TWI714226B - 控制自由電子雷射之方法、用於自由電子雷射之注入器及相關之自由電子雷射、微影系統及非暫態電腦可讀取媒體 - Google Patents

控制自由電子雷射之方法、用於自由電子雷射之注入器及相關之自由電子雷射、微影系統及非暫態電腦可讀取媒體 Download PDF

Info

Publication number
TWI714226B
TWI714226B TW108129836A TW108129836A TWI714226B TW I714226 B TWI714226 B TW I714226B TW 108129836 A TW108129836 A TW 108129836A TW 108129836 A TW108129836 A TW 108129836A TW I714226 B TWI714226 B TW I714226B
Authority
TW
Taiwan
Prior art keywords
radiation
electron
radiation beam
laser
injector
Prior art date
Application number
TW108129836A
Other languages
English (en)
Other versions
TW201944180A (zh
Inventor
安得列 亞歷山卓維克 倪祺佩洛
歐勒夫 華德瑪 佛勒迪米爾 佛利恩斯
艾瑞克 羅勒夫 洛卜史塔
華特 裘普 安捷倫
喬漢那斯 安東尼司 傑瑞德思 亞克曼司
Original Assignee
荷蘭商Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荷蘭商Asml荷蘭公司 filed Critical 荷蘭商Asml荷蘭公司
Publication of TW201944180A publication Critical patent/TW201944180A/zh
Application granted granted Critical
Publication of TWI714226B publication Critical patent/TWI714226B/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0418Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using attenuators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/10Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
    • G01J1/20Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle
    • G01J1/22Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle using a variable element in the light-path, e.g. filter, polarising means
    • G01J1/24Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle using a variable element in the light-path, e.g. filter, polarising means using electric radiation detectors
    • G01J1/26Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle using a variable element in the light-path, e.g. filter, polarising means using electric radiation detectors adapted for automatic variation of the measured or reference value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/429Photometry, e.g. photographic exposure meter using electric radiation detectors applied to measurement of ultraviolet light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/06Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of fluids in transparent cells
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • G02B26/023Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light comprising movable attenuating elements, e.g. neutral density filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/205Neutral density filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70558Dose control, i.e. achievement of a desired dose
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/10Scattering devices; Absorbing devices; Ionising radiation filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/0903Free-electron laser
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0085Modulating the output, i.e. the laser beam is modulated outside the laser cavity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof
    • H05H2007/041Magnet systems, e.g. undulators, wigglers; Energisation thereof for beam bunching, e.g. undulators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/14Vacuum chambers
    • H05H7/18Cavities; Resonators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H9/00Linear accelerators
    • H05H9/04Standing-wave linear accelerators
    • H05H9/048Lepton LINACS

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

本發明揭示一種圖案化微影基板之方法,該方法包含使用一自由電子雷射以產生EUV輻射,及將該EUV輻射遞送至一微影裝置,該微影裝置將該EUV輻射投影至微影基板上,其中該方法進一步包含藉由使用一以回饋為基礎之控制迴路以監視該自由電子雷射且相應地調整該自由電子雷射之操作來縮減遞送至該等微影基板之EUV輻射之功率之波動。

