相を調節する。
本実施例の方法では、プラズマ発生数で位相を調節できるので、より精密なテラヘルツ波各部間の位相差調節が可能である。なお、導波管71は円形、方形など様々な断面形式の物があるが、いずれでもよい。
(実施例4)
本発明の第4の実施例を、図8を用いて説明する。実施例3に示した導波管型のテラヘルツ波変調装置では、プラズマの発生・消滅に或る一定時間を要し、その一定時間以下の高速でビーム変調を行うことができない場合が考えられる。
そこで、より高速にプラズマの発生、消滅を繰り返せるよう、各導波管80中に図8に示す様に電極を配置する。すなわち、導波管80の同側面上に近接して設けられた電極対81に電圧をかけることで常に予備放電を行っておき、小さな放電プラズマ83を発生させておく。電極対81と対向する位置に補助電極82を設置し、プラズマを発生させる時に補助電極82にも電圧を印加する。予備放電による小さな放電プラズマ83中の電子は補助電極82による電界によって加速され、直ちに大きなプラズマ84へと成長できる。
本実施例の方法によって、導波管型テラヘルツ波ビーム変調装置を、より高速に動作させることができる。
(実施例5)
本発明の第5の実施例を、図9及び図10を用いて説明する。上記実施例では、複数の電極と電源が、発生手段と電子密度分布調節手段を兼ねていた。本実施例と次の実施例では、電極対と電源が、発生手段と電子密度分布調節手段を兼ねているが、電子密度分布調節手段は更に他の機能要素を含む。
図9の実施例では、プラズマセル21中に、金属針などのラングミュアプローブ100を常時挿入しておく。ラングミュアプローブ100は、プラズマセル21中におけるテラヘルツ波の伝播を極力妨げないよう配置する。ラングミュアプローブ100を通して外部回路101に流れる電流を計測することで、プラズマ28中の電子密度を計測することができる。計測されたプラズマ28中の電子密度を用いてフィードバック制御を行い、所望の位相差を発生させられる電子密度に達する様にプラズマ28にかける電圧等を調節する。電圧等の調節は、電極対23で行われる。
また、図10の実施例では、プラズマセル21中を光ファイバー110が横断している。光ファイバー110は、プラズマセル21中において染み出し光が発生するよう、クラッドを薄くする(或いはクラッドを除去する)などの工夫をしておく。
プラズマ28中には様々な準位の原子が存在する。例えば、アルゴンの放電プラズマであれば、1s3と言う準位の準安定励起原子が存在し、波長約772nmの光を吸収して2p2状態へ遷移する。プラズマ28中における準安定励起原子の密度と電子密度には密接な関係があるため、準安定励起原子の密度を測定することで電子密度を計算・推測し、フィードバック制御を行うことができる。
上記原理に基づき、772nmのレーザ光を光ファイバー110に導波させる。プラズマセル21中では、前記772nmのレーザ光は光ファイバー110からエバネッセント光として染み出す様にしておく。プラズマセル21中にプラズマ28が発生しているとき、プラズマ28中のアルゴン準安定励起原子は、光ファイバー110から染み出した772nmレーザ光を一部吸収する。そこで、プラズマセル21を透過した前記レーザ光は、検出器(図示せず)によって強度が検出される様にする(プラズマ分光法)。これにより、検出された強度からアルゴン準安定励起原子の密度を計算し、そこから電子密度を演算手段で算出し、この結果に基づき、適切な電子密度となるよう放電電圧等を調節することができる。この放電電圧調節は、電極対23で行われる。
以上に述べた様に、本実施例では、ラングミュアプローブ100或いは光ファイバー110を含む電子密度分布調節手段が、ラングミュアプローブ法又はプラズマ分光法によってプラズマの電子密度を監視する。そして、監視結果に基づいてプラズマの電子密度分布をフィードバック制御する。
本実施例の方法により、より正確なプラズマの電子密度分布の調節ができてより制御性の良いビーム変調が可能となる。
(実施例6)
本発明の第6の実施例を、図11を用いて説明する。図11は、プラズマセル21の断面図である。本実施例のプラズマセル21の2箇所には、プラズマセル21に気体を供給・排出する流路120と、マイクロバルブ121が設置してある。プラズマセル21中の気体圧力を、これらを用いて調節する。プラズマ28中の電子密度は気体圧力にも密接に関連するため、放電電圧等の調節に加えプラズマセル21中の圧力調節が行えれば、よりきめ細かくプラズマ28中の電子密度を調節できる。
