JP4818577B2 - Transformer - Google Patents

Transformer Download PDF

Info

Publication number
JP4818577B2
JP4818577B2 JP2003206620A JP2003206620A JP4818577B2 JP 4818577 B2 JP4818577 B2 JP 4818577B2 JP 2003206620 A JP2003206620 A JP 2003206620A JP 2003206620 A JP2003206620 A JP 2003206620A JP 4818577 B2 JP4818577 B2 JP 4818577B2
Authority
JP
Japan
Prior art keywords
transformer
electrical steel
vertical member
horizontal member
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003206620A
Other languages
Japanese (ja)
Other versions
JP2005056942A (en
Inventor
敬介 藤崎
正人 榎園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003206620A priority Critical patent/JP4818577B2/en
Publication of JP2005056942A publication Critical patent/JP2005056942A/en
Application granted granted Critical
Publication of JP4818577B2 publication Critical patent/JP4818577B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋼板を複数枚、厚さ方向に積層・固定した縦部材および横部材からなる変圧器に関する。
具体的には、変圧用コイルを巻き付ける積層体に電磁鋼板を用いた変圧器に関する。
【0002】
【従来の技術】
変圧器は、鋼板を複数枚、厚さ方向に積層・固定し、その周囲にコイルを巻き付けた構造となっている。
従来の変圧器は、鉄損を低減するために無方向性電磁鋼板(NO)または方向性電磁鋼板(GO)を積層することにより作られていた。
無方向性電磁鋼板は、図7に示すように、鋼板表面のどの方向にも一様な比透磁率を有する鋼板であって、比較的鉄損の小さい材料として広く用いられているが、長時間連続運転する変圧器に用いる材料としては十分な磁気特性が得られていなかった。
【0003】
一方、方向性電磁鋼板は、図8に示すように、特定の方向の磁気特性に優れた鋼板であって、この方向性電磁鋼板を用いた従来の変圧器の構造を図4に示す。
変圧器を構成する鋼板を図4のように分割し、矢印で示した方向を磁化容易方向とする方向性電磁鋼板としていた。
しかし、変圧器を構成する縦部材1と横部材2との境界3においては、磁束の方向が変わるため境界3の周囲で回転磁界が生じて鉄損が大きくなったり、磁歪が多くなって騒音が大きくなったりするという問題点があった。
なお、方向性電磁鋼板の利用方法に関する従来技術文献としては、特開平7−67272号公報に、電動機のステータの横部材と縦部材とを分割する構造とし、縦部材には円周方向を磁化容易方向とする方向性電磁鋼板(GO)を用い、横部材には径方向を磁化容易方向とする方向性電磁鋼板を用いることにより鉄損を低減する方法が開示されているが、変圧器への応用については検討されていなかった。
【0004】
【特許文献1】
特開平7−67272号公報
【0005】
【発明が解決しようとする課題】
本発明は、前記のような従来技術の問題点を解決し、縦部材と横部材との境界部において回転磁界が発生せず、磁歪が低減することによって騒音を抑制することができる変圧器を提供することを課題とする。
【0006】
本発明は、変圧器を構成する縦部材と横部材の鋼板の積層方向を異なる方向にすることにより、縦部材と横部材との境界部において回転磁界が発生せず、磁歪が低減することによって騒音を抑制することができる変圧器を提供するものであり、その要旨は特許請求の範
囲に記載した通りの下記内容である。
(1)鋼板を複数枚、厚さ方向に積層・固定した縦部材および横部材からなる変圧器であって、前記縦部材と横部材とは、方向性電磁鋼板を異なる方向に積層して構成し、前記縦部材と横部材とが斜めに接しており、その境界面における前記縦部材と横部材の方向性電磁鋼板の積層方向が異なり、かつ、前記変圧器の中央部における縦部材と横部材との2本の境界線の交点が、前記変圧器の外周または外周より外側に位置することを特徴とする変圧器。
(2)前記縦部材と横部材との境界線と、前記変圧器の内周とがなす角(θ)が、30deg≦θ≦60degであることを特徴とする(1)に記載の変圧器。
【0007】
【発明の実施の形態】
本発明の実施の形態を、図1乃至図6を用いて詳細に説明する。
<第1の実施形態>
図1は、本発明の第1の実施形態である変圧器の構造を示す図である。
図1において、1は縦部材、2は横部材、3は変圧器の中央部における縦部材と横部材との境界線、を示す。
図1に示すように、本発明の変圧器は、縦部材1と、横部材2とから構成され、縦部材1と横部材とは、方向性電磁鋼板を異なる方向に積層されている。
図4に示す、従来の変圧器は、縦部材1と横部材2とが、同じ方向に積層されていたため、磁束が縦部材1と横部材2との境界部3を通過するときに、同じ平面内で磁束の向きが変ることから、この部分に磁気抵抗の大きい回転磁界が発生し、これによって、鉄損が著しく増大していた。
ここに、回転磁界とは、図10に示すように、例えば、x−y平面内の位置によって磁気特性が曲線的に変化する磁界をいい、図9 に示すような、直線的に変化する交番磁界と反対の概念である。
【0008】
発明者らは、種々の形態の変圧器について鉄損を測定したところ、この回転磁界は、平面内で磁束の方向が変化する場所で発生し易く、図1に示す、縦部材1と横部材2との境界部3 が交差する点が最も発生し易いことを見出した。
そこで、この回転磁界の発生を防止するためには、磁束の方向平面内で変化させなければよいことに想到し、縦部材1と横部材2との積層方向を異なる方向とすることによって、平面内での磁束の方向転換を少なくしたところ、回転磁界の発生が抑制され、鉄損を著しく低減することができた。
具体的には、本実施形態では、図1に示すように、縦部材1を構成する方向性電磁鋼板を変圧器の厚さ方向に積層し、横部材2を構成する方向性電磁鋼板を変圧器の幅方向に積層している。
ここに、図1に示すように、縦部材と横部材との2本の境界線が交差する点と横部材の外周との距離をdとするとき、本実施形態はd=0の場合を示す。
【0009】
また、縦部材1および横部材2を構成する方向性電磁鋼板の磁化容易方向を図1の矢印で示すように変圧器の周方向とすることが好ましい。
磁束の流れる方向と方向性電磁鋼板の磁化容易方向とを合わせることにより磁束の流れをスムーズにし磁束(B)を強化することができる。
ここに、方向性電磁鋼板は、磁化容易方向が特定の方向である電磁鋼板であり、磁化容易方向については無方向性電磁鋼板より優れた磁気特性を有する。
例えば、図8に示すように、方向性電磁鋼板は、圧延方向の比透磁率μRが、非圧延方向の比透磁率μTに比べて著しく大きくなっており、圧延方向に磁束を流し易い性質を持っている。
方向性電磁鋼板を用いることにより、磁束の流れをスムーズにし、その結果、磁束(B)を強化することができるうえ、磁束が交差する部分に生じる磁気抵抗の大きい回転磁界の発生を防止することができ、変圧器における鉄損を低減することができる。
【0010】
<第2の実施形態>
図2は、本発明の第2の実施形態である変圧器の構造を示す図である。
図2において、1は縦部材、2は横部材、3は変圧器の中央部における縦部材と横部材との境界線、を示す。
本実施形態においては、縦部材と横部材を構成する方向性電磁鋼板の積層方向を図1の場合と逆転させて、縦部材1を構成する方向性電磁鋼板を変圧器の幅方向に積層し、横部材2を構成する方向性電磁鋼板を変圧器の厚さ方向に積層しているほかは、第1の実施形態と同様である。
このように、縦部材1と横部材2との積層方向が異なっていれば、その方向はいずれでもかまわない。
なお、変圧器の外周のコーナー部においては、縦部材1と横部材2との境界線は交差しないが、縦部材1と横部材2との境界線において磁束が直角に曲がるので、縦部材と横部材とを構成する方向性電磁鋼板の積層方向を変えることによって回転磁界の発生を防止し、鉄損を著しく低減することができる。
なお、方向性電磁鋼板の磁化容易方向については、第1の実施形態と同様であるので省略する。
【0011】
<第3の実施形態>
図3は、本発明の第3の実施形態である変圧器の構造を示す図である。
図3において、1は縦部材、2は横部材、3は変圧器の中央部における縦部材と横部材との境界線を示す。
図3は、変圧器の中央部における縦部材1と横部材2との2本の境界線の交点が変圧器の外周の外側に位置している実施形態を示す。従って、縦部材1と横部材2との2本の境界線の交点と、横部材2の外周面との距離dは、d<0となる。
