JP2006280172A - Dc motor - Google Patents

Dc motor Download PDF

Info

Publication number
JP2006280172A
JP2006280172A JP2005099345A JP2005099345A JP2006280172A JP 2006280172 A JP2006280172 A JP 2006280172A JP 2005099345 A JP2005099345 A JP 2005099345A JP 2005099345 A JP2005099345 A JP 2005099345A JP 2006280172 A JP2006280172 A JP 2006280172A
Authority
JP
Japan
Prior art keywords
center
curvature
core
motor
teeth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005099345A
Other languages
Japanese (ja)
Inventor
Atsushi Matsumoto
厚志 松本
Takeshi Kamijo
武 上條
Masaru Saga
賢 佐賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Micro Engineering Co Ltd
Original Assignee
Oki Micro Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Micro Engineering Co Ltd filed Critical Oki Micro Engineering Co Ltd
Priority to JP2005099345A priority Critical patent/JP2006280172A/en
Publication of JP2006280172A publication Critical patent/JP2006280172A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a DC motor that provides compatibility between the reduction in cogging torques and the enhancement of torque characteristics by optimizing magnetic balance. <P>SOLUTION: A DC motor is configured such that the inner center of curvature of a magnet arranged within the case of DC motor is deviated toward a radiant direction from its outer center of curvature, and the inner center of curvature of teeth ends of an armature core is deviated toward an opposite-end direction from its outer center of curvature. Further, the following respective areas are set at the values that meet equation 1 (P8/P7)×P6×P1=1.6 to 2.2, equation 2 (P5/(π×P2))×P1≥0.24, equation 3 P3/P4≤1.6; where the reference symbols notify number of core slots P1, core outside diameter P2, core slot width P3, curvature radius of teeth end of inner curved surface end P4, teeth width P5, thickness of teeth end P6, deviation of center of curvature of teeth end P7, and deviation of center of curvature of magnet P8. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本願発明は直流モータの技術分野に属し、特に、内装する固定子、電機子の磁気バランスを最適化する直流モータに関する。   The present invention belongs to the technical field of DC motors, and more particularly, to a DC motor that optimizes the magnetic balance of the stator and armature that are housed therein.

直流モータ、例えば、ブラシ付き直流モータの構造は、外側のモータケースにマグネットを配置して固定子(ステータ)を構成し、この固定子の内側に所定の空隙(エアギャップ)をもって電機子を回転自在に配置するものが一般的である。   The structure of a direct current motor, for example, a direct current motor with a brush, includes a magnet arranged in an outer motor case to form a stator (stator), and the armature rotates with a predetermined gap (air gap) inside the stator. What is freely arranged is common.

電機子は、断面視において略T字状のティースの複数個を、放射状にかつ各ティース間でスロットを成す形状の電磁鋼板を積層して形成した積層コアと、この積層コアの略中心部に整流子を配置したシャフトを固定し、さらに積層コアのティースの巻線部位を絶縁した後に銅材等から成る巻線を巻回して構成している。巻線方式は、積層コアにおいて2つのスロットの配置が180度に近い(シャフトの軸心対称に近い)位置のティース間で巻回する、いわゆるフライヤ方式が広く採用されており、巻線の巻き始めと巻き終わりを整流子に接続している。電機子を回転させる原理は、マグネットの磁力と巻線の通電時に得られる電磁力の反発力と吸引力を利用しており、ブラシと整流子によって巻線に流れる電流の極性を切り替えることにより連続的に回転させるものである。   The armature includes a laminated core formed by laminating a plurality of substantially T-shaped teeth in a cross-sectional view, and laminating electromagnetic steel plates that are radially formed with slots between the teeth, and substantially at the center of the laminated core. The shaft on which the commutator is disposed is fixed, and further, the winding portion of the laminated core teeth is insulated, and then a winding made of a copper material or the like is wound. As the winding method, a so-called flyer method is widely adopted in which the two slots in the laminated core are wound between teeth at positions close to 180 degrees (close to the axial symmetry of the shaft). The start and end of winding are connected to the commutator. The principle of rotating the armature uses the magnetic force of the magnet and the repulsive force and attractive force of the electromagnetic force obtained when the winding is energized, and it is continuously switched by switching the polarity of the current flowing through the winding with the brush and commutator. It is intended to rotate.

上記構造の電機子の積層コアには、磁気抵抗が低い部位(ティース)と高い部位(巻線部)とが存在しており、この磁気抵抗の差が大きいとコギングトルクのピークtoピーク値が大きくなり、その結果、直流モータに回転ムラを発生させる原因となっていた。   The laminated core of the armature having the above structure has a portion having a low magnetic resistance (tooth) and a portion having a high magnetic resistance (winding portion). If this magnetic resistance difference is large, the peak-to-peak value of the cogging torque is increased. As a result, it has been a cause of uneven rotation in the DC motor.