Description

控制自由電子雷射之方法、用於自由電子雷射之注入器及相關之自由電子雷射、微影系統及非暫態電腦可讀取媒體
本發明係關於一種微影方法。本發明亦係關於其他方法及相關裝置。
微影裝置為經建構以將所要圖案施加至基板上之機器。微影裝置可用於(例如)積體電路(IC)製造中。微影裝置可(例如)將圖案自圖案化器件(例如,光罩)投影至提供於基板上之輻射敏感材料(抗蝕劑)層上。
由用以將圖案投影至基板上之微影裝置使用之輻射之波長判定可形成於彼基板上之特徵之最小大小。使用極紫外線(extreme ultraviolet,EUV)輻射(其為具有在4奈米至20奈米之範圍內之波長之電磁輻射)之微影裝置相比於習知微影裝置(其可(例如)使用具有193奈米之波長之電磁輻射)可用以在基板上形成較小特徵。自由電子雷射可用以產生EUV輻射以供微影裝置使用。
可需要控制由自由電子雷射輸出之輻射之功率。可需要控制由微影裝置接收之自由電子雷射所產生輻射之功率。
本發明之一目標為預防或減輕與先前技術相關聯之至少一問題。
根據本發明之一態樣,提供一種圖案化微影基板之方法,該方法包含使用一自由電子雷射以產生EUV輻射,及將該EUV輻射遞送至一微影裝置,該微影裝置將該EUV輻射投影至微影基板上,其中該方法進一步包含藉由使用一以回饋為基礎之控制迴路以監視該自由電子雷射且相應地調整該自由電子雷射之操作來縮減遞送至該等微影基板之EUV輻射之功率之波動。
以此方式使用一以回饋為基礎之控制迴路以縮減EUV功率波動係有利的,此係因為其改良遞送至該等微影基板之EUV輻射劑量之一致性。此情形提供該等微影基板之較一致曝光。
該以回饋為基礎之控制迴路可監視由該自由電子雷射輸出之EUV輻射之該功率。另外或替代地,該以回饋為基礎之控制迴路可監視該自由電子雷射中之電子之電流。另外或替代地,該以回饋為基礎之控制迴路可監視用以產生由該自由電子雷射使用之電子之一雷射之功率。此等參數為與由該自由電子雷射輸出之該EUV輻射之該功率相關的參數之實例。可使用其他參數。
該以回饋為基礎之控制迴路可在10kHz或大於10kHz之一頻率下操作。基板上之目標部位可接收EUV輻射歷時大約1毫秒(其對應於1kHz之頻率)。使用具有10kHz或大於10kHz之頻率之回饋來縮減EUV功率波動係有利的,此係因為此情形將足夠迅速地消除該等波動使得目標部位將接收EUV輻射之所要劑量(例如,至所要容許度內)。亦即,因為在1毫秒曝光時間週期期間之EUV輻射功率波動被消除,所以由目標部位接收之EUV輻射之總劑量為所要劑量。舉例而言,若回 饋迴路在1kHz或小於1kHz之頻率下操作,則將未足夠迅速地發生在照明基板目標部位時為補償波動對EUV輻射功率之調整以補償由目標部位接收之EUV輻射劑量。
該方法可進一步包含將可變衰減應用於已由該自由電子雷射輸出之EUV輻射,以便進一步控制遞送至該微影裝置之EUV輻射之該功率。
該微影裝置可為接收該EUV輻射的複數個微影裝置中之一者。
該EUV輻射之可變衰減可對於該等微影裝置中每一者係獨立可控制的。
該可變衰減可受到一第二以回饋為基礎之控制迴路控制。
該第二以回饋為基礎之控制迴路可在1kHz或小於1kHz之一頻率下操作。
該第二以回饋為基礎之控制迴路可使用如由位於該微影裝置中之一感測器量測之EUV輻射強度,該感測器位於該微影裝置之一投影系統之前。
另外或替代地,該第二以回饋為基礎之控制迴路可使用如由位於該微影裝置中之一感測器量測之EUV輻射強度,該感測器位於該微影裝置之一投影系統之後。
根據本發明之一態樣,提供一種控制在由一自由電子雷射產生之後由一微影裝置遞送至一微影基板上之一目標部位的EUV輻射之劑量之方法,該方法包含使用第一以回饋為基礎之控制迴路及第二以回饋為基礎之控制迴路以調整入射於該目標部位處之EUV輻射之強度,該第一以回饋為基礎之控制迴路相比於該第二以回饋為基礎之控制迴 路具有一較快回應。
該第二以回饋為基礎之控制迴路可與該微影裝置相關聯。
該第一以回饋為基礎之控制迴路可與該自由電子雷射相關聯。
可使用位於一基板支撐台處之一感測器來監視由該微影裝置遞送之EUV輻射之該強度。可在藉由該微影裝置進行的目標部位之曝光之間量測該強度。
根據本發明之一態樣,提供一種控制使用一自由電子雷射產生EUV之方法,該方法包含使用一以回饋為基礎之控制迴路來監視由該自由電子雷射輸出之EUV輻射之功率且控制EUV輻射之該功率,其中在維持EUV輻射之一實質上恆定波長的同時執行EUV輻射之該功率之調整。
該EUV輻射可由複數個微影裝置使用以圖案化微影基板。
根據本發明之一態樣,提供一種微影系統,其包含:一自由電子雷射,其經組態以產生EUV輻射;及一微影裝置,其經組態以將該EUV輻射投影至微影基板上,其中該裝置進一步包含一以回饋為基礎之控制迴路,該以回饋為基礎之控制迴路包含:一感測器,其經組態以監視該自由電子雷射;及一控制器,其經組態以自該感測器接收一輸出且相應地調整該自由電子雷射之操作。
該以回饋為基礎之控制迴路可有利地縮減遞送至該等微影基板之EUV輻射之功率之波動。
該以回饋為基礎之控制迴路可經組態以監視由該自由電子雷射輸出之EUV輻射之該功率。另外或替代地,該以回饋為基礎之控制迴路可經組態以監視該自由電子雷射中之電子之電流。另外或替代地, 該以回饋為基礎之控制迴路可經組態以監視用以產生由該自由電子雷射使用之電子之一雷射之功率。此等參數為與由該自由電子雷射輸出之該EUV輻射之該功率相關的參數之實例。可使用其他參數。
該以回饋為基礎之控制迴路可經組態以在10kHz或大於10kHz之一頻率下操作。
該裝置可進一步包含一衰減器,該衰減器經組態以將可變衰減應用於已由該自由電子雷射輸出之EUV輻射,以便進一步控制遞送至該微影裝置之EUV輻射之該功率。
該微影裝置可為接收該EUV輻射的複數個微影裝置中之一者。
該等衰減器可對於該等微影裝置中每一者係獨立可控制的。
該可變衰減可受到一第二以回饋為基礎之控制迴路控制。
該第二以回饋為基礎之控制迴路可在1kHz或小於1kHz之一頻率下操作。
該第二以回饋為基礎之控制迴路可包含一感測器,該感測器經組態以量測該微影裝置中之EUV輻射強度。
該感測器可位於該微影裝置之一投影系統之前。
該感測器可位於該微影裝置之一投影系統之後。
根據本發明之一態樣,提供一種用於控制在由一自由電子雷射產生之後由一微影裝置遞送至一微影基板上之一目標部位的EUV輻射之劑量之裝置,該裝置包含第一以回饋為基礎之控制迴路及第二以回饋為基礎之控制迴路,該第一以回饋為基礎之控制迴路及該第二以回饋為基礎之控制迴路可操作以調整入射於該目標部位處之EUV輻射之強度,該第一以回饋為基礎之控制迴路相比於該第二以回饋為基礎之 控制迴路具有一較快回應。
該第二以回饋為基礎之控制迴路可與該微影裝置相關聯。
該第一以回饋為基礎之控制迴路可與該自由電子雷射相關聯。
該微影裝置可包含位於一基板支撐台處之一感測器,該感測器經組態以監視由該微影裝置遞送之EUV輻射之該強度。可在藉由該微影裝置進行的目標部位之曝光之間量測該強度。
該EUV輻射可由複數個微影裝置使用以圖案化微影基板。
根據本發明之一態樣,提供一種用於一自由電子雷射之注入器,該注入器包含:一光電陰極;一輻射源,其可操作以發射一脈衝式輻射光束且引導該脈衝式輻射光束以入射於該光電陰極上,藉此造成該光電陰極發射自該注入器輸出之一束電子聚束,每一電子聚束對應於該輻射光束之一脈衝;及一控制裝置,其可操作以中斷該電子束,以便造成該輻射光束之至少一脈衝在自該注入器輸出之該電子束中實質上不具有關聯電子聚束。
與以此方式控制注入器相關聯之優點在於:其提供自自由電子雷射發射之輻射光束之功率之控制。自由電子雷射光束功率之控制可在對自由電子雷射光束之其他屬性之效應縮減的情況下(相比於至少一些先前技術控制方法)來達成。
該控制裝置可操作以中斷該電子束,以便造成該輻射光束之一單脈衝在自該注入器輸出之該電子束中實質上不具有關聯電子聚束。
該控制裝置可操作以實質上防止該輻射光束之至少一脈衝入射於該光電陰極上,藉此中斷電子聚束自該光電陰極之該發射。
該控制裝置可包含:一勃克爾盒(Pockels cell),其安置於在該輻 射光束入射於該光電陰極上之前的該輻射光束之路徑中,且其中該勃克爾盒可切換於一第一操作模式與一第二操作模式之間,在該第一操作模式中,該勃克爾盒經組態以透射該輻射光束而不改變其偏振狀態,在該第二操作模式中,該勃克爾盒經組態以透射該輻射光束且旋轉該勃克爾盒之該偏振狀態;及一偏振器,其安置於該勃克爾盒與該光電陰極之間且處於該輻射光束之該路徑中,其中該偏振器經組態以僅透射具有一給定偏振狀態之輻射。
該勃克爾盒可包含一電光晶體、一對電極及一電壓源,該電壓源可操作以在該等電極之間產生一電位差,藉此將該勃克爾盒自該第一操作模式切換至該第二操作模式。
該勃克爾盒可包含複數對電極及複數個電壓源,該複數個電壓源中每一者可操作以在該複數對電極中之一對電極之間產生一電位差,藉此將該勃克爾盒自該第一操作模式切換至該第二操作模式。
該勃克爾盒可經組態以在處於該第二操作模式中時將該輻射光束之該偏振狀態旋轉達大約90°。
該控制裝置可包含複數個勃克爾盒,該複數個勃克爾盒安置於在該輻射光束入射於該光電陰極上之前的該輻射光束之該路徑中,且其中該複數個勃克爾盒中每一者可切換於一第一操作模式與一第二操作模式之間,在該第一操作模式中,該勃克爾盒經組態以透射該輻射光束而不改變其偏振狀態,在該第二操作模式中,該勃克爾盒經組態以透射該輻射光束且將該勃克爾盒之該偏振狀態旋轉達小於90°,且其中該複數個勃克爾盒經組態以在該複數個勃克爾盒中每一者處於該第二操作模式中時應用為90°的該輻射光束之該偏振狀態之一組合式 旋轉。
該偏振器可經組態以在該輻射光束入射於該勃克爾盒上之前僅透射具有該輻射光束之該偏振狀態之輻射。
該注入器可進一步包含一第二勃克爾盒,該第二勃克爾盒經組態以在處於該第二操作模式中時將該輻射光束之該偏振狀態旋轉達大約90°。
該偏振器可經組態以在該輻射光束入射於該勃克爾盒上之前僅透射具有正交於該輻射光束之該偏振狀態的一偏振狀態之輻射。
該第一勃克爾盒可經組態以在一第一時間週期中在該第一操作模式與該第二操作模式之間週期性地交替,且其中該第二勃克爾盒經組態以在該第一時間週期中且在相對於該第一勃克爾盒之該週期性交替之一相位差下在該第一操作模式與該第二操作模式之間週期性地交替。
該控制裝置可經組態以調整該相位差以便調整在一給定時間週期內被中斷之電子聚束之一數目。
該注入器可進一步包含一倍頻晶體,該倍頻晶體安置於在該輻射光束入射於該光電陰極上之前且在該輻射光束已傳遞通過該偏振器之後的該輻射光束之該路徑中。
該控制裝置可操作以使至少一電子聚束自該電子束中偏轉,藉此中斷自該注入器輸出之該電子束。
該控制裝置可包含:一對導電板,其安置於該電子束之一軌跡之任一側;及一電壓源,其可操作以在該等導電板之間產生一電位差,藉此在該等導電板之間產生一磁場,該磁場足以使一電子聚束自 該電子束中偏轉。
該注入器可進一步包含一光束截止器,該光束截止器經配置以接收自該電子束中偏轉之一電子聚束。
根據本發明之一態樣,提供一種用於一自由電子雷射之注入器,該注入器包含:一光電陰極;一輻射源,其可操作以發射一脈衝式輻射光束且引導該脈衝式輻射光束以入射於該光電陰極上,藉此造成該光電陰極發射自該注入器輸出之一束電子聚束;及一控制裝置,其可操作以使該電子束之至少一聚束散焦使得自該注入器輸出該電子束中之至少一經散焦電子聚束。
該控制裝置可包含:一對導電板,其安置於該電子束之一軌跡之任一側;一電壓源,其可操作以產生一電流以流動通過該等導電板,藉此在該等導電板之間產生一磁場,該磁場足以使該電子束中之一電子聚束散焦。
根據本發明之一態樣,提供一種自由電子雷射,其包含:根據本發明之該等先前態樣之一注入器;一粒子加速器,其可操作以使自該注入器輸出之電子束加速;及一波紋機,其可操作以沿著一週期性路徑來導引該經加速電子束以便刺激一自由電子雷射輻射光束之發射,其中該自由電子雷射輻射光束包含一系列脈衝,每一脈衝對應於該電子束之一電子聚束。
該注入器之該控制裝置可操作以中斷自該注入器輸出之該電子束,藉此中斷該自由電子雷射輻射光束之該等脈衝。
該自由電子雷射可進一步包含一控制器,該控制器可操作以控制該注入器之該控制裝置,以便控制在一給定時間週期內出現的該自 由電子雷射輻射光束之脈衝之一數目。
該波紋機可操作以刺激一EUV自由電子雷射輻射光束之發射。
該自由電子雷射可進一步包含一偵測器,該偵測器經組態以監視該輻射光束之強度且將一信號輸出至該控制器,藉此提供一回饋迴路。
根據本發明之一態樣,提供一種微影系統,其包含一輻射源,該輻射源包含根據本發明之該第三態樣之一自由電子雷射;且進一步包含一微影裝置。
該微影裝置可經配置以接收一輻射光束,該輻射光束包含自該輻射源之自由電子雷射輸出之該自由電子雷射輻射光束之至少一部分,該微影裝置可包含:一照明系統,其經組態以調節自該輻射源接收之該輻射光束;一支撐結構,其經建構以支撐一圖案化器件,該圖案化器件能夠在該輻射光束之橫截面中向該輻射光束賦予一圖案以形成一經圖案化輻射光束;一基板台,其經建構以固持一基板;及一投影系統,其經組態以將該經圖案化輻射光束投影至該基板之一目標部位上。
該注入器之該控制裝置可操作以中斷自該注入器輸出之該電子束,藉此中斷該自由電子雷射輻射光束之該等脈衝,藉此中斷由該微影裝置接收之該輻射光束之脈衝,藉此中斷投影至該基板之一目標部位上之該經圖案化輻射光束之脈衝。
該微影系統可進一步包含一控制器,其中該控制器可操作以控制該注入器之該控制裝置,以便控制在一曝光時間週期內由該基板之該目標部位接收的該經圖案化輻射光束之脈衝之一數目,藉此控制在 該曝光時間週期內由該基板之該目標部位接收的一輻射劑量。
根據本發明之一態樣,提供一種控制由一自由電子雷射發射之一輻射光束之功率之方法,該方法包含:將一脈衝式輻射光束引導至一注入器之一光電陰極上且藉此造成該光電陰極發射自該注入器輸出之一束電子聚束,每一電子聚束對應於該輻射光束之一脈衝;中斷該電子束,以便造成該輻射光束之至少一脈衝在自該注入器輸出之該電子束中實質上不具有關聯電子聚束;使用一粒子加速器來使該電子束加速;及使用一波紋機,該波紋機可操作以沿著一週期性路徑來導引該經加速電子束以便刺激一自由電子雷射輻射光束之發射,該自由電子雷射光束之功率係藉由該電子束之該中斷而縮減。
可防止該輻射光束之至少一脈衝入射於該光電陰極上,藉此中斷電子聚束自該光電陰極之該發射。
可使至少一電子聚束自該電子束中偏轉,藉此中斷自該注入器輸出之該電子束。
根據本發明之一態樣,提供一種控制由一自由電子雷射發射之一輻射光束之功率之方法,該方法包含:將一脈衝式輻射光束引導至一注入器之一光電陰極上且藉此造成該光電陰極發射自該注入器輸出之一束電子聚束,每一電子聚束對應於該輻射光束之一脈衝;使自該注入器輸出之該電子束之至少一脈衝散焦;使用一粒子加速器來使該電子束加速;及使用一波紋機,該波紋機可操作以沿著一週期性路徑來導引該經加速電子束以便刺激一自由電子雷射輻射光束之發射,該自由電子雷射光束之功率係藉由該至少一經散焦電子束脈衝而縮減。
本發明之態樣可經由由自由電子雷射之注入器提供至自由電子 雷射之加速器之電子束電流之可控制中斷來控制遞送至微影裝置之晶圓載物台之EUV輻射劑量。電流中斷可為週期性的。可經由回饋系統及/或前饋系統來控制電流中斷。電流中斷可提供針對中斷之持續時間實質上為零之電流。替代地,電流中斷可提供小於標稱電流大約10%的電流。
根據一態樣,提供一種包含一自由電子雷射之輻射系統,該自由電子雷射包含:一電子源,其可操作以產生相對論性電子;及一波紋機,其包含複數個磁體、可操作以產生一週期性磁場且經配置以便圍繞一中心軸線沿著一週期性路徑來導引該等相對論性電子,使得其與該波紋機中之輻射相互作用,從而刺激相干輻射之發射;其中該波紋機具備一調整機構,該調整機構可操作以回應於一所接收信號而變化該波紋機之一或多個參數,使得變更該輻射之輻照度及/或偏振。該一或多個參數可為該自由電子雷射之參數。
在一實施例中,可提供一種包括此輻射系統之微影系統。此微影系統可包括一或多個微影裝置。
根據另一態樣,提供一種自由電子雷射,其包含:一電子源,其可操作以產生相對論性電子;及一波紋機,其包含複數個磁體、可操作以產生一週期性磁場且經配置以便圍繞一中心軸線沿著一週期性路徑來導引該等相對論性電子,使得其與該波紋機中之輻射相互作用,從而刺激相干輻射之發射;其中該波紋機具備一調整機構,該調整機構可操作以回應於一所接收信號而變化該波紋機之一或多個參數,使得變更該輻射之輻照度及/或偏振。
該自由電子雷射可進一步包含一輻射感測器,該輻射感測器可 操作以判定該經發射輻射之一輻照度且將指示該輻照度之一信號傳輸至該調整機構。
該波紋機可成楔形。
該調整機構可操作以變更該波紋機之該中心軸線上或附近之磁場強度。可藉由將該等磁體移動朝向或遠離該中心軸線來變更該中心軸線上或附近之該磁場強度。在一實施例中,以使該輻射之該偏振保持未變更之方式相對於該中心軸線來移動該等磁體。另外或替代地,可藉由變更由該等磁體產生之該磁場來變更該中心軸線上或附近之該磁場強度。
該調整機構可操作以變更該波紋機之一週期。
該週期性路徑可包含一螺旋狀區段。
該自由電子雷射可進一步包含安置於該電子源與該波紋機之間的一第一偏轉磁體,該第一偏轉磁體可處於:一斷開狀態,其中該等電子係由該波紋機沿著該週期性路徑導引,使得其與該波紋機中之輻射相互作用,從而刺激相干輻射之發射;或一接通狀態,其中該等電子係沿著一不同路徑經導引通過該波紋機,使得其自該波紋機中之輻射解耦且實質上不刺激相干輻射之發射。
該自由電子雷射可進一步包含安置於該波紋機下游之一第二偏轉磁體,該第二偏轉磁體經配置以補償該第一偏轉磁體之作用,使得當該第一偏轉磁體處於該接通狀態時射出該第二偏轉磁體之電子遵循的軌跡實質上相同於當該第一偏轉磁體處於該斷開狀態時射出該第二偏轉磁體之電子的軌跡。
該自由電子雷射可進一步包含用於使電子減速之一減速機構及 用於吸收電子之一光束截止器,該減速機構可操作以縮減在進入該光束截止器之前已離開該波紋機的電子之能量。
該電子源可包含一線性加速器,且該減速機構可使用該線性加速器以使已離開該波紋機之電子減速。
該減速機構之至少一部分可與該電子源分離。
該減速機構可包含諸如一同步加速器或一迴旋加速器之一主動式減速機構。
該減速機構可包含諸如具有該等電子傳遞通過之一粗糙內部表面之一導電導管的一被動式減速機構。
該波紋機可經組態成使得取決於安置於該自由電子雷射與一圖案化器件之間的一鏡面而選擇該經發射輻射之該偏振,使得入射於該圖案化器件上之該輻射具有一所要偏振。
該調整機構可操作以藉由如下操作來變更該輻射之該偏振:將該輻射分裂成兩個分量;沿著不同光學路徑來導引該兩個分量;及組合該兩個分量,其中該等光學路徑中之一者包含複數個反射,使得旋轉遵循彼光學路徑之該分量之偏振向量。另外或替代地,對於該波紋機包含一螺旋狀波紋機之實施例,該調整機構可操作以藉由調整該波紋機之至少一區段相對於其他區段之週期性磁體結構來變更該輻射之該偏振。另外或替代地,對於該波紋機包含一平面波紋機之實施例,該調整機構可操作以藉由變更該波紋機之至少一區段之楔形使得變更第一線性偏振分量與第二線性偏振分量之一比率來變更該輻射之該偏振。另外或替代地,該調整機構可操作以藉由將平面波紋機區段之至少一區段引入至該波紋機中以便放大一所要偏振狀態來變更該輻射之 該偏振。
上述(或本文中在其他方面之)特徵之任一者或多者可包括於以下態樣中任一者中。
根據一態樣,提供一種微影系統,其包含:如本文所描述之一自由電子雷射;及一或多個微影裝置。
根據一態樣,提供一種產生輻射之方法,該方法包含:產生一相對論性電子束;使用一波紋機以沿著一週期性變化路徑來導引該相對論性電子束,使得其發射一輻射光束;及回應於一所接收信號而變化該波紋機之一或多個參數,以便變更週期性磁場及該輻射光束之輻照度。
根據一態樣,提供一種自由電子雷射,其包含:一電子源,其可操作以產生相對論性電子;一波紋機,其包含複數個磁體且可操作以產生該等相對論性電子傳遞通過之一週期性磁場;一第一偏轉磁體,其安置於該電子源與該波紋機之間,其中該第一偏轉磁體可處於:一斷開狀態,其中該等電子係由該波紋機沿著一週期性路徑導引,使得其發射與該波紋機中之輻射之相互作用,從而刺激相干輻射之發射;或一接通狀態,其中該等電子係沿著一不同路徑經導引通過該波紋機,使得其自該波紋機中之輻射解耦且實質上不刺激相干輻射之發射。
根據一態樣,提供一種自由電子雷射,其包含:一電子源,其可操作以產生相對論性電子;一波紋機,其包含複數個磁體且可操作以產生一週期性磁場且經配置以便沿著一週期性路徑來導引該等相對論性電子使得其發射輻射;一光束截止器,其可操作以在該等電子一 離開該波紋機就吸收該等電子;及一減速機構,其安置於該波紋機與該光束截止器之間,其中該減速機構可操作以在該等電子由該光束截止器吸收之前縮減該等電子之能量,其中該減速機構係與該電子源分離。
根據一態樣,提供一種微影系統,其包含:一自由電子雷射,其可操作以在一第一方向上發射輻射;一微影裝置,其可操作以接收該輻射且在一第二方向上將該輻射投影至一圖案化器件上;及一或多個鏡面,其安置於該自由電子雷射與該圖案化器件之間,其可操作以將該輻射光束自該第一方向導引至該第二方向,其中該自由電子雷射經組態成使得取決於該一或多個鏡面而選擇該第一輻射光束之偏振,使得該第二輻射光束之偏振適於輻照該圖案化器件。
根據一態樣,提供一種用於轉換一EUV輻射光束之偏振之裝置,其包含:兩個光學路徑;及一光束分裂器,其可操作以接收一EUV輻射光束、將其分裂成兩個分量且沿著該等光學路徑中之一不同光學路徑來導引每一分量,其中該兩個光學路徑收斂,且其中該等光學路徑中之一者包含複數個鏡面使得旋轉遵循彼光學路徑之該分量之偏振向量。
根據本發明之一態樣,提供一種自由電子雷射,其包含:一電子源,其用於產生包含複數個相對論性電子聚束之一電子束;一波紋機,其經配置以接收該電子束且沿著一週期性路徑來導引該電子束,使得該電子束與該波紋機內之輻射相互作用,從而刺激輻射之發射且提供一輻射光束;及一可調整壓縮器,其可操作以控制如下各者中至少一者:(i)該複數個電子聚束中之一或多者在其進入該波紋機之前沿 著該電子束之一傳播方向的一電荷密度分佈;或(ii)該複數個電子聚束中之一或多者在其進入該波紋機之前的一平均能量。
變更複數個電子聚束沿著其傳播方向之電荷密度分佈將變更波紋機之增益。亦即,其將影響由波紋機輸出之輻射光束之功率。波紋機之增益可被定義為作為輸入至波紋機中之功率量之函數的由波紋機輸出之功率量。波紋機之增益可取決於增益長度(為了使波紋機內之輻射功率增加達e倍,電子聚束必須行進通過波紋機的距離)、波紋機之長度,及電子聚束與波紋機內之輻射之間的耦合量。另外,變更複數個電子聚束之平均能量將變更輻射光束之波長(隨著平均能量增加,輻射光束之波長減低)。又,此情形將影響由波紋機輸出之輻射光束之波長。因此,有利地,本發明之第一態樣提供輸出功率及/或波長可主動地受控制之自由電子雷射。
該可調整壓縮器可包含一調整機構,該調整機構經配置以控制如下各者中至少一者:(a)該複數個電子聚束中之一或多者之頻擾;或(b)該複數個電子聚束中之一或多者中之電子之該平均能量。
該調整機構可包含一諧振空腔。
該諧振空腔可經配置成使得該諧振空腔相對於該電子束之一相位保持實質上恆定,且該相位係使得該空腔內之一電場針對處於傳遞通過該諧振空腔之每一聚束之一中心的電子實質上為零。有利地,因為此配置僅調整電子聚束之電荷分佈且不改變電子聚束之平均能量,所以驅動諧振空腔所需之射頻功率不取決於平均光束電流。因此,所需之功率係低的,且有可能使用較不有效率諧振空腔以變更頻擾。
替代地,該諧振空腔可經配置成使得該諧振空腔相對於該電子 束之一相位保持實質上恆定,且該相位係使得該空腔內之一電場針對處於傳遞通過該諧振空腔之每一聚束之一中心的電子實質上處於其最大值或最小值。
該諧振空腔可為一正常導電諧振空腔。
相比於(例如)可用以使電子束加速之超導電空腔,諸如銅空腔之正常導電諧振空腔具有相對低Q值。因為諧振器之頻寬與其Q值成反比,所以此正常導電空腔之射頻功率因此可以高頻寬而調整。有利地,此情形允許相比於超導電射頻空腔在該空腔內之加速場梯度之顯著較快速改變。此情形有益,此係因為其允許相對迅速地調整自由電子雷射之輸出功率及/或波長。
該可調整壓縮器可進一步包含一磁性壓縮器,該磁性壓縮器經配置以沿著該電子束之一傳播方向來壓縮該複數個電子聚束中之一或多者,該壓縮係取決於該電子聚束在其進入該磁性壓縮器時之一頻擾。該磁性壓縮器可安置於該調整機構下游。
該電子源可包含用於產生一聚束式電子束之一機構及可操作以使該聚束式電子束加速之一線性加速器,該線性加速器包含複數個射頻空腔,且該可調整壓縮器可與該線性加速器分離。
該自由電子雷射可進一步包含:一控制器;及一感測器,其用於判定指示該輻射光束之一功率或指示由該輻射光束遞送至一目標之一輻射劑量之一值,且將指示該值之一信號輸出至該控制器,其中該控制器可操作以回應於由該感測器輸出之該信號而變化該複數個電子聚束中之一或多者之該電荷密度分佈及/或該複數個電子聚束中之一或多者中之電子之該平均能量。
根據本發明之一態樣,提供一種微影系統,其包含:根據本發明之該第一態樣之一自由電子雷射;及至少一微影裝置,該至少一微影裝置中每一者經配置以接收由該自由電子雷射產生之至少一輻射光束之至少一部分。
根據本發明之一態樣,提供一種裝置,其包含:一輻射源,其用於產生輻射,該輻射源包含可操作以控制該輻射之一波長之一調整機構;一目標部位,其用於接收該輻射;一光學系統,其經配置以將該輻射自該輻射源導引至該目標部位,該光學系統具有一波長相依透射比或反射比;一控制器;及一感測器,其用於判定指示該輻射之一功率或指示由該輻射遞送至該目標部位之一輻射劑量之一值,且將指示該值之一信號輸出至該控制器,其中該控制器可操作以回應於由該感測器輸出之該信號而使用該調整機構來變化該輻射之該波長。
有利地,此配置提供一以正回饋為基礎之控制迴路以用於控制由一輻射源供應之該輻射劑量。
該輻射源可包含一自由電子雷射,該自由電子雷射可包含:一電子源,其用於產生包含複數個相對論性電子聚束之一電子束;及一波紋機,其經配置以接收該電子束且沿著一週期性路徑來導引該電子束,使得該電子束與該波紋機內之輻射相互作用,從而刺激輻射之發射且提供一輻射光束,其中該調整機構可操作以在該複數個電子聚束中之一或多者中之電子進入該波紋機之前變化該等電子之一平均能量。
變更電子聚束之平均能量將變更輻射光束之波長(隨著平均能量增加,輻射光束之波長減低)。又,此情形將影響由波紋機輸出之輻 射光束之功率,且因此影響由輻射源供應至目標部位之輻射劑量。另外,因為光學系統具有波長相依透射比或反射比,所以變更輻射光束之波長將影響通過光學系統而遞送至目標部位之輻射劑量。因此,有利地,此配置提供輸出功率及波長可主動地受控制之自由電子雷射。相比於輻射光束之功率之改變,輻射光束之波長之改變可對由輻射源遞送至目標部位之劑量有較大影響。
該調整機構可包含一諧振空腔。
該諧振空腔可為一正常導電諧振空腔。
相比於(例如)可用以使電子束加速之超導電空腔,諸如銅空腔之正常導電諧振空腔具有相對低Q值。因為諧振器之頻寬與其Q值成反比,所以此正常導電空腔之射頻功率因此可以高頻寬而調整。有利地,此情形允許相比於超導電射頻空腔在該空腔內之加速場梯度之顯著較快速改變。此情形有益,此係因為其允許相對迅速地調整自由電子雷射之輸出功率及/或波長。
該諧振空腔可經配置成使得該諧振空腔相對於該複數個電子聚束中每一者之到達之一相位保持實質上恆定,且該相位係使得該空腔內之一電場針對處於傳遞通過該諧振空腔之複數個電子聚束中每一者之一中心的電子實質上處於其最大值或最小值。
該電子源可包含用於產生一聚束式電子束之一機構及可操作以使該聚束式電子束加速之一線性加速器,該線性加速器包含複數個射頻空腔,且該調整機構可與該線性加速器分離。
根據本發明之一態樣,提供一種自由電子雷射,其包含:一電子源,其用於產生包含複數個相對論性電子聚束之一電子束,該電子 束具有一第一頻率;一波紋機,其經配置以接收該電子束且沿著一週期性路徑來導引該電子束,使得該電子束與該波紋機內之輻射相互作用,從而刺激輻射之發射且提供一輻射光束;及一可調整諧振空腔,其配置於該電子源與該波紋機之間且經配置以在一第二頻率下操作,使得該複數個電子聚束之一頻擾及/或該複數個電子聚束之一平均能量隨著時間而變化。
當該第一頻率與該第二頻率不同時,該諧振空腔將連續地變化該複數個電子聚束之該頻擾及該平均能量。該頻擾及該平均能量之改變之速率係取決於該第一頻率與該第二頻率之間的差。變更電子聚束中之電子之平均能量將變更輻射光束之波長(隨著平均能量增加,輻射光束之波長減低)。因此,本發明之第四態樣提供用於增加由自由電子雷射輸出之輻射之有效頻寬之機構。
該自由電子雷射可進一步包含一磁性壓縮器,該磁性壓縮器經配置以沿著該電子束之一傳播方向來壓縮該電子聚束,該壓縮係取決於該電子聚束在其進入該磁性壓縮器時之一頻擾。
該諧振空腔可為一正常導電諧振空腔。
相比於(例如)可用以使電子束加速之超導電空腔,諸如銅空腔之正常導電諧振空腔具有相對低Q值。因為諧振器之頻寬與其Q值成反比,所以此正常導電空腔之射頻功率因此可以高頻寬而調整。有利地,此情形允許相比於超導電射頻空腔在該空腔內之加速場梯度之顯著較快速改變。此情形有益,此係因為其允許相對迅速地調整自由電子雷射之輸出功率及頻寬。
該電子源可包含用於產生一聚束式電子束之一機構及可操作以 使該聚束式電子束加速之一線性加速器,該線性加速器包含複數個射頻空腔,且該可調整壓縮器可與該線性加速器分離。
該自由電子雷射可進一步包含:一控制器;及一感測器,其用於判定指示該輻射光束之一功率或由該輻射光束遞送至一目標部位之一輻射劑量之一值,且將指示該值之一信號輸出至該控制器,其中該控制器可操作以回應於由該感測器輸出之該信號而控制該諧振空腔之一或多個參數。
回應於由該感測器輸出之該信號而控制的該諧振空腔之該一或多個參數可包含該諧振空腔內之一電場之一振幅。
回應於由該感測器輸出之該信號而控制的該諧振空腔之該一或多個參數可包含該諧振空腔操作所處之該第二頻率。此可藉由調整如下兩者來達成:將電磁輻射供應至該諧振空腔之一射頻源之一頻率;及該諧振空腔之一幾何形狀。可使用(例如)一或多個壓電拉伸器及/或壓縮器以將該諧振空腔之一諧振頻率與將電磁輻射供應至該諧振空腔之該射頻源之該頻率匹配來變更該諧振空腔之該幾何形狀。
根據本發明之一態樣,提供一種微影系統,其包含:根據本發明之該第四態樣之一自由電子雷射;至少一微影裝置,該至少一微影裝置中每一者經配置以接收由該自由電子雷射產生之至少一輻射光束之至少一部分;一控制器;及一感測器,其用於判定指示該輻射之一功率或指示由該輻射遞送至該至少一微影裝置內之一目標部位之一輻射劑量之一值,且將指示該值之一信號輸出至該控制器,其中該控制器可操作以回應於由該感測器輸出之該信號而變化該諧振空腔之一或多個參數。
該目標部位可為在一基板之曝光期間接收輻射歷時一時間週期之一基板上之一部位。由該目標部位接收之能量劑量可相對於遍及一曝光時間週期之該輻射光束之一功率之時間可為一整數。對於足夠長曝光時間週期,高頻率變化將遍及該曝光時間週期而達到平均數。此情形針對如下實施例尤其有益:其中由該目標部位接收之該輻射劑量係波長相依的且其中此相依性強烈取決於該輻射光束之波長及頻寬。本發明之該第五態樣允許對輻射光束之頻寬之控制,且因此允許最佳化頻寬以縮減對波長變化之劑量敏感度。
回應於由該感測器輸出之該信號而控制的該諧振空腔之該一或多個參數可包含該諧振空腔內之一電場之一振幅。
回應於由該感測器輸出之該信號而控制的該諧振空腔之該一或多個參數可包含該諧振空腔操作所處之該第二頻率。此可藉由調整如下兩者來達成:將電磁輻射供應至該諧振空腔之一射頻源之一頻率;及該諧振空腔之一幾何形狀。可使用(例如)一或多個壓電拉伸器及/或壓縮器以將該諧振空腔之一諧振頻率與將電磁輻射供應至該諧振空腔之該射頻源之該頻率匹配來變更該諧振空腔之該幾何形狀。
根據本發明之一態樣,提供一種控制由一目標部位接收之一輻射劑量之方法,其包含:判定由一目標部位接收之一輻射劑量對一輻射光束之一波長及/或功率之一相依性;使用一可調整輻射源來產生輻射,該可調整輻射源可操作以產生複數個不同波長之輻射;經由一波長相依光學系統而將該輻射導引至一目標部位;判定指示該輻射之一功率或指示由該輻射遞送至該目標部位之一輻射劑量之一值;及取決於該經判定值而變化該輻射之該波長,以便控制由該目標部位接收 之該輻射劑量。
判定由一目標部位接收之一輻射劑量對一輻射光束之一波長及/或功率之一相依性之該步驟可作為一校準步驟僅被執行一次。
根據本發明之一態樣,提供一種自由電子雷射,其包含一注入器、一加速器及一波紋機,該自由電子雷射經組態以產生一EUV輻射光束,其中該波紋機包含波紋機模組及一或多個動態相移器,該等動態相移器可操作以改變由該自由電子雷射產生之該EUV輻射光束之功率及/或頻寬及/或空間功率分佈。
該一或多個動態相移器可包含電磁體,該等電磁體經組態在其被啟動時改變一電子軌跡之長度。
該一或多個動態相移器可包含三對電磁體,每一對提供於該電子軌跡之相對側上。
一控制器可操作以將電流選擇性地供應至該等電磁體以啟動及切斷該等電磁體。
該控制器可操作以控制供應至該等電磁體之該電流之大小,且藉此控制由該一或多個動態相移器應用之相移之大小。
由一導電材料形成之一保護管件可提供於光束軌跡周圍。
至少部分地填充有介電質之開口可提供於該保護管件中。
該等開口可具有成楔形末端。
該保護管件之至少部分可由具有大於10微米但小於1毫米之一表層深度的導電材料形成。
該一或多個動態相移器可包含橫向沖噴器,該等橫向沖噴器經組態在其被啟動時改變一電子軌跡之長度。
該一或多個動態相移器可受到一控制器控制。
該控制器可經組態而以10kHz或大於10kHz之一頻率來控制該等動態相移器。
根據本發明之一態樣,提供一種自由電子雷射,其包含一注入器、一加速器及一波紋機,該自由電子雷射經組態以產生一EUV輻射光束,其中該波紋機包含波紋機模組及兩個或兩個以上動態相移器,該等動態相移器可操作以改變由該自由電子雷射產生之該EUV輻射光束之頻寬及/或空間功率分佈,而不會顯著改變由該自由電子雷射產生之該EUV輻射光束之功率。
根據本發明之一態樣,提供一種使用一自由電子雷射來產生一EUV輻射光束之方法,該方法包含使用一或多個動態相移器以修改電子移動與該EUV輻射之間的相對相位,且藉此改變由該自由電子雷射產生之該EUV輻射光束之功率及/或頻寬及/或空間功率分佈。
該一或多個動態相移器可包含電磁體,該等電磁體經組態在其被啟動時改變一電子軌跡之長度。
該一或多個動態相移器可包含三對電磁體,每一對提供於該電子軌跡之相對側上。
可將電流選擇性地供應至該等電磁體以啟動及切斷該等電磁體。
可控制供應至該等電磁體之該電流之大小,藉此控制由該一或多個動態相移器應用之相移之大小。
該一或多個動態相移器可包含橫向沖噴器,該等橫向沖噴器經組態在其被啟動時改變一電子軌跡之長度。
可以10kHz或大於10kHz之一頻率來控制該等動態相移器。
根據本發明之一態樣,提供一種使用一自由電子雷射來產生一EUV輻射光束之方法,該方法包含使用兩個或兩個以上動態相移器以修改由該自由電子雷射產生之該EUV輻射光束之頻寬及/或空間功率分佈,而不會顯著改變由該自由電子雷射產生之該EUV輻射光束之功率。
根據本發明之一態樣,提供一種用於判定指示一輻射光束之一功率之一值之量測裝置,其包含:一感測器;及一光學元件,其用於接收該輻射光束,該光學元件包含第一區及第二區,該第一區經配置以接收該輻射光束之一第一部分且該第二區經配置以接收該輻射光束之一第二部分,該第一區及該第二區形成該光學元件之一表面之空間上相異區;其中該第一區經進一步配置以由該第一部分形成一第一分支輻射光束且將該第一分支輻射光束引導至該感測器,該感測器經配置以判定該第一分支輻射光束之一功率,且其中該第二區經進一步配置以由該第二部分形成一第二分支輻射光束,該第二分支輻射光束未被引導至該感測器。
有利地,此配置允許在無需將感測器置放於輻射光束之路徑中的情況下來判定輻射光束之第一部分之功率。因此,本發明使能夠量測具有極高功率及強度之輻射光束之功率,否則其將把過高熱負荷置放於直接置放於該等輻射光束之路徑中之感測器上。另外,因為感測器無需被置放於輻射光束之路徑中,所以本發明提供對光學元件之第一區之尺寸不存在限制之配置。詳言之,此情形允許第一區足夠小,使得相比於將為一或多個感測器被置放於輻射光束之路徑中之狀況, 用於功率量測之強度分佈之部分(亦即,貢獻於第一分支輻射光束之部分)顯著較小。
該第一區可包含複數個空間上分離子區。
該複數個空間上分離子區可遍及該光學元件而分佈。
該複數個空間上分離子區可遍及該光學元件之一表面而形成凹座或突起部之一矩形二維格子。該複數個空間上分離子區可在該光學元件之該表面上形成其他分佈。
該光學元件可包含一光柵,且該光柵之複數個面可形成該複數個空間上分離子區。
該第一分支輻射光束可藉由該第一部分自該第一區之反射而形成。
該光學元件之該第一區可包含一螢光材料,且該第一分支輻射光束可藉由該螢光材料吸收該輻射光束之該第一部分且隨後發射形成該第一分支輻射光束的一不同波長之輻射而形成。
該第一分支輻射光束可藉由該第一部分自該第一區之散射而形成。
該光學元件可包含一掠入射鏡面。
該感測器可包含一感測元件陣列。
該感測器可包含用於在判定該第一分支輻射光束之一功率之前將該第一分支輻射光束之該波長轉換成一較長波長的一機構。
該感測器可包含用於變更該第一分支輻射光束之一脈衝持續時間之一機構。
該複數個空間上分離子區中每一者之一尺寸可為大約100微米或 小於100微米。
該複數個空間上分離子區中每一者之一尺寸可足夠小,使得在遠場中,該第二分支輻射光束之強度分佈實質上相同於該輻射光束之強度分佈。
該複數個空間上分離子區中每一者之一尺寸可足夠小,使得歸因於該複數個空間上分離子區附近之熱膨脹失真的該光學元件之一反射表面之形狀之干擾係可忽略的。
該複數個空間上分離子區中每一者之一尺寸可足夠小,使得由一單一標記發射或散射之總功率為該輻射光束之一相對小分率。
指示該輻射光束之一功率之該值可被提供至一控制元件。該控制元件可經配置以控制該輻射光束之一態樣。舉例而言,該控制元件可經配置以調整該輻射光束之一強度分佈或一平均強度。該控制器可經配置以調整該輻射光束之一位置。
根據本發明之一態樣,提供一種用於判定指示一輻射光束之一功率之一值之量測裝置,其包含:一感測器;及一光學元件,其用於接收該輻射光束,該光學元件為一光柵且包含複數個面,每一面經配置以接收該輻射光束之一部分且形成一輻射子光束,其中來自該複數個面之該等輻射子光束干涉以形成:(i)一第一分支輻射光束,其經引導至該感測器,該感測器經配置以判定該第一分支輻射光束之一功率;及(ii)一第二分支輻射光束,其未被引導至該感測器。
根據本發明之一態樣,提供一種輻射光束操控單元,其包含:根據本發明之該第一態樣之一量測裝置;一或多個輻射光束操控機構;及一控制單元,其經配置以自該感測器接收指示一功率之一信 號,且回應於該信號而控制該一或多個輻射光束操控機構以變更該輻射光束之位置。
根據本發明之一態樣,提供一種輻射源,其包含:一機構,其經配置以輸出一輻射光束;及根據本發明之該第一態樣之一量測裝置,該光學元件經配置以接收該輻射光束。
根據本發明之一態樣,提供一種微影系統,其包含:一輻射源,其用於產生一輻射光束;一或多個微影裝置;及根據本發明之該第一態樣之一量測裝置,其經配置以判定指示該輻射光束或由該輻射光束形成之一次級輻射光束之一功率之一值。
根據本發明之一態樣,提供一種微影系統,其包含:一輻射源,其用於產生一輻射光束;一或多個微影裝置;及根據本發明之該第二態樣之一輻射光束操控單元,其經配置以操控該輻射光束或由該輻射光束形成之一次級輻射光束。
根據本發明之一態樣,提供一種用於判定指示一輻射光束之一功率之一值之量測裝置,其包含:一感測器,其用於判定該輻射光束之一功率;及一機構,其用於在由該感測器判定該功率之前變更該輻射光束之一脈衝持續時間。
有利地,用於變更一脈衝持續時間之該機構可簡化對具有相對短脈衝之輻射光束之功率量測。舉例而言,一輻射光束可包含可能太短而不能由諸如快速光電二極體之已知感測元件解析之脈衝。在此等狀況下,藉由增加該脈衝持續時間,該功率可藉由此等感測元件解析。
用於變更該輻射光束之一脈衝持續時間之該機構可進一步可操 作以在由該感測器判定該功率之前將該輻射光束之一波長轉換成一較長波長。
用於變更該輻射光束之一脈衝持續時間之該機構可包含一螢光材料,該螢光材料經配置以吸收該輻射光束且隨後發射一較長波長之輻射。
根據本發明之一態樣,提供一種判定指示一輻射光束之一功率之一值之量測裝置,其包含:朝向一光學元件來引導該輻射光束,該光學元件包含第一區及第二區,該第一區經配置以接收該輻射光束之一第一部分且該第二區經配置以接收該輻射光束之一第二部分,該第一區及該第二區形成該光學元件之一表面之空間上相異區;由該第一部分形成一第一分支輻射光束;由該第二部分形成一第二分支輻射光束;將該第一分支輻射光束及該第二分支輻射光束引導至不同部位;及判定該第一分支輻射光束之一功率。
該第一區可包含複數個空間上分離子區。
該複數個空間上分離子區可遍及該光學元件而分佈。
該複數個空間上分離子區可遍及該光學元件之一表面形成凹座或突起部之一矩形二維格子。
該光學元件包含一光柵,且該光柵之複數個面可形成該複數個空間上分離子區。
該第一分支輻射光束可藉由該第一部分自該第一區之反射而形成。
該光學元件之該第一區可包含一螢光材料,且該第一分支輻射光束可藉由該螢光材料吸收該輻射光束之該第一部分且隨後發射形成 該第一分支輻射光束的一不同波長之輻射而形成。
該第一分支輻射光束可藉由該第一部分自該第一區之散射而形成。
在判定該第一分支輻射光束之該功率之前,可將該第一分支輻射光束之一波長轉換成一較長波長。
在判定該第一分支輻射光束之該功率之前,可變更該第一分支輻射光束之一脈衝持續時間。
根據本發明之一態樣,提供一種判定指示一輻射光束之一功率之一值之量測裝置,其包含:朝向一光學元件來引導該輻射光束,該光學元件包含複數個面,每一面經配置以接收該輻射光束之一部分且形成一輻射子光束;自來自該複數個面之該等輻射子光束之間的干涉而形成第一分支輻射光束及第二分支輻射光束;將該第一分支輻射光束及該第二分支輻射光束引導至不同部位;及判定該第一分支輻射光束之一功率。
根據本發明之一態樣,提供一種操控一輻射光束之方法,其包含:使用根據本發明之該第八態樣或該第九態樣之該方法來判定指示一輻射光束之一功率之一值;及回應於該經判定值而控制該輻射光束之一位置。
舉例而言,該經調整參數可為該輻射光束之一位置。該經調整參數可為該輻射光束之一強度或一強度分佈。通常,待調整之該參數可藉由任何適當構件予以調整。舉例而言,可藉由調整該輻射光束之一源或藉由調整該輻射光束之該源與該光學元件之間的該輻射光束之一路徑來進行該調整。
根據本發明之一態樣,提供一種用於調整用於一微影程序中之輻射之一強度之裝置,其包含:一第一元件,其用於接收一第一輻射光束且經配置以朝向一第二元件反射呈一第二輻射光束之形式的該第一輻射光束之一部分,該第二元件經配置以遠離該第二元件反射呈一第三輻射光束之形式的該第二輻射光束之一部分;及調整構件,其經調適以調整該第一輻射光束與該第一元件及該第二輻射光束與該第二元件中至少一者之間的一入射角以便變化該第三輻射光束之一強度。
以此方式,第一態樣提供一種用於有效率地調整進入衰減裝置之輻射之衰減,藉此調整自該衰減裝置輸出之輻射光束之強度的裝置。第一態樣提供一種可以機械上有效率且直接之方式予以實施,同時允許第三輻射光束之強度之快速調整之機構。
該第三輻射光束可自衰減裝置(例如)朝向一微影裝置輸出。替代地,該第三輻射光束可經引導朝向一另外衰減裝置。