この場合、縦部材と縦部材との境界線がなく、また、縦部材と横部材とを構成する方向性電磁鋼板の積層方向は異なる方向としているので、平面内で磁束の方向が変る点がなく、回転磁界の発生が防止できるので、最も鉄損を低減することができる。
なお、方向性電磁鋼板の磁化容易方向については、第1および第2の実施形態と同様であるので省略する。
【0012】
<第1〜第3共通の実施形態>
図5は、本発明の第1乃至第3の実施形態に共通する変圧器の構造を示す図である。
図5において、1は縦部材、2は横部材、3は変圧器の中央部における縦部材と横部材との境界線を示す。
本実施形態においては、図5に示すように、縦部材1と横部材2との境界線3と変圧器の内周とのなす角(θ)を、30deg≦θ≦60degの範囲内にする。
その限定理由は以下の通りである。
【0013】
図6は、方向性電磁鋼板の磁束の方向と鉄損との関係を示す図である。
図6の横軸は、磁束の方向(deg)であり、図5のα、βに相当する。
図6の縦軸は、鉄損(w/kg)を例示するものであり、この例では、無方向性電磁鋼板(NO)は、磁束の方向が変っても鉄損は大きく変化しないが、方向性電磁鋼板(GO)では、磁束の方向が変ると鉄損が著しく大きくなるので、磁束の方向(α、β)は60deg以下にすることが好ましい。
図5において、幾何学的に以下の関係が成り立つ。
α=90−θ
β=θ
このα、βを60deg以下にするためには、
0≦α=90−θ≦60、および、
0≦β=θ≦60が必要条件となる。
従って、30≦θ≦60の範囲が好ましい範囲である。
【0014】
【発明の効果】
本発明によれば、変圧器を構成する縦部材と横部材の鋼板の積層方向を異なる方向にすることにより、縦部材と横部材との境界部において回転磁界が発生せず、磁歪が低減することによって騒音を抑制することができる変圧器を提供することができ、産業上有用な著しい効果を奏する。
【図面の簡単な説明】
【図1】 本発明の第1の実施形態である変圧器の構造を示す図である。
【図2】 本発明の第2の実施形態である変圧器の構造を示す図である。
【図3】 本発明の第3の実施形態である変圧器の構造を示す図である。
【図4】 従来の変圧器の構造を示す図である。
【図5】 本発明の第1乃至第3の実施形態に共通する変圧器の構造を示す図である。
【図6】 方向性電磁鋼板の磁束の方向と鉄損との関係を示す図である。
【図7】 無方向性電磁鋼板の比透磁率(μ)の特性を示す図である。
【図8】 本発明に用いる方向性電磁鋼板の比透磁率(μ)の特性を示す図である。
【図9】 交番磁界の説明図である。
【図10】 回転磁界の説明図である。
【符号の説明】
1・・・縦部材、
2・・・横部材、
3・・・変圧器の中央部における縦部材と縦部材との境界線、
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a transformer composed of a longitudinal member and a transverse member in which a plurality of steel plates are laminated and fixed in the thickness direction.
Specifically, the present invention relates to a transformer using an electromagnetic steel plate in a laminated body around which a coil for transforming is wound.
[0002]
[Prior art]
The transformer has a structure in which a plurality of steel plates are laminated and fixed in the thickness direction, and a coil is wound around them.
Conventional transformers have been made by laminating non-oriented electrical steel sheets (NO) or directional electrical steel sheets (GO) in order to reduce iron loss.
As shown in FIG. 7, a non-oriented electrical steel sheet is a steel sheet having a uniform relative permeability in any direction on the surface of the steel sheet, and is widely used as a material with relatively small iron loss. Sufficient magnetic properties have not been obtained as a material used for transformers that operate continuously for hours.
[0003]
On the other hand, as shown in FIG. 8, the grain-oriented electrical steel sheet is a steel sheet having excellent magnetic characteristics in a specific direction, and FIG. 4 shows the structure of a conventional transformer using this grain-oriented electrical steel sheet.
The steel plate which comprises a transformer was divided | segmented like FIG. 4, and it was set as the directional electrical steel plate which makes the direction shown by the arrow the easy magnetization direction.
However, at the boundary 3 between the vertical member 1 and the horizontal member 2 constituting the transformer, the direction of the magnetic flux changes, so that a rotating magnetic field is generated around the boundary 3 to increase the iron loss or increase the magnetostriction, resulting in noise. There was a problem that became larger.
In addition, as a prior art document regarding the method of using the grain-oriented electrical steel sheet, Japanese Patent Application Laid-Open No. 7-67272 has a structure in which the transverse member and the longitudinal member of the stator of the motor are divided, and the circumferential direction is magnetized in the longitudinal member. A method of reducing iron loss by using a directional electrical steel sheet (GO) having an easy direction and using a directional electrical steel sheet having a radial direction as an easy magnetization direction as a transverse member has been disclosed. The application of was not studied.
[0004]
[Patent Document 1]
JP-A-7-67272 [0005]
[Problems to be solved by the invention]
The present invention solves the problems of the prior art as described above, and does not generate a rotating magnetic field at the boundary between the vertical member and the horizontal member, and a transformer capable of suppressing noise by reducing magnetostriction. The issue is to provide.
[0006]
The present invention makes it possible to reduce the magnetostriction by generating no rotating magnetic field at the boundary between the vertical member and the horizontal member by making the stacking direction of the vertical member and the horizontal member constituting the transformer different from each other. The present invention provides a transformer capable of suppressing noise, the gist of which is as follows, as described in the claims.
(1) A transformer composed of a longitudinal member and a transverse member in which a plurality of steel plates are laminated and fixed in the thickness direction, and the longitudinal member and the transverse member are constituted by laminating directional electromagnetic steel plates in different directions. However , the longitudinal member and the transverse member are in contact with each other at an angle, and the longitudinal direction of the longitudinal member and the transverse member at the boundary surface thereof are different from each other in the stacking direction of the directional electromagnetic steel sheets, and A transformer characterized in that an intersection of two boundary lines with a member is located on the outer periphery of the transformer or outside the outer periphery.
(2) An angle (θ) formed by a boundary line between the vertical member and the horizontal member and an inner circumference of the transformer is 30 deg ≦ θ ≦ 60 deg, The transformer according to (1) .
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described in detail with reference to FIGS.
<First Embodiment>
FIG. 1 is a diagram illustrating a structure of a transformer according to a first embodiment of the present invention.
In FIG. 1, 1 is a vertical member, 2 is a horizontal member, and 3 is a boundary line between the vertical member and the horizontal member at the center of the transformer.
As shown in FIG. 1, the transformer of this invention is comprised from the vertical member 1 and the horizontal member 2, and the vertical member 1 and the horizontal member are laminated | stacked in the direction from which a directional electromagnetic steel plate differs.
The conventional transformer shown in FIG. 4 is the same when the magnetic flux passes through the boundary portion 3 between the vertical member 1 and the horizontal member 2 because the vertical member 1 and the horizontal member 2 are laminated in the same direction. Since the direction of the magnetic flux changes in the plane, a rotating magnetic field having a large magnetic resistance is generated in this portion, and the iron loss is remarkably increased .
Here, as shown in FIG. 10, the rotating magnetic field is a magnetic field in which the magnetic characteristics change in a curved manner depending on the position in the xy plane, for example, and the alternating magnetic field changes linearly as shown in FIG. This is the opposite of magnetic field.
[0008]
The inventors measured the iron loss of various types of transformers. As a result, this rotating magnetic field is likely to be generated at a place where the direction of the magnetic flux changes in a plane, and the vertical member 1 and the horizontal member shown in FIG. It was found that the point where the boundary 3 with 2 intersects most easily occurs.
Therefore, in order to prevent the occurrence of this rotating magnetic field, by conceive that the direction of the magnetic flux may be varied in a plane, and a direction different from the stacking direction of the longitudinal member 1 and the horizontal member 2, When the direction change of the magnetic flux in the plane was reduced, the generation of the rotating magnetic field was suppressed, and the iron loss could be significantly reduced.
Specifically, in this embodiment, as shown in FIG. 1, the grain-oriented electrical steel sheets constituting the longitudinal member 1 are laminated in the thickness direction of the transformer, and the grain-oriented electrical steel sheets constituting the transverse member 2 are transformed. Laminated in the width direction of the vessel.
Here, as shown in FIG. 1, when the distance between the point where the two boundary lines between the vertical member and the horizontal member intersect and the outer periphery of the horizontal member is d, this embodiment is a case where d = 0. Show.
[0009]
Moreover, it is preferable that the easy direction of magnetization of the grain-oriented electrical steel sheets constituting the vertical member 1 and the horizontal member 2 is the circumferential direction of the transformer as indicated by arrows in FIG.
By combining the direction in which the magnetic flux flows and the direction of easy magnetization of the grain-oriented electrical steel sheet, the flow of magnetic flux can be made smooth and the magnetic flux (B) can be strengthened.
Here, the grain-oriented electrical steel sheet is an electrical steel sheet in which the easy magnetization direction is a specific direction, and has a magnetic property superior to the non-oriented electrical steel sheet in the easy magnetization direction.
For example, as shown in FIG. 8, in the grain-oriented electrical steel sheet, the relative permeability μ R in the rolling direction is significantly larger than the relative permeability μ T in the non-rolling direction, and it is easy to flow a magnetic flux in the rolling direction. Have nature.
By using a grain-oriented electrical steel sheet, the flow of magnetic flux can be made smooth, and as a result, the magnetic flux (B) can be strengthened, and the generation of a rotating magnetic field having a large magnetic resistance generated at a portion where the magnetic flux intersects can be prevented. And iron loss in the transformer can be reduced.
[0010]
<Second Embodiment>
FIG. 2 is a diagram showing a structure of a transformer according to the second embodiment of the present invention.
In FIG. 2, 1 is a vertical member, 2 is a horizontal member, and 3 is a boundary line between the vertical member and the horizontal member at the center of the transformer.
In the present embodiment, the directional electrical steel sheets constituting the longitudinal member 1 are laminated in the width direction of the transformer by reversing the lamination direction of the directional electrical steel sheets constituting the longitudinal member and the transverse member as shown in FIG. The directional electromagnetic steel sheets constituting the transverse member 2 are the same as those in the first embodiment except that the directional electromagnetic steel sheets are laminated in the thickness direction of the transformer.
Thus, as long as the stacking direction of the vertical member 1 and the horizontal member 2 is different, the direction may be any.
In addition, in the corner part of the outer periphery of a transformer, since the boundary line of the vertical member 1 and the horizontal member 2 does not cross | intersect, since magnetic flux bends at right angle in the boundary line of the vertical member 1 and the horizontal member 2, By changing the laminating direction of the grain-oriented electrical steel sheets constituting the transverse member, the generation of a rotating magnetic field can be prevented and the iron loss can be significantly reduced.
Note that the easy magnetization direction of the grain-oriented electrical steel sheet is the same as that in the first embodiment, and is omitted.
[0011]
<Third Embodiment>
FIG. 3 is a diagram showing the structure of a transformer according to the third embodiment of the present invention.
In FIG. 3, 1 is a vertical member, 2 is a horizontal member, and 3 is a boundary line between the vertical member and the horizontal member at the center of the transformer.
FIG. 3 shows an embodiment in which the intersection of the two boundary lines of the longitudinal member 1 and the transverse member 2 in the center of the transformer is located outside the outer periphery of the transformer. Therefore, the distance d between the intersection of the two boundary lines of the vertical member 1 and the horizontal member 2 and the outer peripheral surface of the horizontal member 2 is d <0.
In this case, there is no boundary line between the vertical member and the vertical member, and the direction of lamination of the directional electromagnetic steel sheets constituting the vertical member and the horizontal member is different. Since the generation of the rotating magnetic field can be prevented, the iron loss can be reduced most.
Note that the easy magnetization direction of the grain-oriented electrical steel sheet is the same as in the first and second embodiments, and is omitted.
[0012]
<First to third common embodiments>
FIG. 5 is a diagram showing the structure of a transformer common to the first to third embodiments of the present invention.
In FIG. 5, 1 is a vertical member, 2 is a horizontal member, and 3 is a boundary line between the vertical member and the horizontal member at the center of the transformer.
In the present embodiment, as shown in FIG. 5, the angle (θ) formed by the boundary line 3 between the vertical member 1 and the horizontal member 2 and the inner periphery of the transformer is set within a range of 30 deg ≦ θ ≦ 60 deg. .
The reason for the limitation is as follows.
[0013]
FIG. 6 is a diagram showing the relationship between the direction of magnetic flux and the iron loss of the grain-oriented electrical steel sheet.
The horizontal axis in FIG. 6 is the direction (deg) of magnetic flux, and corresponds to α and β in FIG.
The vertical axis in FIG. 6 exemplifies iron loss (w / kg). In this example, the non-oriented electrical steel sheet (NO) does not significantly change the iron loss even if the direction of the magnetic flux changes. In the grain-oriented electrical steel sheet (GO), the iron loss is remarkably increased when the direction of the magnetic flux is changed. Therefore, the direction of magnetic flux (α, β) is preferably 60 deg or less.
In FIG. 5, the following relationship holds geometrically.
α = 90−θ
β = θ
In order to set α and β to 60 deg or less,
0 ≦ α = 90−θ ≦ 60, and
0 ≦ β = θ ≦ 60 is a necessary condition.
Therefore, the range of 30 ≦ θ ≦ 60 is a preferable range.
[0014]
【Effect of the invention】
According to the present invention, a rotating magnetic field is not generated at the boundary between the vertical member and the horizontal member, and magnetostriction is reduced by making the lamination direction of the steel plates of the vertical member and the horizontal member constituting the transformer different. Therefore, it is possible to provide a transformer capable of suppressing noise, and there are significant industrially useful effects.
[Brief description of the drawings]
FIG. 1 is a diagram showing a structure of a transformer according to a first embodiment of the present invention.
FIG. 2 is a diagram showing a structure of a transformer according to a second embodiment of the present invention.
FIG. 3 is a diagram showing a structure of a transformer according to a third embodiment of the present invention.
FIG. 4 is a diagram showing a structure of a conventional transformer.
FIG. 5 is a diagram showing a structure of a transformer common to the first to third embodiments of the present invention.
FIG. 6 is a diagram showing the relationship between the direction of magnetic flux of a grain-oriented electrical steel sheet and iron loss.
FIG. 7 is a graph showing characteristics of relative permeability (μ) of a non-oriented electrical steel sheet.
FIG. 8 is a diagram showing the characteristic of relative permeability (μ) of the grain-oriented electrical steel sheet used in the present invention.
FIG. 9 is an explanatory diagram of an alternating magnetic field.
FIG. 10 is an explanatory diagram of a rotating magnetic field.
[Explanation of symbols]
1 longitudinal member,
2 ... transverse member,
3 ... The boundary line between the vertical member and the vertical member at the center of the transformer,

Claims (2)

鋼板を複数枚、厚さ方向に積層・固定した縦部材および横部材からなる変圧器であって、前記縦部材と横部材とは、方向性電磁鋼板を異なる方向に積層して構成し、前記縦部材と横部材とが斜めに接しており、その境界面における前記縦部材と横部材の方向性電磁鋼板の積層方向が異なり、かつ、前記変圧器の中央部における縦部材と横部材との2本の境界線の交点が、前記変圧器の外周または外周より外側に位置することを特徴とする変圧器。A transformer composed of a vertical member and a horizontal member in which a plurality of steel plates are laminated and fixed in the thickness direction, and the vertical member and the horizontal member are configured by stacking directional electromagnetic steel plates in different directions, The longitudinal member and the transverse member are in contact with each other at an angle, the direction of lamination of the directional electromagnetic steel sheets of the longitudinal member and the transverse member at the boundary surface thereof is different, and the longitudinal member and the transverse member at the central portion of the transformer The intersection of two boundary lines is located in the outer periphery or the outer periphery of the said transformer, The transformer characterized by the above-mentioned. 前記縦部材と横部材との境界線と、前記変圧器の内周とがなす角(θ)が、30deg≦θ≦60degであることを特徴とする請求項1に記載の変圧器。  2. The transformer according to claim 1, wherein an angle (θ) formed by a boundary line between the vertical member and the horizontal member and an inner circumference of the transformer is 30 deg ≦ θ ≦ 60 deg.
JP2003206620A 2003-08-08 2003-08-08 Transformer Expired - Lifetime JP4818577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003206620A JP4818577B2 (en) 2003-08-08 2003-08-08 Transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003206620A JP4818577B2 (en) 2003-08-08 2003-08-08 Transformer

Publications (2)

Publication Number Publication Date
JP2005056942A JP2005056942A (en) 2005-03-03
JP4818577B2 true JP4818577B2 (en) 2011-11-16

Family

ID=34363423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003206620A Expired - Lifetime JP4818577B2 (en) 2003-08-08 2003-08-08 Transformer

Country Status (1)

Country Link
JP (1) JP4818577B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103680856A (en) * 2013-12-25 2014-03-26 深圳银利电器制造有限公司 Inductor iron core with silicon steel sheet notch of core column and silicon steel sheet notches of iron yokes being perpendicular
EP3399530A4 (en) * 2015-12-30 2019-08-21 Hyosung Heavy Industries Corporation Core for transformer or reactor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010258365A (en) * 2009-04-28 2010-11-11 Nippon Steel Corp Iron core for electric power apparatus
KR20160081493A (en) 2014-12-31 2016-07-08 주식회사 효성 A core for transformer
KR101904100B1 (en) 2016-12-20 2018-10-04 효성중공업 주식회사 Core for transformer
KR101855039B1 (en) * 2017-04-11 2018-06-14 엘에스산전 주식회사 Device for reducing noise of core structure for transformer
CN108538557B (en) * 2018-01-19 2020-04-28 浙江泰成互感器有限公司 Transformer core stacking device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103680856A (en) * 2013-12-25 2014-03-26 深圳银利电器制造有限公司 Inductor iron core with silicon steel sheet notch of core column and silicon steel sheet notches of iron yokes being perpendicular
CN103680856B (en) * 2013-12-25 2016-09-28 深圳银利电器制造有限公司 Stem and the iron yoke rectilinear inductor iron core of stalloy otch
EP3399530A4 (en) * 2015-12-30 2019-08-21 Hyosung Heavy Industries Corporation Core for transformer or reactor

Also Published As

Publication number Publication date
JP2005056942A (en) 2005-03-03

Similar Documents

Publication Publication Date Title
JP4959170B2 (en) Iron core for stationary equipment
JP5544393B2 (en) Winding iron core for stationary equipment and stationary equipment having the same
JP2003339128A (en) Motor, stator core and rotor core, and manufacturing methods of motor, stator core and rotor core
JP2008148469A (en) Spindle motor, disk driving device and manufacturing method of stator core
JP2007306735A (en) Permanent magnet motor
JP4818577B2 (en) Transformer
WO2020071512A1 (en) Wound core and transformer
JP2010259246A (en) Stator core and motor with the same
JP2007336690A (en) Motor stator
JP3869768B2 (en) Transformer
JP2005051929A (en) Motor
JP2004236495A (en) Exciter and synchronizer using it
JP2007143305A (en) Method of manufacturing core, method of manufacturing stator, and method of manufacturing motor
JP2020184836A (en) Stator and motor
JP2775209B2 (en) DC motor
JP4249594B2 (en) Transformers and transformer cores
JP4323941B2 (en) Exciter, field machine, and synchronous machine using the same
JPH0272603A (en) Core
JP2020178411A (en) Stator iron core and motor
JPH01190250A (en) Cylindrical linear induction motor
JP2006280172A (en) Dc motor
JP3059561U (en) Magnetic core
JP3984483B2 (en) Synchronous motor
JP2020072626A (en) Stator core of rotary electric machine
JPH10208931A (en) Core member and armature member for solenoid actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080905

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081105

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4818577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term