このようなコギングトルクを低下させる直流モータの積層コアの構造が、以下の特許文献にて開示されている。   The structure of a laminated core of a DC motor that reduces such cogging torque is disclosed in the following patent documents.

先ず、特許文献1では、電動モータの積層コアのスロットを等ピッチかつ等しい幅で形成すると共にティースの基部を不等ピッチで等しい幅に形成し、積層コアが軸中心に回転する時の磁気抵抗の変化を少なくすることを特徴とする発明が開示されている。   First, in Patent Document 1, the slots of the laminated core of the electric motor are formed at equal pitches and equal widths, and the teeth bases are formed at equal widths at unequal pitches. An invention characterized by reducing the change of the above is disclosed.

また、特許文献2では、直流モータの積層コアのスロットを不等ピッチで等しい幅で形成し、ティースの基部は等ピッチで等しい幅に形成してスロット数を偶数に限定することにより、ダブルフライヤ方式の巻線による生産性向上と磁気抵抗の変化を少なくすることを特徴とする考案が開示されている。
特開2002−291210号公報(第5−6頁、第1図) 実開平5−23756号公報(第3−4頁、第2図)
Further, in Patent Document 2, double flyers are formed by forming slots of DC motor laminated cores with unequal pitches and equal widths, and forming teeth bases with equal pitches and equal widths to limit the number of slots to an even number. There has been disclosed a device characterized in that the productivity is improved by the winding of the system and the change in magnetic resistance is reduced.
JP 2002-291210 A (page 5-6, FIG. 1) Japanese Utility Model Publication No. 5-23756 (page 3-4, Fig. 2)

ところで、マグネット及び電機子の積層コアの形状は、直流モータの性能に大きな影響を与えるため、マグネットや積層コアの形状を適正に設定し、これらに流れる磁束密度の状態を最適化する必要がある。しかしながら、その設定においては以下の問題点を考慮する必要がある。
(1)積層コアのスロット数を増やすとコギングトルクは低下するが、巻線の渡り長さが長くなって巻線抵抗が大きくなり、トルク特性が低下する。
(2)積層コアのティース幅を狭くすると、巻線数を増加させることが可能なために電磁力が増加するが、コアの磁束密度は高くなって磁気飽和する場合があり、トルク特性が低下する。
(3)積層コアのスロット幅を広くすると巻線を行ない易くなるが、磁気抵抗の差が大きくなりコギングトルクも増大する。
(4)積層コアのスロットを成すティース先端部の曲率半径(いわゆるR寸法)を大きくすると、鋼板を打ち抜くプレスの金型構造を容易にすることが可能であり製造コストを低減することができるが、スロット位置での積層コアとマグネットの空隙が大きくなり、磁気抵抗が増加してトルク特性が低下する。
(5)断面視において略C字状のマグネットの外側曲率中心と内側曲率中心を偏心させると、対向する電機子とのマグネットの空隙が変化してマグネットのN極とS極の切り変わりが滑らかになりコギングトルクは低下するが、ロータとの空隙が大きくなる箇所があるためトルク特性が低下する。なお、一般的にマグネットの表面磁束密度は中央部が最も高い。
By the way, since the shape of the laminated core of the magnet and the armature has a great influence on the performance of the DC motor, it is necessary to appropriately set the shape of the magnet and the laminated core and optimize the state of the magnetic flux density flowing through them. . However, the following problems need to be considered in the setting.
(1) When the number of slots in the laminated core is increased, the cogging torque is reduced, but the winding transition length is increased, the winding resistance is increased, and the torque characteristics are lowered.
(2) When the tooth width of the laminated core is narrowed, the number of windings can be increased, so the electromagnetic force increases. However, the magnetic flux density of the core may increase and magnetic saturation may occur, resulting in a decrease in torque characteristics. To do.
(3) When the slot width of the laminated core is increased, winding becomes easier, but the difference in magnetic resistance increases and the cogging torque also increases.
(4) Increasing the radius of curvature (the so-called R dimension) of the tip of the teeth forming the slot of the laminated core can facilitate the die structure of a press for punching a steel sheet and reduce the manufacturing cost. The gap between the laminated core and the magnet at the slot position increases, the magnetic resistance increases, and the torque characteristics deteriorate.
(5) When the outer curvature center and the inner curvature center of the substantially C-shaped magnet are decentered in a cross-sectional view, the gap between the opposing armature and the magnet changes, and the switching between the N pole and the S pole of the magnet is smooth. Thus, the cogging torque is reduced, but the torque characteristic is lowered because there is a portion where the gap with the rotor is increased. In general, the surface magnetic flux density of the magnet is highest at the center.