本実施例では、電極23と電源29が、前記発生手段を成す前記区画部発生手段を構成し、流路120とマイクロバルブ121が、前記電子密度分布調節手段を成す前記電子密度調節手段を構成する。勿論、電極23と電源29が、流路120とマイクロバルブ121と共に電子密度調節手段を構成し、電子密度調節手段を兼ねる構成にもできる。上記実施例1などでは、各プラズマセル21の内部に設けられた複数の電極23と電源29は、前記発生手段と前記電子密度分布調節手段の両方を兼ねていたが、本実施例では、この兼ね方を柔軟に設計できる。
本実施例は、テラヘルツ波ビーム変調に高速性は要求されないが正確性が要求される用途に利用できる。例えば、可変焦点距離のレンズとしての用途などがある。
(実施例7)
本発明の第7の実施例を、図12を用いて説明する。本実施例では、テラヘルツ波を用いてイメージングを行う。対象物体94を固定したまま、テラヘルツ波を一点に集光させつつ、集光点の位置をテラヘルツ波ビーム変調装置93を用いて移動させる。
本実施例では、テラヘルツ波光源90から出射したテラヘルツ波91は、第1のレンズ92によって集光ビームに整形される。集光ビームになったテラヘルツ波はテラヘルツ波ビーム変調装置93に入射する。テラヘルツ波ビーム変調装置93は、集光ビームの方向を、例えば、右から左へと偏向させることで、対象物体94上の集光点の位置を右から左へと移動させる。
さらに、対象物体94上で一点に集光されて反射もしくは散乱させられたテラヘルツ波は、別の集光レンズ95で集光され、テラヘルツ波検出器96で検出される。検出されたテラヘルツ波の強弱とテラヘルツ波の集光位置から、対象物体94のテラヘルツ波画像を構築することができる。
或いは、対象物体94を透過したテラヘルツ波を、別の集光レンズで集光し、テラヘルツ波検出器で検出してもよい。
こうして、本実施例の画像化装置では、物体に電磁波を照射し、本発明による電磁波変調装置を用いて電磁波の照射位置を移動させ、電磁波の透過波、反射波、又は散乱波を検出することにより物体の像を構築するための情報を得る。
本発明のビーム変調装置を用いて、テラヘルツ波イメージングが、省スペースでかつ高速に、またテラヘルツ波の偏波方向に低依存で可能となる。また、テラヘルツ波ビーム変調装置93にて適切な位相を与えることで、テラヘルツ波を一点に集光させるだけでなく、十字状や同心円状など任意のパターンを対象物に投射することも可能である。
本発明の概念を説明する電磁波変調装置の模式図。 本発明の実施形態及び第1の実施例のテラヘルツ波ビーム変調装置を説明する概略図。 本発明の実施形態及び第1の実施例のテラヘルツ波ビーム変調装置のプラズマセルを示す断面図 本発明の第1の実施例のテラヘルツ波ビーム変調装置を説明する斜視図。 本発明の第1の実施例のテラヘルツ波ビーム変調装置を説明する概略図。 本発明の第2の実施例のテラヘルツ波ビーム変調装置を説明する斜視図。 本発明の第3の実施例の導波管型テラヘルツ波ビーム変調装置を説明する概略図。 本発明の第3の実施例の導波管型テラヘルツ波ビーム変調装置の導波管プラズマセルの変形例を説明する断面図。 本発明の第4の実施例のラングミュアプローブを用いたフィードバック制御を行なうテラヘルツ波ビーム変調装置を説明する概略図。 本発明の第5の実施例のレーザ光を用いたフィードバック制御を行なうテラヘルツ波ビーム変調装置を説明する概略図。 本発明の第6の実施例の気体圧力調節を行なうテラヘルツ波ビーム変調装置を説明する概略図。 本発明の電磁波変調装置を用いたテラヘルツ波イメージングを説明する斜視図。
符号の説明
10 電子密度分布を持ったプラズマ
21、71、80 電子密度分布調節手段(区画部、プラズマセル、導波管)
23 発生手段、電子密度分布調節手段(電子密度調節手段、電極)
24 入射電磁波(入射テラヘルツ波)
25 出射電磁波(出射テラヘルツ波)
26 入射電磁波の波面(入射テラヘルツ波の波面)
27 出射電磁波の波面(出射テラヘルツ波の波面)
28 プラズマ
29 発生手段、電子密度分布調節手段(電子密度調節手段、電源)
81 発生手段、電子密度分布調節手段(電子密度調節手段、電極対)
82 発生手段、電子密度分布調節手段(電子密度調節手段、補助電極)
93 テラヘルツ波ビーム変調装置
94 物体
96 テラヘルツ波検出器
100 電子密度分布調節手段(電子密度調節手段、ラングミュアプローブ)
101 電子密度分布調節手段(電子密度調節手段、外部回路)
110 電子密度分布調節手段(電子密度調節手段、光ファイバー)
120 電子密度分布調節手段(電子密度調節手段、流路)
121 電子密度分布調節手段(電子密度調節手段、マイクロバルブ)