該第一元件處之該第一輻射光束之該入射角可相同於該第二元件處之該第二輻射光束之該入射角。該裝置可經配置以確保該第一輻射光束相對於該第一元件之該入射角總是實質上相同於該第二輻射光束相對於該第二元件之該入射角。以此方式,該第三輻射光束係在實質上相同於該第一輻射光束之傳播方向的方向上自該第三元件反射。
該調整構件可經調適以將該第一輻射光束之該入射角及該第二輻射光束之該入射角調整為介於大約1度與大約10度之間。
該第一元件可經配置以圍繞一第一點而旋轉,及/或該第二元件可經配置以圍繞一第二點而旋轉。該調整構件可經配置以選擇性地旋轉該第一元件及該第二元件中至少一者以用該第一元件及該第二元件 調整該第一輻射光束之該入射角或該第二輻射光束之該入射角。此情形提供實施第一態樣之特別有效且簡單方式。
該第一元件可經配置以圍繞該第一點而旋轉達大約9度之一角度,及/或該第二元件經配置以圍繞該第二點而旋轉達大約9度之一角度。
該衰減裝置可進一步包含:一第三元件,該第三元件用於接收該第三輻射光束且用於反射呈一第四輻射光束之形式的該第三輻射光束之一部分;及一第四元件,其用於接收該第四輻射光束且用於遠離該第四元件反射呈一第五輻射光束之形式的該第四輻射光束之一部分。
藉由提供該第三元件及該第四元件,該衰減裝置之一衰減範圍可得以增加。替代地或另外,提供該第三元件及該第四元件會允許針對一給定衰減縮減藉由該衰減裝置之該等元件之反射對輻射之一偏振之一效應。
該調整構件可經調適以調整該第三輻射光束與該第三元件及該第四輻射光束與該第四元件中至少一者之間的一入射角。
該調整構件可經調適以用該等各別第一、第二、第三及第四元件來將該第一輻射光束、該第二輻射光束、該第三輻射光束及該第四輻射光束之該入射角調整為介於大約1度與大約5度之間。以此方式,可在較佳地維持在該第三輻射光束中該第一輻射光束之一偏振的同時達成大約8%與20%之間的一衰減範圍。
該第一元件可經配置以圍繞一第一點而旋轉、該第二元件經配置以圍繞一第二點而旋轉、該第三元件經配置以圍繞一第三點而旋 轉,且該第四元件經配置以圍繞一第四點而旋轉。該調整構件可經配置以選擇性地旋轉該第一元件、該第二元件、該第三元件及該第四元件中至少一者,以用該等各別第一、第二、第三或第四元件來調整該第一輻射光束之該入射角、該第二輻射光束之該入射角、該第三輻射光束之該入射角或該第四輻射光束之該入射角。
該第一元件、該第二元件、該第三元件及該第四元件中每一者可經配置以圍繞該等各別第一、第二、第三或第四點而旋轉達大約4度之一角度。
該裝置可進一步包含經配置以控制該調整構件之一控制器。
該控制器可經配置以自一感測器接收一輻射強度之指示,且回應於該等指示而控制該調整構件。以此方式,由該第一衰減裝置提供之該衰減可受到較好地控制。該控制器可(例如)包含經配置以將提供於一預定部位處之輻射之一強度維持於一預定強度範圍內之一控制迴路之部件。
該裝置可包含一另外衰減裝置。該另外衰減裝置可包含固定衰減裝置。亦即,該另外衰減裝置可提供不可變化之一衰減,或相比於使用該第一元件及該第二元件或使用該第一元件至該第四元件可達成之衰減之變化,可僅變化達一少量之一衰減。該另外衰減裝置可提供大於可變衰減器之衰減的一衰減因數。舉例而言,該另外衰減裝置可提供為10之衰減因數。
替代地,該另外衰減裝置可包含可調整衰減裝置。該另外衰減裝置可調整達比該第一衰減裝置大的一衰減範圍,但可以比該第一衰減裝置可被調整之頻率低的一頻率可調整。
該另外衰減裝置可包含含有一EUV吸收介質之一腔室,該腔室配置於一輻射光束之路徑中。
該另外衰減裝置可包含一壓力感測器,該壓力感測器可操作以監視該腔室內之一壓力。
該另外衰減裝置可包含一氣體入口及一氣體出口。
該裝置可進一步包含一第二控制器,其中該第二控制器係與該壓力監視器通信,且經配置以控制該氣體入口及該氣體出口以將該腔室內之一壓力維持於一預定範圍內。
該第一控制器及該第二控制器可為相同控制器。
該調整構件可包含用於待調整之每一元件之各別調整構件。
該裝置可進一步包含一反射隔膜,該反射隔膜經安置成相對於該等輻射光束中之一者之傳播方向成一非垂直角度,其中該反射隔膜經配置以透射該等輻射光束中之該一者之一部分且反射該等輻射光束中之該一者之一部分。
該等輻射光束中之該一者可為(例如)該第一輻射光束、該第二輻射光束、該第三輻射光束,或該第四輻射光束。
根據本發明之一態樣,提供一種微影系統,其包含:一輻射源,其可操作以產生一主輻射光束;根據該第一態樣之一衰減裝置,其經配置以接收該主輻射光束之至少一部分;及至少一微影裝置,該至少一微影裝置經配置以自該衰減裝置接收一經衰減輻射光束。
舉例而言,該主輻射或該主輻射光束之一部分可提供上文關於該第一態樣所描述之該第一輻射光束。
該微影系統可包含一光束分裂裝置,該光束分裂裝置經配置以 接收一輻射光束且輸出至少一分支輻射光束。該衰減裝置可經配置以接收該至少一分支輻射光束。
該光束分裂裝置可經配置以輸出複數個分支輻射光束。該微影系統可包含用於該複數個分支輻射光束中每一者之一各別衰減裝置,每一衰減裝置經配置以接收該複數個分支輻射光束中之一各別分支輻射光束。
替代地,該微影系統可包含用於該複數個分支輻射光束中之一些之一或多個衰減裝置。亦即,一些分支輻射光束可不傳遞通過該微影系統中之一衰減裝置。
該輻射源可包含一或多個自由電子雷射。
該至少一微影裝置可包含一或多個光罩檢測裝置。
該主輻射光束可包含EUV輻射。
應瞭解,本發明之態樣可以任何方便方式(包括藉由合適硬體及/或軟體)來實施。替代地,可程式化器件可經程式化以實施本發明之實施例。因此,本發明亦提供用於實施本發明之態樣之合適電腦程式。此等電腦程式可攜載於合適載體媒體上,該等合適載體媒體包括有形載體媒體(例如,硬碟、CD ROM等等)及諸如通信信號之無形載體媒體。
本發明之一或多個態樣可與本文所描述之任一或多個其他態樣組合,及/或與先前或以下描述中所描述之任一或多個特徵組合。
8:開口
10:琢面化場鏡面器件/光學件
11:琢面化光瞳鏡面器件/光學件
13:鏡面/光學件
14:鏡面/光學件
15a:衰減器
15b:衰減器
15n:衰減器
19:光束分裂裝置
21:注入器
22:線性加速器
23:聚束壓縮器
24:波紋機
24a:調整機構
26:電子減速器/減速機構
31:電子槍
32:真空腔室
33:電子升壓器
34:光束通道
35:輻射源/雷射
37:窗口
39:鏡面
41:輻射光束/雷射光束
42:電子聚束/第一電子聚束/第三電子聚束
42':電子聚束/第二電子聚束
43:光電陰極
47:射頻空腔
51:第一控制裝置
51':第一控制裝置
52:第二控制裝置
61:勃克爾盒
61a:第一勃克爾盒
61b:第二勃克爾盒
62:電光晶體
62a:電光晶體
62b:電光晶體
63:電壓源
63a:電壓源
63b:電壓源
64:電極
64a:電極
64b:電極
65:偏振器
65a:第一偏振器
65b:第二偏振器
67:電線/纜線
67a:電線
67b:電線
71:軌跡
72:光束截止器
73:電壓源
74:導電板
75:電阻器
77:電線
100:光束截止器
130:裝置
131:鏡面
132:鏡面
133:鏡面
134:掠入射鏡面
135:掠入射鏡面
140a:導電管路
140b:導電管路
141a:凹座
141b:凹座
142a:突起部
142b:突起部
222a:超導電射頻空腔
222b:高功率放大器
222c:波導
225:低功率射頻源/低功率射頻電源
230:可調整聚束壓縮器
232:正常導電諧振空腔
234:被動式磁性壓縮器
236:放大器
238:波導
260:可調整聚束壓縮器
262:正常導電諧振空腔/射頻空腔
264:磁性壓縮器
265:低功率射頻電源/低功率射頻源
266:放大器
268:波導
300:波紋機模組
302:間隙
304:動態相移器
306a:電磁體/第一磁體
306b:第二電磁體
307a:電磁體
307b:電磁體
308a:電磁體
308b:電磁體
310:電線迴路
320:導電保護管件/金屬保護管件
321:支撐管件
322:開口
330:橫向沖噴空腔
331:橫向沖噴空腔
332:橫向沖噴空腔
400:感測器裝置
400a:感測器裝置
400b:感測器裝置
410:感測器
411:螢光螢幕
413:纜線
414:經離散取樣強度分佈
415:感測環境
415a:感測環境
420:光學元件
421:反射表面
422:標記
422a:螢光標記
425:主光束環境
425a:主光束環境
430:壁
430a:壁
431:透明隔膜/窗口
440:光學元件
441:反射光學元件/專用光學件
442:聚焦光學元件/專用光學件
470:感測器裝置
471:感測器
472:光學元件
473:反射表面
474:第二光學元件
475:頂部面
476a:面
476b:面
480:感測器裝置
481:感測器
482:近正入射輻射收集器
483:孔隙
485:孔隙
486:光學元件
515a:衰減器
519:第一衰減裝置
520:第一鏡面
520':臂狀物
521:第二鏡面
521':臂狀物
522:第一樞軸點
523:第二樞軸點
530:第一鏡面
530':臂狀物
531:第二鏡面
531':臂狀物
532:第三鏡面
533:第四鏡面
534:第一樞軸點
535:第二樞軸點
536:第三樞軸點
537:第四樞軸點
540:衰減裝置
541:外殼
542:腔室
543:第一窗口
544:第二窗口
545:氣體入口
546:氣體閥
547:壓力監視器
551:管件
552:氣體供應件
553a:閥
553b:閥
553c:閥
554a:氣體入口/出口
554b:氣體入口
554c:氣體入口
555a:出口
555b:出口
555c:出口
556a:真空泵
557:排氣裝置
558:差異抽汲區段
559:差異抽汲區段
560:壁
561:泵
570:隔板
571:致動器
572:緩衝器體積
580:極紫外線(EUV)反射隔膜
581:分支輻射光束之部分
582:輻射截止器
B:極紫外線(EUV)輻射光束/主輻射光束/輸出輻射光束/初級輻射光束/入射輻射光束
B1:輻射光束之第一部分
B2:輻射光束之第二部分
B1:第一分支輻射光束
B2:第二分支輻射光束
B3:第三分支輻射光束
Ba:分支輻射光束/次級輻射光束/射出分支輻射光束/入射分支輻射光束
Ba':輻射光束/經圖案化輻射光束
Bb:分支輻射光束/次級輻射光束
Bn:分支輻射光束
CT:控制器
CTA:控制器
CTAa:控制器
CTAb:控制器
CTAn:控制器
E:聚束式電子束/電子聚束
E1:電子束軌跡/直線路徑
E2:路徑/電子束/軌跡/軌道路徑
F1:第一以回饋為基礎之控制迴路
F2a:第二以回饋為基礎之控制迴路
F2b:第二以回饋為基礎之控制迴路
F2n:第二以回饋為基礎之控制迴路
FEL:自由電子雷射
IL:照明系統
LAa:微影裝置
LAb:微影裝置
LAn:微影裝置
LS:微影系統
MA:圖案化器件/光罩
MT:支撐結構
PS:微影裝置投影系統
S:信號/輸入信號
S':信號
S1:輸入信號
SLa:感測器
SLb:感測器
SLn:感測器
ST:輻射感測器裝置
W:基板
WT:基板台
現在將僅藉由實例參看隨附示意性圖式來描述本發明之實施例,在該等圖式中: - 圖1為根據本發明之一實施例之微影系統的示意性說明;- 圖2為形成圖1之微影系統之部件之微影裝置的示意性說明;- 圖3為形成圖1之微影系統之部件之自由電子雷射的示意性說明;- 圖4為可形成圖3之自由電子雷射之部件之注入器的示意性說明;- 圖5為可形成圖4之注入器之部件之第一控制裝置的示意性說明;- 圖6為可形成圖4之注入器之部件之第一控制裝置之替代實施例的示意性說明;- 圖7為可由圖6之第一控制裝置之操作引起的偏振旋轉及透射輻射功率之示意性表示;- 圖8為可形成圖4之注入器之部件之第二控制裝置的示意性說明;- 圖9示意性地描繪根據本發明之一實施例的自由電子雷射;- 圖10示意性地描繪用於將經線性偏振輻射之光束轉換成圓形偏振輻射之裝置;- 圖11A及圖11B示意性地描繪可形成減速機構之部件之導電管路的兩個不同幾何形狀;- 圖12為根據本發明之一實施例的自由電子雷射之示意性說明,其可形成圖1之微影系統之部件;- 圖13為根據本發明之一實施例的自由電子雷射之示意性說明,其可形成圖1之微影系統之部件; - 圖14示意性地描繪根據本發明之一實施例之自由電子雷射的波紋機;- 圖15示意性地描繪可形成波紋機之部件之動態相移器的一實施例;- 圖16示意性地描繪可形成波紋機之部件的保護管件;- 圖17示意性地描繪動態相移器之替代實施例;- 圖18示意性地描繪根據本發明之一實施例之量測裝置的實施例;- 圖19示意性地描繪形成圖18之量測裝置之部件之光學元件的平面圖;- 圖20示意性地描繪經由圖19中之線A-A的形成圖18之量測裝置之部件之光學元件的橫截面圖;- 圖21示意性地描繪圖18之量測裝置之部件及由量測裝置之感測器判定之經離散取樣強度分佈;- 圖22示意性地描繪經由圖19中之線A-A的可形成圖18之量測裝置之部件之光學元件之替代實施例的橫截面圖;- 圖23示意性地描繪量測裝置之替代實施例;- 圖24示意性地描繪量測裝置之另外替代實施例;- 圖25示意性地描繪量測裝置之另外替代實施例;- 圖26示意性地描繪可形成圖25之量測裝置之部件的光學元件之區段的橫截面圖;- 圖27示意性地描繪量測裝置之另外替代實施例;- 圖28(包含圖28a及圖28b)為圖1之微影系統之衰減裝置的示意 性說明;- 圖29為圖1之微影系統之替代衰減裝置的示意性說明;- 圖30a、圖30b為圖1之微影系統之另外衰減裝置的示意性說明;- 圖31及圖32為圖1之微影系統之另外衰減裝置的示意性說明;及- 圖33為圖1之微影系統之另外衰減裝置的示意性說明。
圖1展示根據本發明之一實施例的微影系統LS。該微影系統LS包含一自由電子雷射FEL、一光束遞送系統,及複數個微影裝置LAa至LAn(例如,八個微影裝置)。自由電子雷射FEL經組態以產生極紫外線(EUV)輻射光束B(其可被稱作主光束)。控制器CT控制自自由電子雷射FEL發射之EUV輻射之功率。感測器裝置ST監視由自由電子雷射光束輸出之EUV輻射光束之功率或與EUV輻射光束之功率相關之參數。控制器CT基於偵測器之輸出而調整自由電子雷射。因此,提供以回饋為基礎之控制迴路,如由虛線F1所指示。感測器裝置ST可提供於任何合適部位處。下文中進一步描述可用以控制自由電子雷射FEL之輸出功率之裝置及方法。此等裝置及方法可(例如)用以縮減自自由電子雷射輸出之EUV輻射光束之功率之波動(例如,當功率遍及諸如1毫秒之曝光時間週期而平均化時)。下文中進一步描述可用以在維持實質上恆定波長的同時調整自由電子雷射之輸出功率之裝置及方法。
感測器裝置ST可(例如)為經組態以監視EUV輻射光束之功率(例如,藉由分裂並量測EUV輻射光束之分率)之EUV輻射偵測器。感測 器裝置可(例如)為量測自由電子雷射FEL之電子束中之電流之感測器。此可(例如)為已供執行輸出信號對電子電流之校準之光束位置監視器。電子束中之電流可與EUV輻射光束功率相關(例如,在自由電子雷射之轉換效率恆定的情況下)。感測器裝置可(例如)為用以監視用以產生用於電子束之電子之雷射光束之功率的偵測器(例如,如下文中關於圖4所描述)。雷射光束之功率可與EUV輻射光束功率相關。感測器裝置可(例如)為經組態以量測入射於光束截止器處之電子束之電子之電荷的法拉第筒(Faraday cup)(或其等效者)。入射於光束截止器處之電子之電荷可(例如)與EUV輻射光束功率相關。
光束遞送系統包含一光束分裂裝置19且可視情況亦包含光束展開光學件(圖中未繪示)。主輻射光束B分裂成複數個輻射光束Ba至Bn(其可被稱作分支光束),該複數個輻射光束中每一者係由光束分裂裝置19引導至微影裝置LAa至LAn中之不同微影裝置。分支輻射光束Ba至Bn可自主輻射光束連續地分裂,其中每一分支輻射光束自主輻射光束自前一分支輻射光束下游分裂。當為此狀況時,分支輻射光束可(例如)實質上平行於彼此而傳播。
選用光束展開光學件(圖中未繪示)經配置以增加輻射光束B之橫截面面積。有利地,此情形減低光束展開光學件下游之鏡面上之熱負荷。此情形可允許光束展開光學件下游之鏡面具有較低規範、具有較小冷卻,且因此較不昂貴。另外或替代地,其可允許下游鏡面較接近正入射。光束分裂裝置19可包含配置於光束B之路徑中之複數個靜態擷取鏡面(圖中未繪示),該複數個靜態擷取鏡面自主光束B沿著複數個分支輻射光束Ba至Bn來引導輻射。增加主光束B之大小會縮減鏡面 必須定位於光束B路徑中之準確度。因此,此情形允許由分裂裝置19更準確地分裂輸出光束B。舉例而言,光束展開光學件可操作以在主光束B由光束分裂裝置19分裂之前將主光束B自大約100微米展開至大於10公分。
在一實施例中,分支輻射光束Ba至Bn各自經引導通過一各別衰減器15a至15n。每一衰減器15a至15n經配置以在一各別分支輻射光束Ba至Bn傳遞至其對應微影裝置LAa至LAn中之前調整該分支輻射光束Ba至Bn之強度。每一衰減器15a至15n可受到控制器CTAa至CTAn使用自與彼衰減器相關聯之微影裝置提供之回饋控制。舉例而言,微影裝置LAn可包括一感測器SLn,該感測器監視彼微影裝置內之分支輻射光束Bn之強度。來自感測器SLn之輸出可用以控制衰減器15n。因此,提供以回饋為基礎之控制迴路,如由虛線F2n所指示。感測器SLn可提供於微影裝置LAn中之任何合適部位處。舉例而言,感測器SLn可位於微影裝置之投影系統之後(例如,處於微影裝置之基板支撐台處)。替代地,感測器SLn可位於微影裝置之投影系統之前(例如,處於微影裝置之照明系統與光罩支撐結構之間)。
第一以回饋為基礎之控制迴路F1相比於第二以回饋為基礎之控制迴路F2n可具有較快速回應。
第一以回饋為基礎之控制迴路F1可在10kHz或大於10kHz(例如,50kHz或大於50kHz)之頻率下操作。舉例而言,第一以回饋為基礎之控制迴路可在大約100kHz或大於100kHz之頻率下操作。第二以回饋為基礎之控制迴路可在1kHz或小於1kHz之頻率下操作。
在一實施例中,控制第一回饋迴路之控制器CT可經組態以考量 (例如)光束分裂器19及/或微影裝置LAa至LAn之光學件之透射。當為此狀況時,控制器CT可經由控制自由電子雷射FEL而控制經遞送至微影裝置中之微影基板之輻射劑量。
在一實施例中,可將回饋自微影裝置LAa至LAn中之感測器提供至控制自由電子雷射FEL之控制器CT。感測器可(例如)提供於微影裝置之照明系統中。可將來自一個以上微影裝置LAa至LAn中之感測器之回饋提供至控制自由電子雷射FEL之控制器CT。
微影基板上之目標部位可接收EUV輻射歷時大約1毫秒。經由自由電子雷射FEL之以回饋為基礎之控制來控制遞送至微影基板之EUV輻射之功率可在微影基板上之目標部位處提供曝光劑量之改良型一致性。在10kHz或大於10kHz之頻率下操作之以回饋為基礎之控制迴路將提供在1毫秒內遞送之曝光劑量之一些控制。在50kHz或大於50kHz之頻率下操作之以回饋為基礎之控制迴路將提供在1毫秒內遞送之曝光劑量之改良型控制(其可允許更完全地消除EUV輻射光束之功率之波動)。在100kHz或大於100kHz之頻率下操作之以回饋為基礎之控制迴路可提供在1毫秒內遞送之曝光劑量之又另外改良型控制。在1MHz或大於1MHz之頻率下操作之用於自由電子雷射FEL之以回饋為基礎之控制迴路可能不提供在劑量控制方面之任何顯著額外益處,此係因為1毫秒曝光時間係使得在此等頻率下之EUV輻射波動將在曝光時間期間有效地達到平均數。
控制器CT及/或控制器CTAa至CTAn可併入有一些前饋控制,該等前饋控制考量為吾人所知且將在已知情況下發生之輻射光束參數之改變(例如,緊接在自由電子雷射開始操作之後發生的輻射光束改變)。
輻射源SO、光束分裂裝置19、光束展開光學件(若存在)及微影裝置LAa至LAn可皆經建構及配置成使得其可與外部環境隔離。真空可提供於輻射源SO、光束分裂裝置19及微影裝置LAa至LAn之至少部分中以便最小化EUV輻射之吸收。微影系統LS之不同部件可在不同壓力下具備真空(亦即,經保持處於低於大氣壓力之不同壓力下)。
參看圖2,微影裝置LAa包含一照明系統IL、經組態以支撐圖案化器件MA(例如,光罩)之一支撐結構MT、一投影系統PS,及經組態以支撐基板W之一基板台WT。照明系統IL經組態以在由微影裝置LAa接收之分支輻射光束Ba入射於圖案化器件MA上之前調節該分支輻射光束Ba。投影系統PS經組態以將輻射光束Ba'(現在藉由圖案化器件MA而圖案化)投影至基板W上。基板W可包括先前形成之圖案。當為此狀況時,微影裝置將經圖案化輻射光束Ba'與先前形成於基板W上之圖案對準。
由微影裝置LAa接收之分支輻射光束Ba自光束分裂裝置19通過照明系統IL之圍封結構中之開口8而傳遞至照明系統IL中。視情況,分支輻射光束Ba可聚焦以在開口8處或附近形成中間焦點。
照明系統IL可包括琢面化場鏡面器件10及琢面化光瞳鏡面器件11。琢面化場鏡面器件10及琢面化光瞳鏡面器件11一起提供具有所要橫截面形狀及所要角分佈之輻射光束Ba。輻射光束Ba自照明系統IL傳遞且入射於由支撐結構MT固持之圖案化器件MA上。圖案化器件MA反射並圖案化輻射光束以形成經圖案化光束Ba'。除了琢面化場鏡面器件10及琢面化光瞳鏡面器件11以外或代替琢面化場鏡面器件10及琢面化光瞳鏡面器件11,照明系統IL亦可包括其他鏡面或器件。舉例而 言,照明系統IL可包括可獨立移動鏡面陣列。可獨立移動鏡面可(例如)有小於1毫米寬。可獨立移動鏡面可(例如)為微機電系統(MEMS)器件。
在自圖案化器件MA之重定向(例如,反射)之後,經圖案化輻射光束Ba'進入投影系統PS。投影系統PS包含複數個鏡面13、14,該複數個鏡面13、14經組態以將輻射光束Ba'投影至由基板台WT固持之基板W上。投影系統PS可將縮減因數應用於輻射光束,從而形成具有小於圖案化器件MA上之對應特徵之特徵的影像。舉例而言,可應用為4之縮減因數。儘管在圖2中投影系統PS具有兩個鏡面,但投影系統可包括任何數目個鏡面(例如,六個鏡面)。
微影裝置LAa可操作以在輻射光束Ba之橫截面中向輻射光束Ba賦予圖案且將經圖案化輻射光束投影至基板之目標部分上,藉此將基板之目標部分曝光至經圖案化輻射。微影裝置LAa可(例如)用於掃描模式中,其中在將被賦予至輻射光束Ba'之圖案投影至基板W上時,同步地掃描支撐結構MT及基板台WT(亦即,動態曝光)。可藉由投影系統PS之縮小率及影像反轉特性來判定基板台WT相對於支撐結構MT之速度及方向。入射於基板W上之經圖案化輻射光束Ba'可包含輻射帶。輻射帶可被稱作曝光隙縫。在掃描曝光期間,基板台WT及支撐結構MT之移動係使得曝光隙縫在基板W之目標部分上行進,藉此將基板W之目標部分曝光至經圖案化輻射。應瞭解,基板W之目標部分內之給定部位曝光至之輻射劑量取決於輻射光束Ba'之功率及在曝光隙縫遍及該部位進行掃描時彼部位曝光至輻射之時間量(圖案之效應在此例子中被忽略)。術語「目標部位」可用以表示基板上之曝光至輻射(且可 演算所接收輻射劑量)之部位。
圖2展示衰減器15a,該衰減器15a被提供於微影裝置之前。下文中進一步描述衰減器15a之實施例。微影裝置可具備經組態以量測微影裝置中之EUV輻射光束之功率之感測器。感測器可(例如)提供於照明系統IL中,如由虛線SLa示意性地所指示。另外或替代地,感測器可提供於投影系統之後。感測器可(例如)提供於基板台上,如由虛線SLa示意性地所指示。控制器CTAa可控制由衰減器15a提供之衰減。控制器CTAa可自感測器SLa接收信號且使用此信號以至少部分地控制衰減。因此,可提供以回饋為基礎之控制迴路。
再次參看圖1,自由電子雷射FEL經組態以產生具有足夠功率之EUV輻射光束B以供應微影裝置LAa至LAn中每一者。如上文所提及,輻射源可包含自由電子雷射。
自由電子雷射包含電子源及加速器,該電子源及該加速器可操作以產生聚束式相對論性電子束及相對論性電子聚束經引導通過之週期性磁場。週期性磁場係由波紋機產生且造成電子遵循圍繞中心軸線之振盪路徑。由於由磁性結構造成之加速,電子大體上在中心軸線之方向上自發地輻射電磁輻射。相對論性電子與波紋機內之輻射相互作用。在某些條件下,此相互作用造成電子一起聚束成在波紋機內之輻射之波長下調變之微束,且刺激沿著中心軸線之輻射之相干發射。
由電子遵循之路徑可為正弦的且平面的,其中電子週期性地橫穿中心軸線;或可為螺旋狀,其中電子圍繞中心軸線而旋轉。振盪路徑之類型可影響由自由電子雷射發射之輻射之偏振。舉例而言,造成電子沿著螺旋狀路徑傳播之自由電子雷射可發射橢圓形偏振輻射,其 可理想地用於基板W藉由一些微影裝置之曝光。
圖3為自由電子雷射FEL之示意性描繪,該自由電子雷射FEL包含一注入器21、一線性加速器22、一聚束壓縮器23、一波紋機24、一電子減速器26及一光束截止器100。
注入器21經配置以產生聚束式電子束E,且包含電子源(諸如,熱離子陰極或光電陰極)及加速電場。電子束E中之電子係由線性加速器22進一步加速。在一實例中,線性加速器22可包含複數個射頻空腔,其沿著一共同軸線而軸向地間隔;及一或多個射頻電源,其可操作以在電子聚束在其之間傳遞時控制沿著共同軸線之電磁場以便加速每一電子聚束。空腔可為超導電射頻空腔。有利地,此情形允許:在高作用區間循環下待施加之相對大電磁場;較大光束孔徑,從而引起歸因於尾流場之較少損耗;且允許增加透射至光束(相對於通過空腔壁而耗散)之射頻能量之分率。或,空腔可為習知導電的(亦即,並不超導電),且可由(例如)銅形成。可使用其他類型之線性加速器。舉例而言,雷射尾流場加速器或反向自由電子雷射加速器。
電子束E傳遞通過安置於線性加速器22與波紋機24之間的聚束壓縮器23。聚束壓縮器23經組態以使電子束E中之電子聚束且空間上壓縮電子束E中之現有電子聚束。一種類型之聚束壓縮器23包含橫向於電子束E而引導之輻射場。電子束E中之電子與輻射相互作用且與附近之其他電子聚束。另一類型之聚束壓縮器23包含磁性軌道(magnetic chicane),其中在電子傳遞通過該軌道時由該電子遵循之路徑之長度取決於其能量。此類型之聚束壓縮器可用以壓縮已在線性加速器22中藉由電位在(例如)射頻下振盪之複數個導體加速之電子聚束。
電子束E接著傳遞通過波紋機24。通常,波紋機24包含複數個模組。每一模組包含一週期性磁體結構,該週期性磁體結構可操作以產生週期性磁場且經配置以便沿著彼模組內之週期性路徑導引由注入器21及線性加速器22產生之相對論性電子束E。結果,在每一波紋機模組內,電子大體上在其通過彼模組之週期性路徑之中心軸線之方向上輻射電磁輻射。波紋機24可進一步包含用以將電子束E(諸如,四極磁體)重新聚焦於一對或多對鄰近區段之間之機構。用以重新聚焦電子束E之機構可縮減電子聚束之大小,此情形可改良電子與波紋機24內之輻射之間的耦合,從而增加輻射之發射之刺激。
在電子移動通過每一波紋機模組時,其與輻射之電場相互作用,從而與輻射交換能量。一般而言,除非條件接近由如下方程式給出之諧振條件,否則在電子與輻射之間交換之能量之量將快速地振盪:
Figure 108129836-A0305-02-0050-1
其中λ em 為輻射之波長;λ u 為用於電子正傳播通過之波紋機模組之波紋機週期;γ為電子之勞侖茲(Lorentz)因數;且K為波紋機參數。A取決於波紋機24之幾何形狀:對於產生圓形偏振輻射之螺旋狀波紋機,A=1;對於平面波紋機,A=2;及對於產生橢圓形偏振輻射(其既不圓形偏振亦不線性偏振)之螺旋狀波紋機,1<A<2。實務上,每一電子聚束將具有一能量散佈,但可儘可能地最小化此散佈(藉由產生具有低發射率之電子束E)。波紋機參數K通常為大約1且由如下方程式給出:
Figure 108129836-A0305-02-0050-2
其中qm分別為電荷及電子質量;B 0 為週期性磁場之振幅;且c為光速。
諧振波長λ em 等於由移動通過每一波紋機模組之電子自發地輻射之第一諧波波長。自由電子雷射FEL可在自放大式自發發射(SASE)模式中操作。SASE模式中之操作可在電子束E進入每一波紋機模組之前需要電子束E中之電子聚束之低能量散佈。替代地,自由電子雷射FEL可包含晶種輻射源,該晶種輻射源可藉由波紋機24內之受刺激發射放大。自由電子雷射FEL可作為再循環放大器自由電子雷射(RAFEL)而操作,其中由自由電子雷射FEL產生之輻射之一部分係用以接種輻射之進一步產生。
移動通過波紋機24之電子可造成輻射之振幅增加,亦即,自由電子雷射FEL可具有非零增益。可在滿足諧振條件時或在條件接近但稍微偏離諧振時達成最大增益。
圍繞每一波紋機模組之中心軸線之區可被認為係「良好場區」。良好場區可為圍繞中心軸線之體積,其中對於沿著波紋機模組之中心軸線之給定位置,該體積內之磁場之量值及方向實質上恆定。傳播於良好場區內之電子聚束可滿足方程式(1)之諧振條件且因此將放大輻射。另外,傳播於良好場區內之電子束E應不經歷歸因於無補償磁場之顯著未預期破裂。
每一波紋機模組可具有一可接受初始軌跡範圍。順著此可接受初始軌跡範圍內之一初始軌跡進入波紋機模組的電子可滿足方程式(1)之諧振條件且與彼波紋機模組中之輻射相互作用以刺激相干輻射之發射。相比而言,順著其他軌跡進入波紋機模組之電子可能不刺激 相干輻射之顯著發射。
舉例而言,通常對於螺旋狀波紋機模組,電子束E應與波紋機模組之中心軸線實質上對準。電子束E與波紋機模組之中心軸線之間的傾角或角度大體上應不超過1/10ρ,其中ρ為皮耳士(Pierce)參數。否則,波紋機模組之轉換效率(亦即,在彼模組中轉換至輻射之電子束E之能量之部分)可下降低於所要量(或可幾乎下降至零)。在一實施例中,EUV螺旋狀波紋機模組之皮耳士參數可為大約0.001,從而指示電子束E相對於波紋機模組之中心軸線之傾角應小於100微弧度。
對於平面波紋機模組,較大初始軌跡範圍可為可接受的。倘若電子束E保持實質上垂直於平面波紋機模組之磁場且保持處於該平面波紋機模組之良好場區內,則可刺激輻射之相干發射。
在電子束E之電子移動通過每一波紋機模組之間的漂移空間時,該等電子不遵循週期性路徑。因此,在此漂移空間中,儘管電子與輻射空間上重疊,但其不與輻射交換任何顯著能量且因此自輻射有效地解耦。
聚束式電子束E具有有限發射率,且因此除非重新聚焦,否則直徑將會增加。因此,波紋機24進一步包含用於將電子束E重新聚焦於一對或多對鄰近模組之間之機構。舉例而言,四極磁體可提供於每一對鄰近模組之間。四極磁體縮減電子聚束之大小,且將電子束E保持於波紋機24之良好場區內。此情形改良電子與下一波紋機模組內之輻射之間的耦合,從而增加輻射之發射之刺激。
在滿足諧振條件之電子進入波紋機24時該電子將在其發射(或吸收)輻射時損耗(或獲得)能量,使得諧振條件不再得以滿足。因此,在 一些實施例中,波紋機24可成楔形。亦即,週期性磁場之振幅及/或波紋機週期λ u 可沿著波紋機24之長度而變化,以便在電子聚束被導引通過波紋機24時將該等電子聚束保持處於或接近諧振。可藉由變化每一波紋機模組內及/或模組間之週期性磁場之振幅及/或波紋機週期λ u 來達成成楔形。另外或替代地,可藉由變化每一波紋機模組內及/或模組間之波紋機24之螺旋性(藉此變化參數A)來達成成楔形。
在離開波紋機24之後,電子束E係由截止器100吸收。截止器100可包含用以吸收電子束E之足夠數量的材料。材料可具有用於誘發放射性之臨限能量。進入具有低於臨限能量之能量之截止器100的電子可僅產生伽瑪射線射叢,但將不誘發任何顯著放射性位準。材料由於電子影響而可具有用於誘發放射性之高臨限能量。舉例而言,光束截止器可包含鋁(Al),其具有大約17MeV之臨限能量。需要在電子束E中之電子進入截止器100之前縮減該等電子之能量。此情形移除或至少縮減自截止器100移除放射性廢料及安置放射性廢料之需要。此情形有利,此係因為放射性廢料之移除需要週期性地關斷自由電子雷射FEL且放射性廢料之安置可為成本高的且可具有嚴重環境影響。
可在電子束E中之電子進入截止器100之前藉由將電子束E引導通過安置於波紋機24與光束截止器100之間的減速器26來縮減該等電子之能量。
在一實施例中,射出波紋機24之電子束E可藉由以相對於線性加速器22中之射頻(RF)場之180度相位差將電子返回傳遞通過線性加速器22而得以減速。因此,線性加速器中之RF場用以使自波紋機24輸出之電子減速。隨著電子在線性加速器22中減速,其能量中之一些被 轉移至線性加速器22中之RF場。因此,來自減速電子之能量係由線性加速器22恢復且可用以使自注入器21輸出之電子束E加速。此配置被稱為能量恢復線性加速器(ERL)。
圖4為注入器21之一實施例的示意性描繪。注入器21包含一電子槍31及一電子升壓器33。電子槍31經配置以支撐真空腔室32內部之光電陰極43。電子槍31經進一步配置以自輻射源35接收輻射光束41。輻射源35可(例如)包含發射雷射光束41之雷射35。雷射光束41通過窗口37而引導至真空腔室32中且入射於光電陰極43上。在圖4所展示之實施例中,雷射光束41係由鏡面39反射,使得其入射於光電陰極43上。
光電陰極43被保持處於高電壓。舉例而言,光電陰極43可被保持處於大約幾百千伏特之電壓。光電陰極43可藉由使用可形成電子槍32之部件或可與電子槍32分離之電壓源而保持處於高電壓。雷射光束41中之光子係由光電陰極43吸收且激發光電陰極43中之電子。光電陰極43中之一些電子被激發至使其自光電陰極43發射之足夠高能量狀態。光電陰極43之高電壓為負且因此用以使自光電陰極43發射遠離光電陰極43之電子加速,藉此形成電子束E。
雷射光束41為脈衝式雷射光束。電子係自光電陰極43以對應於雷射光束41之脈衝之聚束之形式發射。因此,電子束E包含一系列電子聚束42。雷射35可(例如)為皮秒雷射,且因此雷射光束41中之脈衝可具有大約幾皮秒之持續時間。光電陰極43之電壓可為DC電壓或AC電壓。在光電陰極43之電壓為AC電壓之實施例中,光電陰極電壓之頻率及相位可與雷射光束41之脈衝匹配使得雷射光束41之脈衝與光電陰極43之電壓中之峰值重合。雷射光束41之脈衝可與電子升壓器33及 線性加速器22中之加速場匹配,使得電子聚束42在該等加速場用以使電子聚束42加速之時間到達電子升壓器33及線性加速器22。
自光電陰極43發射之電子束E係由電子升壓器33加速。電子升壓器33用以使電子聚束沿著光束通道34且朝向線性加速器22(圖4中未繪示)加速,該線性加速器22使電子聚束進一步加速至相對論性速率(如上文中所描述)。電子升壓器33可(例如)將電子聚束42加速至超過大約5MeV之能量。在一些實施例中,電子升壓器33可將電子聚束42加速至超過大約10MeV之能量。在一些實施例中,電子升壓器33可將電子聚束42加速至高達大約20MeV之能量。
電子升壓器33可相似於線性加速器22,且可(例如)包含複數個射頻空腔47(圖4所描繪)及一或多個射頻電源(圖中未繪示)。射頻電源可操作以控制光束通路34中之電磁場。在電子聚束42在空腔47之間傳遞時,受射頻電源控制之電磁場造成每一電子聚束加速。空腔47可為超導電射頻空腔。替代地,空腔47可為習知導電的(亦即,並不超導電),且可由(例如)銅形成。
如上文所描述,入射於光電陰極43上之雷射光束41之每一脈衝造成自光電陰極43發射對應電子聚束42。電子束E中之每一電子聚束42係由電子升壓器33且由線性加速器22加速。經加速電子聚束42傳遞至波紋機24中,其中經加速電子聚束42刺激輻射之發射以形成輻射光束B。輻射光束B為脈衝式輻射光束,其中波紋機24中之每一電子聚束42造成輻射光束B中之輻射之脈衝之發射。因此,對於雷射光束41中之每一脈衝,在電子束E中存在對應電子聚束42且在自自由電子雷射FEL發射之輻射光束B中存在對應脈衝。
自由電子雷射FEL可形成圖1之微影系統LS之部件,其中由自由電子雷射產生之輻射最終由一或多個微影裝置LAa至LAn內之一或多個基板W接收。此等基板W可被認為係包含經配置以接收經圖案化輻射之目標部分。在微影系統LS內,經由如下各者而將輻射自自由電子雷射FEL輸送至基板:(i)光束遞送系統(例如,包含光束展開光學件20及光束分裂裝置19);及(ii)微影裝置LAa至LAn內之光學件(例如,光學件10、11、13、14)。光束遞送系統及微影裝置內之光學件可被稱作光學路徑,該光學路徑經組態以將輻射自自由電子雷射FEL輸送至基板W。光學路徑反射及/或透射輻射以便提供基板W處之輻射劑量。傳播通過光學路徑且入射於基板W上之輻射光束B之分率可被稱作光學路徑之透射比。應瞭解,光學路徑可包括反射元件及/或透射元件,且光學路徑之透射比取決於光學路徑中之任何反射元件之反射率以及光學路徑中之任何透射元件之透射比。光學路徑之透射比可另外取決於輻射光束B之橫截面與該輻射光束在光學路徑中入射於之光學元件之匹配。舉例而言,光學路徑中之光學元件(例如,鏡面)可具有小於入射於該光學元件上之輻射光束B之橫截面的橫截面。處於光學元件之橫截面外部的輻射光束B之橫截面之部分因此可自該輻射光束丟失(例如,由於未由鏡面反射)且因此可縮減光學路徑之透射比。
可需要控制由微影系統LS之微影裝置LAa至LAn中之基板W上之目標部位接收的輻射劑量。詳言之,可需要控制輻射劑量使得基板上之給定目標部分之每一目標部位接收實質上相同輻射劑量。
如上文參看圖2所描述,由基板W之目標部位接收之輻射劑量取決於該目標部位曝光至之輻射光束(例如,經圖案化輻射光束Ba')之功 率及基板W之目標部位曝光至輻射光束之時間量。微影裝置LAa中之經圖案化輻射光束Ba'之功率取決於由自由電子雷射FEL發射之輻射光束B之功率及自由電子雷射FEL與基板W之間的光學路徑之透射比。因此,可藉由控制自自由電子雷射FEL發射之輻射光束B之功率及/或藉由控制自由電子雷射FEL與基板W之間的光學路徑之透射比來控制在基板之目標部位處接收之輻射劑量。可使用以回饋為基礎之控制迴路來控制自自由電子雷射FEL發射之輻射光束B之功率(如上文關於圖1所描述)。
可(例如)藉由控制自由電子雷射FEL之一或多個屬性(例如,使用來自量測輻射光束功率之感測器之回饋)來控制自自由電子雷射FEL發射之輻射光束B之功率。舉例而言,可控制波紋機之轉換效率(電子束E中之功率以該轉換效率轉換成輻射光束B中之功率)、電子束E之能量及/或自由電子雷射FEL之另一屬性。然而,自由電子雷射FEL及由自由電子雷射FEL發射之輻射光束B之許多屬性可互鏈結,且因此改變一個屬性可造成另一屬性之不理想改變。舉例而言,波紋機之轉換效率之改變及/或電子束E之能量之改變可引起輻射光束B之波長、頻寬及/或空間強度分佈之改變。自由電子雷射FEL與基板W之間的光學路徑之透射比可強烈取決於輻射光束B之屬性,諸如,輻射光束B之波長、頻寬及/或空間強度分佈。因此,輻射光束B之屬性(例如,波長、頻寬、空間強度分佈)之改變可不利地引起基板W處所接收之輻射劑量之非想要改變。
替代地,可在不影響輻射光束B之其他屬性(例如,波長、頻寬、空間強度分佈)的情況下藉由控制基板W上之一目標部位曝光至 輻射之時間量來控制基板上之彼部位處接收之輻射劑量。
在一實施例中,微影裝置可經組態成使得藉由相對於橫向於掃描方向而延伸橫越目標部分之輻射帶來掃描基板W來曝光該基板之目標部分。輻射帶可被稱作曝光隙縫。基板W上之目標部位處所接收之輻射劑量取決於輻射光束(例如,經圖案化輻射光束Ba')經引導至彼目標部位上之曝光時間週期,及在曝光時間週期期間出現於輻射光束中之脈衝之數目及持續時間。舉例而言,在掃描微影裝置中,基板W之目標部位曝光至輻射光束之時間量取決於曝光隙縫在彼部位上行進所花費之時間。目標部位處所接收之輻射劑量取決於在彼曝光時間週期期間出現之輻射光束之脈衝數目及藉由每一脈衝遞送至該目標部位之平均能量。在一實施例中,可相對於曝光隙縫來掃描晶圓使得曝光時間週期係大約1毫秒。在其他實施例中,曝光時間週期可大於1毫秒且可(例如)長達5毫秒(例如,歸因於晶圓相對於曝光隙縫之較慢掃描移動)。
在一些實施例中,可藉由控制在基板W上之一目標部位之曝光時間週期期間入射於該目標部位上之輻射脈衝之數目來控制彼部位處所接收之輻射劑量。因為入射於基板W上之輻射光束(例如,經圖案化輻射光束Ba')起源於自自由電子雷射FEL發射之輻射光束B,所以在曝光時間週期期間入射於基板W上之輻射光束之脈衝數目取決於在曝光時間週期期間輻射光束B之脈衝數目。如上文所描述,輻射光束B中之脈衝對應於入射於光電陰極43上之雷射光束41之脈衝且對應於自光電陰極43發射且刺激波紋機24中輻射之發射的電子聚束42。因此,可藉由控制在曝光時間週期期間入射於光電陰極43上之雷射光束41中之 脈衝數目及/或在曝光時間週期期間傳播通過波紋機24之電子聚束42之數目來控制在該曝光時間週期期間入射於基板W之目標部位上之輻射脈衝之數目。
控制入射於基板W之目標部位上之輻射脈衝之數目可被認為等效於控制入射於基板之目標部位上之輻射之功率。此控制可至少部分地藉由控制自自由電子雷射輸出之輻射光束B之功率來達成。可藉由控制自自由電子雷射輸出之輻射光束中之脈衝數目來控制自自由電子雷射輸出之輻射光束之功率。
圖4所描繪之第一控制裝置51可用以控制在曝光時間週期期間入射於光電陰極43上之雷射光束41之脈衝數目,且因此控制在曝光時間週期期間形成電子束E之電子聚束42之數目。圖4亦描繪第二控制裝置52,其可用以控制在曝光時間週期期間自注入器21輸出之電子聚束42之數目。第一控制裝置51及/或第二控制裝置52可使用來自量測自自由電子雷射輸出之EUV輻射光束之功率之感測器裝置ST(參見圖1)的回饋(因此提供以回饋為基礎之控制迴路)。此情形控制自自由電子雷射輸出之輻射光束之功率。
第一控制裝置51及/或第二控制裝置52可用以控制在曝光時間週期期間傳播通過波紋機24之電子聚束42之數目,且因此控制在曝光時間週期期間被刺激之輻射光束B之脈衝數目且控制在曝光時間週期期間在基板W處所接收之輻射脈衝之數目。因此,第一控制裝置51及/或第二控制裝置52可用以控制在曝光時間週期期間由基板W之目標部位接收之輻射劑量。有利地,藉由控制在曝光時間週期期間出現之輻射光束B之脈衝數目來控制輻射劑量對輻射光束B之其他屬性(諸如, 輻射光束B之波長、頻寬或空間強度分佈)幾乎不具有或不具有影響。藉由控制在曝光時間週期期間出現之輻射光束B之脈衝數目來控制輻射劑量另外有利,此係因為其允許迅速調整劑量,(例如)作為對輻射光束功率之一或多個量測作出回應之以回饋為基礎之控制迴路之部分。以回饋為基礎之控制迴路可(例如)在10kHz或大於10kHz之頻率下操作。
在一些實施例中,可藉由實質上防止雷射光束41中之一或多個脈衝入射於光電陰極43上來控制由基板W之目標部位接收之輻射劑量。可藉由第一控制裝置51來實質上防止雷射光束41中之一或多個脈衝入射於光電陰極43上。
圖5為第一控制裝置51之一實施例的示意性描繪,該第一控制裝置51包含一勃克爾盒61、一電壓源63及一偏振器65。第一控制裝置51自雷射35接收雷射光束41使得雷射光束41入射於勃克爾盒61上。勃克爾盒61包含一電光晶體62及一對電極64。電極64係由電線67電耦接至電壓源63,使得電壓源63可操作以在該等電極64之間產生電位差且在電光晶體62中創製經施加電場。電光晶體62之折射率經修改成與經施加電場成比例使得電極64之間的電位差可受控制以便在雷射光束41傳播通過電光晶體62時造成雷射光束41之偏振狀態之所要旋轉。
偏振器65經組態以僅透射具有給定偏振狀態之輻射。電壓源63可經操作以便控制入射於偏振器65上之雷射光束41之偏振狀態,且因此控制來自透射通過偏振器65之雷射光束41之輻射量。入射於勃克爾盒61上之雷射光束41經線性地偏振。偏振器65可(例如)經組態以僅透射在雷射光束41入射於勃克爾盒61上之前具有雷射光束41之偏振狀態 之輻射。在正常操作期間,電壓源63在電極64之間可能不產生電位差,使得在雷射光束41傳播通過電光晶體62時雷射光束41之偏振狀態不變且因此實質上所有雷射光束41係由偏振器65透射。由偏振器65透射之輻射係自第一控制裝置51傳播且經引導成入射於光電陰極43(如圖4所展示)上。
有時可需要防止雷射光束41之脈衝入射於光電陰極43上或需要縮減入射於光電陰極43上之雷射光束41之脈衝之能量。舉例而言,可需要縮減入射於光電陰極43上之雷射光束41之脈衝之能量使得該脈衝具有為入射於光電陰極43上之雷射光束41之規則脈衝的大約10%或更少的能量。電壓源63可操作以在電極64之間產生電位差,該電位差造成在雷射光束41傳播通過電光晶體62時雷射光束41之偏轉狀態旋轉達約90°。因此,雷射光束41可實質上由偏振器65阻擋,且因此來自雷射光束41之輻射實質上不會入射於光電陰極43上。
電壓源63可操作以將勃克爾盒61在第一操作模式(在該第一操作模式期間,在電極64之間不產生電位差)與第二操作模式(在該第二操作模式期間,在電極64之間產生電位差)之間切換。在第一操作模式期間,雷射光束41之脈衝係由偏振器65透射、入射於光電陰極43上,且造成自光電陰極43發射電子聚束42。在第二操作模式期間,雷射光束41之脈衝之偏振狀態經旋轉成使得其不由偏振器65透射。因此,雷射光束41之脈衝不入射於光電陰極43上,且自光電陰極43不發射對應電子聚束42。藉由將勃克爾盒61切換至第二操作模式而防止雷射光束41之一或多個脈衝入射於光電陰極43上意謂自光電陰極43不發射對應於雷射光束41之經阻擋脈衝之電子聚束42。因此,電子束E被中斷使 得雷射光束41之一或多個脈衝在電子束E中不具有關聯電子聚束42。電子束E之中斷造成傳播通過波紋機24之電子聚束42之中斷,且因此造成波紋機24中之輻射脈衝之發射之刺激之中斷。因此,自自由電子雷射FEL發射之輻射光束B之脈衝被中斷。
應瞭解,中斷自自由電子雷射FEL發射之輻射光束B之脈衝將造成中斷入射於基板W之目標部位上之輻射之脈衝,藉此縮減在目標部位之曝光時間週期(例如,曝光隙縫遍及彼部位進行掃描之時間)期間入射於目標部位處之輻射劑量。可控制第一控制裝置51之電壓源63以便控制在曝光時間週期期間入射於基板W之目標部位上之輻射脈衝之數目,以便控制由彼部位接收之輻射劑量。電壓源63可(例如)受到控制器CT(其可對應於圖1所展示之控制器CT)控制。
在一理想應用中,雷射光束41經極佳地線性偏振,且偏振器65經組態以透射具有入射於勃克爾盒61上之雷射光束41之偏振狀態之輻射。在此理想應用中,當勃克爾盒61處於第二操作模式中時,雷射光束41之偏振狀態旋轉達90°,且來自雷射光束41之輻射不將由偏振器65透射,且雷射光束41之脈衝不將入射於光電陰極43上。然而,實務上,雷射光束41可被稍微去偏振,且可包括具有與由偏振器65透射之偏振狀態垂直的偏振狀態之小分量。當勃克爾盒61處於第二操作模式中時,經垂直偏振分量之偏振狀態可旋轉達90°使得其由偏振器65透射。因此,來自雷射光束41之少量輻射可由偏振器65透射,且可甚至在勃克爾盒61處於第二操作模式中時入射於光電陰極43上。舉例而言,雷射光束41之低功率脈衝可在勃克爾盒61處於第二操作模式中時入射於光電陰極43上。低功率脈衝可具有為當勃克爾盒處於第一操作 模式中時入射於光電陰極43上之雷射光束41之脈衝之功率的大約10%或更少的功率。
入射於光電陰極43上之雷射光束41之低功率脈衝可造成自光電陰極43發射低電荷電子聚束。低電荷電子聚束可具有為當勃克爾盒處於第一操作模式中時自光電陰極43發射之標稱電子聚束42之峰值電流之大約10%或更少的峰值電流。在第一操作模式中發射之標稱電子聚束可被稱作典型電子聚束42。
在波紋機24中,藉由給定電子聚束42刺激之輻射光束B之脈衝之功率為電子聚束42之電荷及由波紋機24中之電子聚束42造成的輻射之增益之函數。由波紋機24中之電子聚束42造成的增益係由電子聚束42之所謂增益長度表示。電子聚束42之增益長度表示為了造成波紋機24中之輻射之給定增益電子聚束42必須傳播通過之波紋機區段的長度。當勃克爾盒61處於第一操作模式中時自光電陰極43發射之典型電子聚束42可在波紋機24中傳播達大約15至25增益長度。電子聚束之增益長度係與遍及電子聚束之峰值電流之立方根之一者成比例。因此,具有典型電子聚束42之峰值電流之大約10%的峰值電流之低電荷電子聚束將具有比典型電子聚束42之增益長度大大約2至3倍的增益長度。因此,對於給定長度之波紋機24,低電流電子聚束之增益將比典型電子聚束42之增益小大約2至3倍。
當勃克爾盒61處於第二操作模式中時自光電陰極43發射之低電荷電子聚束可具有為典型電子聚束42之電荷之大約10%的電荷,且可造成波紋機24中之輻射之增益比由典型電子聚束造成之增益小大約2至3倍。因此,由低電流電子聚束刺激之輻射光束B中之脈衝可具有 小於由典型電子聚束42刺激之輻射光束B中之脈衝之能量之約0.1%的能量。另外,由低電流電子聚束刺激之輻射光束B中之脈衝可具有比由典型電子聚束42刺激之輻射光束B中之脈衝之發散度大的發散度(例如,大大約10倍的發散度)。此等因數之組合意謂當相比於歸因於由典型電流電子聚束42刺激之輻射光束B中之脈衝而接收的輻射劑量,歸因於由低電流電子聚束刺激之輻射光束B中之脈衝的基板W之目標部分處所接收之輻射劑量係可忽略的。因此,電子束E中之低電流電子聚束可被認為在自由電子雷射FEL中具有可忽略的效應。因此,第一控制裝置51可被認為中斷電子束E,以便造成雷射光束41之至少一脈衝在自注入器21輸出之電子束E中實質上不具有關聯電子聚束42且在輻射光束B中實質上不具有關聯脈衝。
在一些實施例中,可藉由在雷射光束入射於勃克爾盒61上之前將第二偏振器定位於雷射光束41之路徑中來縮減雷射光束41之低功率脈衝之功率及低電荷電子聚束之峰值電流。第二偏振器可經組態以僅透射具有相同於由偏振器65透射之輻射之偏振狀態的輻射,且可用以縮減入射於勃克爾盒61上之雷射光束41之任何去偏振。
雖然偏振器65經組態以僅透射具有給定偏振狀態之輻射,但偏振器65亦可透射具有其他偏振狀態之一些輻射。舉例而言,具有其他偏振狀態之大約1%至0.1%的輻射可由偏振器65透射。此輻射可被稱作由偏振器65洩漏之輻射。因此,當勃克爾盒61處於第二操作模式中使得大部分雷射光束41係由偏振器65阻擋時,來自雷射光束41之一些輻射仍可由偏振器65洩漏使得來自雷射光束41之一些輻射仍入射於光電陰極43上。
在一些實施例中,倍頻晶體可定位於雷射光束41之路徑中,其用以使雷射光束41之頻率加倍(且將波長減半)。舉例而言,雷射35可為發射具有為大約1064奈米之波長之雷射光束41的Nd:YAG雷射。因此,在傳遞通過倍頻晶體之後,雷射光束41可具有為大約532奈米之波長。
通常,倍頻晶體僅用以使具有給定偏振狀態之輻射之頻率加倍。倍頻晶體可(例如)定位於在雷射光束41已由偏振器65透射之後的雷射光束41之光學路徑中。倍頻晶體可經組態以使具有偏振器65經組態以透射之偏振狀態的輻射之頻率加倍。因此,在偏振器65透射具有不同偏振狀態之一些輻射(例如,當勃克爾盒61處於第二操作模式中)的情況下,倍頻晶體將不使此經洩漏輻射之頻率加倍,此係因為其不具有發生倍頻所需要之偏振狀態。因此,倍頻晶體可充當額外偏振器,且可防止經洩漏輻射入射於光電陰極43上。
另外,倍頻晶體可用以增加當勃克爾盒61處於第二操作模式中時由偏振器65透射之雷射光束41之低功率脈衝之功率與當勃克爾盒61處於第一操作模式中時由偏振器65透射之雷射光束41之較高功率脈衝之功率之間的對比度。倍頻晶體將雷射光束41之脈衝轉換成具有雙倍頻率之脈衝之轉換效率係與雷射光束41之脈衝之功率成比例。因此,低功率脈衝相比於較高功率脈衝將以較低轉換效率被轉換,且因此低功率脈衝與較高功率脈衝之間的對比度將藉由倍頻晶體增加。
有利地,使用勃克爾盒61會允許在阻擋雷射光束41之脈衝與允許雷射光束41之脈衝入射於光電陰極43上之間快速切換。可需要使電壓源63可操作以將勃克爾盒61在第一操作模式與第二操作模式之間足 夠快速地切換使得僅防止雷射光束41之單脈衝入射於光電陰極43上。舉例而言,可需要使電壓源將勃克爾盒61切換至第二操作模式歷時雷射光束41之一個脈衝傳播通過該勃克爾盒61之一時間週期,使得雷射光束41之該脈衝係由偏振器65阻擋;且接著在雷射光束41之後續脈衝傳播通過該勃克爾盒61之前將該勃克爾盒61切換至第一操作模式,使得雷射光束41之該後續脈衝係由偏振器65透射。勃克爾盒61之此快速切換允許對雷射光束41之每一個別脈衝之控制。
雷射光束41之脈衝重複頻率可大於100MHz。舉例而言,雷射光束41之脈衝重複頻率可為大約300MHz。在雷射光束41傳播通過勃克爾盒61時雷射光束41之連續脈衝之間的間隔可為大約70公分。電光晶體62之長度可為大約100毫米,且因此雷射光束41之僅單脈衝在任何時間傳播通過電光晶體62。此情形允許針對雷射光束41之每一脈衝在不同操作模式之間切換勃克爾盒61。
在第二操作模式中產生於電極64之間的電位差(以便造成雷射光束41之偏振狀態旋轉大約90°)可為大約100V。在電極64之間產生所要電位差(例如,100V)所花費的時間量係與勃克爾盒61之電容及將電壓源63連接至電極64之纜線67之阻抗成比例。勃克爾盒61之電容為電極之表面積、電極之間的分離度及電光晶體62之相對准許度之函數。
在一實施例中,電光晶體62之相對准許度可處於約20至50之大約範圍內。每一電極64之表面積可為大約500平方毫米且電極64之間的分離度可為大約5毫米。勃克爾盒之對應電容可為大約50pF。纜線67之阻抗可為大約50歐姆。在此實施例中,在電極64之間產生100V 之所要電位差所花費的時間量可為大約2.5奈秒。此時間週期可比得上到達勃克爾盒61之雷射光束41之連續脈衝之間的延遲,且因此,此時間週期可過長而不能夠將勃克爾盒在連續脈衝之間在第一操作模式與第二操作模式之間切換。
可藉由提供具有複數對電極64(每一對電極64連接至一獨立電壓源63)之勃克爾盒來縮減在電極64之間產生所要電位差(例如,100V)所花費的時間量。舉例而言,在一些實施例中,勃克爾盒可具備5對或5對以上電極64。在一些實施例中,勃克爾盒可具備高達約10對電極64。複數對電極64中每一對可具有縮減之表面積,且因此,複數對電極64中每一對之間的電容可得以縮減。在給定表面積在複數對電極64當中均勻地分裂之實施例中,則在相比於單一對電極64覆蓋給定表面積之實施例時,每一對電極64之間的電容縮減達等於電極對64之數目之因數。舉例而言,在提供5對電極以覆蓋給定表面積之實施例中,每一對電極之間的電容比單一對電極覆蓋同一表面積之實施例中之一對電極64之間的電容小大約5倍。
每一對電極64之間的電容之縮減會縮減在每一對電極64之間產生所要電位差所花費的時間量。每一對電極64可具備一獨立電壓源63。獨立電壓源63可彼此同步地操作使得每一對電極64之間的電位差可彼此實質上相同。舉例而言,複數個電壓源63可經同步以處於彼此小於約1皮秒內。
包含複數對電極64之勃克爾盒61可在第一操作模式(其中在該等對電極64之間不產生電位差)與第二操作模式(其中在該等對電極64中每一對之間同步地產生所要電位差)之間切換。向勃克爾盒61提供複 數對電極64使得每一對電極64之間的電容縮減會縮減將勃克爾盒61在第一操作模式與第二操作模式之間切換所花費之時間量。舉例而言,包含複數對電極64之勃克爾盒61可在小於大約1奈秒之時間週期內在第一操作模式與第二操作模式之間切換。此情形可允許將勃克爾盒在雷射光束41之後續脈衝於勃克爾盒61處之到達之間在第一操作模式與第二操作模式之間切換,且因此可允許針對雷射光束41之每一個別脈衝來切換勃克爾盒61之操作模式。
在替代實施例中,第一控制裝置51可包含複數個勃克爾盒61,雷射光束41在入射於偏振器65上之前傳播通過該等勃克爾盒61。相比於包含單一勃克爾盒61之實施例,複數個勃克爾盒61中每一者可(例如)具有縮減之長度。舉例而言,複數個勃克爾盒61可各自具有大約10毫米之長度。複數個勃克爾盒61中每一者可包含各自耦接至一獨立電壓源63的一對或多對電極64。電壓源63可操作以將勃克爾盒61在第一操作模式(其中在諸對電極64之間不產生電位差)與第二操作模式(其中在每一對電極之間產生電位差)之間切換。當勃克爾盒61處於第二操作模式中時每一對電極64之間的電位差可使得每一勃克爾盒將雷射光束41之偏振狀態旋轉達小於90°之角度。複數個勃克爾盒61可經組態成使得當勃克爾盒61中每一者處於第二操作模式中且雷射光束41傳播通過勃克爾盒61中每一者時,複數個勃克爾盒61之經組合效應係使雷射光束之偏振狀態旋轉達大約90°使得實質上無雷射光束41由偏振器65透射。
在處於第二操作模式中時經組態以將雷射光束41之偏振狀態旋轉達小於90°之勃克爾盒61中之諸對電極64之間所產生的電位差可小 於經組態以使雷射光束41之偏振狀態旋轉達90°之一對電極64之間的電位差(例如,圖5所描繪之勃克爾盒)。相比於在單一勃克爾盒61將雷射光束41之偏振狀態旋轉達90°之實施例中,在複數個勃克爾盒61各自將雷射光束41之偏振狀態旋轉達小於90°之實施例中,因此在第一操作模式與第二操作模式之間切換時在諸如電極64之間產生較小電位差。此情形可有利地縮減將勃克爾盒61在第一操作模式與第二操作模式之間切換所花費的時間量。如上文所描述,將勃克爾盒61在第一操作模式與第二操作模式之間切換所花費的時間量之縮減可允許將勃克爾盒61在雷射光束41之後續脈衝於勃克爾盒61處之到達之間在第一操作模式與第二操作模式之間切換,且因此可允許針對雷射光束41之每一個別脈衝來切換勃克爾盒61之操作模式。
在第一控制裝置51之替代但等效實施例中,偏振器65可經組態以僅透射具有在雷射光束41入射於勃克爾盒61上之前正交於雷射光束41之偏振狀態的偏振狀態之輻射。在此實施例中,雷射光束41將在電壓源63不將電壓施加於電極64之間之時間期間由偏振器65阻擋。在電壓源63將電壓施加於電極64之間之時間期間,勃克爾盒61使雷射光束41之偏振狀態旋轉使得雷射光束41係由偏振器65透射且入射於光電陰極43上。
圖6為第一控制裝置51'之替代實施例的示意性描繪。圖6所描繪之第一控制裝置51'包含一第一偏振器65a、一第二偏振器65b、一第一勃克爾盒61a及一第二勃克爾盒61b。第一勃克爾盒61a及第二勃克爾盒61b各自包含一電光晶體62a、62b及一對電極64a、64b。該等對電極64a、64b係由電線67a、67b電耦接至電壓源63a、63b,正如圖6 所展示。
第一偏振器65a經組態以透射具有入射於第一偏振器65a上之雷射光束41之偏振狀態之輻射。第一偏振器65a可用以縮減雷射光束41之任何去偏振。第一勃克爾盒61a及第二勃克爾盒61b各自可操作以在第一操作模式(其中在各別對電極64a、64b之間不產生電位差)與第二操作模式(其中在各別對電極64a、64b之間產生電位差)之間切換,使得在傳播通過各別勃克爾盒61a、61b的同時雷射光束41之偏振狀態旋轉達大約90°。第一勃克爾盒61a及第二勃克爾盒61b可在第一操作模式與第二操作模式之間由獨立電壓源63a、63b獨立切換。
第二偏振器65b經組態以僅透射具有正交於由第一偏振器65a透射之輻射之偏振狀態的偏振狀態之輻射。若第一勃克爾盒61a及第二勃克爾盒61b兩者處於第一操作模式中,則雷射光束41之偏振狀態將不由勃克爾盒61a、61b中任一者旋轉且雷射光束41將不由第二偏振器65b透射。若第一勃克爾盒61a或第二勃克爾盒61b中之一者(但並非兩者)處於第二操作模式中,則雷射光束41之偏振狀態在第一偏振器65a與第二偏振器65b之間旋轉達大約90°且雷射光束41係由第二偏振器65b透射。若第一勃克爾盒61a及第二勃克爾盒61b兩者處於第二操作模式中,則雷射光束41之偏振狀態在第一偏振器65a與第二偏振器65b之間旋轉達180°且雷射光束41不由第二偏振器65透射。因此,為了使雷射光束41待由第二偏振器65透射,第一勃克爾盒61a或第二勃克爾盒61b中之一者(但並非兩者)必須處於第二操作模式中。電壓源63a、63b可受控制器CT(其可對應於圖1所展示之控制器CT)控制,以便控制雷射光束41之多少脈衝係由第二偏振器65b透射使得其入射於光電 陰極43上。
圖7為藉由第一勃克爾盒61a及第二勃克爾盒61b遍及一時間週期造成的雷射光束41之偏振狀態之旋轉(圖7之頂部畫面),及由第二偏振器65b遍及同一時間週期透射之輻射之功率(圖7之底部畫面)的示意性表示。在圖7之頂部畫面中,藉由第一勃克爾盒61a造成的偏振旋轉係以虛線展示,且藉由第二勃克爾盒61b造成的偏振旋轉係以點線展示。
在圖7所展示之時間週期之開始,第一勃克爾盒61a係處於第二操作模式中且使雷射光束41之偏振狀態旋轉達90°。第二勃克爾盒61b係處於第一操作模式中且不使雷射光束41之偏振狀態旋轉。因此,藉由第一勃克爾盒61a及第二勃克爾盒61b造成的雷射光束41之偏振狀態之總旋轉為90°,且雷射光束41係由第二偏振器65b透射,如自圖7之底部畫面所展示之透射功率可見。
在圖7所展示之時間t1處,第一勃克爾盒61a切換至第一操作模式使得其不使雷射光束41之偏振狀態旋轉。在時間t2處,第二勃克爾盒61b切換至第二操作模式使得其使雷射光束41之偏振狀態旋轉達90°。在時間t1與時間t2之間,存在第一勃克爾盒61a或第二勃克爾盒61b皆不使雷射光束41之偏振狀態旋轉之時間週期ti。雷射光束41在時間週期ti期間不由第二偏振器65b透射,且因此雷射光束41不入射於光電陰極43上。在時間t2之後,第二勃克爾盒61b使雷射光束41之偏振狀態旋轉達90°,且雷射光束41再次由第二偏振器65b透射且入射於光電陰極43上。
在圖7所展示之時間t3處,第一勃克爾盒61a切換回至第二操作模 式使得其使雷射光束41之偏振狀態旋轉達90°。在時間t4處,第二勃克爾盒61b切換至第一操作模式使得其不使雷射光束41之偏振狀態旋轉達90°。在時間t3與時間t4之間,存在第一勃克爾盒61a及第二勃克爾盒61b兩者使雷射光束41之偏振狀態旋轉達90°以給出180°之組合之旋轉之時間週期ti。雷射光束41在時間週期ti期間不由第二偏振器65b透射,且因此雷射光束41不入射於光電陰極43上。在時間t4之後,第二勃克爾盒61b停止使雷射光束41之偏振狀態旋轉達90°,且雷射光束41再次由第二偏振器65b透射且入射於光電陰極43上。
圖7亦展示第一勃克爾盒61a切換回至第一操作模式之時間t5,及第二勃克爾盒61b切換回至第二操作模式之時間t6。在時間t5與時間t6之間存在第一勃克爾盒61a或第二勃克爾盒61b皆不使雷射光束41之偏振狀態旋轉且因此雷射光束41不由第二偏振器65b透射之時間週期ti
在圖7所展示之實施例中,第一勃克爾盒61a及第二勃克爾盒61b分別以時間週期Ta及Tb在第一操作模式與第二操作模式之間週期性地切換。第一勃克爾盒61a及第二勃克爾盒61b之週期性切換具有彼此成θ之相位差,其造成雷射光束41不由第二偏振器65b透射且因此電子束E被中斷之時間週期ti。自圖7應瞭解,電子束E被中斷之時間週期ti之長度係藉由第一勃克爾盒61a與第二勃克爾盒61b之切換之間的相位差θ判定,且並不藉由切換之時間週期Ta、Tb判定。因此,圖6所描繪之第一控制裝置51'之實施例有利地允許阻擋雷射光束41且中斷電子束E歷時比勃克爾盒61a、61b之操作模式被切換之時間週期Ta、Tb短得多的時間週期ti。雷射光束41被阻擋且電子束E被中斷之時間週期ti可(例如)大約等於雷射光束41之一個脈衝傳播通過第一勃克爾盒61a及第二 勃克爾盒61b之時間週期。因此,圖6之第一控制裝置51'可用以防止雷射光束41之單脈衝入射於光電陰極上,且因此可中斷電子束,以便造成雷射光束41之單脈衝在自注入器21輸出之電子束E中實質上不具有關聯電子聚束42。在一些實施例中,第一控制裝置51'可中斷電子束E使得雷射光束41之一個以上連續脈衝在自注入器21輸出之電子束E中實質上不具有關聯電子聚束42。
當調整在給定時間內被阻擋入射於光電陰極43上之雷射光束41之脈衝之數目時,可需要將勃克爾盒中每一者處於第一操作模式及第二操作模式中之時間量保持大約恆定。此情形可允許來自耗散至勃克爾盒中之雷射光束41之功率量保持大約恆定,且因此勃克爾盒之溫度可保持大約恆定。為了調整在給定時間內被阻擋入射於光電陰極43上之雷射光束41之脈衝之數目,第一勃克爾盒與第二勃克爾盒之間的相位差θ可經調整成使得調整雷射光束41被阻擋之時間週期ti
在一替代實施例中,半波片可定位於第一勃克爾盒61a與第二勃克爾盒61b之間。半波片可經組態以使雷射光束41之偏振狀態旋轉達大約90°。在此實施例中,雷射光束41可在第一勃克爾盒及第二勃克爾盒兩者處於相同操作模式中之時間時由第一控制裝置51'透射,且雷射光束41可在第一勃克爾盒及第二勃克爾盒處於不同操作模式中之時間時由第一控制裝置51'阻擋。
已在上文描述一或多個勃克爾盒61在第一操作模式與第二操作模式之間切換之實施例。將勃克爾盒61在第一操作模式與第二操作模式之間切換可造成一些功率耗散至勃克爾盒61之電光晶體62中。功率至電光晶體61中之耗散可造成加熱電光晶體61。在一些實施例中,一 或多個勃克爾盒61可經冷卻以便穩定化勃克爾盒61之溫度。
第一控制裝置51、51'可操作以控制入射於光電陰極43上之雷射光束41之功率,且藉此控制自光電陰極43發射之電子聚束之電流。舉例而言,組合地參看圖1及圖4,經透射通過第一控制裝置51、51'之雷射光束41之功率可受到控制器CT回應於如由感測器裝置ST量測之EUV輻射光束B之功率而控制。第一控制裝置51、51'因此可形成以回饋為基礎之控制迴路F1之部件。若EUV輻射光束B之測定功率過高,則控制器CT將造成第一控制裝置51、51'阻擋來自雷射光束41之更多脈衝。相反地,若EUV輻射光束B之測定功率過低,則控制器CT將造成第一控制裝置51、51'阻擋來自雷射光束41之較少脈衝。
在一實施例中,可量測電子束E之電流來代替量測EUV輻射光束之功率。測定電流代替測定EUV輻射光束功率可用以提供以回饋為基礎之控制迴路。
在上述實施例中,施加至光電陰極43之電壓可受控制以適應如下事實:歸因於遺漏雷射光束脈衝,將不自光電陰極發射電子聚束。一般而言,可穩定化施加至光電陰極43之電壓,且此穩定化可考量遺漏雷射光束脈衝。電壓穩定化可(例如)為前饋穩定化。
已在上文描述第一控制裝置51、51'之實施例,其可操作以阻擋雷射光束41之一或多個脈衝入射於光電陰極43上以便中斷電子束E且造成雷射光束41之至少一脈衝在自注入器輸出之電子束E中實質上不具有關聯電子聚束。此情形可允許控制自自由電子雷射輸出之輻射光束B之功率。除了使用第一控制裝置51、51'以外或作為對使用第一控制裝置51、51'之替代例,亦可用如圖4所展示之第二控制裝置52來控 制自自由電子雷射輸出之輻射光束B之功率。第二控制裝置52可操作以自電子束E移除自光電陰極43發射之電子聚束42,藉此中斷電子束E,以便造成雷射光束41之至少一脈衝在電子束E中實質上不具有關聯電子聚束。
圖8為第二控制裝置52之一實施例的示意性描繪。第二控制裝置52包含安置於電子束E之軌跡之任一側之一對導電板74。導電板74係由電線77電耦接至電壓源73。電線77、導電板74及電壓源73形成電流可流動通過之電路。電流流動方向係由圖8中之電線77上之箭頭指示。電阻器75亦包括於電路中。較佳地,電線77、導電板74與電阻器75之阻抗匹配。電壓源可操作以在該等板74之間產生電位差,以便造成電流流動通過該等導電板。電流通過在相反方向上流動通過導電板74,藉此在該等板74之間產生磁場。電壓源73受到控制器CT(其可對應於圖1所展示之控制器CT)控制。在導電板74之間產生電位差以便在該等板74之間產生磁場之時間,所產生磁場用以變更電子束E中之電子聚束42之軌跡以便將電子聚束引導朝向光束截止器72。圖8展示電子聚束42',已由導電板74之間的磁場變更該電子聚束42'之軌跡以便將該電子聚束42'沿著軌跡71引導朝向光束截止器72。
光束截止器72包含用以吸收經偏轉電子聚束42'之足夠量材料。光束截止器72吸收電子以便防止產生可不利地到達升壓器33且由線性加速器22加速之次級電子。在一些實施例中,可使用替代構件以防止產生次級電子。舉例而言,一或多個孔口可定位於光束管中,其中電子束E傳播以便允許經偏轉電子聚束42'自該光束管傳播而不會產生次級電子。在一些實施例中,可藉由(例如)產生經組態以防止次級電子 朝向升壓器33傳播之電場及/或磁場來將次級電子引導遠離升壓器33。
電壓源73可操作以接通及切斷導電板74之間的電位差以便在第一狀態(其中在導電板74之間不產生電位差,且電子聚束42沿著同一軌跡繼續且保持於電子束E中)與第二狀態(其中在導電板74之間產生電位差,且一或多個電子聚束42'係自電子束E中偏轉且經引導至光束截止器72)之間切換。電壓源73可(例如)可操作以在第一狀態與第二狀態之間足夠快速地切換以便每次僅使單一電子聚束42'自電子束E中偏轉。舉例而言,在關斷導電板74之間的電位差時,第一電子聚束42可傳遞通過導電板74使得第一電子聚束42未自電子束E中偏轉。可接著在後續第二電子聚束42'在導電板74之間傳遞之前接通導電板74之間的電位差,使得第二電子聚束係自電子束E中偏轉且沿著軌跡71而引導至光束截止器72。可接著在後續第三電子聚束42在導電板74之間傳遞之前再次關斷導電板74之間的電位差,使得第三電子聚束42未自電子束E中偏轉。可(例如)產生導電板74之間的電位差歷時小於大約10奈秒之時間週期。舉例而言,可產生導電板74之間的電位差歷時大約1奈秒或小於1奈秒之時間週期。
替代地,可在導電板74之間產生電位差歷時一足夠時間週期以便使一個以上連續電子聚束42'自電子束E中偏轉且使其偏轉朝向光束截止器72(例如,100個電子聚束或小於100個電子聚束,例如,10個電子聚束或小於10個電子聚束)。
由導電板74之間的電位差造成的電子聚束42'之角偏轉△α之近似係由方程式3給出。
Figure 108129836-A0305-02-0077-3
其中q為電子之電荷;L為沿著導電板74之電子束E之傳播方向之長度;V為導電板74之間的電位差;E e 為電子聚束42'中之電子之能量;h為導電板74之間的分離度;且w為導電板74之寬度。
在一實施例中,可在導電板74之間產生引起大約1°之角偏轉△α之電位差V。此情形可導致經偏轉電子聚束42'與電子束E之間的分離度在自導電板74下游大約1公尺距離處為大約2公分。在其他實施例中,角偏轉△α可大於1°且可(例如)大達6°。此情形可導致經偏轉電子聚束42'與電子束E之間的分離度在自導電板74大約1公尺距離處為高達大約10公分。
產生於導電板74之間的電位差V可(例如)大約約0.2kV。在一些實施例中,電位差V可大達1kV。能夠將0.2kV至1kV之電位差足夠快速地接通及切斷以使單一電子聚束42'自電子束E中偏轉之電壓源73係市售的。
如上文所描述,第二控制裝置52可操作以使一或多個電子聚束42'自電子束E中偏轉。因此,經偏轉電子聚束42'未由升壓器33或線性加速器22加速且未傳播通過波紋機24。因此,第二控制裝置52可操作以中斷電子束E,以便造成雷射光束41之至少一脈衝在自注入器21輸出之電子束E中實質上不具有關聯電子聚束。如上文參看第一控制裝置51所描述,中斷電子束E會造成自自由電子雷射FEL發射之輻射光束B之脈衝之中斷且因此會縮減在基板W之目標部位處接收之輻射劑量。可控制第二控制裝置52(例如,藉由控制器CT)以便控制由自由電子雷射發射之輻射之功率。控制器CT可接收對應於EUV輻射光束 之功率(或電子束中之電流)之信號作為輸入。因此,可提供允許控制EUV輻射光束之功率之以回饋為基礎之控制迴路。此以回饋為基礎之控制迴路可允許縮減EUV輻射光束功率遍及曝光時間週期之波動。
自電子束E中偏轉之電子聚束42'之數目可足夠小,使得自由電子雷射中之所得暫態相對低。因此,舉例而言,自自由電子雷射輸出之EUV輻射光束之波長可保持實質上恆定。對實質上恆定波長之參考可被解釋為意謂波長不改變或改變達足夠小,使得歸因於波長相依鏡面透射之目標部位處之劑量變化保持低於所要臨限值之一量。
在替代實施例中,一或多個電子聚束42'可自電子束E中偏轉以便中斷電子束E且中斷自由電子雷射FEL中之其他部位處之輻射光束B中之脈衝。舉例而言,一或多個電子聚束42可在升壓器33之後及/或在線性加速器22之後自電子束E中偏轉。然而,在電子聚束42'具有相對低能量之時間使電子聚束42'自電子束E中偏轉係有利的。舉例而言,在電子聚束由升壓器33加速之前及/或在電子聚束42'由線性加速器22加速之前使該電子聚束42'自電子束E中偏轉係有利的。此係因為電子聚束42之能量在升壓器33及/或線性加速器22中增加,提供電子聚束42之所要偏轉所需之電場之量值增加。因此,使已由升壓器33及/或線性加速器22加速之電子聚束42偏轉需要在導電板74之間產生較大電位差V。產生較大電位差可花費較多時間,且因此可增加可產生電位差之速率。此可意謂使單電子聚束42'自電子束E中偏轉可有問題。
此外,在升壓器33及/或線性加速器22中被加速之後自電子束中偏轉之電子聚束相比於在被加速之前自電子束中偏轉之電子聚束42'將具有較高能量。較高能量經偏轉電子聚束42'將產生可需要自自由 電子雷射FEL進行移除的次級電子及次級同位素。
在圖8所描繪之第二控制裝置52之實施例中,電壓源73造成電流在相反方向上在導電板中流動。在一替代實施例中,一或多個電壓源可經組態以造成電流在同一方向上在導電板74中每一者中流動。在此實施例中,可在板74之間產生磁場使得在板74之間傳遞之電子聚束42係由磁場散焦。經散焦電子聚束42相比於尚未散焦之電子聚束42可以極大縮減之轉換效率刺激波紋機24中輻射之發射。因此,相比於波紋機24中藉由尚未散焦之電子聚束刺激之輻射之脈衝,波紋機24中藉由經散焦電子聚束刺激之輻射之脈衝可具有較低功率。因此,電子聚束42可在第二控制裝置中經散焦以便縮減波紋機24中被刺激之輻射之對應脈衝之功率(例如,縮減至可忽略之功率位準)。此情形可被認為實質上中斷自自由電子雷射FEL發射之輻射光束B中之脈衝,且因此可造成縮減在給定曝光時間週期內由基板W之目標部位接收的輻射之脈衝之數目,藉此縮減該目標部位處所接收之輻射劑量。
已在上文描述第一控制裝置51及第二控制裝置52之實施例,其可操作以中斷電子束E,以便造成雷射光束41之至少一脈衝在自注入器21輸出之電子束E中實質上不具有關聯電子聚束42。如上文所描述,中斷自注入器21輸出之電子束E會造成中斷自自由電子雷射FEL發射之輻射光束B中之脈衝,且因此造成縮減在給定曝光時間週期內由基板W之目標部位接收的輻射之脈衝之數目,藉此縮減由該目標部位接收之輻射劑量。因此,電子束E可由第一控制裝置51中斷及/或由第二控制裝置52中斷以便控制由基板W之目標部位接收之輻射劑量。
可回應於輻射光束B之一或多個量測來控制(例如,藉由控制器 CT)第一控制裝置51及/或第二控制裝置52。舉例而言,輻射感測器(圖中未繪示)可經配置以量測自自由電子雷射FEL輸出之輻射光束B之功率。可回應於輻射光束B之測定功率來控制第一控制裝置51及/或第二控制裝置52,使得所要輻射劑量係由基板W之目標部位接收。舉例而言,若輻射感測器量測輻射光束B之功率之增加,則第一控制裝置51及/或第二控制裝置52可藉由中斷電子束E來對此量測作出回應,以便縮減在給定曝光時間週期內由基板W之目標部位接收之輻射脈衝之數目使得由目標部位接收之輻射劑量繼續為所要劑量,而不管輻射光束B之功率之增加。
在一些實施例中,除了自由電子雷射FEL之輸出處以外亦可在微影系統LS中之其他部位處量測輻射光束B之功率。舉例而言,可量測自光束展開光學件(若存在)輸出且輸入至光束分裂裝置19之輻射光束之功率。另外或替代地,可在已由光束分裂裝置19輸出之後量測一或多個分支輻射光束Ba至Bn之功率。另外或替代地,可在一或多個微影裝置LAa至LAn內量測一或多個分支輻射光束Ba至Bn之功率。舉例而言,可量測基板W處所接收之經圖案化輻射光束(例如,經圖案化輻射光束Ba')之功率。一般而言,可進行輻射光束B或分支輻射光束Ba至Bn之任何量測,且該等量測可用以控制第一控制裝置51及/或第二控制裝置52以便控制在給定曝光時間週期內在基板W之目標部位處接收之輻射劑量。
一般而言,可進行輻射光束B或分支輻射光束Ba至Bn之任何量測,且該等量測可用以控制第一控制裝置51及/或第二控制裝置52以便控制自自由電子雷射輸出至輻射功率。該(該等)量測可形成用以穩 定化自自由電子雷射輸出之輻射功率之以回饋為基礎之控制迴路之部分。圖1展示以回饋為基礎之控制迴路F1之實例。
在一些實施例中,第一控制裝置51及/或第二控制裝置52可在正常操作期間中斷電子束E以便將電子束E中之電子聚束42之數目及輻射光束B中之脈衝之數目縮減達給定量。此情形可允許第一控制裝置51及/或第二控制裝置52藉由在需要時增加或減低電子束中之電子聚束42之數目來穩定化由自由電子雷射輸出之輻射光束之功率。此情形可在彼功率遍及給定時間週期(例如,1毫秒)而平均化時縮減EUV輻射光束功率之波動。
基板W之目標部位可曝光歷時大約1毫秒之曝光時間週期。雷射光束41之脈衝重複頻率及(因此)輻射光束B之脈衝重複頻率可為大約300MHz。因此,在此實例中,在1毫秒之曝光時間週期期間,基板W之目標部位曝光至輻射之大約3×105個脈衝。可需要以週期性方式中斷電子束E。舉例而言,第一控制裝置51及/或第二控制裝置52可中斷電子束E使得雷射光束41之每隔100個或每隔1000個脈衝在電子束E中實質上不具有關聯電子聚束42。在一些實施例中,電子束被中斷之時間週期可總共包含電子束未被中斷之時間週期的大約1%至10%。在一些實施例中,電子束被中斷之頻率可為1MHz或大於1MHz(例如,在1MHz至大約100MHz之範圍內)。可增加或減低在曝光時間週期期間在電子束E中實質上不具有關聯電子聚束42之雷射光束41之脈衝之數目,以便控制在該曝光時間週期期間接收之輻射劑量(例如,以將劑量變化保持低於所要臨限值)。因此,遍及曝光時間週期而平均化之EUV輻射光束功率之波動得以縮減。基板上之目標部位處所接 收之EUV輻射劑量之變化對應地得以縮減。
在輻射之曝光隙縫在掃描曝光中遍及基板上之目標部位進行掃描之實施例中,可需要以時間週期Ti以週期性方式中斷電子束E使得曝光時間週期Te為時間週期Ti的整數倍(亦即,Te=nTi,其中n為整數)。此情形可確保在曝光隙縫遍及基板W之每一目標部位進行掃描時該目標部位接收輻射之相同數目個脈衝。
如上文所描述,可需要中斷電子束E使得自電子束E移除僅小數目個連續電子聚束42(例如,小於100個或小於10個)。舉例而言,可需要每次自電子束E僅移除單一電子聚束42。自電子束E移除僅小數目個連續電子聚束42可確保在傳播通過線性加速器22及波紋機24之電子束E中僅存在小間隙。此情形將縮減將歸因於電子束E中之間隙而在自由電子雷射中出現的暫態之大小(相比於在存在較大間隙的情況下)。暫態可足夠小,使得(例如)由自由電子雷射產生之EUV輻射之波長保持實質上恆定。對實質上恆定波長之參考可被解釋為意謂波長不改變或改變達足夠小,使得歸因於波長相依鏡面透射之目標部位處之劑量變化保持低於所要臨限值之一量。
線性加速器22可包含經外部驅動振盪電磁場諧振之複數個諧振空腔(例如,超導電射頻空腔)。傳遞通過諧振空腔之電子聚束42之每一電子具有其自有關聯電磁場。在電子傳遞通過空腔時,其電磁場受擾動,從而造成被稱為尾流場之電磁場存在於該空腔內。因此,在一給定時間下空腔中之電磁場為經外部驅動電磁場與先前已傳遞通過該空腔之電子之尾流場之組合。因此,緊接在電子束E中之中斷之後的電子聚束42可在線性加速器22之空腔中經歷與不在電子束E中之中斷 之後之電子聚束42不同的電磁場。緊接在電子束E中之中斷之後的電子聚束42因此可在線性加速器22中加速達與不在電子束E中之中斷之後之電子聚束42不同的量,且因此可在波紋機24中具有不同的能量。
在一些實施例中,自波紋機24輸出之電子束E返回傳遞通過線性加速器22以便自電子束E恢復能量且使電子束E減速。此配置被稱為能量恢復線性加速器(ERL)。自經減速電子恢復之能量係用以使自注入器21輸出之電子束E加速。若藉由自電子束E移除電子聚束42來中斷電子束E,則在線性加速器22中將存在能量自電子束之恢復之中斷。能量之恢復之此中斷可造成傳遞通過線性加速器22之加速電子被加速之量的縮減,且因此可改變自線性加速器22輸出且傳播通過波紋機24之一些電子聚束42之能量。
如上文所描述,中斷線性加速器22之空腔中之尾流場之效應及/或中斷能量自線性加速器22中之減速電子之恢復之效應可造成一些電子聚束42傳遞通過波紋機24,而具有與未受此等效應影響之電子聚束42不同的能量。發射在波紋機24中受刺激之輻射之波長係取決於波紋機24中之電子聚束之能量,且因此,波紋機24中之電子聚束之能量之變化可導致自自由電子雷射FEL發射之輻射光束B之波長之變化。因此,電子束E中之中斷可造成緊接在電子束E中之中斷之後的輻射光束B之脈衝之波長的變化。
輻射光束B自自由電子雷射FEL至基板W所遵循的光學路徑之透射比可取決於輻射光束B之波長。輻射光束B之波長之變化因此可造成入射於基板上之輻射光束(例如,經圖案化輻射光束Ba')之功率之變化,且因此可影響基板W處所接收之輻射劑量。可需要縮減電子束E 中之中斷對輻射光束B之波長具有之任何影響。
藉由電子束E中之中斷造成的輻射光束B之波長之改變可取決於電子束E被中斷之時間長度。舉例而言,自電子束E僅移除單一電子聚束42可造成電子束E被中斷歷時僅短時間量,且可造成在中斷之後之輻射光束B之脈衝之波長的僅小變化。若自電子束E移除之連續電子聚束42之數目增加,則此情形將增加電子束E被中斷之時間量,且因此可增加在中斷之後之輻射光束B之脈衝之波長的變化。因此,可需要中斷電子束E使得自電子束E移除僅有限數目個連續電子聚束42以便縮減中斷對輻射光束B之波長之影響。舉例而言,可需要每次自電子束E僅移除單一電子聚束42。實務上,此情形歸因於電子脈衝之高頻率(例如,大約100MHz)而不可能。一般而言,可需要以1MHz或大於1MHz之重複速率中斷電子束,且將電子束之總中斷限於光束時間的不到10%。此情形將限制中斷造成輻射B中之脈衝波長之變化之程度。舉例而言,每次可自電子束移除100個連續電子聚束或小於100個連續電子聚束。
在一實施例中,可量測且考量藉由自電子束E移除複數個電子聚束42造成的暫態。舉例而言,可量測且考量輻射光束之波長之暫態改變。如上文所提及,微影裝置LA之鏡面之透射係波長相依的。鏡面之集體性透射具有一峰值透射波長,其中鏡面之透射在彼峰值處最高且作為波長的函數沿著該峰值之任一側之斜率下降。自由電子雷射可經組態以在處於集體性鏡面透射之斜率上(例如,斜率之大約中點)之波長下操作。當自電子束E移除複數個電子聚束時,加速器21保留另外將已轉移至該等電子聚束之能量。當接下來的電子聚束傳遞通過加 速器21時,其接收此額外能量。此為可持續大約1微秒之暫態效應。因為電子聚束具有額外能量,所以其將產生具有較短波長之EUV輻射。在此較短波長下之鏡面之集體性透射將不同(例如,較低),且結果EUV輻射將在其入射於基板上之前由鏡面較多地衰減。此效應可用以至少部分地補償藉由自電子束移除複數個電子聚束42(或以上文所描述之方式使電子聚束散焦)造成的暫態之效應。
在一相關實施例中,可藉由改變雷射光束41之脈衝之功率來變更電子聚束42中之電荷量。此情形將得到由彼等電子聚束42發射之EUV輻射之強度之立即改變及該EUV輻射之波長之立即改變。另外,其將產生加速器21中之能量之暫態改變,此情形將影響後續電子聚束42之能量及波長(例如,歷時幾微秒之週期)。可組合鏡面之波長相依集體性透射來使用此等能量及波長改變,以控制經遞送至基板W上之目標部位之EUV輻射之劑量。
在一另外相關實施例中,可藉由改變電子聚束42之加速度來調整EUV輻射光束之波長。如上文所解釋,改變波長可用作控制經遞送至基板W上之目標部位之輻射劑量之方式。可使用電子升壓器33或加速器21中之額外空腔(例如,由銅形成)來改變提供至電子聚束42之加速度。該額外空腔可具有顯著小於由其他空腔使用之電場但足夠大而能夠控制所得EUV輻射脈衝之波長的峰值電場。若額外空腔非超導電(例如,由銅形成),則其將具有較小Q因數且將能夠較快速地控制波長。
自由電子雷射FEL可包括監視自由電子雷射FEL之屬性之一或多個安全監視系統。舉例而言,可藉由一或多個安全監視系統監視自注 入器21輸出之電子聚束42之電流、傳播通過自由電子雷射FEL之電子束E及/或輻射光束B之脈衝。一或多個安全系統可作用於藉由安全監視系統進行之量測,以便調節所監視變數及/或在所監視變數不同於所要狀態的情況下提供錯誤警報。舉例而言,在輻射光束B之脈衝及/或電子聚束42遺漏的情況下,此可藉由一或多個安全監視系統偵測且可由安全系統作用(例如,藉由關斷自由電子雷射FEL)。在第一控制系統51及/或第二控制系統52中斷電子束E的情況下,則此中斷可傳達至安全監視系統及/或安全系統使得遺漏電子聚束E及/或輻射光束B中之遺漏脈衝未由安全系統作用。
已在上文在控制由基板W之目標部位接收之輻射劑量之內容背景中描述中斷電子束E之優點。中斷電子束E可另外有利,此係因為其可允許可沿著電子束E之路徑而聚集之離子耗散遠離電子束E之路徑。離子可產生於電子束E在自由電子雷射FEL中傳播通過之光束管中,且可由藉由電子造成的電位井而吸引至電子束E之路徑。電子束E中之電子可由離子散射且可產生有害輻射。經散射電子可另外造成對波紋機24中之磁體之損害。電子束E中之中斷造成由電子束E創製的電位井之中斷,在此期間離子可耗散遠離電子束E之路徑。經耗散離子可(例如)由光束管之壁吸收使得自光束管移除該等經耗散離子。
已在上文參看一或多個電子聚束42自電子束E之移除。一或多個電子聚束42自電子束E之移除可包含實質上防止雷射光束41之一或多個脈衝入射於光電陰極43上使得自光電陰極43實質上不發射電子聚束42(例如,使用第一控制裝置51)。一或多個電子聚束42自電子束E之移除可包含將入射於光電陰極43上之雷射光束41之一或多個脈衝之功 率縮減至標稱功率的不到10%,且藉此縮減自光電陰極43發射之電子聚束42之電荷使得其產生可忽略的EUV輻射量(例如,使用第一控制裝置51)。一或多個電子聚束42自電子束E之移除可包含使一或多個電子聚束42自電子束E中偏轉(例如,使用第二控制裝置52)。
在一替代途徑中,如上文所解釋,代替自電子束E移除一或多個電子聚束42,可使一或多個電子聚束散焦使得其產生可忽略的EUV輻射量(例如,使用第二控制裝置52)。
現在將參看圖9來描述本發明之一替代實施例。圖9展示具有與圖3所展示之FEL一樣的許多特徵之FEL。為了避免重複,此等特徵在此處不被再次描述。自由電子雷射FEL包含輻射感測器25,該輻射感測器25可操作以判定輻射光束B之功率。輻射光束B之一部分可經引導朝向輻射感測器裝置ST(其可對應於圖1所展示之輻射感測器裝置ST),且可量測彼部分之輻照度。此可用以判定光束B之功率。替代地或另外,可間接判定光束B之功率。舉例而言,存在於輻射光束B傳遞通過之真空管中之殘餘氣體可發螢光(吸收EUV輻射且發射具有不同波長之輻射)及/或造成EUV輻射之瑞立(Rayleigh)散射。由此殘餘氣體之發螢光及/或瑞立散射之量測連同殘餘氣體壓力之量測可足以判定光束B之功率。功率之量測可為實質上連續的或間歇的。
波紋機24具有一調整機構24a,該調整機構24a可操作以回應於由輻射感測器裝置ST判定之功率而變化波紋機之一或多個參數,使得變更輻射光束之功率,如現在將進一步詳細地予以描述。
在電子移動通過波紋機24時,其與輻射之電場相互作用,從而與輻射交換能量。在滿足諧振條件之電子進入波紋機時該電子將在發 射輻射時損耗能量,使得諧振條件不再得以滿足。因此,如上文所解釋,在一些實施例中,波紋機可成楔形。亦即,週期性磁場之振幅及/或波紋機週期λ u 可沿著波紋機之長度而變化,以便在電子聚束被導引通過波紋機時將該等電子聚束保持處於諧振。有利地,波紋機之成楔形具有用以顯著增加轉換效率之容量。使用成楔形波紋機可將轉換效率(亦即,轉換成輻射光束B中之輻射之電子束E之能量之部分)增加達大於原先的2倍。波紋機之成楔形可藉由縮減沿著波紋機之長度之波紋機參數K來達成。
沿著波紋機之軸線之波紋機週期λ u 及磁場強度B 0 可與電子聚束能量匹配以幫助確保滿足諧振條件。在未成楔形波紋機之狀況下,波紋機週期λ u 及週期性磁場之振幅B 0 貫穿該波紋機保持恆定。在成楔形波紋機之狀況下,波紋機週期λ u 及/或週期性磁場之振幅B 0 隨著沿著該波紋機之軸線之距離而變化以便幫助確保滿足諧振條件。此匹配提供針對給定長度之波紋機自電子至EUV輻射之最大或增加之能量擷取。用以幫助確保滿足諧振條件之波紋機週期λ u 及磁場強度B 0 之此匹配可為自由電子雷射FEL之預設組態。
在一實施例中,波紋機24之磁場之至少部分可調整,調整機構24a可操作以變化其。當需要時,可動態地改變波紋機中之磁場之至少部分之強度,以便縮減來自上述經匹配組態之轉換效率。在一些實施例中,調整機構24a可操作以變更波紋機24之軸線上或接近波紋機24之軸線之磁場強度。
有利地,此情形提供輸出EUV輻射之功率之控制,同時電子之諸如能量、電荷、壓縮、聚焦及重複率之一或多個屬性可保持恆定。舉 例而言,出於一或多個原因,此配置係有益的。舉例而言,此配置允許考量對EUV輻射所需求的改變。舉例而言,此配置允許變化使用待容納之EUV輻射之微影裝置LA之要求。微影裝置LA包含若干鏡面,該等鏡面可隨著時間而劣化且該配置(例如)允許補償此劣化。作為另一實例,此配置允許補償歸因於電子及/或中子轟擊之波紋機24中之磁體之降級。
另外益處在於:FEL之轉換效率可相對迅速地改變。詳言之,輻射光束B之功率可在用於基板W上之目標部位由微影裝置LA之曝光之時間刻度內(例如,大約1毫秒內)改變。此情形可允許控制輻射光束B之功率使得基板上之目標部位處所接收之輻射劑量受控制。亦即,來自感測器裝置ST之回饋可用以縮減目標部位處所接收之輻射劑量之波動(例如,使得劑量之變化保持低於所要臨限值)。
取決於聚束式電子束E之重複率,不可能校正功率之脈衝間變化。
可藉由將提供波紋機24之磁場之磁體移動朝向或遠離光束軸線來變更波紋機24之軸線上或接近波紋機24之軸線之磁場強度。此變更可被認為波紋機24之成楔形之變更。可獨立地或取決於其他磁體來調整該等磁體。在一實施例中,以使EUV輻射之偏振保持實質上未變更之方式相對於光束軸線來移動磁體。此情形在需要向微影裝置LA提供特定偏振之輻射的情況下可有利。舉例而言,微影裝置LA可需要圓形偏振輻射。藉由移動磁體來調整平面波紋機24之成楔形將對偏振實質上不具有影響。然而,螺旋狀波紋機之磁體之調整將變更輻射之偏振,除非磁體之調整係在垂直方向及水平方向兩者中進行。
在一實施例中,波紋機24之磁體可配置於光束軸線之任一側上,其中間隙處於該等磁體之間。間隙可(例如)介於4毫米與10毫米之間。磁體之間的間隙之大小可(例如)受控制至大約1微米之準確度。調整機構24a可操作以將間隙之大小改變達(例如)10微米或更大。
另外或替代地,可藉由變更由磁體產生之磁場來變更波紋機24之軸線上或接近波紋機24之軸線之磁場強度。磁體可為永久性磁體,且可藉由變更流動通過定位成緊接著該等磁體之線圈之電流及/或變更該等磁體之溫度來變更該等磁體產生之磁場。磁體之溫度之增加可造成磁場強度之減低。
在一實施例中,調整機構24a可操作以變更波紋機24之波紋機週期λ u
在一實施例中,輻射感測器裝置ST可用以監視輻射光束B之功率。回應於此經判定功率,調整機構24a可變更波紋機24之週期性磁場,此情形由將變更輻射光束B之功率。以此方式,可建立控制由自由電子雷射輸出之輻射光束B之功率之以回饋為基礎之控制迴路。
調整機構24a可受到控制器CT控制。輻射感測器裝置ST可連接至控制器CT且可操作以將指示經判定功率之信號S發送至控制器。輻射感測器ST與控制器之間的連接可為實體的或無線的(對於此實施例或其他實施例)。控制器CT可操作以接收信號S,且回應於該信號S而變更波紋機24之一或多個參數。可取決於自輻射感測器25接收之信號S根據某一(例如,預定)演算法來變更參數。感測器裝置ST、控制器CT及調整機構24a包含可用以控制由自由電子雷射輸出之輻射光束之功 率(例如,以縮減功率波動)之以回饋為基礎之控制迴路。
控制器CT可操作以接收額外信號S',且回應於該額外信號S'而變更波紋機24之一或多個參數。舉例而言,處理器可自微影裝置LA接收指示對EUV輻射之低或高需求之預期週期之信號S',且處理器可相應地變更波紋機24之一或多個參數。
自由電子雷射FEL可包含安置於加速器22與波紋機24之間的第一偏轉磁體,其可處於:第一狀態,其中電子係由波紋機24沿著週期性路徑導引,使得其與波紋機24中之輻射相互作用,從而刺激相干輻射之發射;或第二狀態,其中電子係沿著不同路徑經導引通過波紋機24使得其自波紋機24中之輻射解耦,且實質上不刺激相干輻射之發射。舉例而言,第一偏轉磁體可被接通(其中其處於第二狀態)或被切斷(其中其處於第一狀態)。此配置尤其適用於螺旋狀波紋機,其中電子方向與波紋機之軸線之間的角度之小改變(例如,達大約10微拉德)可造成EUV輻射自電子聚束完全解耦。因此,EUV輻射之受刺激發射被有效地切斷,從而將自由電子雷射FEL之EUV輸出縮減至可忽略位準。有利地,此情形提供可理想之緊急切斷特徵。自由電子雷射FEL可包含安置於波紋機24下游之第二偏轉磁體,該第二偏轉磁體經配置以補償第一偏轉磁體之作用,使得當第一偏轉磁體處於接通狀態時射出第二偏轉磁體之電子遵循的軌跡實質上相同於當第一偏轉磁體處於斷開狀態時射出第二偏轉磁體之電子的軌跡。此情形允許當第一偏轉磁體被接通或斷開時朝向光束截止器100來引導電子。
EUV輻射自SASE FEL之典型發散度為大約至少數十微拉德。因此,原則上,有可能在不顯著改變射出自由電子雷射FEL之輻射光束 B之位置的情況下藉由控制波紋機之輸入處之光束方向來改變EUV輸出之功率。電子束E之偏轉可動態地使用偏轉磁體(由脈衝式電流驅動)藉由彎曲磁體之機械移動及/或藉由改變通過一或多個偶極磁體之線圈之電流來達成。
如上文所提及,自由電子雷射FEL可包含安置於波紋機24與光束截止器100之間的減速機構26,該減速機構26可操作以在電子由光束截止器100吸收之前縮減該等電子之能量。此配置縮減電子在由光束截止器吸收時具有的能量之量,且因此,將縮減所產生之誘發性輻射及次級粒子之位準。此情形移除或至少縮減自光束截止器移除放射性廢料及安置放射性廢料之需要。此情形有利,此係因為放射性廢料之移除需要週期性地關斷自由電子雷射FEL且放射性廢料之安置可為成本高的且可具有嚴重環境影響。
減速機構26可操作以將電子之能量縮減至低於7MeV,且理想地低於5MeV。有利地,低於此能量之電子不誘發光束截止器100中之任何顯著放射性位準。在自由電子雷射FEL之操作期間,將存在伽瑪輻射,但當電子束E被切斷時,光束截止器100將安全地處置。
一種已知減速機構使用線性加速器以使電子減速。舉例而言,用於加速之線性加速器22亦可藉由將離開波紋機24之電子聚束E以相對於射頻(RF)場之180度相位差而注入至線性加速器22中而用於減速。此配置被稱為能量恢復LINAC。然而,存在對此配置可接受之聚束內之電子能量之散佈之限制。波紋機24將在電子束E傳遞通過時引入該電子束E之能量之散佈。此情形將引起以相對於射頻(RF)場之180度相位差被注入至線性加速器22中的電子聚束之不完美減速。結果, 一些電子在其離開線性加速器22時可具有比離開注入器21之電子之能量大的能量。因此,此等電子中之一些可具有超過7MeV或5MeV之所要臨限值之能量。結果,可需要用以進一步縮減此等電子之能量之機構。
因此,減速機構26之至少部分可與電子源分離。詳言之,減速機構26可包含可用以使電子主動地減速之同步加速器或迴旋加速器。有利地,此配置允許離開波紋機之聚束內之電子能量之較大散佈,從而又允許自由電子雷射之效率之增加。在一替代實施例中,減速機構26可包含電子傳遞通過以使其被動地減速之導電導管。舉例而言,參看圖11A及圖11B,減速機構26可包含具有粗糙內部表面以提昇歸因於尾流場之能量耗散之導電管路140a、140b之區段。舉例而言,內部表面可包含複數個交替凹座141a、141b及突起部142a、142b。交替凹座141a、141b及突起部142a、142b可具有剖面之任何合適形狀,諸如,三角形(141a、142a)或矩形(141b、142b)。導電管路之內部表面可含有在適當時用於誘發大尾流場之任何合適不連續源,諸如孔、隙縫等等。導電管路140a、140b可包含諸如水冷卻件之冷卻系統(圖中未繪示)。
在一實施例中,調整機構24a可操作以變化輻射光束B之偏振。此變化可回應於由調整機構接收之信號S'而進行。如將在下文中進一步描述,可藉由(a)改變波紋機24之幾何形狀;及/或(b)(例如)使用鏡面系統來操縱離開波紋機24之輻射光束B(參見圖10)來變更輸出輻射光束B之偏振。
在一實施例中,將由自由電子雷射產生之輻射光束B導引至微影 裝置LA之照明系統IL中且導引至圖案化器件MA。一般而言,輻射將改變自由電子雷射FEL與圖案化器件MA之間的方向,方向之該改變係使用一或多個鏡面來達成。一或多個鏡面可包括照明系統IL中之琢面化場鏡面器件10及琢面化光瞳鏡面器件11,及/或定位於自由電子雷射FEL與微影裝置LA之間的及/或照明系統IL中的任何其他鏡面。一般而言,每一反射將變更分量之強度之比率,其中電場平行於或垂直於入射平面(常常被稱作輻射之s分量及p分量),從而改變輻射之偏振。偏振之改變係取決於入射角,其中掠入射鏡面產生偏振之最大改變且近正入射鏡面(諸如,照明系統IL中之琢面化場鏡面器件10及/或琢面化光瞳鏡面器件11)不產生偏振之任何顯著改變。
自由電子雷射FEL可經組態成使得取決於安置於自由電子雷射FEL與圖案化器件MA之間的一或多個鏡面而選擇輻射光束B之偏振,使得入射於圖案化器件上之輻射具有所要偏振。舉例而言,可需要用圓形偏振輻射來輻照圖案化器件。若為此狀況,則波紋機24可產生橢圓形偏振輻射,其中s分量及p分量之相對強度係使得入射於圖案化器件MA上之輻射經圓形偏振。可藉由僅考量光學路徑中之任何掠入射鏡面且忽略任何正入射鏡面或近正入射鏡面之效應來選擇s分量及p分量之相對強度。
為了產生橢圓形偏振輻射,可使用諸如螺旋狀波紋機之任何合適波紋機24。在一實施例中,波紋機24可包含平面實質上相互垂直的兩個同軸平面波紋機,其中該兩個平面波紋機之長度、波紋機週期及磁場強度經選擇以幫助確保偏振之水平強度與垂直強度之比率產生所要橢圓形輻射。在一實施例中,波紋機可包含兩個以上同軸平面波紋 機,每一平面波紋機之平面係不同的。相比於使用僅兩個平面波紋機之配置,此配置可允許較平滑偏振匹配。在一實施例中,波紋機可包含平面實質上相互垂直的第一同軸平面波紋機及第二同軸平面波紋機以及安置於第一平面波紋機與第二平面波紋機之間的一同軸螺旋狀波紋機。此配置有利,此係因為其允許藉由引入中間螺旋狀波紋機而使能量自第一偏振輻射(來自第一平面波紋機)至實質上垂直偏振之輻射(對應於第二平面波紋機)中之有效率耦合。
微影裝置LA可需要圓形偏振EUV輻射。此輻射可使用產生圓形偏振輻射之螺旋狀波紋機來達成。然而,若波紋機為平面,則可需要自線性偏振至圓形偏振之轉換。視情況,此轉換可使用裝置130來進行,現在將參看圖10進一步描述裝置130。
裝置130可操作以使用鏡面131將輻射光束B分裂成兩個分量。輻射光束B之第一部分B1係由鏡面131反射達90°,輻射光束B之第二部分B2繼續穿過鏡面131。輻射光束B之偏振向量平行於鏡面131,且因此第一部分B1之偏振向量相同於輻射光束B之偏振向量。第一部分B1接著經歷由鏡面132、133之達90°之兩個後續反射。來自鏡面132之第二反射使第一部分B1之偏振向量旋轉達90°,而來自鏡面133之第三反射不使第一部分B1之偏振向量旋轉達90°。在三個旋轉達90°之後,第一部分B1平行於第二部分B2但自第二部分B2偏移,且兩個部分B1、B2之偏振向量相互正交。兩個掠入射鏡面134、135係用以導引第一部分B1使得其與第二部分B2收斂。儘管第一部分B1與第二部分B2收斂,但由於第一部分B1之反射,第一部分B1與第二部分B2之偏振向量不再平行。藉由考量第一部分B1及第二部分B2之不同反射損耗且 適當地選擇第一部分B1及第二部分B2之功率,有可能產生實質上相等功率且實質上相互正交偏振之兩個收斂光束。此兩個光束可經由其相對相位之適當選擇而一起形成圓形偏振輻射光束或橢圓形偏振輻射光束。實務上,精確相位匹配可為不可能的。因此,替代地,共同傳播或重疊之光束B1及B2兩者可由微影裝置LA接收且投影至基板W上(已由光罩MA進行圖案化)。裝置130可用以確保在基板W之曝光期間存在兩個偏振且由該兩個偏振遞送之劑量平均起來大約相等。
自由電子雷射之聚束壓縮器可包含可調整聚束壓縮器。圖12說明具有可調整聚束壓縮器230之自由電子雷射FEL。可調整聚束壓縮器230可經配置以可調整地控制如下各者中至少一者:(i)在電子束E之電子聚束進入波紋機24之前電子束E沿著其傳播方向之電子聚束之電荷密度分佈;或(ii)電子束E中之電子聚束在其進入波紋機24之前的平均能量。可調整聚束壓縮器230包含一諧振空腔232及一磁性壓縮器234。諧振空腔232安置於磁性壓縮器234之「上游」,亦即,電子束E首先傳遞通過諧振空腔232且接著傳遞通過磁性壓縮器234。
在圖12之配置中,線性加速器22包含沿著一共同軸線軸向地間隔之複數個超導電射頻空腔222a。由一或多個射頻電源向此等超導電射頻空腔供應電磁輻射,以便激發該等空腔222a內之振盪電磁駐波。射頻電源包含一低功率射頻源225及一高功率放大器222b。電磁能量係經由波導222c而傳達至超導電射頻空腔222a。沿著共同軸線之電場振盪之頻率經選擇成與電子束E振盪之頻率實質上匹配。時序係使得隨著每一電子聚束傳遞通過每一空腔,沿著共同軸線之電場就使電子加速。
隨著電子束E之每一聚束傳遞通過線性加速器22,該聚束之不同部分中之電子一般而言就將經歷歸因於每一聚束之長度之不同加速力。舉例而言,朝向聚束之前端之電子將經歷不同於朝向聚束之後端之電子的加速力,此係因為在共同軸線上之給定點處之超導電諧振空腔內之電磁駐波將在電子聚束橫穿彼點所花費的時間內改變。因此,除了使電子束加速以外,線性加速器22亦將引入電子之能量與其在聚束內之位置之間的相關性。此能量-位置相關性被稱為電子聚束之「頻擾」。
根據慣例,若個別電子之能量朝向電子聚束之前端(後端)增加,則可據稱電子束之頻擾為正(負)。電子束E中之電子聚束之頻擾可為正或負,此取決於電子聚束是在射頻電磁波之上升斜率抑或下降斜率上被加速(或減速)。儘管射頻駐波可為正弦,但對於相對短電子聚束(其中電子聚束橫穿共同軸線上之給定點所花費的時間相對短),電子束E之頻擾可為實質上線性的。對於較長電子聚束,頻擾可能不為線性。
磁性壓縮器234經配置以沿著電子束E之傳播方向壓縮電子束中之電子聚束。另外,該壓縮係取決於在電子聚束進入磁性壓縮器時該等電子聚束之頻擾。舉例而言,磁性壓縮器234可包含複數個磁體,該複數個磁體經配置以散佈每一電子聚束且隨後重新組合其使得在每一電子傳遞通過磁性壓縮器234時由該每一電子遵循之路徑之長度係取決於其能量。此配置可用以使用給定頻擾以壓縮光束。舉例而言,磁性壓縮器234可經配置成使得對於具有負頻擾之電子聚束(亦即,朝向聚束之後端之電子相比於朝向聚束之前端之電子具有更多能量), 每一聚束內之較高能量電子相比於較低能量電子遵循較短路徑。
變更電子聚束中之電子沿著其傳播方向之電荷密度分佈將會變更波紋機24之增益(轉換效率係取決於電子聚束之峰值電流)。又,此將變更由波紋機24輸出之輻射光束B之功率。
在穩定操作條件下,在電子束E由線性加速器22加速時被引入至該電子束E之電子聚束之頻擾可實質上恆定。藉由如下操作中任一者:(a)在電子束E進入磁性壓縮器234之前稍微變更此頻擾;或(b)變更磁性壓縮器234使得其針對給定頻擾應用不同壓縮,可在電子束進入波紋機24之前控制該電子束沿著其傳播方向之電荷密度分佈。又,此提供用以控制由波紋機24輸出之輻射光束B之功率之機構。可調整壓縮器230可操作以藉由在電子束E中之電子聚束進入(被動式)磁性壓縮器234之前稍微變更該電子束E中之該等電子聚束之頻擾來控制輻射光束B之功率。因此,有利地,圖12之配置提供輸出功率可主動地受控制之自由電子雷射。
磁性壓縮器234係被動的且保持固定。諧振空腔232經配置以在電子束進入磁性壓縮器234之前控制電子束之頻擾。藉由使用諧振空腔232以增加或減低電子束E中之電子聚束之頻擾,可控制由波紋機24輸出之輻射光束B之功率。
諧振空腔232被提供成與線性加速器22分離。諧振空腔232與線性加速器22「經相位鎖定」,亦即,諧振空腔232在實質上相同於線性加速器22之頻率下操作且經配置成使得諧振空腔232相對於電子束E之相位保持實質上恆定。此情形可藉由使用同一低功率射頻電源225以將電磁能量供應至線性加速器22及諧振空腔232來達成。諧振空腔232 具備其自有放大器236,且電磁能量係自放大器236經由波導238而傳達至諧振空腔232。
圖12之自由電子雷射進一步包含控制器CT。控制器CT可操作以自量測自波紋機輸出之EUV輻射光束B之功率的感測器裝置ST接收輸入信號S。回應於信號S,控制器CT可操作以調整經由放大器236及波導238而供應至諧振空腔232的電磁功率。因此,提供包含感測器裝置ST、控制器CT及可調整壓縮器230之以回饋為基礎之控制迴路。以回饋為基礎之控制迴路可用以縮減EUV輻射光束之功率之波動(例如,當功率遍及諸如大約1毫秒之時間週期而平均化時)。以回饋為基礎之控制迴路可用以將入射於基板目標部位上之EUV輻射劑量之變化保持低於所要臨限值。
如上文所描述,圖12之可調整壓縮器230可用以藉由在電子束E中之電子聚束進入(被動式)磁性壓縮器234之前稍微變更該電子束E中之該等電子聚束之頻擾來控制輻射光束B之功率。替代地或另外,圖12之可調整壓縮器230可用以在電子束E進入波紋機24之前控制該電子束E之平均能量。
在電子束E中之電子聚束進入波紋機24之前對該電子束E中之該等電子聚束之平均能量之相對小變更將引起輸出輻射光束B之波長之變更。又,此變更亦將引起輸出輻射光束B之功率之變更。此為兩種因素之結果:(i)每一聚束之平均能量之小改變將影響自由電子雷射之增益;及(ii)產生於波紋機24中之每一光子之能量係取決於其波長。因此,有利地,此配置提供輸出功率及波長可主動地受控制之自由電子雷射。
圖12之自由電子雷射可形成圖1之微影系統LS之部件,其中由自由電子雷射產生之輻射最終由一或多個微影裝置LAa至LAn內之一或多個基板W接收。此等基板可使用掃描曝光而曝光,其中基板W上之給定目標部位係由EUV輻射來照明歷時一預定時間週期(例如,大約1毫秒)。在微影系統LS內,經由如下各者而將輻射自自由電子雷射輸送至基板:(i)光束遞送系統(例如,包含光束分裂裝置19);及(ii)微影裝置LAa至LAn內之光學件(例如,光學件10、11、13、14--參見圖2)。出於熱原因,光束遞送系統內之光學件可主要包含掠入射鏡面,且因而,此等光學件之經組合反射率可相對獨立於輻射光束B之波長。相比而言,微影裝置LAa至LAn內之光學件可包含近正入射鏡面,且可包含針對給定標稱波長而最佳化之多層鏡面。因而,微影裝置LAa至LAn內之光學件之經組合反射率可強烈取決於輻射光束B之波長及頻寬。
輻射光束B之輸出功率之改變將直接影響由自由電子雷射遞送至基板W上之目標部位之輻射劑量。此外,出於上文所解釋之原因,變更輻射光束B之波長將影響遞送至基板上之目標部位之輻射劑量。相比於輻射光束之功率之改變,輻射光束之波長之改變可對由輻射源遞送至目標部位之劑量有較大影響。包含感測器裝置ST、控制器CT及可調整壓縮器230之以回饋為基礎之控制迴路可用以縮減輻射光束B之功率及波長之波動。此以回饋為基礎之控制迴路又可將入射於基板目標部位上之EUV輻射劑量之變化保持低於所要臨限值。
可調整壓縮器230可在複數個不同模式中操作。舉例而言,圖12之可調整壓縮器230可用以控制複數個電子聚束在其進入波紋機24之 前沿著其傳播方向之電荷密度分佈。替代地,圖12之可調整壓縮器230可用以在複數個電子聚束進入波紋機24之前控制該複數個電子聚束中之電子之平均能量。在另外替代例中,圖12之可調整壓縮器230可用以控制如下兩者:(i)控制複數個電子聚束在其進入波紋機24之前沿著其傳播方向之電荷密度分佈;及(ii)複數個電子聚束在其進入波紋機24之前的平均能量。控制器CT可操作以將可調整壓縮器230自一操作模式切換至另一操作模式。此切換可藉由變更諧振空腔232內之電磁波相對於電子束E之相位來達成。控制器CT可具備一輸入機構(圖中未繪示),該輸入機構可允許使用者選擇用於可調整壓縮器230之操作模式。
為了在複數個電子聚束進入磁性壓縮器234之前變更其之頻擾(例如,在第一模式中),諧振空腔232內之電磁波之相位可使得該空腔232內之電場針對處於傳遞通過該諧振空腔之電子束E之每一聚束之中心的電子實質上為零。對於此配置,每一電子聚束之頻擾之改變係由諧振空腔232內之RF場振盪之振幅來定義。有利地,因為此配置僅調整電子聚束之頻擾且不改變電子聚束內之電子之平均能量,所以驅動諧振空腔232所需之射頻功率不取決於電子束E之平均電流。因此,所需之功率係低的,且有可能使用較不有效率、較不複雜且較不昂貴的諧振空腔以變更頻擾。
為了在每一電子聚束進入波紋機24之前變更其中之電子之平均能量(例如,在第二模式中),諧振空腔232內之電磁波之相位可使得該空腔內之電場針對處於傳遞通過該諧振空腔232之電子束E之每一聚束之中心的電子實質上處於其最大值或最小值。在使用此配置的情況 下,諧振空腔232傾於在電子束E傳播通過空腔232時使該電子束E加速或減速,從而變更每一聚束內之電子之平均能量。對於此配置,每一聚束內之電子之平均能量之改變係由諧振空腔232內之RF場振盪之振幅來定義。
在第一操作模式中,變化供應至諧振空腔232之電磁功率又將變化電子聚束之電荷密度分佈,且因此變化由波紋機24輸出之輻射光束B之功率。在第二操作模式中,變化供應至諧振空腔232之電磁功率將變化每一電子聚束內之電子之平均能量,且因此變化由波紋機24輸出之輻射光束B之波長(且(在較小程度上)變化該輻射光束B之功率)。因此,因為控制器CT回應於自感測器裝置ST接收之信號S而變化供應至諧振空腔232之電磁功率,所以圖12之配置提供用於控制輸出輻射光束B之功率及/或波長之方便的回饋系統。此主動式回饋系統可(例如)用以穩定化由輻射光束提供至基板上之目標部位之輻射劑量。
感測器裝置ST可經配置以判定由波紋機24輸出之主輻射光束B之總功率及/或強度分佈。控制器CT可基於主輻射光束B之總功率及/或強度分佈以及波紋機24與基板W之間的光學路徑之光譜回應而判定基板W處所接收之劑量將如何隨著經由放大器236及波導238而供應至諧振空腔232之電磁功率變化而變化。
可在校準步驟期間在基板W之曝光之前來判定基板目標部位處所接收之劑量對輻射光束B之波長及功率之相依性。此判定可藉由針對主輻射光束B之複數個不同波長及/或總功率而量測基板台WT處所接收之輻射劑量來達成。在此校準步驟期間(在基板W之曝光之前),可(例如)使用安置於基板台WT上之感測器來量測劑量。由基板上之目 標部位所接收之能量劑量可相對於遍及一曝光時間週期之輻射光束之功率之時間為整數。曝光時間週期可(例如)為大約1毫秒。可藉由變化經由放大器236及波導238而供應至諧振空腔232之電磁功率以變化波長來產生複數個不同波長。以此方式,可判定校準圖,其將由基板W接收之劑量對輻射光束B之波長及功率之相依性特性化。校準圖可儲存於可由控制器CT存取之記憶體中。此途徑可結合控制輻射光束B之功率(或輻射光束之其他屬性)之本發明之其他實施例來使用。
控制器CT可操作以將主輻射光束B之波長、頻寬、總功率及/或強度分佈轉換成將在曝光時間週期期間由基板W上之目標部位接收之輻射劑量。此轉換可使用先前經判定且可儲存於記憶體中之校準圖。有利地,此轉換提供用於控制由基板W上之目標部位接收之輻射劑量的可(例如)用以穩定化該劑量之方便的主動式回饋系統。此途徑可結合控制輻射光束B之功率(或輻射光束之其他屬性)之本發明之其他實施例來使用。
在一些實施例中,諧振空腔232為正常導電諧振空腔。舉例而言,其可由銅形成。相比於(例如)用以使線性加速器22內之電子束E加速之超導電空腔,諸如銅空腔之正常導電諧振空腔具有相對低Q值。因為諧振器之頻寬與其Q值成反比,所以此正常導電空腔之射頻功率因此可以高頻寬而調整。有利地,此情形允許相比於超導電RF空腔在該空腔內之加速場梯度之顯著較快速改變。因此,使用正常導電諧振空腔232尤其有益,此係因為其允許迅速調整由自由電子雷射輸出之輻射光束B之功率及/或波長。此情形尤其有利,此係因為其允許即時地控制由輻射光束B供應(例如,供應至微影裝置LAa至LAn中 之一者內之基板W)之輻射劑量。其可(例如)允許足夠迅速地控制由輻射光束供應之輻射劑量,使得目標部位處所接收之劑量之變化得以縮減(例如,控制快於1毫秒)。
儘管已論述可藉由變化由自由電子雷射輸出之輻射之波長來控制由目標部位接收之輻射劑量之配置,但可替代地將具有可調整波長之任何輻射源用於此劑量控制方法。另外,儘管已在微影系統之內容背景內論述圖12之配置,但圖12之配置可替代地係關於由除了控制微影裝置LAa至LS8內之基板W以外之目標部位接收的輻射劑量之控制。
對於圖12之配置(其中可調整壓縮器230包含被動式磁性壓縮器234,以便提供對電子束E在其進入波紋機24之前沿著其傳播方向之電荷密度分佈之控制),諧振空腔232安置於磁性壓縮器234之「上游」。然而,若僅需要在電子束E進入波紋機24之前對該電子束E之平均能量之控制,則諧振空腔232可安置於磁性壓縮器234之「上游」或「下游」。
圖13說明自由電子雷射之替代配置,該自由電子雷射包含可調整聚束壓縮器260,該可調整聚束壓縮器260經配置以連續地變化電子束E中之複數個電子聚束之頻擾及該等聚束內之電子之平均能量。可調整聚束壓縮器260包含一諧振空腔262及一磁性壓縮器264。諧振空腔262安置於磁性壓縮器264之「上游」,亦即,電子束E首先傳遞通過諧振空腔262且接著傳遞通過磁性壓縮器264。
磁性壓縮器264經配置以沿著電子束E之傳播方向來壓縮具有該電子束之電子聚束,該壓縮係取決於電子聚束在其進入磁性壓縮器 264時之頻擾。
諧振空腔262係與線性加速器22分離。諧振空腔262具備放大器266,且電磁能量係自放大器266經由波導268而傳達至諧振空腔262。
諧振空腔262經配置以在一般而言不同於電子束E之頻率的頻率下操作,使得電子聚束之頻擾及/或電子聚束之平均能量隨著時間而變化。此情形可藉由使用不同低功率射頻電源225、265以將電磁能量分別供應至線性加速器22及諧振空腔262來達成。
當諧振空腔262之頻率不同於電子束E之頻率時,諧振空腔262將連續地變化電子聚束之頻擾及電子聚束內之電子之平均能量。頻擾及平均能量之改變之速率係取決於線性加速器22與諧振空腔262之頻率之間的差。變更電子聚束內之電子之平均能量將變更輻射光束之波長(隨著平均能量增加,輻射光束之波長減低)。因此,圖13之配置提供用於增加由自由電子雷射輸出之輻射之有效頻寬之機構。
在一些實施例中,諧振空腔262為正常導電諧振空腔。舉例而言,其可由銅形成。相比於(例如)用以使線性加速器22內之電子束E加速之超導電空腔,諸如銅空腔之正常導電諧振空腔具有相對低Q值。因為諧振器之頻寬與其Q值成反比,所以此正常導電空腔之射頻功率因此可以高頻寬而調整。有利地,此情形允許相比於超導電RF空腔在該空腔內之加速場梯度之顯著較快速改變。因此,使用正常導電諧振空腔262尤其有益,此係因為其允許迅速調整由自由電子雷射輸出之輻射光束B之功率。其可(例如)允許足夠迅速地控制由輻射光束供應之輻射劑量,使得目標部位處所接收之劑量之變化得以縮減(例如,控制快於1毫秒)。
圖13之自由電子雷射進一步包含控制器CT。控制器CT可操作以自感測器裝置ST接收輸入信號S1。回應於信號S1,控制器CT可操作以變化諧振空腔262之一或多個參數。舉例而言,控制器CT可操作以變化經由放大器266及波導268而供應至諧振空腔262之電磁功率。替代地或另外,控制器CT可操作以變化射頻空腔262內之電磁駐波之頻率。此可藉由調整如下兩者來達成:(a)由低電源265供應至諧振空腔262之電磁輻射之頻率;及(b)用以維持諧振條件之諧振空腔262之幾何形狀。可使用(例如)一或多個壓電拉伸器及/或壓縮器以將諧振空腔262之諧振頻率與低功率射頻源265之頻率匹配來變更諧振空腔262之幾何形狀。
感測器裝置ST可經配置以輸出指示輻射光束B之功率之值。有利地,此情形提供用於控制輸出輻射光束B之功率的可(例如)用以穩定化該功率之方便的以回饋為基礎之回饋迴路。控制器CT可使用由感測器裝置ST量測之功率連同上文所描述之校準,以演算由輻射光束B遞送至基板上之目標部位之輻射劑量且相應地調整輻射光束之功率。由目標部位接收之能量劑量可相對於遍及一曝光時間週期之輻射光束之功率之時間為整數。曝光時間週期可(例如)為大約1毫秒。
自由電子雷射之所描述實施例包含安置於線性加速器22下游及波紋機24上游之可調整聚束壓縮器230、260。亦即,電子束E以彼次序傳遞通過線性加速器22、可調整聚束壓縮器230、260,及波紋機24。然而,在替代實施例中,自由電子可包含安置於線性加速器22上游之可調整聚束壓縮器。如同上述實施例一樣,此可調整聚束壓縮器可操作以控制如下各者中至少一者:(i)複數個電子聚束中每一者在其 進入波紋機之前沿著電子束之傳播方向之電荷密度分佈;或(ii)複數個電子聚束中每一者在其進入波紋機之前的平均能量。舉例而言,可調整聚束壓縮器可包含注入器21內之光束聚束器,其可包含諧振空腔。對於此等實施例,電子聚束內之電子並非相對論性的。因此,由光束聚束器強加之能量頻擾可造成每一聚束之頭部與尾部處之電子之顯著速度差。因此,對於此等實施例,可調整壓縮器可不包含磁性壓縮器。
圖14示意性地展示根據本發明之一實施例的波紋機24。該波紋機包含三個模組300。每一波紋機模組300包含一週期性磁體結構,該週期性磁體結構沿著一週期性路徑來導引電子束E使得電子在其週期性路徑之中心軸線方向上輻照電磁輻射,藉此形成EUV輻射光束B(其可被認為雷射輻射光束)。間隙302提供於該等波紋機模組300之間。動態相移器304位於該等間隙中。術語「動態相移器」可被解釋為意謂作為可受控制以應用相移或不應用相移及/或受控制以應用不同大小及/或量值之相移之相移器。動態相移器304受到控制器CT控制。儘管圖14展示三個波紋機模組300,但波紋機24可包含更多波紋機模組(或更少波紋機模組)。相似地,儘管圖14展示兩個動態相移器304,但可提供兩個以上動態相移器或可提供單一動態相移器。
在自由電子雷射之操作期間,電子束功率轉換成雷射輻射光束功率之效率受到波紋機模組300之週期性磁場中之電子之振盪運動與輻射光束之電磁波之相位(亦即,藉由電子之振盪運動而已經產生於波紋機中之上游的輻射之相位)之間的相對相位影響。
波紋機模組300之間的間隙302各自引入電子橫向速度與輻射光 束B之電磁場之相位之間的一相移。當此等相移同相(亦即,相位差接近2*π*N,其中N為整數)時,能量係自電子轉移至輻射光束B(此為自由電子雷射之放大程序)。當相位差接近(2*N+1)*π時,相位差造成電子自輻射光束獲得能量,因此反轉自由電子雷射之放大程序。由兩個波紋機模組之間的間隙引入之相移
Figure 108129836-A0305-02-0108-7
係由如下方程式控管:
Figure 108129836-A0305-02-0108-4
其中L g 為間隙302之長度(自第一波紋機模組之末端至下一波紋機模組之開始之距離);γ為電子之勞侖茲因數;λ r 為輻射之波長;λ U 為波紋機之週期;K為波紋機參數;且A係取決於波紋機之幾何形狀及所得輻射光束偏振(如上文結合方程式(1)所解釋)。
如自方程式(4)可看出,在正常情況下,由每一間隙302引入之相移φ固定。然而,可使用動態相移器304來修改相移。控制器CT可控制動態相移器以控制相移且藉此控制電子束轉換成光子之效率。因此,控制器CT可使用動態相移器以控制自波紋機24發射之EUV輻射光束B之功率。
圖15示意性地展示動態相移器304之一實例。動態相移器304包含三對電磁體306至308,每一對之電磁體位於電子束E之軌跡之任一側上。第一對電磁體306a、306b包含由鐵氧體材料形成之第一磁體306a以及電線迴路310,該等電線迴路310經配置成使得當將電流供應至電線時產生面對電子束軌跡之南極。該對之第二電磁體306b包含鐵氧體材料與電線迴路310,該等電線迴路310經配置成使得當電流傳遞通過電線時產生面對電子束軌跡之北極。因此,當電流流動通過電線時,磁場延伸橫越電子束軌跡。當電流未流動通過電線時,不存在磁 場。
第二電磁體對307a、307b相似地包含兩個鐵氧體材料片件,圍繞該兩個鐵氧體材料片件提供電線迴路310。然而,在此狀況下,由傳遞通過電線310之電流產生之北極及南極係處於電子束軌跡之相反側上(相對於第一對電磁體306a、306b)。另外,第二電磁體對307a、307b經組態以產生為由第一電磁體對產生之磁場之大小之雙倍的磁場。因此,當電流流動通過電線時,正負號相反且大達由第一電磁體對306a、306b產生之磁場兩倍的磁場延伸橫越電子束軌跡。
第三對電磁體308a、308b具有相同於第一對電磁體306a、306b的組態。因此,當電流流動通過電線時,此對電磁體308a、308b提供延伸橫越電子束軌跡之磁場,其具有相同於由第一對電磁體306a、306b所產生之磁場的正負號及量值。
在使用中,當無電流流動通過電磁體306至308之電線時,電子束E在其軌跡不被修改的情況下行進(亦即,沿著由虛線E1指示之軌跡)。當電流流動通過電線時,電磁體306至308將彎曲引入至電子束E之軌跡中使得電子束遵循由圖15中之實線E2指示之較長路徑。
第一對電磁體306a、306b使電子束之軌跡在第一方向上彎曲(圖15中向上彎曲)。第二對電磁體307a、307b在相反方向上以兩倍量值應用彎曲(電子束在圖15中向下彎曲)。最後,第三對電磁體308a、308b將另外彎曲應用於電子束(圖15中向上應用)。此另外彎曲對應於由第一對電磁體306a、306b應用之彎曲,且結果使電子束E恢復至其初始軌跡。當電磁體係作用中時電子束E2之軌跡可被稱作軌道。
如自圖15可看出,在離開動態相移器304時電子束E之軌跡相 同,而不管電流是否流動通過電磁體306至308之電線310(亦即,不管電磁體是否係作用中)。然而,當電磁體係作用中時由電子束行進之軌跡E2之長度大於當電磁體不在作用中時由電子束行進之軌跡E1之長度。因此,啟動電磁體306至308會將相移引入至電子束E中,當電磁體不在作用中時不存在相移。因為相移影響電子束至EUV輻射之轉換效率,所以電磁體306至308可用以改變由自由電子雷射FEL之波紋機24發射之EUV輻射光束之功率。
可將由動態相移器304引入至電子束E中之相位差演算如下:
Figure 108129836-A0305-02-0110-5
其中△l為沿著電子軌跡之第一對電磁體306a、306b與第二對電磁體307a、307b之中心之間的距離;m為電子質量;c為光速;l m 為沿著電子軌跡之第一電磁體對之長度;且B 0 為由第一電磁體對(及由第三電磁體對308)產生之磁場之強度。
在一實施例中,可需要使用動態相移器304來應用相移π。在產生EUV輻射之自由電子雷射中,以下參數可應用:λ r =13.5奈米、γ~1500、△l=0.5公尺,且lm=0.1公尺。當此等參數應用時,為了引入相移π所需之磁場之量值B 0 為大約0.01T。此磁場為相對小磁場,且可使用諸如MnZn或NiZn之適當鐵氧體材料來產生此磁場。
可將由一對電磁體306至308應用之電子軌跡之彎曲之大小(其可被稱作沖噴角)估計如下:
Figure 108129836-A0305-02-0110-6
當使用上述實例參數時,此情形將使電子束軌跡之路徑長度增加達大約0.03毫米。
動態相移器304之電磁體306至308可皆由同一電線310啟動。亦即,來自單一源之電流傳遞通過電磁體306至308中每一者。此配置之優點在於:其確保電磁體306至308皆一起被啟動且一起被切斷。此情形避免一個電磁體被接通而其他電磁體不被接通(此情形將造成自動態相移器304輸出之光束軌跡之偏差)之可能性。經偏離光束將很可能入射於自由電子雷射之分量上且造成對彼分量之損害。
電子束E可由保護管件320環繞。保護管件320用以保護該管件外部之組件免於尾流場干擾且不受自電子束E損耗之電子影響。保護管件320亦自外部環境密封電子束E以便允許建立真空。保護管件320可由諸如銅或鋁之導電材料製成。保護管件320可由支撐管件321支撐,該支撐管件321可由介電材料形成。
如圖16所展示,保護管件320可具備開口322,該等開口322平行於電子束軌跡延行。開口322經定位成允許由電磁體306至308產生之磁場傳遞通過保護管件使得其可用以修改電子束E之軌跡。可密封開口(例如,使用介電材料)以便防止真空自保護管件320內洩漏。開口322可具有成楔形末端以便最小化尾流場誘發性加熱及電子聚束降級(可(例如)在開口具有方形末端的情況下發生此情形)。
在一替代配置中,代替在保護管件320中提供孔,可使管件之厚度薄於預期用於電磁體306至308之操作頻率的表層厚度。舉例而言,若電磁體在大約100kHz之頻率下產生振盪磁場,則用於銅或鋁之表層深度將為幾百微米。與電子束E之電子聚束相關聯之尾流場干擾之頻率為大約GHz,且因此可預期幾微米之場穿透深度。因此,具有大於幾微米但小於幾百微米之壁厚度之導電保護管件320將保護電磁體 306至308免於尾流場干擾,而同時允許由電磁體306至308產生之電磁場修改電子束之軌跡。在導電壁薄(例如,幾百微米或更小)之實施例中,支撐管件321可提供對導電壁之結構支撐。一般而言,導電壁厚度可大於10微米。一般而言,導電壁厚度可小於1毫米。
可組合上述替代配置。舉例而言,金屬保護管件320中之填充有介電材料之開口322可另外具備薄導電材料層(例如,在內部表面上)。此情形有益,此係因為其防止介電材料之充電且因此防止歸因於後續放電而發生之損害。
圖17示意性地展示動態相移器304之一替代實施例。該替代實施例包含三個橫向沖噴空腔330至332。該等橫向沖噴空腔為大體上圓柱形空腔,其具有對應於電子束軌跡E之中心軸線且產生使電子束自直線路徑E1偏離(亦即,遵循如示意性地所展示之軌道路徑E2)之電磁場。藉由將RF功率供應至橫向沖噴空腔330至332來啟動其。因此,可藉由供應及移除RF功率來啟動及切斷橫向沖噴空腔330至332。替代地,可將RF功率連續地供應至橫向沖噴空腔,且空腔之形狀可藉由RF功率而調整以使該等空腔進入及脫離諧振。當空腔處於諧振時,沖噴場處於其標稱大小;且當空腔脫離諧振時,沖噴場大約為零。空腔之形狀可使用提供於空腔中之調諧元件(圖中未繪示)予以調整。
橫向沖噴空腔330至332之效應相同於電磁體306至308之效應。橫向沖噴空腔330至332可用以選擇性地將相移引入至電子束E。如上文所解釋,相移將又影響波紋機之轉換效率,且因此影響自自由電子雷射輸出之EUV輻射之功率。
在一實施例中,鄰近波紋機模組300之間的分離度可經選擇成提供為2π之整數倍之電子束相位改變。當進行此操作時,波紋機模組300中之週期性磁場中之電子之振盪運動與輻射光束B之電磁場之間的相對相位在動態相移器304不在作用中時在諸波紋機模組之間不改變。在一實施例中,動態相移器304可經組態以應用大約π之相移。因此,動態相移器之調變操作將把為π之相移應用於電子束。
如上文進一步所解釋,可需要以大約10kHz或高於10kHz(例如,大約100kHz或大於100kHz)之控制頻率來控制由自由電子雷射FEL產生之EUV輻射光束之功率。此情形將允許控制由基板上之目標部位接收之EUV輻射劑量(例如,在目標部位曝光歷時1毫秒的情況下)。因此,動態相移器304可經組態以在10kHz或高於10kHz之頻率下操作。對於使用電磁體之實施例,可使用能夠在此等頻率下操作之鐵氧體材料。MnZn或NiZn為能夠在此等頻率下操作之鐵氧體材料。一般而言,可使用快速鐵氧體材料。在一實施例中,電磁體中之一或多者可為空芯線圈(亦即,不具有鐵氧體材料芯之電線迴路)。對於使用橫向沖噴空腔之實施例,可使用具有10kHz或高於10kHz之控制頻率之RF功率供應件。另外或替代地,可使用具有10kHz或高於10kHz之控制頻率之空腔調諧元件。
使用動態相移器304以修改由自由電子雷射FEL發射之EUV輻射之功率之優點在於:其不影響電子聚束在其到達波紋機24之前的屬性。因此,參看圖3,用以使電子束E之電子聚束加速之加速器22可不受影響。若自由電子雷射FEL使用電子之再循環通過加速器22以在由波紋機24產生電磁輻射之後使電子減速,則傳遞至加速器中以用於減 速之電子將已受到動態相移器304影響。然而,由動態相移器304造成之電子能量之改變通常將為大約0.1%,且因此對加速器22僅具有極微小影響。
在一實施例中,可提供一對動態相移器304(例如,如圖14所展示),每一動態相移器提供於不同間隙302中。當進行此操作時,第一動態相移器可經配置以應用第一相移,且第二動態相移器可經配置以應用第二相移。第一相移及第二相移可(例如)具有不同量值。第一相移及第二相移可(例如)具有相同量值但具有相反正負號。
在一個控制方案中,由動態相移器304應用之相移之量值可相等但正負號可相反。若在電子束E到達動態相移器之前相移已經存在於電子束E中,則動態相移器304中之一者可用以增加彼相移之大小且另一動態相移器可用以減低該相移之大小。兩個動態相移器304對電子束E之組合式效應將為無所得相位改變。因此,在動態相移器304在作用中時波紋機24之轉換效率將相同於在動態相移器304不在作用中時之轉換效率。
替代地,一控制方案可經實施為使得兩個動態相移器中僅一者在任何給定時間係作用中的。任一動態相移器之操作將修改波紋機中之輻射放大率達同一量。結果,輸出輻射光束將具有相同功率,而不管哪一動態相移器在作用中。
替代地,一控制方案可經實施成使得兩個動態相移器一起被調整,該等調整具有使得輸出輻射光束之功率不改變之量值及正負號。該等調整可為預定量值及正負號,及/或可為經校準且經監視量值及正負號。
在上述所有三個控制方案中,EUV輻射光束之功率將保持不變。然而,因為當電子在兩個動態相移器304之間行進時該等電子之相位被修改,所以此情形將變更處於該等動態相移器之間的波紋機300中輻射光束E之產生。將在處於動態相移器之間的波紋機300中以輻射之經修改頻寬及/或空間功率分佈而產生輻射光束E。亦可在動態相移器下游之波紋機中修改輻射光束產生。因此,當動態相移器304係作用中時,以相同功率但不同頻寬及/或功率分佈來產生輻射光束E(相比於在動態相移器不在作用中時所產生的輻射光束)。如此文件中之別處所解釋,微影系統之鏡面之集體性透射係波長相依的。鏡面亦具有有限空間/角接受度。因此,使用動態相移器304來改變輻射光束頻寬及/或功率分佈可用以控制由微影裝置遞送至基板之輻射劑量。可校準由動態相移器304造成的頻寬改變及/或空間功率分佈改變對由微影裝置投影系統PS遞送之輻射功率之效應,且校準之結果可由控制器CT在控制動態相移器304時使用。
上述途徑可被概括為使用兩個以上動態相移器。可量測相移器之不同組合對由微影裝置投影系統PS遞送之輻射光束之效應,且接著隨後由控制器CT使用該效應以控制輻射光束頻寬及/或空間功率分佈。舉例而言,可提供十個動態相移器,且可藉由控制器CT啟動及切斷動態相移器之不同組合以便達成由投影系統遞送之輻射光束之功率之不同變化(例如,在不顯著改變如自自由電子雷射輸出之輻射光束之功率的情況下)。
已描述動態相移器304之控制包含在動態相移器係作用中與非作用中兩者之間切換(例如,在接通與斷開兩者之間經調變)之實施例。 亦可控制當動態相移器係作用中時由該動態相移器應用之相移之大小(例如,藉由控制器CT)。此控制可(例如)藉由調整供應至電磁體306至308之電流大小,藉此調整由動態相移器應用之相移之大小來達成。
圖18至圖27描繪感測器裝置之各種組態,其可包含上文結合本發明之各種實施例而提及之感測器裝置ST。
首先參看圖18,展示用於判定指示EUV輻射光束B之功率之值之感測器裝置400的第一實施例。感測器裝置400包含一感測器410及用於接收主輻射光束Bm之一光學元件420。感測器410可包含感測元件陣列,諸如,充電耦合器件(CCD)及/或光電二極體。光學元件420為鏡面,其可為掠入射鏡面。EUV輻射光束B可(例如)為由自由電子雷射FEL產生之初級輻射光束B或由光束分裂裝置20產生之次級輻射光束Ba至Bh中之一者。
感測器410安置於感測環境415中,且光學元件420安置於主光束環境425中。一般而言,感測環境415內之條件可不同於主光束環境425中之條件。舉例而言,輻射光束B可包含EUV輻射,且因此主光束環境425可被保持處於真空條件。在此實施例中,壁430將感測環境415與主光束環境425分離。透明隔膜或窗口431提供於壁430中。
參看圖19,光學元件420之反射表面421係大體上平滑,但具備遍及反射表面而分佈之複數個標記422。在本實施例中,複數個標記422中每一者在反射表面421中呈大體上半球形凹座之形式。可(例如)使用諸如離子研磨之任何合適程序而將複數個標記422蝕刻至反射表面中。複數個標記422形成經配置以接收輻射光束B之第一部分之光 學元件420之第一區。反射表面之剩餘實質上平滑部分形成經配置以接收輻射光束B之第二部分之光學元件420之第二區。因為光學元件之此等第一及第二區形成反射表面421之空間上相異區,所以輻射光束B之第一部分及第二部分對應於輻射光束B之空間強度分佈之不同區。
輻射光束之第一部分係由複數個標記422散射以形成第一分支輻射光束B1。此散射係使得第一分支輻射光束B1經引導通過窗口431而到達感測環境415。輻射光束B之第二部分係由第二區反射以形成第二分支輻射光束B2。第二分支輻射光束B2保持於主光束環境425內,且可(例如)經引導至微影裝置LAa至LAn中之一或多者。
螢光材料之螢幕411提供於感測器410上。在感測環境415內,第一分支輻射光束B1係由光學元件440引導至感測器410。光學元件440在螢幕411上產生複數個標記422之影像。此影像可被聚焦或散焦。第一分支輻射光束B1係由螢光材料之螢幕411吸收,其發射具有較長波長之輻射。此經發射輻射係由感測器410偵測。使用此螢光螢幕會顯著簡化對具有相對短脈衝之輻射光束之功率量測。舉例而言,自由電子雷射可產生子皮秒脈衝(典型脈衝可為大約100fs)。此等短脈衝可能太短而不能由諸如快速光電二極體之已知感測元件解析。然而,遍及奈秒時間刻度通常發生螢光(甚至在螢光材料係由毫微微秒脈衝激發的情況下亦如此)。因此,可使用已知感測元件來解析由螢光螢幕發射之輻射。合適螢光材料包括氧化鋅(ZnO),其為日常產生於直徑高達3吋之單晶盤碟中之半導體級材料;或摻雜有諸如鈰之稀土元素之釔鋁石榴石(YAG)(YAG:Ce)。
感測器410係由纜線413連接至控制器CT。感測器410可操作以將指示由該感測器410判定之功率之信號發送至控制器CT。
有利地,此感測器裝置400允許在無需將感測器置放於輻射光束B之路徑中的情況下來判定輻射光束B之第一部分之功率。因此,本發明使能夠量測具有極高功率及強度之輻射光束之功率,否則其將把過高熱負荷置放於直接置放於該等輻射光束之路徑中之感測器上。舉例而言,其使能夠量測由將輻射提供至複數個微影裝置LAa至LAn之自由電子雷射產生的初級輻射光束B之功率。此輻射光束可具有大約數十千瓦特之功率及相對小光展量。
另外,因為感測器無需被置放於輻射光束B之路徑中,所以本發明之此實施例提供對複數個標記422之尺寸不存在限制之配置。詳言之,此情形允許標記422足夠小,使得相比於將為一或多個感測器被置放於輻射光束之路徑中之狀況,用於功率量測之強度分佈之部分(亦即,貢獻於第一分支輻射光束之部分)顯著較小。
參看圖19及圖20,複數個標記422係遍及反射表面421而分佈。在此實施例中,複數個標記422遍及反射表面421形成矩形格子,其在第一方向上在鄰近標記之間具有間隔l且在第二垂直方向上在鄰近標記之間具有間隔h。替代實施例可使用標記422在反射表面上之其他分佈。每一標記422之尺寸d顯著小於鄰近標記l、h之間的間隔。有利地,此情形確保用於功率管理之輻射光束B之第一部分相對小。
每一標記422之尺寸d可相對小。舉例而言,每一標記422之尺寸d可小於大約100微米。
在接近光學元件之近場中,第二分支輻射光束B2之功率分佈將相 似於輻射光束B之功率分佈,惟複數個間隙除外,每一間隙對應於標記422之一不同標記,其中功率分佈實質上為零。第二分支輻射光束B2可(例如)經引導至可安置於光學元件420之遠場中之微影裝置LAa至LAn中之一或多者。對於此等實施例,每一標記422之尺寸d較佳足夠小,使得在遠場中,對應於標記422之功率分佈中之複數個間隙已藉由歸因於第二分支輻射光束B2之發散度之繞射而消除。
另外,每一標記422之尺寸d較佳足夠小,使得當鏡面係由輻射光束B照明時,標記422附近之反射表面421之形狀之熱膨脹失真及干擾可忽略。有利地,此情形確保歸因於熱膨脹之變化之聚焦效應可忽略或可被校正。
另外,每一標記422之尺寸d較佳足夠小,使得由單一標記發射或散射之功率相對小(例如,小於1%)。有利地,此情形確保在其可被直接量測之前無需衰減或需要相對小衰減。
第一分支輻射光束B1包含對應於複數個標記422中每一者之一部分。複數個標記422及光學元件420可經配置成使得每個此部分經引導至螢光螢幕411之不同空間部分。螢光螢幕411可操作以針對每個此部分發射一分離輻射光束。在此等實施例中,感測器410可操作以判定由螢光螢幕411發射之每個此輻射光束之功率。因此,參看圖21,感測器410可操作以判定在橫越輻射光束B之光束剖面之數個離散點處該輻射光束B之功率。因而,感測器可操作以輸出指示輻射光束之經離散取樣強度分佈414之信號。
控制器CT可操作以藉由內插而自經離散取樣強度分佈414判定輻射光束之功率分佈。舉例而言,可假定預期光束剖面形狀,且剖面形 狀之數個參數可擬合至由感測器410輸出之資料。此可使用(例如)最小平方演算法。
控制器CT可操作以使用經判定功率或強度分佈以控制輻射光束B之態樣。舉例而言,控制器CT可連接至自由電子雷射FEL以基於經判定功率或強度分佈來控制源自由電子雷射之參數。舉例而言,控制器可經配置以調整輻射光束B之方向及/或位置,及/或調整輻射光束B之功率強度或強度分佈。
參看圖22,在一替代實施例中,複數個標記422可在反射表面421上呈大體上半球形突起部之形式。在其他替代實施例中,標記422可包含不同形狀之凹座或突起部。
在圖18所展示之實施例中,提供具有透明隔膜或窗口431之壁430以將感測環境415與主光束環境425分離。圖23展示用於判定指示輻射光束之功率之值之感測器裝置400a的替代實施例。直接對應於感測器裝置400的感測器裝置400a之特徵具有相同標籤。此處僅將詳細地描述感測器裝置400a與感測器裝置400之間的差異。在此替代實施例中,所有EUV光學件(包括經配置以將第一分支輻射光束B1引導至螢光螢幕411之光學元件440)安置於主光束環境425a中,而感測器410安置於感測環境415a中。提供壁430a以將感測環境415a與主光束環境425a分離,其一般而言可在不同條件下被固持。在感測器裝置400a之此替代實施例中,螢光螢幕411充當壁430a中之窗口,從而將感測環境415a與主光束環境425a分離。
參看圖24,展示用於判定指示輻射光束之功率之值之感測器裝置400b的另外替代實施例。直接對應於感測器裝置400的感測器裝置 400b之特徵具有相同標籤。此處僅將詳細地描述感測器裝置400b與感測器裝置400之間的差異。在此替代實施例中,光學元件420之反射表面421係大體上平滑,但具備遍及反射表面而分佈之複數個螢光標記422a。在本實施例中,複數個螢光標記422a中每一者係呈由螢光材料形成的大體上半球形突起部之形式。
輻射光束之第一部分係由複數個螢光標記422a吸收,該複數個螢光標記422a發射具有較長波長之輻射以形成第一分支輻射光束B1。螢光標記422a經配置成使得第一分支輻射光束B1經引導通過窗口431而到達感測環境415。使用此螢光螢幕會簡化對具有相對短脈衝之輻射光束之功率量測。合適螢光材料包括氧化鋅(ZnO),其為日常產生於直徑高達3吋之單晶盤碟中之半導體級材料;或摻雜有諸如鈰之稀土元素之釔鋁石榴石(YAG)(YAG:Ce)。
如同先前實施例一樣,輻射光束B之第二部分係由第二區反射以形成第二分支輻射光束B2,該第二分支輻射光束B2保持於主光束環境425內且可(例如)經引導至微影裝置LAa至LAn之中之一或多者。
包含具有長於EUV輻射之波長之輻射之第一分支輻射光束B1係經由專用光學件而引導至感測器410。不提供螢光螢幕,此係因為第一輻射光束B1已經包含以螢光程序之刻度之較長波長及脈衝之輻射(通常為奈秒時間刻度而非毫微微秒時間刻度)。在此實施例中,專用光學件包含反射光學元件441及聚焦光學元件442。可在需要時替代地使用光學元件之其他組合。專用光學件441、442及感測器410安置於感測環境415中。感測器裝置400b相比於(例如)感測器裝置400之相對優點在於:第一分支輻射光束不包含EUV輻射,且因此較便宜且較簡單 光學配置及感測環境415可用於第一分支輻射光束B1。舉例而言,可使用透鏡而非昂貴EUV鏡面,且感測環境415可(例如)包含大氣壓力下之空氣。
感測器裝置400相比於感測器裝置400b之相對優點在於:螢光材料提供於光學元件之反射表面421上(螢光標記422a)而非提供於感測材料中(螢光螢幕411)。因此,螢光材料不曝光至感測器裝置400中之此高功率EUV輻射,且因此可被預期具有較長壽命。另外,在感測器裝置400b中,螢光標記422a可取決於輻射光束B剖面之哪一部分入射於其上而經歷不同溫度改變。因為螢光程序可為溫度相依的,所以此情形使得較難以將由感測器410判定之分佈準確地映射至輻射光束B之強度剖面。
參看圖25,展示根據本發明的用於判定指示輻射光束之功率之值之感測器裝置470的另外實施例。感測器裝置470包含一感測器471及用於接收輻射光束B之一光學元件472。感測器471可實質上相似於上文所描述之感測器410。詳言之,感測器471可包含諸如充電耦合器件(CCD)及/或光電二極體之感測元件陣列。
光學元件472為鏡面,其可為掠入射鏡面。如同先前實施例一樣,輻射光束B可(例如)為由自由電子雷射FEL產生之初級輻射光束B或由光束分裂裝置20產生之次級輻射光束Ba至Bh中之一者。
光學元件472包含反射表面473。複數個規則空間凹槽延伸橫越反射表面473。該等凹槽可藉由諸如蝕刻或衝壓之任何合適程序形成。
光學元件472可形成圖1之光束分裂裝置20之部件,且出於熱原 因而可安置於與波紋機24之輸出相隔大約數十或數百公尺之距離處。相似地,光學元件472可為具有相對小掠入射角(諸如,大約1度至4度)之掠入射鏡面。
光學元件472可由矽藉由(例如)沿著矽之晶體平面之蝕刻而形成。參看圖26,展示用於光學元件472係由矽形成之一實施例的光學元件472之反射表面473之實例。在此所說明實例中,頂部面475係由<100>結晶平面形成,且形成凹槽之面476a、476b可由<111>及<-111>平面形成。在使用此配置的情況下,凹槽之底部處之角度為70.529度。凹槽沿著<01-1>方向而延行。入射輻射光束B之方向安置於與<01-1>方向成小(掠入射)角度。此光柵將形成可被認為0階及±1階之三個分支輻射光束。分支輻射光束之強度之比率係取決於其被反射之面(例如,頂部面475或形成凹槽之面476a、476b)之區域之比率且取決於入射輻射光束B之入射角。
光學元件472可具備較反射材料之塗層(用於EUV輻射)。舉例而言,光學元件可具備釕(Ru)塗層。此釕(Ru)塗層可(例如)具有大約50奈米之厚度。
將矽用於光學元件472之優點在於:可在約123K下操作來限制在操作期間之熱膨脹。在此溫度下,矽之熱導率為大約400b W/m/K或大於400b W/m/K,其比其在室溫下之熱導率好4倍且相比於銅(Cu)好大約50%。因此,甚至可排出相對大熱負荷,同時將溫度保持於該範圍內(其中膨脹係低的),且光學元件472將保持其經設計結構遲鈍。
凹槽將反射表面473劃分成複數個表面元件群組。每一表面元件群組包含複數個實質上平行表面元件。舉例而言,圖26之頂部面475 形成第一表面元件群組,形成每一隆脊之一側之面476a形成第二表面元件群組且形成每一隆脊之相對側之面476b形成第三表面元件群組。儘管圖26展示光學元件之僅小區段,但每一群組可包含大約1000個表面元件。此配置充當反射光柵。每一表面元件群組形成經配置以接收輻射光束B之不同部分之光學元件472之不同區。因為光學元件472之此等不同區形成反射表面473之空間上相異區,所以輻射光束B之不同部分對應於輻射光束B之強度分佈之不同部分。
表面元件可各自具有大約1微米至100微米之寬度。
每一分支輻射光束可包含複數個子光束,每一子光束自來自單一群組之不同表面元件反射。因為給定表面元件群組內之表面元件中每一者實質上平行,所以子光束中每一者至少在光學元件472之近場中實質上平行。來自一給定群組之表面元件經安置成與其他群組之彼等表面元件成非零角,亦即,來自不同群組之表面元件實質上不平行。因此,在光學元件472之近場中,每一分支輻射光束之功率分佈將相似於輻射光束B之功率分佈,惟將存在對應於其他表面元件群組之表面元件之複數個條帶(其中功率分佈實質上為零)除外。然而,歸因於輻射光束B之非零發散度,在光學元件472之遠場中,複數個子光束將重疊且將干涉以形成形狀實質上相似於輻射光束B之功率分佈。
替代地,來自不同表面元件之複數個子光束可充分散開以在遠場中干涉彼此,且每一分支輻射光束可對應於來自此干涉之干涉圖案中之局域最大值。
再次參看圖25,在一實施例中,光學元件472之反射表面473之 幾何形狀係使得形成第一分支輻射光束B1及第二分支輻射光束B2。另外,光學元件472之反射表面473之幾何形狀係使得第一分支輻射光束B1之功率顯著小於第二分支輻射光束B2之功率。第一分支輻射光束B1經引導至感測器,該感測器可操作以判定第一分支輻射光束B1之功率及/或功率強度分佈。第二分支輻射光束B2可(例如)經引導至可安置於光學元件472之遠場中之微影裝置LAa至LAn中之一或多者。對於此等實施例,形成第一分支輻射光束B1之表面元件之角寬度較佳足夠小,使得在遠場中,對應於此等表面元件之功率分佈中之複數個條帶已藉由歸因於第二分支輻射光束B2之發散度之繞射而消除。
視情況,可提供第二光學元件474以引導第二分支輻射光束B2。第二光學元件474可經配置以確保第二分支輻射光束B2實質上平行於輻射光束B。在一些實施例中,可提供另外光學元件以確保第二分支輻射光束B2與輻射光束B實質上對準。
在一些實施例中,光學元件472之反射表面473之幾何形狀係使得形成兩個以上分支輻射光束。對於此等實施例,光學元件472之反射表面473之幾何形狀可使得第一分支輻射光束B1之功率顯著小於可具有實質上相等功率的剩餘分支輻射光束之功率。在使用此配置的情況下,將用於判定指示輻射光束之功率之值之裝置與經配置以將光束分裂成複數個次級光束之光束分裂裝置組合。對於此等實施例,光學元件可形成圖1之光束分裂裝置之部件。
圖27展示用於判定指示輻射光束之功率之值之感測器裝置480的替代實施例。直接對應於感測器裝置470的感測器裝置480之特徵具有相同標籤。此處僅將詳細地描述感測器裝置480與感測器裝置470之間 的差異。在此替代實施例中,感測器裝置480包含一感測器481及用於接收輻射光束B之一光學元件486。
光學元件486為鏡面,其可為掠入射鏡面。如同先前實施例一樣,光學元件為經配置以產生複數個分支輻射光束(在圖28之實例實施例中,產生三個分支輻射光束)之反射光柵。第二分支輻射光束B2及第三分支輻射光束B3各自包含複數個子光束,每一子光束自來自單一表面元件群組之一不同表面元件反射。
另外,將存在未由表面元件反射之輻射光束之第一部分,以便形成第二分支輻射光束B2或第三分支輻射光束B3之部分。此散射輻射可主要包含入射於形成於鄰近表面元件之相交處之邊緣上之輻射。此散射輻射可覆蓋實質立體角,且可被認為形成第一分支輻射光束B1
感測器裝置480進一步包含近正入射輻射收集器482,該近正入射輻射收集器482經配置以收集第一輻射光束B1且將其朝向感測器481引導。收集器482具備兩個孔隙483、485以允許第二分支輻射光束B2及第三分支輻射光束B3傳播遠離光學元件486。
此配置方便地使用將不貢獻於由微影裝置LAa至LAn接收之輻射的不可避免之散射輻射之小分率。另外,入射輻射光束B之僅相對小分率以此方式被散射,從而有利地避免感測器之過度熱負荷。為了判定輻射光束B之強度分佈,感測器裝置480經校準以確保知曉第一分支輻射光束B1之功率及功率分佈與輻射光束B之功率及功率分佈之間的關係。
根據實施例之感測器裝置可形成光束操控單元之部件。詳言之,指示由根據本發明之實施例之感測器裝置進行的指示輻射光束B 之功率分佈之量測可向用以操控輻射光束B之以回饋為基礎之控制迴路提供輸入。回應於該輸入,可變更輻射光束B之方向。此可(例如)藉由在輻射光束B之路徑中移動一或多個光學元件來達成。另外或替代地,此可藉由變更自由電子雷射FEL中之聚束式電子束E之軌跡來達成。由於光學導引效應,由自由電子雷射FEL輸出之初級輻射光束B之方向將取決於電子束之軌跡(尤其在波紋機24之末端部分內)。
由自由電子雷射產生之輻射光束之遠場功率分佈被預期為類高斯但自真高斯分佈偏離。根據實施例之感測器裝置尤其十分適於向用以操控具有此未知強度分佈之輻射光束B之以回饋為基礎之控制迴路提供輸入,此係因為彼情形允許橫越輻射光束剖面且尤其在光束功率分佈之最大值附近對該光束剖面進行取樣。另外,形成光學元件之第一區之複數個標記可足夠緻密以允許藉由內插來判定經引導至每一微影裝置LAa至LAn之功率及強度分佈。
可操作以將輻射供應至複數個EUV微影裝置之自由電子雷射可(例如)在波紋機24之輸出處具有大約數十千瓦特之功率及大約100微米之直徑,亦即,大約GW/cm2之平均功率密度。另外,自由電子雷射輻射光束可具有大約100fs或小於100fs之脈衝長度,其可引起大約1014W/cm2之峰值功率密度。用以量測此輻射光束之功率及/或位置之一種方式可為將感測器置放於輻射光束剖面之周邊上。然而,在具有此等高峰值功率強度的情況下,將需要將感測器置放成自分佈之峰值有幾個均方偏差。因此,此配置將未得到關於總功率之強度分佈之資訊。另外,此配置將對自由電子雷射光束之指向不穩定性極敏感。
再次參看圖1及圖2,微影裝置LS可包括衰減器15a至15n。分支 輻射光束Ba至Bn經引導通過各別衰減器15a至15n。每一衰減器15a至15n經配置以在一各別分支輻射光束Ba至Bn傳遞至其對應微影裝置LAa至LAn之照明系統IL中之前調整該分支輻射光束Ba至Bn之強度。
參看圖28a及圖28b,說明可對應於圖1及圖2所展示之衰減器15a之衰減裝置519的實例。分支雷射光束Ba係由虛點線描繪。衰減器15a包含第一鏡面520及第二鏡面521。第二鏡面521在所描繪y方向上與第一鏡面520分離達距離2h。第二鏡面521經配置成使得進入衰減器15a之分支輻射光束Ba入射於第一鏡面520之反射表面上且由該反射表面朝向第二鏡面521之反射表面反射。第二鏡面521成角度以便將分支輻射光束Ba朝向微影裝置LAa(圖28a未繪示)引導。
第一鏡面520經由臂狀物520'而連接至第一樞軸點522,而第二鏡面係經由臂狀物521'而連接至第二樞軸點523。提供第一致動器(圖中未繪示)以圍繞第一樞軸點522旋轉,且提供第二致動器(圖中未繪示)以圍繞第二樞軸點523來旋轉第二鏡面521。鏡面520、521之位置係受到控制器CTA控制。如熟習此項技術者易於顯而易見,第一致動器及第二致動器可採取任何適當形式。舉例而言,致動器可包含安置於樞軸點522、523處且連接至臂狀物520'、521'之馬達。
經由鏡面520、521圍繞樞軸點522、523之旋轉,鏡面520、521相對於分支輻射光束Ba之入射角α可得以調整。應瞭解,在相同入射角α下安置鏡面520、521時,在由鏡面520、521反射之後,分支輻射光束Ba在與由鏡面520、521反射之前的方向相同的方向上傳播。
鏡面520、521經配置而以(通常被稱作)掠(或掠射)入射反射來反射分支輻射光束Ba。在圖28a中,鏡面520、521被展示為在最大入射 角α下被安置,使得分支輻射光束入射於鏡面520之底部部分(相對於y方向)及鏡面521之頂部部分(相對於y方向)上。在一些實施例中,角度α之最大值可為(例如)大約10度之角度。
在圖28b中,鏡面520、521被展示為在最小入射角α下被安置,使得分支輻射光束Ba入射於鏡面520之頂部部分及鏡面521之底部部分上。角度α之最小值可為(例如)大約1度之角度α。因此,在所描繪實例中,鏡面520、521圍繞各別樞軸點522、523在1度至10度之入射角之間可旋轉。應瞭解,在其他實施例中,鏡面520、521之配置及/或大小可不同以便允許較大或較小角範圍。舉例而言,樞軸點522、523可經選擇為以便增加或減低鏡面520、521之有用角範圍。另外,雖然鏡面520、521各自被展示為經配置以圍繞一固定樞軸點而旋轉,但此僅僅係例示性的。應瞭解,如熟習此項技術者將易於顯而易見,可使用任何其他配置來調整鏡面520、521之入射角。在一實施例中,鏡面520、521兩者可經配置以圍繞同一樞軸點而旋轉。藉由適當選擇樞軸點522、523之位置,可使射出分支輻射光束Ba相對於入射分支輻射光束Ba之位移(亦即,圖28a、圖28b之實施例中之2h)針對在預定相對小範圍內之角度α(如圖28a、圖28b所展示)實質上恆定。然而,對於角度α之較大角範圍,在射出分支輻射光束相對於入射分支輻射光束之位移實質上恆定的情況下,鏡面520、521中至少一者或兩者可具備適於將鏡面520、521中之一者或兩者在y方向上平移之平移構件。
鏡面520、521中每一者之反射比為鏡面520、521與分支輻射光束Ba之間的入射角α之函數。舉例而言,對於為2度之入射角,大約98%(在具有具有極佳扁平表面的釕(Ru)塗層之鏡面之理論狀況下)的 入射輻射可在鏡面520、521中每一者處被反射。亦即,當以2度成角度時,由鏡面520、521中之一者反射之輻射相比於入射於彼鏡面上之輻射之強度縮減達2%。因而,在鏡面520、521兩者在2度之角度α下被安置的情況下,經由鏡面520、521之反射而使分支輻射光束Ba之強度縮減達大約4%。
對於為10度之入射角(用於上述實例中之最大角),大約90%之入射輻射可在鏡面520、521中每一者處被反射。亦即,當入射角為10度時,反射輻射之強度比入射輻射小大約10%。因而,在鏡面520、521兩者在10度之入射角α下被安置的情況下,經由鏡面520、521之反射而使分支輻射Ba之強度縮減達大約20%。
自以上描述應瞭解,藉由在1度與10度之間調整角度α,微影裝置LAa處所接收之分支輻射光束Ba之強度可在2%與20%之間變化。
在一些實施例中,可在高達1KHz之頻率下調整鏡面520、521之入射角,藉此提供用於分支雷射光束Ba之衰減之調整機構。第一致動器及第二致動器(例如,馬達)可連接至控制器CTA。控制器CTA可經配置以接收指示待在微影裝置LAa處接收之分支輻射光束Ba之所要強度之指令。回應於接收到此等指令,控制器可經配置以控制致動器以調整鏡面520、521之入射角α,以達成分支輻射光束Ba之所要衰減且藉此達成微影裝置LAa處之所要強度。控制器可自感測器SLa(參見圖2)接收指示微影裝置LAa中之分支輻射光束Ba之強度之量測作為輸入。
控制器CTA可為以回饋為基礎之控制迴路之部件,該以回饋為基礎之控制迴路經配置以偵測微影裝置LAa處之分支輻射光束Ba之強度 且調整分支輻射光束Ba之衰減,以便將微影裝置LAa處之強度維持處於預定值或處於預定範圍內。參看圖1,此以回饋為基礎之控制迴路F2a可與提供於自由電子雷射之後且在光束分裂器19之前的以回饋為基礎之控制迴路F1分離。控制衰減器15a之以回饋為基礎之控制迴路F2a可被稱作第二以回饋為基礎之控制迴路。提供於自由電子雷射之後且在光束分裂器19之前的以回饋為基礎之控制迴路F1可被稱作第一以回饋為基礎之控制迴路。第一以回饋為基礎之控制迴路F1及第二以回饋為基礎之控制迴路F2a可獨立於彼此而操作。其可受到不同控制器CT、CTA控制,或可受到同一控制器控制。第二以回饋為基礎之控制迴路F2a可慢於第一以回饋為基礎之控制迴路F1。
在其他實施例中,鏡面520、521中每一者之入射角可獨立於彼此而可調整。雖然此情形將引起分支輻射光束Ba之傳播方向之改變,但此情形可在(例如)鏡面520、521之入射角僅在離散步驟中可調整之實施例中有益地增加可能衰減值數目。
應瞭解,雖然參看衰減器15a來描述上文所描述之實施例,但可相似地實施衰減器15b至15n。
參看圖29,說明可包含衰減器15a之衰減裝置519的替代實施例。在圖29之實施例中,衰減裝置519包含四個鏡面530、531、532、533。鏡面530、531係以相似於上文參看圖28a、圖28b所描述之鏡面520、521之方式而配置。詳言之,第一鏡面530具備第一致動器,該第一致動器經配置以使鏡面530圍繞第一樞軸點534而旋轉,鏡面530經由臂狀物530'而連接至該第一樞軸點534。第二鏡面531具備第二致動器,該第二致動器經配置以使鏡面531圍繞第二樞軸點535而旋轉, 鏡面531經由臂狀物531'而連接至該第二樞軸點535。
鏡面532、533係以相似於鏡面530、531之方式而配置,但可被認為第一鏡面530及第二鏡面531之配置沿著垂直於分支輻射光束Ba之傳播方向之軸線之「鏡像」。詳言之,第三鏡面532經安置成在y方向上處於相同於第二鏡面531之位置處,且經配置以接收自第二鏡面531反射之輻射。該第三鏡面具備第三致動器,該第三致動器經配置以使該鏡面532圍繞第三樞軸點536而旋轉。該第三鏡面532經配置以朝向第四鏡面533反射所接收輻射,該第四鏡面533在y方向上與第二鏡面532分離達距離2h(亦即,第四鏡面553在y方向上處於相同於第一鏡面530之位置處)。該第四鏡面553具備第四致動器,該第四致動器經配置以使該鏡面553圍繞第四樞軸點537而旋轉。該第四鏡面553經配置以將輻射引導至微影裝置LAa(圖29中未繪示)。
在第一鏡面530至第四鏡面553中每一者之入射角α相同的情況下,分支輻射光束Ba在同一方向上射出衰減器15a且在y方向上處於與其進入衰減器15a相同的位置處。另外,藉由使用四個鏡面(每一鏡面可操作以調整入射角達1度與10度之範圍),衰減器15a之可能衰減範圍係自2%至20%(在圖28之配置中)增加至4%至40%之範圍(亦即,進入衰減器15a之輻射之可能透射範圍為96%至60%)。應瞭解,在較大最小衰減可接受的情況下,圖29之實施例中可達成之較大衰減範圍可有利。
另外,圖29之實施例可用以提供相同於或相似於可由圖28之實施例提供之衰減範圍的衰減範圍,而對分支輻射光束Ba之偏振具有較小效應。此係歸因於達成特定衰減所需之較小入射角α。四個鏡面530 至553對分支輻射光束Ba之P偏振分量及S偏振分量之經組合效應小於用於給定衰減之兩個鏡面520、521之經組合效應。此尤其為衰減為或接近20%(亦即,在每一鏡面520、521之入射角α接近10度時)之狀況。
在一些實施例中,可需要儘可能地保留由分支輻射光束Ba在其進入衰減器15a之前所展現的大體上圓形偏振。在此狀況下,大約2%至20%之衰減範圍可藉由大約1度與5度之間的角調整範圍來達成。因此,此實施例可對於對分支輻射光束Ba之偏振有縮減之效應方面尤其有益。
另外,在圖29之配置中,無需用於提供鏡面530至553中之一或多者之平移校正之平移機構。針對所有α值(當角度α針對所有四個鏡面相等時),射出光束具有與入射光束相同的角度及位置。換言之,由鏡面530、531造成的距離2h之任何改變係由鏡面532、553「反轉」,使得無需在y方向上之鏡面之平移以確保分支輻射光束Ba在與其進入衰減器15a時相同的位置處離開衰減器15a。
圖29可被認為展示兩個鏡面之兩個集合;第一集合含有鏡面530、531且第二集合含有鏡面532、533。應瞭解,在其他實施例中,可提供額外鏡面或額外鏡面集合以進一步增加可能衰減範圍,或縮減對分支輻射光束Ba之偏振之變更。
衰減器15a至15n中之一或多者可包含一替代衰減裝置(例如,除了上文所描述之衰減裝置以外或代替上文所描述之衰減裝置)。該替代衰減裝置可提供固定衰減或可提供可調整衰減。在提供可調整衰減的情況下,調整可具有慢於上述衰減裝置之速率的速率。該替代衰減裝置可具有較高可能衰減值範圍。
圖30a示意性地描繪一替代衰減裝置540之實例,該替代衰減裝置540可組合上述衰減裝置而提供或在對上述衰減裝置之替代例中被提供。在組合地提供此等衰減裝置的情況下,分支輻射光束Ba可傳遞通過任一衰減裝置,之後傳遞通過另一衰減裝置。衰減裝置540受到控制器CTA控制。
衰減裝置540係以氣體為基礎且包含界定腔室542之外殼541。該外殼541可界定任何形狀之腔室542。舉例而言,外殼541可為大體上管狀。腔室542在第一末端處接近於第一窗口543且在第二對置末端處接近於第二窗口544。提供入口545以允許受控制量之氣體到達腔室542中。亦可提供閥546以允許自腔室542之受控制氣體流動。提供壓力監視器547以監視腔室542內之壓力。壓力監視器547可為任何形式之壓力監視器。藉由提供氣流而非固定圍封氣體介質,可移除由氣體吸收之能量。在衰減裝置540提供大衰減因數(諸如,10倍)的情況下,由此移除之能量之量可相當大。
入口545允許將EUV吸收氣體引入至腔室542中。應瞭解,引入至腔室542中之特定氣體可取決於EUV吸收之所要位準予以選擇。然而,作為一實例,諸如氫氣、氦氣及/或氬氣之氣體可合適。窗口543、544經建構以便提供對EUV輻射之高透射比,且可經建構以提供對其他波長之電磁輻射之高吸收率。舉例而言,窗口可包含(通常被稱作)光譜純度濾光器,該等光譜純度濾光器濾光EUV波長外部之輻射,但允許EUV輻射之透射。如熟習此項技術者將顯而易見,此等光譜純度濾光器可以任何適當方式予以建構。舉例而言,窗口543、544可由鉬(Mo)及矽化鋯(ZrSi)建構。Mo/ZrSi堆疊可在一或兩個側上用矽 化鉬(MoSi)來罩蓋。在一替代實例中,窗口543、544可由多晶矽(pSi)形成。多晶矽膜之側之一者或兩者可用氮化矽(SiN)層來罩蓋。例如石墨烯之其他材料可適於用於窗口543、544中。窗口543、544之厚度可取決於腔室542內所要之最大壓力予以選擇,該最大壓力自身可取決於所要衰減予以選擇。
分支輻射光束Ba通過第一窗口543進入替代衰減裝置540且藉由與腔室542內之流體相互作用而衰減,之後通過第二窗口544射出衰減裝置540。可藉由變化腔室542內之氣體之類型、量或壓力來變化藉由傳遞通過腔室542造成的分支輻射光束Ba之衰減。
壓力感測器、氣體入口及氣體閥可與控制器CTA通信。控制器CTA可操作以控制氣體入口545及氣體閥546以達成腔室542內之所要壓力。腔室542內之所要壓力可經選擇以便達成待由替代衰減裝置造成的分支輻射光束Ba之所要衰減。替代地或另外,腔室542內之所要壓力可經選擇以將腔室542內之壓力維持於預定安全範圍內。
圖30b說明替代衰減裝置之替代實施例,其中類似組件已具備類似元件符號。在30a之實例實施例中,窗口543、544兩者垂直於分支輻射光束Ba沿著其長度之傳播方向。因而,分支輻射光束Ba通過腔室542之路徑為相同長度,而不管分支輻射光束Ba進入腔室542之位置。在圖30b所展示之替代實例中,窗口543、544相對於分支輻射光束Ba之傳播方向朝向彼此成角度。以此方式,在分支輻射光束Ba進入腔室542而處於一位置的情況下,相比於當分支輻射光束Ba進入腔室542而處於不同較低(在圖30b中在y方向上)位置時,其將行進通過腔室542較短距離。因而,可藉由變化分支輻射光束Ba進入腔室542之位置來 變化分支輻射光束之衰減。此外,此配置亦可用以產生遍及光束之橫截面之強度梯度。此強度梯度可用以校正遍及照明場之強度變化。
圖31及圖32示意性地展示另外替代以氣體為基礎之衰減裝置550。首先參看圖31,裝置550包含分支輻射光束Ba傳遞通過之管件551。用以使分支輻射光束Ba衰減之氣體係自氣體供應件552經由三個閥553a至553c而供應至氣體入口554a至554c中,該等氣體入口554a至554c沿著管件551而隔開。三個出口555a至555c提供於管件551中,該等氣體出口與關聯氣體入口554a至554c大體上相對。真空泵556a至556c連接至每一出口555a至555c且經組態以將氣體抽汲至排氣裝置557。
衰減裝置550進一步包含差異抽汲區段,該等差異抽汲區段中之兩者558提供於氣體入口554a至554c上游,且該等差異抽汲區段中之兩者559提供於氣體入口下游。每一差異抽汲區段558、559在管件551中包含由壁560部分地圍封之一體積。壁560各自具備分支輻射光束Ba行進通過之一開口。泵561連接至每一體積且用以自彼體積抽汲氣體。差異抽汲區段558、559可操作以將衰減裝置550中之壓力波動與其他裝置隔離(例如,將其與微影裝置隔離)。
在使用中,藉由改變傳遞通過閥553a至553c之氣體之氣體流率來控制由衰減裝置550提供之衰減程度。閥553a至553c可受到控制器CTA控制。管件551中之氣體之壓力可增加以增加分支輻射光束Ba之衰減,且可減低以縮減分支輻射光束之衰減。可藉由使用真空泵556a至556c自管件551移除所有氣體而使衰減縮減至0%。由氣體提供之衰減將取決於提供有氣體之管件551之長度,且另外將取決於所使用之 氣體。舉例而言,當使用氫氣時,EUV輻射之吸收率為每公尺每帕斯卡0.1%。若需要分支輻射光束之0%與20%之間的衰減且氣體提供於長度為10公尺之管件上,則管件中之氫氣之壓力應在0Pa與20Pa之間變化。若使用具有較高吸收率係數之氣體(例如,氬氣(吸收率0.034Pa-1m-1)、氮氣(0.059Pa-1m-1)或氙氣(0.062Pa-1m-1)),則可相應地縮減管件551之長度。舉例而言,使用介於0%與20%之間的氮氣衰減可在0Pa至0.7Pa之壓力範圍下使用長度為5公尺之管件來達成。
衰減裝置550之回應時間將取決於閥553a至553c之速率、真空泵556a至556c之泵速率,及氣體被供應至之管件551之體積。
圖32示意性地展示閥553a及泵556a之一實施例。閥553a包含由致動器571致動之隔板570。隔板570在緩衝器體積572與管件551之間形成有漏隙密封。緩衝器體積572使用氣體供應件552而保持處於高於管件551內之壓力的壓力。致動器571移動隔板570以將出口554a自緩衝器體積572接通至管件551中及封閉出口554a。隔板570可為重量輕的(例如,重量為10公克或更小,例如,大約1公克)。結果,致動器571可能夠以相對高頻率(例如,超過2kHz)使用隔板570來接通及封閉出口554a。
真空泵556a具有可被表達為氣體進入該泵之入口孔隙之線性速度v之泵速率。回應時間約略與管件551之直徑D有關(回應時間T約略為D/v)。對於典型渦輪分子泵,v為大約100公尺/秒。若管件551具有5公尺之直徑D,則此將提供大約0.5毫秒之回應時間T。此對應於大約2kHz之最大頻率。一個以上泵556a可在氣體入口554a附近提供於管件551周圍。當進行此操作時,回應頻率將增加。
通常,分支輻射光束Ba之衰減可使用圖30a、圖30b之替代衰減裝置而變化之範圍大於使用圖28及圖29之衰減裝置可達成之衰減調整之範圍。然而,衰減可被調整之速率較慢。舉例而言,腔室542可被排空以便減低衰減。然而,相比於調整(例如)鏡面530至553所需之時間,此情形可花費相當大時間長度。時間長度可長於目標部位接收EUV輻射之時間週期(例如,長於1毫秒)。
參看圖33,其展示一另外替代實施例,其中衰減裝置係由安置於處於近正入射角之分支輻射光束Ba之路徑中之EUV反射隔膜580提供。隔膜580可相似於上文所描述之窗口543、544予以建構。隔膜580可取決於所使用之構造及材料而具有任何合適尺寸。
分支輻射光束Ba離開第一衰減裝置519且入射於隔膜580上。隔膜580經定向成以便產生分支輻射光束Ba之入射角,其造成分支輻射光束Ba之部分581朝向安置於衰減器515a之壁上之輻射截止器582反射。分支輻射光束Ba之部分553經透射通過隔膜580。應瞭解,未反射之分支輻射光束Ba之部分將由隔膜580吸收。分支輻射光束Ba與隔膜580之入射角可為近正入射角,從而實質上避免朝向前一光學元件(例如,圖33中之衰減裝置519)反射輻射。
隔膜580可在其不與分支輻射光束Ba相交之第一位置(圖中未繪示)與其與輻射光束相交之第二位置(被展示)之間移動。隔膜之位置可由控制器CTA使用致動器(圖中未繪示)來控制。因此,控制器CTA取決於是否需要使用隔膜580提供衰減而在第一位置與第二位置之間進行選擇。
在圖33中,隔膜580安置於衰減器15a內之衰減裝置519之後(相對 於分支輻射光束Ba之傳播方向)。然而,在其他實施例中,衰減器15a內之衰減裝置之次序可不同。應進一步瞭解,可順序地提供諸如隔膜580之複數個隔膜以進一步增加分支輻射光束Ba之衰減。複數個隔膜與分支輻射光束之相交可受到控制器CTA控制。
在一實施例中,可使用網目來代替隔膜580。在一實施例中,可使用兩個或兩個以上網目。網目相比於隔膜可能夠耐受較高熱負荷。
在一實施例中,衰減器可包含處於照明系統IL(參見圖2)之圍封結構之開口8處之可調整孔隙。該可調整孔隙之大小可縮減以便使分支輻射光束Ba衰減。此實施例不影響輻射之遠場分佈。其僅對光瞳平面中之輻射具有微小影響(輻射之極將變得較小但將不改變位置)。
衰減器15a至15n可包含上述實施例中之一或多者。舉例而言,圖33之反射隔膜可與圖28或圖29之衰減裝置及/或圖30a、圖30b之衰減裝置組合。實施例之其他組合亦係可能的。
雖然上文結合圖1來描述提供一各別衰減器15a至15n以用於每一分支輻射光束,但應瞭解,在其他實施例中,可提供一衰減器以用於分支輻射光束中僅一者或用於一些分支輻射光束。另外,可提供單一衰減器以用於複數個分支輻射光束。舉例而言,儘管衰減器15a至15n被展示為安置於分裂器19之外部,但在其他實施例中,如本文所描述之衰減器可安置於分裂器19內以便使複數個分支輻射光束衰減。舉例而言,為了使所有分支輻射光束Bb至Bn一起衰減,可緊接在第一分支輻射光束Ba之分支之後提供一衰減器。可提供衰減器之任何組合或組態。
如大體上上文所描述之衰減器可在基板之前在微影系統內定位 於別處。舉例而言,參看圖2,衰減器可定位於照明系統IL內。
雖然本發明之實施例已在單一自由電子雷射FEL之內容背景中予以描述,但應瞭解,可使用任何數目個自由電子雷射FEL。舉例而言,兩個自由電子雷射可經配置以將EUV輻射提供至複數個微影裝置。此情形將允許一些冗餘。此情形可允許在一自由電子雷射被修復或經歷維修時使用另一自由電子雷射。
儘管微影系統LS之所描述實施例可涉及八個微影裝置,但微影系統LS可包含任何數目個微影裝置。形成微影系統LS之微影裝置之數目可(例如)取決於自自由電子雷射輸出之輻射量,及在光束分裂裝置19中損耗之輻射量。另外或替代地,形成微影系統LS之微影裝置之數目取決於一微影系統LS之佈局及/或複數個微影系統LS之佈局。
微影系統LS之實施例亦可包括一或多個光罩檢測裝置MIA及/或一或多個空中檢測量測系統(AIMS)。在一些實施例中,微影系統LS可包含用以允許一些冗餘之兩個光罩檢測裝置。此情形可允許在一光罩檢測裝置被修復或經歷維修時使用另一光罩檢測裝置。因此,一個光罩檢測裝置總是可供使用。光罩檢測裝置可使用低於微影裝置之功率輻射光束。另外,應瞭解,使用本文所描述之類型之自由電子雷射FEL所產生之輻射可用於除了微影或微影相關應用以外之應用。
術語「相對論性電子」應被解釋為意謂具有相對論性能量之電子。電子在其動能可比得上或大於其靜止質量能時被認為具有相對論性能量(以自然單位為511keV)。實務上,形成自由電子雷射之部件之粒子加速器可使電子加速至比其靜止質量能大得多的能量。舉例而言,粒子加速器可使電子加速至>10MeV、>100MeV、>1GeV或更大 之能量。
本發明之實施例已在輸出EUV輻射光束之自由電子雷射FEL之內容背景中予以描述。然而,自由電子雷射FEL可經組態以輸出具有任何波長之輻射。因此,本發明之一些實施例可包含輸出不為EUV輻射光束的輻射光束之自由電子。
術語「EUV輻射」可被認為涵蓋具有在4奈米至20奈米之範圍內(例如,在13奈米至14奈米之範圍內)之波長之電磁輻射。EUV輻射可具有小於10奈米之波長,例如,在4奈米至10奈米之範圍內(諸如,6.7奈米或6.8奈米)之波長。
微影裝置LAa至LAn可用於IC製造中。替代地,本文所描述之微影裝置LAa至LAn可具有其他應用。可能的其他應用包括製造整合式光學系統、用於磁疇記憶體之導引及偵測圖案、平板顯示器、液晶顯示器(LCD)、薄膜磁頭,等等。
不同實施例可彼此組合。實施例之特徵可與其他實施例之特徵組合。
雖然上文已描述本發明之特定實施例,但應瞭解,可以與所描述之方式不同的其他方式來實踐本發明。以上描述意欲為說明性而非限制性的。因此,對於熟習此項技術者將顯而易見,可在不脫離下文所闡明之申請專利範圍之範疇的情況下對所描述之本發明進行修改。
15a:衰減器
15b:衰減器
15n:衰減器
19:光束分裂裝置
B:極紫外線(EUV)輻射光束/主輻射光束/輸出輻射光束/初級輻射光束/入射輻射光束
Ba:分支輻射光束/次級輻射光束/射出分支輻射光束/入射分支輻射光束
Bb:分支輻射光束/次級輻射光束
Bn:分支輻射光束
CT:控制器
CTAa:控制器
CTAb:控制器
CTAn:控制器
F1:第一以回饋為基礎之控制迴路
F2a:第二以回饋為基礎之控制迴路
F2b:第二以回饋為基礎之控制迴路
F2n:第二以回饋為基礎之控制迴路
FEL:自由電子雷射
LAa:微影裝置
LAb:微影裝置
LAn:微影裝置
LS:微影系統
SLa:感測器
SLb:感測器
SLn:感測器
ST:輻射感測器裝置

Claims (27)

  1. 一種用於一自由電子雷射之注入器,該注入器包含:一光電陰極(photocathode);一輻射輸出,其經組態以發射一脈衝式輻射光束且引導該脈衝式輻射光束以入射於該光電陰極上,以便造成該光電陰極發射自該注入器輸出之一束電子聚束(beam of electron bunches),每一電子聚束對應於該輻射光束之一脈衝;及一控制裝置,其經組態以接收該脈衝式輻射光束並實質上防止該輻射光束之至少一脈衝入射於該光電陰極上,以便中斷該電子束並造成該輻射光束之該至少一脈衝在自該注入器輸出之該電子束中實質上不具有關聯電子聚束。
  2. 如請求項1之注入器,其中該控制裝置經組態而以一週期性方式中斷該電子束。
  3. 如請求項1之注入器,其中該控制裝置經組態以中斷該電子束,以便造成該輻射光束之一單脈衝在自該注入器輸出之該電子束中實質上不具有關聯電子聚束。
  4. 如請求項1之注入器,其中該控制裝置包含:一勃克爾盒(Pockels cell),其安置於在該輻射光束入射於該光電陰極上之前的該輻射光束之路徑中,且其中該勃克爾盒可切 換於一第一操作模式與一第二操作模式之間,在該第一操作模式中,該勃克爾盒經組態以透射該輻射光束而不改變其偏振狀態,在該第二操作模式中,該勃克爾盒經組態以透射該輻射光束且旋轉該輻射光束之該偏振狀態;及一偏振器,其安置於該勃克爾盒與該光電陰極之間且處於該輻射光束之該路徑中,其中該偏振器經組態以僅透射具有一給定偏振狀態之輻射。
  5. 如請求項4之注入器,其中該勃克爾盒包含一電光晶體、一對電極及一電壓源,且其中該電壓源經組態以在該等電極之間產生一電位差,以便將該勃克爾盒自該第一操作模式切換至該第二操作模式。
  6. 如請求項5之注入器,其中該勃克爾盒包含複數對電極及複數個電壓源,且其中該複數個電壓源中每一者經組態以在該複數對電極中之一對電極之間產生一電位差,以便將該勃克爾盒自該第一操作模式切換至該第二操作模式。
  7. 如請求項4之注入器,其中該勃克爾盒經組態以在處於該第二操作模式中時將該輻射光束之該偏振狀態旋轉達約90°。
  8. 如請求項7之注入器,其進一步包含一第二勃克爾盒,該第二勃克爾盒經組態以在處於該第二操作模式中時將該輻射光束之該偏振狀態旋轉達約90°。
  9. 如請求項8之注入器,其中該偏振器經組態以在該輻射光束入射於該勃克爾盒上之前僅透射具有正交於該輻射光束之該偏振狀態的一偏振狀態之輻射。
  10. 如請求項4之注入器,其中該控制裝置包含複數個勃克爾盒,該複數個勃克爾盒安置於在該輻射光束入射於該光電陰極上之前的該輻射光束之該路徑中,且其中該複數個勃克爾盒中每一者可切換於一第一操作模式與一第二操作模式之間,在該第一操作模式中,該勃克爾盒經組態以透射該輻射光束而不改變其偏振狀態,在該第二操作模式中,該勃克爾盒經組態以透射該輻射光束且將該輻射光束之該偏振狀態旋轉達小於90°,且其中該複數個勃克爾盒經組態以在該複數個勃克爾盒中每一者處於該第二操作模式中時應用為約90°的該輻射光束之該偏振狀態之一組合式旋轉。
  11. 如請求項4之注入器,其中該偏振器經組態以在該輻射光束入射於該勃克爾盒上之前僅透射具有該輻射光束之該偏振狀態之輻射。
  12. 一種自由電子雷射,其包含:一注入器,其包含:一光電陰極;一輻射輸出,其經組態以發射一脈衝式輻射光束且引導該脈衝式輻射光束以入射於該光電陰極上,以便造成該光電陰 極發射自該注入器輸出之一束電子聚束,每一電子聚束對應於該輻射光束之一脈衝;及一控制裝置,其經組態以中斷該電子束,以便造成該輻射光束之至少一脈衝在自該注入器輸出之該電子束中實質上不具有關聯電子聚束;一粒子加速器,其經組態以使自該注入器輸出之該電子束加速;及一波紋機(undulator),其經組態以沿著一週期性路徑來導引該經加速電子束以便刺激一自由電子雷射輻射光束之發射,其中該自由電子雷射輻射光束包含一系列脈衝,每一脈衝對應於該電子束之一電子聚束。
  13. 如請求項12之自由電子雷射,其中該注入器之該控制裝置經組態以中斷自該注入器輸出之該電子束,以便中斷該自由電子雷射輻射光束之該等脈衝。
  14. 如請求項13之自由電子雷射,其進一步包含一控制器,該控制器經組態以控制該注入器之該控制裝置,以便控制在一給定時間週期內出現的該自由電子雷射輻射光束之脈衝之一數目。
  15. 如請求項12之自由電子雷射,其中該波紋機經組態以刺激一EUV自由電子雷射輻射光束之發射。
  16. 如請求項15之自由電子雷射,其進一步包含一感測器,該感測器經組態以監視該輻射光束之強度且將一信號輸出至一控制器以啟用回饋控制。
  17. 如請求項12之自由電子雷射,其中該控制裝置經組態以使至少一電子聚束自該電子束中偏轉,以便中斷自該注入器輸出之該電子束。
  18. 如請求項17之自由電子雷射,其中該控制裝置包含:一對導電板,其安置於該電子束之一軌跡之任一側;及一電壓源,其經組態以在該等導電板之間產生一電位差,以便在該等導電板之間產生一電場,該電場足以使一電子聚束自該電子束中偏轉。
  19. 如請求項18之自由電子雷射,其進一步包含一光束截止器(beam dump),該光束截止器經配置以接收自該電子束中偏轉之一電子聚束。
  20. 一種微影系統,其包含:一輻射源,其包含一如請求項12之自由電子雷射;及一微影裝置。
  21. 如請求項20之微影系統,其中該微影裝置經配置以接收一輻射 光束,該輻射光束包含自該輻射源之該自由電子雷射輸出之該自由電子雷射輻射光束之至少一部分,該微影裝置包含:一照明系統,其經組態以調節自該輻射源接收之該輻射光束;一支撐結構,其經建構以支撐一圖案化器件,該圖案化器件能夠在該輻射光束之橫截面中向該輻射光束賦予一圖案以形成一經圖案化輻射光束;一基板台,其經建構以固持一基板;及一投影系統,其經組態以將該經圖案化輻射光束投影至該基板之一目標部位上。
  22. 如請求項21之微影系統,其中該注入器之該控制裝置經組態以中斷自該注入器輸出之該電子束,以便中斷該自由電子雷射輻射光束之該等脈衝,並以便中斷由該微影裝置接收之該輻射光束之脈衝,並以便中斷投影至該基板之一目標部位上之該經圖案化輻射光束之脈衝。
  23. 如請求項22之微影系統,其進一步包含一控制器,其經組態以控制該注入器之該控制裝置,以便控制在一曝光時間週期內由該基板之該目標部位接收的該經圖案化輻射光束之脈衝之一數目,以便控制在該曝光時間週期內由該基板之該目標部位接收的一輻射劑量。
  24. 一種控制由一自由電子雷射發射之一輻射光束之功率之方法, 該方法包含:將一脈衝式輻射光束引導至一注入器之一光電陰極上,以便造成該光電陰極發射自該注入器輸出之一束電子聚束,每一電子聚束對應於該輻射光束之一脈衝;中斷該電子束,以便造成該輻射光束之至少一脈衝在自該注入器輸出之該電子束中實質上不具有關聯電子聚束;使用一粒子加速器來使該電子束加速;及使用一波紋機以沿著一週期性路徑來導引該經加速電子束以便刺激一自由電子雷射輻射光束之發射,該自由電子雷射光束之功率係藉由該電子束之該中斷而減少。
  25. 如請求項24之方法,其中可防止該輻射光束之至少一脈衝入射於該光電陰極上,以便中斷電子聚束自該光電陰極之該發射。
  26. 如請求項24之方法,其中可使至少一電子聚束自該電子束中偏轉,以便中斷自該注入器輸出之該電子束。
  27. 一種非暫態電腦可讀取媒體,其中包含指令,當該等指令由一電腦系統執行時經組態以造成該電腦系統至少執行:造成一脈衝式輻射光束引導至一注入器之一光電陰極上以便造成該光電陰極發射自該注入器輸出之一束電子聚束,每一電子聚束對應於該輻射光束之一脈衝;及造成該電子束之中斷,以便造成該輻射光束之至少一脈衝在 自該注入器輸出之該電子束中實質上不具有關聯電子聚束,其中一粒子加速器經組態使該電子束加速且一波紋機經組態以沿著一週期性路徑來導引該經加速電子束以便刺激一自由電子雷射輻射光束之發射,該自由電子雷射輻射光束之功率係藉由該電子束之中斷而減少。
TW108129836A 2013-06-18 2014-06-18 控制自由電子雷射之方法、用於自由電子雷射之注入器及相關之自由電子雷射、微影系統及非暫態電腦可讀取媒體 TWI714226B (zh)

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
US201361836619P 2013-06-18 2013-06-18
US61/836,619 2013-06-18
US201361889954P 2013-10-11 2013-10-11
US61/889,954 2013-10-11
EP14152443.9 2014-01-24
EP14152443 2014-01-24
US201461941332P 2014-02-18 2014-02-18
US61/941,332 2014-02-18
EP14164037.5 2014-04-09
EP14164037 2014-04-09
EP14169803.5 2014-05-26
EP14169803 2014-05-26
EP14171782.7 2014-06-10
EP14171782 2014-06-10

Publications (2)

Publication Number Publication Date
TW201944180A TW201944180A (zh) 2019-11-16
TWI714226B true TWI714226B (zh) 2020-12-21

Family

ID=68056140

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108129836A TWI714226B (zh) 2013-06-18 2014-06-18 控制自由電子雷射之方法、用於自由電子雷射之注入器及相關之自由電子雷射、微影系統及非暫態電腦可讀取媒體

Country Status (2)

Country Link
IL (1) IL242609B (zh)
TW (1) TWI714226B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI805522B (zh) * 2021-11-16 2023-06-11 台灣積體電路製造股份有限公司 雷射裝置及半導體結構的製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4413186A (en) * 1979-08-29 1983-11-01 Fujitsu Limited Method for detecting a position of a micro-mark on a substrate by using an electron beam
EP0329140A2 (en) * 1988-02-19 1989-08-23 Svg Lithography Systems, Inc. Exposure control system for full field photolithography using pulsed sources
US20060033417A1 (en) * 2004-08-13 2006-02-16 Triveni Srinivasan-Rao Secondary emission electron gun using external primaries
JP2008288099A (ja) * 2007-05-18 2008-11-27 Nano Photon Kk 電子銃、電子発生方法、及び偏光制御素子
TW201241865A (en) * 2011-02-16 2012-10-16 Kla Tencor Corp Multiple-pole electrostatic deflector for improving throughput of focused electron beam instruments
TW201306073A (zh) * 2005-05-14 2013-02-01 Fei Co 用於帶電粒子束之偏向信號補償

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4413186A (en) * 1979-08-29 1983-11-01 Fujitsu Limited Method for detecting a position of a micro-mark on a substrate by using an electron beam
EP0329140A2 (en) * 1988-02-19 1989-08-23 Svg Lithography Systems, Inc. Exposure control system for full field photolithography using pulsed sources
US20060033417A1 (en) * 2004-08-13 2006-02-16 Triveni Srinivasan-Rao Secondary emission electron gun using external primaries
TW201306073A (zh) * 2005-05-14 2013-02-01 Fei Co 用於帶電粒子束之偏向信號補償
JP2008288099A (ja) * 2007-05-18 2008-11-27 Nano Photon Kk 電子銃、電子発生方法、及び偏光制御素子
TW201241865A (en) * 2011-02-16 2012-10-16 Kla Tencor Corp Multiple-pole electrostatic deflector for improving throughput of focused electron beam instruments

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI805522B (zh) * 2021-11-16 2023-06-11 台灣積體電路製造股份有限公司 雷射裝置及半導體結構的製造方法

Also Published As

Publication number Publication date
IL242609B (en) 2019-09-26
TW201944180A (zh) 2019-11-16

Similar Documents

Publication Publication Date Title
TWI720938B (zh) 微影方法
US9853412B2 (en) Radiation source
TWI649934B (zh) 電子注入器及自由電子雷射
TW201523164A (zh) 光束傳遞裝置及方法
TWI714226B (zh) 控制自由電子雷射之方法、用於自由電子雷射之注入器及相關之自由電子雷射、微影系統及非暫態電腦可讀取媒體
TWI709731B (zh) 用於判定輻射光束之位置之輻射感測器裝置、系統及方法
JP6920311B2 (ja) 自由電子レーザ用電子源
JP2019535102A (ja) 電子ビーム伝送システム
WO2017092943A1 (en) Free electron laser
WO2016128152A1 (en) Radiation sensor
EP2896995A1 (en) A radiation source