上記問題の観点に基づくと、特許文献1の発明は、巻線を各スロットに同じ回数重ね巻を行った場合には、スロットの巻線スペースが異なるために巻線スペースが余るスロットが存在する。このため、等しい巻線スペースを有する従来の積層コア形状と比較すると全導体数が減少して磁気抵抗が増加する傾向となり、トルク特性が低下する問題があった。   Based on the above-mentioned problem, the invention of Patent Document 1 has a slot having a lot of winding space because the winding space of the slot is different when the winding is wound the same number of times in each slot. . For this reason, as compared with the conventional laminated core shape having the same winding space, the total number of conductors tends to decrease and the magnetic resistance tends to increase, and there is a problem that the torque characteristics deteriorate.

また、特許文献2の考案は、積層コアを製造する際に通常行われている磁気抵抗の変化を減少させる回転積層(各鋼板の板厚偏差及び鉄損の差を均等とするために、鋼板を順次回転させながら積層する製造方法)において問題がある。つまり、ティースの先端部の幅を不等ピッチとしている事で、鋼板を回転積層する際にはその回転ピッチが2倍となるため、上記の回転積層の効果を十分に得られずに磁気抵抗の変化は大きくなる傾向となり、コギングトルクが増大する問題があった。
加えて、スロット数(ティース数)を偶数個としているため、マグネットに対し磁束が通る積層コアのティースが対称となり、奇数スロットの場合と比較すると磁気抵抗の変化が大きくなり、上記の回転積層による問題と相俟ってコギングトルクが増大する問題があった。
Further, the idea of Patent Document 2 is a rotating lamination that reduces a change in magnetic resistance that is normally performed when a laminated core is manufactured (in order to make the difference in thickness difference and iron loss of each steel sheet equal, There is a problem in the manufacturing method in which the layers are stacked while sequentially rotating. In other words, because the width of the tip of the teeth is set to an unequal pitch, the rotational pitch is doubled when the steel plates are rotationally laminated. There has been a problem that the change in the value tends to increase and the cogging torque increases.
In addition, since the number of slots (the number of teeth) is an even number, the teeth of the laminated core through which the magnetic flux passes are symmetric with respect to the magnet, and the change in the magnetic resistance is larger than in the case of the odd number of slots. Coupled with the problem, there was a problem that the cogging torque increased.

そこで、本願発明は上記問題に鑑み為されたものであり、積層コア及びマグネットの形状により影響を受ける磁気バランスを最適化して、コギングトルクの低下及びトルク特性の向上を両立させた直流モータを提供する。   Accordingly, the present invention has been made in view of the above problems, and provides a DC motor that optimizes the magnetic balance that is affected by the shape of the laminated core and the magnet, and achieves both a reduction in cogging torque and an improvement in torque characteristics. To do.

上記課題を解決するために、本願発明の直流モータは、以下のように構成している。なお、電機子のコアは電磁鋼板を積層して形成した積層コアとしている。
まず、直流モータのヨークを成す筒状モータケースの内側周面に倣い配置されたマグネットの内側曲率中心を、その外側曲率中心より放射方向へ所定量偏心させると共に、電機子のスロットを形成した積層コアのティース先端部の内側曲率中心を、その外側曲率中心より当該反先端部方向へ所定量偏心させて構成し、さらに直流モータの下記(1)から(8)の各部位を、式1、式2、式3を満たす値に設定して構成することを特徴としている。
(1) 積層コアのスロット数P1
(2) 積層コアの外径P2
(3) 積層コアのスロット幅P3
(4) 積層コアのティース先端部の内側曲面端部の曲率半径P4
(5) 積層コアのティース幅P5
(6) 積層コアのティース先端部の中央部厚さP6
(7) 積層コアのティース先端部の外側曲率中心と内側曲率中心の偏心量P7
(8) マグネットの外側曲率中心と内側曲率中心の偏心量P8
式1:(P8/P7)×P6×P1=1.6〜2.2
式2:(P5/(π×P2))×P1≧0.24
式3:P3/P4≦1.6
In order to solve the above problems, the direct current motor of the present invention is configured as follows. The core of the armature is a laminated core formed by laminating electromagnetic steel sheets.
First, the inner curvature center of the magnet arranged following the inner peripheral surface of the cylindrical motor case forming the yoke of the DC motor is decentered by a predetermined amount in the radial direction from the outer curvature center, and the lamination in which the armature slot is formed The center of curvature of the tip of the core teeth is decentered by a predetermined amount from the outer center of curvature toward the anti-tip, and each part of the following (1) to (8) of the DC motor is expressed by Formula 1, It is characterized in that it is set to a value satisfying Equation 2 and Equation 3.
(1) Number of slots P1 in the laminated core
(2) Outer diameter P2 of laminated core
(3) Slot width P3 of the laminated core
(4) Curvature radius P4 of the inner curved end of the teeth tip of the laminated core
(5) Laminated core teeth width P5
(6) Thickness P6 at the center of the tooth tip of the laminated core
(7) Eccentricity P7 between the center of outer curvature and the center of inner curvature of the teeth tip of the laminated core
(8) Eccentricity P8 between the outer curvature center and the inner curvature center of the magnet
Formula 1: (P8 / P7) × P6 × P1 = 1.6 to 2.2
Formula 2: (P5 / (π × P2)) × P1 ≧ 0.24
Formula 3: P3 / P4 ≦ 1.6