Claims (5)

  1. テラヘルツ波の伝播状態を変化させる変調装置であって、
    前記テラヘルツ波の伝播経路に設けられる複数の区画部と、
    前記複数の区画部で夫々プラズマを発生させる複数の発生手段と、
    前記複数の区画部で夫々発生された前記プラズマの電子密度を調節する複数の電子密度調節手段と、を有し、
    前記複数の区画部に照射された前記テラヘルツ波は、前記調整された前記電子密度に応じて変化された前記伝播状態で、該複数の区画部から放射されることを特徴とする変調装置。
  2. 前記複数の区画部は、前記テラヘルツ波の波面を受ける面に沿って該テラヘルツ波の波長以下の周期で隣接して配置され、夫々複数の電極を有し前記複数の電子密度調整手段は、前記波面の方向に電子密度を調整し、
    前記複数の電極間の距離は、前記テラヘルツ波の波長以下であること特徴とする請求項に記載の変調装置。
  3. 前記複数の区画部は夫々導波管であり、
    前記複数の発生手段は、前記プラズマのプラズマ振動数を前記テラヘルツ波の周波数以下に調節して前記プラズマを発生させ、前記複数の電子密度調節手段は、ラングミュアプローブ法又はプラズマ分光法によって前記プラズマの電子密度を監視し、監視結果に基づいて前記プラズマの電子密度をフィードバック制御することを特徴とする請求項1あるいは2に記載の変調装置。
  4. 前記伝播状態の変化は、前記テラヘルツ波の伝播方向の変化であり、
    前記複数の区画部に照射された方向とは異なる方向に該テラヘルツ波を放射することを特徴とする請求項1乃至3のいずれか1項に記載の変調装置。
  5. 請求項1乃至4のいずれか1項に記載の変調装置を含み、物体からのテラヘルツ波を検出することにより該物体の画像を得るための画像化装置であって、
    前記物体にテラヘルツ波を照射する照射手段と、
    前記物体における前記テラヘルツ波の照射位置を移動させるように前記変調装置を制御する制御部と、を有することを特徴とする画像化装置。
JP2006339296A 2006-12-18 2006-12-18 電磁波変調装置 Expired - Fee Related JP4819664B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006339296A JP4819664B2 (ja) 2006-12-18 2006-12-18 電磁波変調装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006339296A JP4819664B2 (ja) 2006-12-18 2006-12-18 電磁波変調装置