本願発明の直流モータは、以上の構成を採っているため、従来形状のマグネット及び積層コアから構成される同一サイズのモータと比較すると、コギングトルクは3割〜4割低下し、トルク特性は1割〜2割向上する。   Since the direct current motor of the present invention has the above configuration, the cogging torque is reduced by 30% to 40% and the torque characteristic is 1 as compared with a motor of the same size composed of a conventional magnet and a laminated core. Increase by 20% to 20%.

上記効果は、コギングトルクの低下とトルク特性の向上が両立した直流モータを提供することを可能とし、その産業界に対する貢献は顕著なものである。   The above effect makes it possible to provide a direct current motor in which cogging torque is reduced and torque characteristics are improved, and its contribution to the industry is remarkable.

以下に、本願発明にかかる直流モータ(以下、「モータ」と略称する。)の最良の実施形態例について、図面に基づき詳細に説明する。   DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a DC motor according to the present invention (hereinafter abbreviated as “motor”) will be described in detail with reference to the drawings.

図1は本実施例のモータの構造を示す一部切欠き斜視図であり、図2は本実施例のモータの断面図であり、図3は本実施例の電機子における巻線状態及び磁束の流れを示す説明図であり、図4は本実施例のマグネットの平面図であり、図5は本実施例の積層コアの平面図(A)及び一部拡大図(B)である。   FIG. 1 is a partially cutaway perspective view showing the structure of the motor of this embodiment, FIG. 2 is a sectional view of the motor of this embodiment, and FIG. 3 is a winding state and magnetic flux in the armature of this embodiment. FIG. 4 is a plan view of the magnet of this example, and FIG. 5 is a plan view (A) and a partially enlarged view (B) of the laminated core of this example.

本実施例のモータ1は、図1に示すように、モータケース11(環状ヨーク)の内部の一端部側にブラシ12を配置すると共に、その内周面に異方性を有する2個のマグネット2を配置し、このマグネット2と所定の空隙を持って回転自在に電機子3を配置する構成である。なお、これらの構成は従来のモータの構成と同様である。   As shown in FIG. 1, the motor 1 of this embodiment has a brush 12 disposed on one end side inside a motor case 11 (annular yoke) and two magnets having anisotropy on the inner peripheral surface thereof. 2 is arranged, and the armature 3 is rotatably arranged with a predetermined gap with the magnet 2. These configurations are the same as those of a conventional motor.

マグネット2は、図2、図3に示すように、断面視において略C字状であって、内側曲率中心を外側曲率中心から放射方向へ所定量偏心させて、中央部側が両端部側より肉厚となる形状に形成されている。別言すると、マグネット2は、その外側曲面21の曲率中心はモータケース11の内周面に倣うためにモータ1の中心と一致するが、内側曲面22の曲率中心はモータ1の中心から反マグネット側の放射方向へ所定量において偏心していることとなる。   As shown in FIGS. 2 and 3, the magnet 2 is substantially C-shaped in cross-sectional view, and the center of curvature is decentered by a predetermined amount in the radial direction from the center of curvature of the outer side. It is formed in a thick shape. In other words, the center of curvature of the outer curved surface 21 of the magnet 2 coincides with the center of the motor 1 to follow the inner peripheral surface of the motor case 11, but the center of curvature of the inner curved surface 22 extends from the center of the motor 1 to the anti-magnet. It will be eccentric by a predetermined amount in the radial direction.

上記したマグネット2の形状により、内側曲面22の両端部において表面磁束密度は偏心がない場合と比べて低下する。さらに、回転する電機子3の外縁部とマグネット2との空隙は変化し、内側曲面22の中央部付近が最も電機子3に接近することとなる。この結果、電機子3が回転する際のN極とS極の切り変わりが滑らかになり、コギングトルクが低下する。   Due to the shape of the magnet 2 described above, the surface magnetic flux density at both ends of the inner curved surface 22 is lower than when there is no eccentricity. Further, the gap between the outer edge portion of the rotating armature 3 and the magnet 2 changes, and the vicinity of the central portion of the inner curved surface 22 is closest to the armature 3. As a result, the switching between the N pole and the S pole when the armature 3 rotates becomes smooth, and the cogging torque decreases.

ところで、マグネットの着磁には、マグネットをモータケースに固定した状態で内側に着磁コイルを巻付けた鉄心を挿入して強磁場を発生させて磁化させる方法と、電機子及びブラシ周辺部品をモータケースに組み込み固定した状態で空芯コイルの中心に配置し、強磁場を発生させて磁化させる方法がある。本実施例のマグネット2は、磁場成形時において適宜に選択した前記着磁方法により、その内側曲面22の中央部の表面磁束密度を、従来のものより3%〜10%程度において低下させている。   By the way, for magnetizing the magnet, a method of inserting an iron core with a magnetized coil wound inside to generate a strong magnetic field with the magnet fixed to the motor case, and magnetizing the armature and brush peripheral parts There is a method in which a strong magnetic field is generated and magnetized by placing it in the center of the air-core coil in a state of being assembled and fixed in the motor case. In the magnet 2 of this embodiment, the surface magnetic flux density at the center portion of the inner curved surface 22 is reduced by about 3% to 10% from the conventional one by the magnetizing method appropriately selected at the time of magnetic field shaping. .

電機子3は、積層コア31の略中心部に整流子32aを配置したシャフト32を固定し、積層コア31に形成した7箇所のスロット31d、31d、・・の巻線部位を絶縁した後に各スロット31dに銅材の巻線33を巻回すると共に、巻線端部を整流子32aに接続する構成である。なお、整流子32aはモータケース11に配置したブラシ12と接して、巻線33に流れる電流の極性の切り替えを行っている。   The armature 3 fixes the shaft 32 having the commutator 32a disposed substantially at the center of the laminated core 31 and insulates the winding portions of the seven slots 31d, 31d,. The copper wire 33 is wound around the slot 31d, and the winding end is connected to the commutator 32a. The commutator 32 a is in contact with the brush 12 disposed in the motor case 11 and switches the polarity of the current flowing through the winding 33.

上記の積層コア31は、所定形状にプレス加工で打ち抜いた電磁鋼板の複数枚を積層して形成するものであるが、板厚偏差及び鉄損の差を均等にして磁気抵抗の変化を減少させるため、各鋼板を所定ピッチで回転させながら積層して形成している。なお、電磁鋼板の積層時の回転ピッチは後述するティース31aの配置ピッチと同じである。   The laminated core 31 is formed by laminating a plurality of electromagnetic steel sheets punched into a predetermined shape by press working, and reduces the change in magnetic resistance by equalizing the difference in sheet thickness deviation and iron loss. Therefore, each steel plate is formed by being laminated while rotating at a predetermined pitch. In addition, the rotation pitch at the time of lamination | stacking of an electromagnetic steel plate is the same as the arrangement | positioning pitch of the teeth 31a mentioned later.

また、積層コア31の断面形状は、図2、図3に示すように、帯状の基部31bの先端に断面視略C字状の先端部31cを周方向両側に延出させて断面視略T字状のティース31aを形成すると共に、このティース31aの複数個を中心部から放射状に配置し、かつ先端部31cの外周面を電機子3の外径と一致させた形状である。また、先端部31cの外周面の曲率中心は積層コア31の中心と一致するが、内周面の各曲率中心は積層コア31の中心から反先端部側の放射方向へ所定量において偏心させている。   As shown in FIGS. 2 and 3, the cross-sectional shape of the laminated core 31 is substantially the same as that of the belt-like base 31b. In addition to forming a letter-shaped tooth 31 a, a plurality of teeth 31 a are arranged radially from the center, and the outer peripheral surface of the tip 31 c is made to coincide with the outer diameter of the armature 3. The center of curvature of the outer peripheral surface of the tip 31c coincides with the center of the laminated core 31, but each center of curvature of the inner peripheral surface is decentered by a predetermined amount from the center of the laminated core 31 in the radial direction on the side opposite to the tip. Yes.

積層コア31への巻線方式は、図3に示すように、従来と同様、スロット31dの配置が180度に近い(シャフトの軸心対称に近い)スロット間で巻線するフライヤ方式を採用している。   As shown in FIG. 3, the winding method to the laminated core 31 employs a flyer method in which slots 31d are arranged between slots close to 180 degrees (similar to the shaft axis symmetry) as in the conventional case. ing.

なお、上記構成によるモータの磁束の流れは、図3の矢印aに示すように、図中左側をN極、右側をS極とすると、N極マグネット2、空隙、積層コア31、空隙、S極マグネット2、モータケース1、N極マグネット2の順となる。   Note that the flow of magnetic flux of the motor configured as described above is as shown by the arrow a in FIG. 3, where the N pole is on the left side and the S pole is on the right side, the N pole magnet 2, the gap, the laminated core 31, the gap, S The order is the pole magnet 2, the motor case 1, and the N pole magnet 2.

本実施例のモータ1は、上述した構成であるが、磁気バランスを最適化するためにマグネット2の形状および積層コア31の各部位の形状を、以下のように設定している。   The motor 1 of the present embodiment has the above-described configuration, but the shape of the magnet 2 and the shape of each part of the laminated core 31 are set as follows in order to optimize the magnetic balance.

すなわち、図4及び図5に示すように、マグネット2及び積層コア31の各部位を、以下の(1)〜(8)に示すパラメータP1〜P8とすると共に、これらのパラメータを代入した式1〜式3を満たす範囲内となるように設定している。このパラメータ及び各式は、モータ内のマグネット2及び積層コア31を流れる磁束密度を最適化するために選定されたものである。なお、ティース先端部31cの外側曲面端部の曲率半径rは、0.15mm以下に設定しており、磁束を集中し易くしている。   That is, as shown in FIGS. 4 and 5, each part of the magnet 2 and the laminated core 31 is set to parameters P1 to P8 shown in the following (1) to (8), and Equation 1 is substituted for these parameters. To be within a range satisfying Formula 3. These parameters and equations are selected to optimize the magnetic flux density flowing through the magnet 2 and the laminated core 31 in the motor. Note that the radius of curvature r of the outer curved end of the tooth tip 31c is set to 0.15 mm or less, so that the magnetic flux is easily concentrated.

(1) 積層コアのスロット数P1
(2) 積層コアの外径P2(mm)
(3) 積層コアのスロット幅P3(mm)
(4) 積層コアのティース先端部の内側曲面端部の曲率半径P4(mm)
(5) 積層コアのティース基部の幅P5(mm)
(6) 積層コアのティース先端部の中央部厚さP6(mm)
(7) 積層コアのティース先端部の外側曲率中心と内側曲率中心の偏心量P7(mm)
(8) マグネットの外側曲率中心と内側曲率中心の偏心量P8(mm)
式1:(P8/P7)×P6×P1=1.6〜2.2
式2:(P5/(π×P2))×P1≧0.24
式3:P3/P4≦1.6
(1) Number of slots P1 in the laminated core
(2) Outer diameter P2 (mm) of laminated core
(3) Slot width P3 (mm) of laminated core
(4) Curvature radius P4 (mm) of the inner curved end of the teeth tip of the laminated core
(5) Teeth base width P5 (mm) of laminated core
(6) Thickness P6 (mm) at the center of the teeth tip of the laminated core
(7) Eccentricity P7 (mm) between the center of outer curvature and the center of inner curvature of the teeth tip of the laminated core
(8) Eccentricity P8 (mm) between the outer and inner curvature centers of the magnet
Formula 1: (P8 / P7) × P6 × P1 = 1.6 to 2.2
Formula 2: (P5 / (π × P2)) × P1 ≧ 0.24
Formula 3: P3 / P4 ≦ 1.6

本実施例のモータ1の各部位は、例えば、モータサイズが外径30mm、長さ47mmである場合には、マグネット2の内側曲面22の中央部での表面磁束密度の低下率は8.5%、式1の値は1.960、式2の値は0.244、式3の値は1.538となるように設定している。   In each part of the motor 1 of this embodiment, for example, when the motor size is 30 mm in outer diameter and 47 mm in length, the rate of decrease in surface magnetic flux density at the center of the inner curved surface 22 of the magnet 2 is 8.5. %, The value of Equation 1 is set to 1.960, the value of Equation 2 is set to 0.244, and the value of Equation 3 is set to 1.538.

上記の設定において、同一サイズ、ティース先端部の外側曲面端部の曲率半径rは0.3mm以上、表面磁束密度の低下率は0%、式1の値は1.375、式2の値は0.218、式3の値は4.667に設定した従来のモータと比較すると、コギングトルクは34.6%程度低下し、トルク特性は11.4%程度向上する実験結果を得た。   In the above setting, the radius of curvature r of the outer curved end portion of the tip end portion of the same size is 0.3 mm or more, the decrease rate of the surface magnetic flux density is 0%, the value of Equation 1 is 1.375, and the value of Equation 2 is Compared with the conventional motor in which the value of 0.218 and Equation 3 is set to 4.667, the cogging torque is reduced by about 34.6%, and the torque characteristics are improved by about 11.4%.

本実施例のモータの構造を示す一部切欠き斜視図である。It is a partially cutaway perspective view showing the structure of the motor of the present embodiment. 本実施例のモータの断面図である。It is sectional drawing of the motor of a present Example. 本実施例の電機子における巻線状態及び磁束の流れを示す説明図である。It is explanatory drawing which shows the winding state in the armature of a present Example, and the flow of magnetic flux. 本実施例のマグネットの平面図である。It is a top view of the magnet of a present Example. 本実施例の積層コアの平面図(A)及び一部拡大図(B)である。It is the top view (A) and partial enlarged view (B) of the lamination | stacking core of a present Example.

符号の説明Explanation of symbols

1 モータ
11 モータケース
12 ブラシ
2 マグネット
21 外側曲面
22 内側曲面
3 電機子
31 積層コア
31a ティース
31b 基部(ティースの)
31c 先端部(ティースの)
31d スロット
32 シャフト
32a 整流子
33 巻線
P1 積層コアのスロット数
P2 積層コアの外径
P3 積層コアのスロット幅
P4 積層コアのティース先端部の内側曲面端部の曲率半径
P5 積層コアのティース基部の幅
P6 積層コアのティース先端部の中央部厚さ
P7 積層コアのティース先端部の外側曲率中心と内側曲率中心の偏心量
P8 マグネットの外側曲率中心と内側曲率中心の偏心量
r 積層コアのティース先端部の外側曲面端部の曲率半径

DESCRIPTION OF SYMBOLS 1 Motor 11 Motor case 12 Brush 2 Magnet 21 Outer curved surface 22 Inner curved surface 3 Armature 31 Laminated core 31a Teeth 31b Base (of teeth)
31c Tip (of teeth)
31d Slot 32 Shaft 32a Commutator 33 Winding P1 Number of slots of laminated core P2 Outer diameter P3 of laminated core Slot width P4 of laminated core P4 Curvature radius of inner curved end of tooth tip of laminated core P5 of teeth base of laminated core Width P6 Thickness P7 of the center of the core of the laminated core P7 Eccentricity of the outer and inner curvature centers of the teeth of the laminated core P8 Eccentricity of the outer and inner curvature centers of the magnet r Radius of curvature of the outer curved end of the section

Claims (1)

環状ヨークの内側周面に倣い配置されたマグネットの内側曲率中心を、その外側曲率中心より放射方向へ所定量偏心させると共に、
電機子のスロットを形成したコアのティース先端部の内側曲率中心を、その外側曲率中心より当該反先端部方向へ所定量偏心させて直流モータを構成し、
該直流モータの下記に示す(1)から(8)の各部位を、式1、式2、式3を満たす値に設定したことを特徴とする直流モータ。
(1) コアのスロット数P1
(2) コアの外径P2
(3) コアのスロット幅P3
(4) コアのティース先端部の内側曲面端部の曲率半径P4
(5) コアのティース幅P5
(6) コアのティース先端部の中央部厚さP6
(7) コアのティース先端部の外側曲率中心と内側曲率中心の偏心量P7
(8) マグネットの外側曲率中心と内側曲率中心の偏心量P8
式1:(P8/P7)×P6×P1=1.6〜2.2
式2:(P5/(π×P2))×P1≧0.24
式3:P3/P4≦1.6

While decentering the inner curvature center of the magnet arranged following the inner peripheral surface of the annular yoke by a predetermined amount in the radial direction from the outer curvature center,
A DC motor is constructed by decentering the inner curvature center of the tooth tip of the core forming the armature slot by a predetermined amount from the outer curvature center toward the opposite tip,
A direct-current motor characterized in that each of the following parts (1) to (8) of the direct-current motor is set to a value satisfying expressions 1, 2 and 3.
(1) Number of core slots P1
(2) Core outer diameter P2
(3) Core slot width P3
(4) Curvature radius P4 of the inner curved end of the core tooth tip
(5) Core teeth width P5
(6) Thickness P6 at the center of the tooth tip of the core
(7) Eccentricity P7 between the outer curvature center and the inner curvature center of the core tooth tip
(8) Eccentricity P8 between the outer curvature center and the inner curvature center of the magnet
Formula 1: (P8 / P7) × P6 × P1 = 1.6 to 2.2
Formula 2: (P5 / (π × P2)) × P1 ≧ 0.24
Formula 3: P3 / P4 ≦ 1.6

JP2005099345A 2005-03-30 2005-03-30 Dc motor Pending JP2006280172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005099345A JP2006280172A (en) 2005-03-30 2005-03-30 Dc motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005099345A JP2006280172A (en) 2005-03-30 2005-03-30 Dc motor

Publications (1)

Publication Number Publication Date
JP2006280172A true JP2006280172A (en) 2006-10-12

Family

ID=37214297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005099345A Pending JP2006280172A (en) 2005-03-30 2005-03-30 Dc motor

Country Status (1)

Country Link
JP (1) JP2006280172A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106787287A (en) * 2016-11-24 2017-05-31 珠海格力节能环保制冷技术研究中心有限公司 Motor cogging torque optimization method, electric machine structure and motor
CN107516952A (en) * 2016-06-17 2017-12-26 德昌电机(深圳)有限公司 Permanent magnet DC motor
KR20190086687A (en) * 2016-11-30 2019-07-23 로베르트 보쉬 게엠베하 Rotor, an electric machine including the rotor, and a method of manufacturing a rotor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63228951A (en) * 1986-01-23 1988-09-22 Hitachi Metals Ltd Segment magnet
JPH09224337A (en) * 1996-02-15 1997-08-26 Seiko Epson Corp Permanent magnet for compact motor and compact motor
JPH11146689A (en) * 1997-11-11 1999-05-28 Sanyo Electric Co Ltd Motor analyzer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63228951A (en) * 1986-01-23 1988-09-22 Hitachi Metals Ltd Segment magnet
JPH09224337A (en) * 1996-02-15 1997-08-26 Seiko Epson Corp Permanent magnet for compact motor and compact motor
JPH11146689A (en) * 1997-11-11 1999-05-28 Sanyo Electric Co Ltd Motor analyzer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107516952A (en) * 2016-06-17 2017-12-26 德昌电机(深圳)有限公司 Permanent magnet DC motor
CN107516952B (en) * 2016-06-17 2020-07-28 德昌电机(深圳)有限公司 Permanent-magnet DC motor
CN106787287A (en) * 2016-11-24 2017-05-31 珠海格力节能环保制冷技术研究中心有限公司 Motor cogging torque optimization method, electric machine structure and motor
CN106787287B (en) * 2016-11-24 2023-06-30 珠海格力节能环保制冷技术研究中心有限公司 Motor cogging torque optimization method, motor structure and motor
KR20190086687A (en) * 2016-11-30 2019-07-23 로베르트 보쉬 게엠베하 Rotor, an electric machine including the rotor, and a method of manufacturing a rotor
KR102577383B1 (en) * 2016-11-30 2023-09-15 로베르트 보쉬 게엠베하 Rotor, electric machine including the rotor, and method of manufacturing the rotor

Similar Documents

Publication Publication Date Title
JP5663936B2 (en) Permanent magnet rotating electric machine
JP4736472B2 (en) Electric motor
US20050229384A1 (en) Motor and motor manufacturing apparatus
US20070057589A1 (en) Interior permanent magnet rotor and interior permanent magnet motor
EP1885042A2 (en) Small-sized motor having ring-shaped field magnet
JPWO2004064225A1 (en) Permanent magnet type motor
JP5365074B2 (en) Axial gap type rotating electrical machine
JP2008193778A (en) Stator and enclosed compressor and rotating machine
CN104716803A (en) Permanent magnet synchronous machine
JP2004080944A (en) Stator core for motor
JP4644875B2 (en) End plates used for motors and rotors of motors
JP5381139B2 (en) Electric motor
CN115378156A (en) Electric motor
JP2001025183A (en) Stator of motor
US6870291B2 (en) Stepping motor
JP4032280B2 (en) AC motor stator manufacturing method
JP2006280172A (en) Dc motor
JP4080273B2 (en) Permanent magnet embedded motor
JP2005051929A (en) Motor
JP2009027849A (en) Permanent magnet type rotary electric machine
JP5433828B2 (en) Rotating machine
JP2010068548A (en) Motor
JP7259798B2 (en) axial gap motor
JP2001008388A5 (en) Smooth armature winding type AC servo motor core structure and smooth armature winding type AC servo motor using this core structure
JP5183313B2 (en) Permanent magnet rotating electric machine and elevator apparatus using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080310

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100831

A131 Notification of reasons for refusal

Effective date: 20100907

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110201