Publications (3)

Publication Number Publication Date
JP2008151619A JP2008151619A (ja) 2008-07-03
JP2008151619A5 JP2008151619A5 (ja) 2010-02-18
JP4819664B2 true JP4819664B2 (ja) 2011-11-24

Family

ID=39653934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006339296A Expired - Fee Related JP4819664B2 (ja) 2006-12-18 2006-12-18 電磁波変調装置

Country Status (1)

Country Link
JP (1) JP4819664B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5768429B2 (ja) * 2011-03-23 2015-08-26 セイコーエプソン株式会社 テラヘルツ波検出装置、テラヘルツ波長フィルター、イメージング装置および計測装置
JP6048268B2 (ja) * 2013-03-27 2016-12-21 富士通株式会社 電磁波伝搬制御装置及び電磁波伝搬制御方法
JP6270654B2 (ja) * 2014-07-28 2018-01-31 三菱電機株式会社 電磁波制御装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004286716A (ja) * 2003-03-25 2004-10-14 Institute Of Physical & Chemical Research テラヘルツ波分光計測によるターゲット判別方法及び装置
JP2007017729A (ja) * 2005-07-08 2007-01-25 Nippon Telegr & Teleph Corp <Ntt> ミリ波発生装置

Also Published As

Publication number Publication date
JP2008151619A (ja) 2008-07-03

Similar Documents

Publication Publication Date Title
JP6689920B2 (ja) リソグラフィ方法
Hilsabeck et al. Pulse-dilation enhanced gated optical imager with 5 ps resolution
Pirozhkov et al. Frequency multiplication of light back-reflected from a relativistic wake wave
Chkhalo et al. Source for extreme ultraviolet lithography based on plasma sustained by millimeter-wave gyrotron radiation
WO2006083300A2 (en) Acceleration of charged particles using spatially and temporally shaped electromagnetic radiation
WO2016083120A2 (en) Radiation beam apparatus
WO2016029984A1 (en) Method and device for time-resolved pump-probe electron microscopy
JP4819664B2 (ja) 電磁波変調装置
Black et al. Operating modes of dual-grating dielectric laser accelerators
Berumen et al. Analysis and comparison of ion-acoustic wave reflection using laser-induced fluorescence and Langmuir probes
Dulat et al. Coherent control of relativistic electron dynamics in plasma nanophotonics
KR102041212B1 (ko) 엑스선 분광 및 이미징 측정 시스템
Brodin et al. Laboratory soft x-ray emission due to the Hawking–Unruh effect?
Kaur et al. High repetition rate relativistic laser–solid–plasma interaction platform featuring simultaneous particle and radiation detection
TWI714226B (zh) 控制自由電子雷射之方法、用於自由電子雷射之注入器及相關之自由電子雷射、微影系統及非暫態電腦可讀取媒體
Sokollik Investigations of field dynamics in laser plasmas with proton imaging
van Elk Theoretical investigation and experimental realisation of light-electron interaction in a cavity-based Transmission Electron Microscope
Ragozin et al. Extreme ultraviolet diagnostics of preformed plasma in laser-driven proton acceleration experiments
Svensson Experiments on laser-based particle acceleration: Beams of energetic electrons and protons
WO2016128152A1 (en) Radiation sensor
Fuchs et al. Space-and time-resolved observation of single filaments propagation in an underdense plasma and of beam coupling between neighbouring filaments
Dahlström Generation, Detection and Optimisation of High order Harmonics in Neon
Plettner Proof-of-principle experiment for crossed laser beam electron acceleration in a dielectric loaded vacuum structure
Rupp et al. Experimental Setup
Månsson Ultra-fast dynamics in atoms and molecules during photoionization: from attoseconds to femtoseconds

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees