JP4818574B2 - Method for producing grain-oriented electrical steel sheet with excellent insulation film adhesion and extremely low iron loss - Google Patents

Method for producing grain-oriented electrical steel sheet with excellent insulation film adhesion and extremely low iron loss Download PDF

Info

Publication number
JP4818574B2
JP4818574B2 JP2003134606A JP2003134606A JP4818574B2 JP 4818574 B2 JP4818574 B2 JP 4818574B2 JP 2003134606 A JP2003134606 A JP 2003134606A JP 2003134606 A JP2003134606 A JP 2003134606A JP 4818574 B2 JP4818574 B2 JP 4818574B2
Authority
JP
Japan
Prior art keywords
steel sheet
film
coating
electrical steel
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003134606A
Other languages
Japanese (ja)
Other versions
JP2004342679A (en
Inventor
修一 山崎
浩康 藤井
祐治 久保
健 濱田
真吾 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003134606A priority Critical patent/JP4818574B2/en
Publication of JP2004342679A publication Critical patent/JP2004342679A/en
Application granted granted Critical
Publication of JP4818574B2 publication Critical patent/JP4818574B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Soft Magnetic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、表面に仕上げ焼鈍皮膜を有しない方向性電磁鋼板、さらには鏡面ないしそれに近い状態に調整した仕上げ焼鈍後の方向性電磁鋼板の表面に、高張力の絶縁皮膜を密着性良好に形成する方法、また、この方法によって極めて鉄損の低い方向性電磁鋼板を提供する。
【0002】
【従来の技術】
方向性電磁鋼板は、磁気鉄芯材料として多用されており、特にエネルギーロスを少なくするために鉄損の少ない材料が求められている。鉄損の低減には鋼板に張力を付与する事が有効である事が知られている。鋼板に張力を付与するためには、鋼板より熱膨張係数の小さい材質からなる皮膜を高温で形成することが有効である。仕上げ焼鈍工程で鋼板表面の酸化物と焼鈍分離剤とが反応して生成するフォルステライトを主体とする皮膜(以下仕上げ焼鈍皮膜)は、鋼板に与える張力が大きく、かつ皮膜密着性も極めて良好である。
【0003】
さらに、特許文献1で開示されたコロイド状シリカと燐酸塩、クロム酸を主体とするコーティング液を焼き付ける事によって絶縁皮膜を形成する方法は、鋼板に対して張力付与の効果が大きく、鉄損低減に有効である。また、特許文献2、特許文献3等において開示されたように、アルミナゾルとほう酸を混合した塗布液を塗布、焼き付けることによって得られるほう酸アルミニウム被膜(Alxy1.5(x-y))は、コロイド状シリカと燐酸塩、クロム酸から得られる絶縁皮膜の1.5〜2倍程度の皮膜張力を与え、鉄損低減効果が極めて大きい。したがって、仕上げ焼鈍工程で生じた皮膜を残し、その上でこれら張力付与型の絶縁皮膜を施すことが一般的な方向性電磁鋼板の製造方法となっている。
【0004】
また、方向性電磁鋼板の鉄損を低減させる方策として、圧延方向とおおむね垂直に線状ないし点列状に溝を形成する方法が提案されている。具体的な溝形成手段としては、溝付きロール等機械的手段による方法(特許文献4)、およびエッチング等の化学的手段による方法(特許文献5)がある。
【0005】
一方、最近、仕上げ焼鈍皮膜と地鉄の乱れた界面構造が、鉄損に対する皮膜張力効果や溝形成効果をある程度相殺していることが明らかになってきた。そこで、例えば特許文献6に開示されている如く、仕上げ焼鈍皮膜を除去したり、あるいは特許文献7に開示されているような方法により仕上げ焼鈍中に鏡面化した方向性電磁鋼板を得た後、張力皮膜を改めて施すことにより、更なる鉄損低減を試みる技術が開発された。
【0006】
しかしながら、張力付与型の絶縁皮膜は仕上げ焼鈍皮膜の上に施した場合にはかなりの密着性が得られるものの、仕上げ焼鈍皮膜を除去したり、あるいは仕上げ焼鈍工程で意図的に皮膜形成を行わなかった場合には、十分な密着性が得られない。仕上げ焼鈍皮膜の除去を行った場合は絶縁皮膜のみで所要の皮膜張力を確保する必要があり、必然的に厚膜化しなければならず、より一層の皮膜密着性が必要である。したがって、従来の絶縁皮膜形成法では鏡面化の効果を十分に引き出すほどの皮膜張力を達成する事は困難である。このような課題に対し、発明者らは特許文献8において、絶縁皮膜形成に先立って鋼板を弱酸化性雰囲気中で焼鈍することにより外部酸化型のSiO2膜を形成させる方法を開示した。この方法によれば仕上げ焼鈍皮膜が存在しない方向性電磁鋼板に張力付与型絶縁皮膜が極めて密着性良好に形成できる。しかしながら、安定した皮膜密着性を得るためには比較的高い焼鈍温度と一定の保持時間が必要であり、製造コストが増大せざるを得ない。
【0007】
一方、特許文献9には、ゾルゲル法により0.1〜0.5μmのゲル皮膜を形成することにより、仕上げ焼鈍皮膜の無い方向性電磁鋼板の絶縁皮膜に対する密着性を付与する方法が開示されている。しかしながら、同公報に開示されている具体的内容はゾルゲル法による薄膜形成に関する常識的な記載内容にとどまっており、確実に密着性が保証できる条件が記載されているものではない。
【0008】
また、特許文献10には、りん酸塩もしくはアルカリ金属珪酸塩水溶液を4g/m2以下塗布し、350℃以上で焼きつけた後、コロイダルシリカとりん酸塩を主体とする絶縁皮膜を焼きつける方法が記載されている。しかしながら、この方法も得られる密着力は安定的なものではなく、何らかの付加的条件が必要であることを示唆する。
【0009】
さらに、特許文献11には、アルコキシシラン等の金属結合基を有する有機金属化合物を含有する塗布液を塗布した後、酸化性雰囲気中で焼きつけて地鉄との界面にFe2SiO4を生成させた皮膜を形成することにより、張力付与型の絶縁皮膜を形成させる方法が開示されている。しかしながら、後述するように、界面にFe2SiO4が生ずる場合には必ず鋼板内部に内部酸化層が生じ、内部酸化層の形成は密着性と鉄損を損ねる結果をもたらす。
【0010】
以上のように、焼鈍によりSiO2膜を形成する方法に比較して工業化が容易である塗布型の中間層形成技術については、確実な密着性と鉄損特性を両立できる方法は見出されていない。
【0011】
【特許文献1】
特開昭48−39338号公報
【特許文献2】
特開平6−65754号公報
【特許文献3】
特開平6−65755号公報
【特許文献4】
特開昭61−117218号公報
【特許文献5】
特開昭62−179105号公報
【特許文献6】
特開昭49−96920号公報
【特許文献7】
特開平8−3648号公報
【特許文献8】
特開平6−184762号公報
【特許文献9】
特開平3−130376号公報
【特許文献10】
特開平5−279747号公報
【特許文献11】
特開2002−235118号公報
【0012】
【発明が解決しようとする課題】
本発明は、フォルステライト皮膜の無い方向性電磁鋼板において、得られる鉄損値を損ねることなく、張力付与型絶縁皮膜の密着性付与を低コストで確実に実現する絶縁皮膜密着性に優れ、かつ鉄損の極めて低い方向性電磁鋼板とその製造方法を提供する。
【0013】
【課題を解決するための手段】
本発明者らは、塗布型中間層法、すなわち、「仕上げ焼鈍皮膜の無い方向性電磁鋼板に塗布後乾燥もしくは焼付によって中間層を形成し、しかる後に張力付与型の絶縁皮膜を塗布焼き付けする」という、低コストな皮膜密着性付与方法の可能性を調査した。このためには、塗布型中間層の密着性付与条件を見出す必要があり、そこで、仕上げ焼鈍皮膜の無い方向性電磁鋼板に対し、各種前処理を行ったり、その後に各種水溶性珪酸塩やシリカコロイドを用いて塗布乾燥ないし焼きつけにより中間層を形成した後、張力付与型の絶縁皮膜を焼きつけるという実験を系統的に行い、以下に記述するような重要な結論を得た。すなわち、塗布型中間層の良好な密着性は特有な皮膜構造のもとに実現され、その特有の皮膜構造を得るためには、塗布型中間層の形成にあたって付加的条件が必要であるということである。
【0014】
図1は、上記結論を導くにきっかけとなったものである。図1は、仕上げ焼鈍皮膜の無い方向性電磁鋼板に塗布型中間層としてSiO2を主体とするコーティング層を形成し、張力付与型の絶縁皮膜が密着性良好に焼き付けることができた場合の地鉄−張力付与型絶縁皮膜界面付近の透過型電子顕微鏡による断面写真である。
【0015】
この鋼板は以下の手順により作成された。まず、特許文献7により本発明者らが開示した方法により仕上げ焼鈍皮膜の無い方向性電磁鋼板を得た。この方法では最終的に極めて純粋な水素中で焼鈍されるため、得られる方向性電磁鋼板の表面には目視によっては確認できないほどの1nm程度の自然に形成された酸化膜しか存在しない。図1(a)はこの方向性電磁鋼板を水洗乾燥させて表面に薄い錆層(水酸化鉄層)を形成し、その後テトラエトキシシラン(TEOS)をアルコール溶媒中で加水分解し酸により適度に重合させたシリカゾルを塗布して板温200℃で乾燥し、最後に燐酸塩とコロイダルシリカを主体とする張力付与型の絶縁皮膜を塗布して850℃で焼き付けたものである。図1(b)は、仕上げ焼鈍直後の仕上げ焼鈍皮膜の無い方向性電磁鋼板に、珪酸リチウム水溶液を塗布し板温200℃で乾燥した後、ほう酸とアルミナゾルを主体とする塗布液を850℃で焼き付けたものである。
【0016】
図1(a)、(b)いずれにおいても、地鉄、SiO2を主体とするコーティング層、張力付与型の絶縁皮膜に加えて、地鉄−SiO2層の間に新たな膜が認められる。また、この新しい膜はSiO2を主体とし、また金属鉄粒子が認められる。
【0017】
以上の観察結果から、本発明者らは以下の仮説を得た。張力付与型絶縁皮膜を焼き付ける前に地鉄と塗布型中間層の界面に酸化鉄もしくは水酸化鉄が形成された。絶縁皮膜焼付時に、この酸化鉄もしくは水酸化鉄を酸素源とし、地鉄中Siが界面に拡散し、SiO2コーティング層と地鉄との間にSiO2を主体とする薄い酸化膜が形成され、この薄い酸化膜の形成により、SiO2コーティング層が地鉄と強固に結びついたものと考えられる。金属状Feの存在はSiO2コーティング層と地鉄との間に界面酸化反応が起こった証拠である。
【0018】
この仮説から導いた、塗布型中間層法における密着性付与条件は以下のようになる。塗布型中間層は何らかの酸素源と地鉄中Siによって界面に形成されるSiO2膜によって固着されねばならない。したがって、仕上げ焼鈍皮膜の無い方向性電磁鋼板に張力付与型の絶縁皮膜が密着性良好に形成されためには、以下の皮膜構造となっていなければならない。すなわち、地鉄側から順に、焼付時に界面酸化反応によって地鉄の上に生成したSiO2を主体とした酸化膜、塗布焼き付けによって形成させたSiO2を主体とするコーティング層、張力付与型絶縁皮膜である。この仮説が正しいことは、後に述べる実施例により帰納的に証明された。本発明の要旨は次のとおりである。
【0026】
)仕上げ焼鈍皮膜の無い方向性電磁鋼板表面に、SiOを主体とするコーティング層を形成しうる塗布液を塗布乾燥し、0.01〜1g/mのSiOを主体とするコーティング層を形成後、HO/H分圧比が5×10−5〜1×10−1の範囲に相当する雰囲気中で板温550℃以上1200℃以下で焼付処理を行い、さらに張力付与型の絶縁皮膜を塗布焼き付けることを特徴とする絶縁皮膜密着性に優れかつ鉄損の極めて低い方向性電磁鋼板の製造方法。
【0033】
)SiOを主体とするコーティング層を形成しうる塗布液が、コロイド粒子径10nm以下であるコロイダルシリカ、シリコンアルコキシドの加水分解物、珪酸ナトリウム水溶液、珪酸カリウム水溶液、珪酸リチウム水溶液のいずれかもしくは混合物であることを特徴とする(1)に記載の絶縁皮膜密着性に優れかつ鉄損の極めて低い方向性電磁鋼板の製造方法。
【0034】
)仕上げ焼鈍以降の張力付与型の絶縁皮膜焼付以前もしくは張力付与型の絶縁皮膜焼付以降のいずれかの工程において、鋼板表面に、圧延方向に対し直角から45°の範囲内で幅が10〜300μm、深さが5〜40μm、間隔が1〜20mmの線状ないし点列状の溝を形成することを特徴とする(1)および(2)に記載の絶縁皮膜密着性に優れかつ鉄損の極めて低い方向性電磁鋼板の製造方法。
【0035】
【発明の実施の形態】
次に本発明の実施形態について述べる。
【0036】
本発明は、仕上げ焼鈍皮膜の無い方向性電磁鋼板の表面に高い張力を付与できる絶縁皮膜を形成しようとする場合に、鋼板表面と絶縁皮膜との間にこの両者に対して密着性の良好な中間皮膜を形成し、絶縁皮膜と鋼板表面との密着性を強固にしようとするものである。したがって、対象となる方向性電磁鋼板としては、仕上焼鈍後に酸洗処理を行ってフォルステライト等の仕上げ焼鈍皮膜を除去した方向性電磁鋼板、または仕上焼鈍に際し焼鈍分離剤中に添加物を加えることにより仕上焼鈍皮膜の生成を抑制した方向性電磁鋼板等である。また、鉄損の低い電磁鋼板を得るために、仕上焼鈍皮膜を除去した後、化学的または機械的研磨もしくは還元性雰囲気下での高温焼鈍等の手段により表面を平滑化した方向性電磁鋼板、あるいは仕上焼鈍を行うに際し一次再結晶焼鈍時の酸化膜を除去しMgO以外の焼鈍分離剤を選択することによって表面を平滑化した方向性電磁鋼板、あるいは焼鈍分離剤としてアルカリ金属を含有するアルミナ等を用いて仕上焼鈍を行うことにより表面を平滑化した方向性電磁鋼板が好適である。
【0037】
また、耐熱型磁区制御処理、すなわち、溝付き金属ロールや電解エッチング等により圧延方向に対しおおむね直角方向に溝を形成した仕上げ焼鈍皮膜の無い方向性電磁鋼に張力付与型絶縁皮膜を形成する際に特に好適である。溝の形状としては、溝の方向が圧延方向に対し直角から45°の範囲、幅が10〜300μm、深さが5〜40μm、溝間の間隔が1〜20mmが望ましく、これらの範囲以外では鉄損改善効果が小さい。溝は線状、点列状のいずれでも効果は変わらない。溝の導入手段は機械的、化学的、いずれの手段でも鉄損改善効果や本発明による密着性発現効果は変わらない。本発明では溝を導入する工程については特に限定しない。冷延板、脱炭焼鈍板、仕上げ焼鈍後の塗布型SiO2層形成前後、絶縁皮膜形成前後のいずれでも可能である。
【0038】
仕上げ焼鈍皮膜の無い方向性電磁鋼板にレーザー照射による磁区制御を施す場合でも本発明は適用可能である。レーザー照射効果は550℃以上の熱処理で消失するため、レーザー照射は張力付与型絶縁皮膜焼付後に行うことが好ましい。
【0039】
本発明の主旨は、仕上げ焼鈍皮膜の無い方向性電磁鋼板に対し張力付与型の絶縁皮膜を密着性良好に形成させるにあたり、皮膜構造を以下のように設定するものである。すなわち、界面酸化反応によって生成したSiO2を主体とする酸化膜を介して、塗布焼き付けによって形成させたSiO2を主体とするコーティング層が存在し、さらにその表面に張力付与型の絶縁皮膜を存在させるものである。このような構造を実現するための手段は幾つか存在する。
【0040】
第1は、仕上げ焼鈍皮膜の無い方向性電磁鋼板表面に、SiO2を主体とするコーティング層を形成しうる塗布液を塗布乾燥し、0.01〜1g/m2のSiO2を主体とするコーティング層を形成後、H2O/H2分圧比が5×10-5〜1×10-1の範囲に相当する雰囲気中で板温550℃以上1200℃以下で焼付処理を行い、さらに張力付与型の絶縁皮膜を塗布焼き付ける方法である(図2(a))。本発明では、SiO2コーティング層の焼付雰囲気をH2O/H2分圧比が5×10-5〜1×10-1の範囲としたが、同じ酸素ポテンシャルを実現できる雰囲気ならば、必ずしもH2−H2O混合雰囲気を採用する必要はなく、CO−CO2混合ガスでも良い。重要なことは塗布型中間層焼き付け中にこの塗布型中間層と地鉄との界面に酸化反応によって生じたSiO2を主体とする酸化膜を形成することであり、この界面反応時にFe2SiO4やFeOの生成や内部酸化の発生を抑制することである。この界面酸化反応によって生ずる酸化膜中にはしばしばMnやAl等の酸化物が認められることがある。これらは方向性電磁鋼板が往々にして合金元素としてSiの他にMnやAl等を含有することが原因である。界面酸化反応によって生じたSiO2膜中にこれらMn、Al等の酸化物が存在することは、この膜が塗布焼付けによって形成されたSiO2を主体とする層ではなく、界面酸化反応によって生じたものであることを示す証拠となっている。ただし、これらMn、Al等の酸化物の存在は密着性に何ら悪影響を及ぼさない。
【0041】
本発明においては、塗布型中間層の焼き付け温度を550℃以上1200℃以下とした。550℃以上とした理由は、これより低い温度では鋼中におけるSiの拡散速度が小さいためSiO2膜の形成が起こりにくいためである。上限を1200℃とした理由は、1200℃を越える熱処理温度は著しいコスト上昇を伴い、また鋼板が軟化するため連続焼鈍の適用も困難となるからである。
【0042】
なお、特許文献11には、仕上げ焼鈍皮膜の無い方向性電磁鋼板に、シランカップリング等の有機金属化合物を塗布焼き付けた後に張力皮膜を焼き付ける方法が記載されているが、この方法で得られる皮膜構造は本発明のそれとは全く異なる特徴を有する。同特許文献における有機金属化合物の焼付条件は、鋼板温度200℃以上800℃以下で、かつ酸素分圧が2×10-5atmとなっている。これに対し、本発明における熱処理条件は、鋼板温度550℃以上、H2O/H2分圧比が5×10-5〜1×10-1の範囲である。
【0043】
上記熱処理条件の差異を以下に詳述する。酸素を含まないH2O−H2混合雰囲気やCO2−CO混合雰囲気における酸素分圧は、下記平衡反応から見積もることができる。例えば、H2O−H2混合雰囲気の場合、下記の反応の平衡定数をKとすると、
2H2O = 2H2 + O2
平衡状態における酸素分圧PO2
O2 = K(PH2O/PH22
で与えられる。図3に上記平衡反応の平衡定数を示した。図3を参照すると、本発明における酸素分圧はおおむね10-41〜10-12atmとなり、特許文献11における範囲2×10-5atmとは全く異なる。
【0044】
酸素分圧の上記差異は、生成酸化物種や酸化膜構造に大きな違いを与える。同特許文献の条件下で珪素鋼を熱処理した場合、SiのみならずFeも酸化される。したがって、同特許文献による条件下で生成する界面酸化反応生成物はFe2SiO4やFeOとなる。事実、同特許文献においては界面反応でFe2SiO4が生成することが密着性発現に必要であるとの記載がある。これに対し、本発明で必要としている界面酸化反応生成物は図1に示されているような膜状のSiO2である。したがって、特許文献11で開示される界面構造と本発明におけるそれとは全く異質なものである。さらに、珪素鋼の表面が酸化して最表面にFe2SiO4が生成するような場合には、その直下にSiO2を主体とする内部酸化層が形成される(N.Morito and T.Ichida:ScriptaMetalligica,vol.10,p619−622(1976)参照)ことが知られている。内部酸化層の形成は方向性電磁鋼板の鉄損を悪化させるだけでなく、絶縁皮膜密着性を劣化させるものであることは、本発明者らが特許文献8で指摘したとおりである。したがって、得られる効果の点においても、特許文献11に記載された発明に比べ、本発明は格段に優れたものである。
【0045】
第2の方法は、仕上げ焼鈍皮膜の無い方向性電磁鋼板に酸化鉄もしくは水酸化鉄層を形成した後、SiO2を主体とするコーティング層を形成しうる塗布液を0.01〜1g/m2塗布乾燥の後、張力付与型の絶縁皮膜を塗布焼き付ける方法である(図2(b))。酸化鉄もしくは水酸化鉄形成のための手段としては、焼鈍もしくは、水洗あるいは軽酸洗の後乾燥するという方法が採用可能である。
【0046】
この方法の場合、その後に焼き付けるべき絶縁皮膜の種類により、酸化鉄、水酸化鉄形成量範囲が異なる。コロイダルシリカと燐酸塩を主体とする絶縁皮膜の場合には、酸化鉄、水酸化鉄形成量は酸素換算で5〜100mg/m2である。一方、アルミナゾルを塗布液に含有する場合、例えば、アルミナゾルとほう酸を主体とするものである場合、酸化鉄、水酸化鉄形成量に下限はなく、酸素換算で10mg/m2以下である。絶縁皮膜焼き付け時にアルミナ水和物から放出される水分が界面酸化反応の酸素源として利用できるからである。酸化物、水酸化物形成量が上記範囲を超えると界面酸化反応が異常となり、張力付与型絶縁皮膜に対する密着性が発現されない。
【0047】
この第2の方法を用いた場合、界面酸化反応によって生じたSiO2膜中には、第1の方法を用いた場合と同様、MnやAl等の酸化物が形成されることがある。また、図1(b)のように、このSiO2膜中に金属Fe粒子が含まれることがある。これらSiO2以外の成分の存在は密着性に何ら悪影響を及ぼさない。金属Fe粒子の存在は、塗布型中間層の塗布焼付過程において、一度鋼板表面に酸化鉄ないし水酸化鉄が生じ、焼付過程においてこれらが還元される一方で界面酸化反応の酸素源として有効に作用したことを示すものである。
【0048】
第1、第2のいずれの方法においても、絶縁皮膜塗布に先立ち、SiO2を主体とするコーティング層を形成しうる塗布液を塗布乾燥するが、この塗布液と塗布量にも制限がある。まず、塗布液中におけるシリカコロイド粒子の大きさは10nm以下でなければならない。これより大きい場合には緻密なSiO2コーティング層を得ることができないからである。SiO2コーティング層の形成量は0.01〜1g/m2である必要がある。これより少ない場合にはSiO2コーティング層が均一にならず、一方多い場合には緻密な層が形成できないからである。
【0049】
塗布乾燥後のSiO2コーティング層の形成量は、熱水酸化ナトリウム水溶液中に鋼板を浸漬してこのコーティング層を除去し、除去前後の鋼板重量変化を測定することにより求めることができる。また、断面の透過型電子顕微鏡観察によりSiO2コーティング層の厚さを求め、SiO2を主成分とする物質の密度が約2g/cm3であることを利用して計算することも可能である。
【0050】
塗布型のSiO2コーティング層を形成するために好適なコーティング液としては、コロイダルシリカ、テトラエトキシシランを加水分解して作成したシリカゾル液、アルカリ金属珪酸塩のいずれでも良いが、0.01〜1g/m2の緻密なSiO2を主体とする乾燥膜が得られるならば上記に限定する必要はない。当然のことであるが、アルカリ金属珪酸塩をSiO2コーティング層形成のための塗布液として用いた場合、このコーティング層にはアルカリ金属が酸化物の状態で含まれることになる。
【0051】
なお、特許文献9には、仕上げ焼鈍皮膜の無い方向性電磁鋼板に絶縁皮膜を密着性良好に形成するための方法として、ゾルゲル法を用いる技術が開示されている。しかしながら、同明細書には本願発明で開示した界面酸化反応によって生ずるSiO2膜の形成に関しては記載がない。また、同特許文献の明細書に記載されている方法ではこのような反応膜が形成されないことは同明細書の記述から明らかである。
【0052】
特許文献9の明細書には具体的な方法として2つあげられている。一つは約100℃の温度でゲル膜を形成した後張力付与型の絶縁皮膜を焼き付ける方法である。同特許文献の明細書が開示された当時に公知であった張力付与型の絶縁皮膜は、同明細書実施例に示されているように、コロイダルシリカと燐酸塩を主体とするものである。塗布型中間層を乾燥のみにとどめ、かつコロイダルシリカと燐酸塩を主体とする絶縁皮膜を適用する場合には、塗布型中間層すなわちゾルゲル皮膜形成に先立って薄い酸化鉄ないし水酸化鉄を形成しておく必要があるが、同明細書にはそのような処理を示唆する記述が一切無い。
【0053】
同特許文献の明細書に開示されているもう一つの方法は、ゾルゲル皮膜を一度焼き付けた後に絶縁皮膜を焼き付ける方法である。この場合の具体的温度として450℃および500℃の記載がある。本発明で説明したように、塗布型中間層すなわちゾルゲル皮膜の焼き付け温度が550℃より低い場合には界面酸化反応によるSiO2膜形成が起こらない。また密着性発現に有効に作用する界面酸化SiO2膜を形成するためには、温度に加えて雰囲気を厳密に設定する必要があるにもかかわらず、同明細書にはそのような記述が一切無い。
【0054】
以上のことから、特許文献9で開示された方法では本発明で主張する界面酸化反応によって生じたSiO2膜は形成されておらず、したがって、張力付与型の絶縁皮膜に対する密着性は、本発明で開示したものより劣るものと考えられる。
【0055】
【実施例】
本発明は、仕上げ焼鈍皮膜の無い方向性電磁鋼板に張力付与型の絶縁皮膜を密着性良好に形成するためには、界面酸化反応によって生成したSiO2を主体とする酸化膜を介してSiO2を主体とするコーティング層が形成された構造が有効であることを立証するものである。以下に、このような界面構造を得るための具体的手段とその効果を、実施例により説明する。
(実施例1)
特許文献7による方法により、板厚0.22mmの仕上げ焼鈍皮膜が無くかつ表面が鏡面を呈する方向性電磁鋼板を作成した。次に特許文献4に開示されている方法で鋼板表面に溝を形成することにより磁区細分化処理を行った。一部の試料を残し、珪酸ナトリウム、珪酸カリウム、珪酸リチウムあるいは、テトラエトキシシランを加水分解して作成したシリカゾルのいずれかを0.3g/m2塗布し、板温200℃で乾燥することにより方向性電磁鋼板表面にSiO2を主体とするコーティング層を形成させた。その後、これらコーティング層を形成させなかった試料を含め、各種雰囲気条件下で30℃/sの昇温速度で各種到達板温まで加熱し、直ちに冷却した。引き続きコロイダルシリカと燐酸塩を主体とする張力付与型の絶縁皮膜を4g/m2塗布し、850℃で焼付けた。これらの試料につき、密着性と皮膜断面構造を評価した。密着性の評価は試験片を直径20mmの丸棒に巻き付けた際の皮膜の剥離の有無で判定した。得られた結果を表1に示す。
【0056】
表1におけるA〜Cより、塗布型のSiO2層を形成しないで熱処理を行った場合には、1000℃以上に加熱しなければ張力付与型の絶縁皮膜の密着性が得られないことがわかる。これに対し、D〜Gより、水ガラス等の塗布型の中間層を形成した後熱処理を行った場合には、到達板温550℃以上で密着性が確保できることがわかる。SiO2を主体とする塗布型中間層の導入により、熱処理温度を大幅に緩和できると言える。
【0057】
表1におけるD〜Mより、塗布型のSiO2コーティング層を形成した後の熱処理雰囲気はH2O/H2分圧比が5×10-5〜1×10-1の範囲にあればよいことがわかる。これより酸化性の弱い雰囲気では界面酸化によるSiO2膜が形成されず、一方酸化性がこの範囲を超えると界面酸化生成物がSiO2ではなく、Fe22iO4やFeOとなってしまうことが原因である。
【0058】
また、塗布型のSiO2層を形成するための塗布液としては、アルカリ金属珪酸塩の他に、Siの有機金属を加水分解し適当な縮合処理を行ったシリカゾルでも有効であることがわかる。
【0059】
表1より、塗布型のSiO2層と地鉄の間に、界面酸化反応によって生成したSiO2膜が存在し、張力付与型の絶縁皮膜密着性が良好となり、鉄損の極めて低い方向性電磁鋼板が得られることがわかる。また、このような界面構造を実現する具体的手段として、塗布型のSiO2中間層を形成した後、H2O/H2分圧比が5×10-5〜1×10-1の範囲に相当する雰囲気中で板温550℃以上で焼付処理を行い、その後に張力付与型の絶縁皮膜を塗布焼き付けることが有効であることがわかる。
【0060】
【表1】

Figure 0004818574
【0075】
【発明の効果】
本発明により、仕上げ焼鈍皮膜の無い方向性電磁鋼板に対し張力付与型の絶縁皮膜を密着性良好に形成でき、鉄損の極めて低い方向性電磁鋼板を得ることができる。
【図面の簡単な説明】
【図1】(a)、(b)は、仕上げ焼鈍皮膜の無い方向性電磁鋼板に張力付与型の絶縁皮膜が密着性良好に形成された場合における、透過型電子顕微鏡による地鉄−絶縁皮膜界面付近の断面写真。
【図2】(a)、(b)は、塗布型中間層と地鉄界面に界面酸化反応によるSiO2酸化膜が形成される過程を示す模式図。
【図3】2H2O=2H2+O2平衡反応における平衡定数Kの温度依存性を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention forms a high-strength insulating film with good adhesion on the surface of a grain-oriented electrical steel sheet that does not have a finish-annealed coating on the surface, and further on the surface of a grain-oriented electrical steel sheet that has been mirror-finished or after finishing annealing. And a grain-oriented electrical steel sheet with extremely low iron loss by this method.
[0002]
[Prior art]
Oriented electrical steel sheets are widely used as magnetic iron core materials, and in particular, a material with low iron loss is required to reduce energy loss. It is known that applying tension to a steel sheet is effective for reducing iron loss. In order to apply tension to the steel sheet, it is effective to form a film made of a material having a smaller thermal expansion coefficient than that of the steel sheet at a high temperature. A film mainly composed of forsterite (hereinafter referred to as finish annealing film) produced by the reaction of the oxide on the surface of the steel sheet and the annealing separator in the final annealing process has a high tension applied to the steel sheet and has a very good film adhesion. is there.
[0003]
Furthermore, the method of forming an insulating film by baking a coating liquid mainly composed of colloidal silica, phosphate, and chromic acid disclosed in Patent Document 1 has a large effect of imparting tension to the steel sheet, and reduces iron loss. It is effective for. Moreover, as disclosed in Patent Document 2, Patent Document 3, etc., an aluminum borate film (Al) obtained by applying and baking a coating liquid in which alumina sol and boric acid are mixed.xByO1.5 (xy)) Gives a film tension about 1.5 to 2 times that of an insulating film obtained from colloidal silica, phosphate and chromic acid, and has an extremely large iron loss reducing effect. Therefore, it is a general method for producing a grain-oriented electrical steel sheet to leave a film generated in the finish annealing process and to apply these tension-imparting type insulating films thereon.
[0004]
Further, as a measure for reducing the iron loss of the grain-oriented electrical steel sheet, there has been proposed a method of forming grooves in a line shape or a point line shape substantially perpendicular to the rolling direction. Specific groove forming means includes a method using mechanical means such as a grooved roll (Patent Document 4) and a method using chemical means such as etching (Patent Document 5).
[0005]
On the other hand, recently, it has become clear that the disordered interface structure between the finish annealed film and the ground iron cancels the film tension effect and the groove forming effect on the iron loss to some extent. Therefore, for example, as disclosed in Patent Document 6, after removing the finish annealing film, or after obtaining a grain-oriented electrical steel sheet mirror-finished during finish annealing by a method disclosed in Patent Document 7, Technology has been developed that attempts to further reduce iron loss by re-applying a tension coating.
[0006]
However, the tension-applying type insulation film provides a good adhesion when applied on the finish annealed film, but does not remove the finish annealed film or intentionally form the film in the finish annealing process. In such a case, sufficient adhesion cannot be obtained. When the finish annealed film is removed, it is necessary to ensure the required film tension with only the insulating film, and it is necessary to increase the film thickness, and further film adhesion is required. Therefore, it is difficult to achieve a film tension enough to bring out the effect of mirroring with the conventional insulating film forming method. In order to solve such a problem, the inventors disclosed in Patent Document 8 an external oxidation type SiO 2 by annealing a steel sheet in a weakly oxidizing atmosphere prior to forming an insulating film.2A method of forming a film has been disclosed. According to this method, a tension-imparting insulating film can be formed with extremely good adhesion on a grain-oriented electrical steel sheet having no finish annealing film. However, in order to obtain stable film adhesion, a relatively high annealing temperature and a certain holding time are required, and the production cost must be increased.
[0007]
On the other hand, Patent Document 9 discloses a method of imparting adhesion to an insulating film of a grain-oriented electrical steel sheet without a finish annealing film by forming a gel film of 0.1 to 0.5 μm by a sol-gel method. Yes. However, the specific content disclosed in the publication is limited to the common-sense description regarding the formation of a thin film by the sol-gel method, and does not describe the conditions under which the adhesion can be reliably guaranteed.
[0008]
Patent Document 10 discloses a 4 g / m2 aqueous solution of phosphate or alkali metal silicate.2The following describes a method of applying and baking at 350 ° C. or higher and then baking an insulating film mainly composed of colloidal silica and phosphate. However, the adhesion obtained with this method is not stable, suggesting that some additional conditions are necessary.
[0009]
Furthermore, in Patent Document 11, a coating liquid containing an organometallic compound having a metal binding group such as alkoxysilane is applied, and then baked in an oxidizing atmosphere to form Fe at the interface with the base iron.2SiOFourA method of forming a tension-imparting type insulating film by forming a film in which the above is generated is disclosed. However, as will be described later, the Fe2SiOFourWhen this occurs, an internal oxide layer is inevitably formed inside the steel sheet, and the formation of the internal oxide layer results in a loss of adhesion and iron loss.
[0010]
As described above, the SiO2 layer is annealed.2As for the coating-type intermediate layer forming technique that is easier to industrialize than the method of forming a film, no method has been found that can achieve both reliable adhesion and iron loss characteristics.
[0011]
[Patent Document 1]
JP 48-39338 A
[Patent Document 2]
JP-A-6-65754
[Patent Document 3]
JP-A-6-65555
[Patent Document 4]
JP 61-117218 A
[Patent Document 5]
JP-A-62-179105
[Patent Document 6]
JP-A 49-96920
[Patent Document 7]
JP-A-8-3648
[Patent Document 8]
JP-A-6-184762
[Patent Document 9]
Japanese Patent Laid-Open No. 3-130376
[Patent Document 10]
Japanese Patent Laid-Open No. 5-279747
[Patent Document 11]
JP 2002-235118 A
[0012]
[Problems to be solved by the invention]
In the grain-oriented electrical steel sheet without a forsterite film, the present invention is excellent in insulating film adhesion that reliably realizes adhesion of a tension-imparting type insulating film at low cost without impairing the obtained iron loss value, and A grain-oriented electrical steel sheet with extremely low iron loss and a method for producing the same are provided.
[0013]
[Means for Solving the Problems]
The present inventors have applied type intermediate layer method, that is, “form an intermediate layer by drying or baking after application to a grain-oriented electrical steel sheet without a finish annealing film, and then apply and bake a tension applying type insulating film”. The possibility of a low-cost film adhesion imparting method was investigated. For this purpose, it is necessary to find out the conditions for imparting adhesion to the coating-type intermediate layer. Therefore, various pretreatments are performed on the grain-oriented electrical steel sheet without the finish annealing film, and then various water-soluble silicates and silica are used. After an intermediate layer was formed by colloidal coating and drying or baking, an experiment was conducted systematically in which a tension-providing insulating film was baked, and the following important conclusions were obtained. In other words, good adhesion of the coating-type intermediate layer is realized based on a specific film structure, and additional conditions are necessary for forming the coating-type intermediate layer in order to obtain the specific film structure. It is.
[0014]
FIG. 1 is a trigger for drawing the above conclusion. Fig. 1 shows a grain-oriented electrical steel sheet without a finish annealed film as a coating-type intermediate layer with SiO22 is a cross-sectional photograph taken by a transmission electron microscope in the vicinity of the interface between the ground iron and the tension-imparting insulating film when the tension-imparting insulating film could be baked with good adhesion.
[0015]
This steel plate was prepared by the following procedure. First, a grain-oriented electrical steel sheet having no finish annealing film was obtained by the method disclosed by the present inventors in Patent Document 7. Since this method is finally annealed in extremely pure hydrogen, the surface of the obtained grain-oriented electrical steel sheet has only a naturally formed oxide film of about 1 nm that cannot be visually confirmed. In FIG. 1 (a), this grain-oriented electrical steel sheet is washed with water and dried to form a thin rust layer (iron hydroxide layer) on the surface, and then tetraethoxysilane (TEOS) is hydrolyzed in an alcohol solvent to moderately with acid. A polymerized silica sol is applied and dried at a plate temperature of 200 ° C., and finally a tension-imparting insulating film mainly composed of phosphate and colloidal silica is applied and baked at 850 ° C. FIG. 1 (b) shows a directional electrical steel sheet without a finish annealed film immediately after finish annealing, coated with a lithium silicate aqueous solution and dried at a plate temperature of 200 ° C., and then a coating solution mainly composed of boric acid and alumina sol at 850 ° C. It is baked.
[0016]
In both FIG. 1 (a) and FIG.2In addition to a coating layer mainly composed of tension and a tension-imparting insulating film,2A new film is observed between the layers. This new film is made of SiO2And metal iron particles are observed.
[0017]
From the above observation results, the present inventors obtained the following hypothesis. Before baking the tension-imparting type insulation film, iron oxide or iron hydroxide was formed at the interface between the base metal and the coating type intermediate layer. At the time of baking the insulating film, this iron oxide or iron hydroxide is used as an oxygen source, Si in the ground iron diffuses to the interface, and SiO 22SiO between the coating layer and the steel2A thin oxide film mainly composed of a thin oxide film is formed. By forming this thin oxide film, SiO 22It is thought that the coating layer is firmly connected to the steel. The presence of metallic Fe is SiO2This is evidence that an interfacial oxidation reaction has occurred between the coating layer and the steel.
[0018]
The conditions for imparting adhesion in the coating-type intermediate layer method derived from this hypothesis are as follows. The coating-type intermediate layer is SiO formed at the interface by some oxygen source and Si in the ground iron.2Must be secured by a membrane. Therefore, in order for a tension-imparting insulating film to be formed with good adhesion on a grain-oriented electrical steel sheet without a finish annealed film, it must have the following film structure. That is, in order from the base metal side, SiO generated on the base iron by interfacial oxidation reaction during baking2Oxide film mainly composed of SiO2 formed by coating and baking2It is a coating layer mainly composed of a tension applying type insulating film. The correctness of this hypothesis was proved inductively by an example described later. The gist of the present invention is as follows.
[0026]
  (1) On the surface of grain-oriented electrical steel sheet without finish annealing film, SiO2A coating solution capable of forming a coating layer mainly composed of a coating solution is applied and dried, and 0.01 to 1 g / m2SiO2After forming a coating layer mainly composed of2O / H2The partial pressure ratio is 5 × 10-5~ 1x10-1In the atmosphere corresponding to the range of above, baking is performed at a plate temperature of 550 ° C. or more and 1200 ° C. or less, and further, a tension applying type insulating film is applied and baked. Method for producing an electrical steel sheet.
[0033]
  (2) SiO2The coating liquid capable of forming a coating layer mainly composed of colloidal silica having a colloidal particle diameter of 10 nm or less, hydrolyzate of silicon alkoxide, sodium silicate aqueous solution, potassium silicate aqueous solution, lithium silicate aqueous solution or a mixture thereof Characterized by(1)A method for producing a grain-oriented electrical steel sheet having excellent insulating film adhesion and extremely low iron loss.
[0034]
  (3) In any process before or after tension-applying insulation film baking after finish annealing, or after baking of tension-applying insulation film, the width of the steel sheet is 10 to 300 μm within a range of 45 ° from the direction perpendicular to the rolling direction. , Characterized by forming a linear or dot-like groove having a depth of 5 to 40 μm and an interval of 1 to 20 mm.(1) and (2)A method for producing a grain-oriented electrical steel sheet having excellent insulating film adhesion and extremely low iron loss.
[0035]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described.
[0036]
The present invention provides a good adhesion between the steel sheet surface and the insulating film when the insulating film capable of imparting high tension to the surface of the grain-oriented electrical steel sheet having no finish annealing film is formed. An intermediate film is formed to increase the adhesion between the insulating film and the steel sheet surface. Therefore, the target grain-oriented electrical steel sheet is a grain-oriented electrical steel sheet that has been subjected to a pickling treatment after finish annealing to remove the finish annealing film such as forsterite, or an additive is added to the annealing separator during finish annealing. Is a grain-oriented electrical steel sheet that suppresses the formation of a finish annealed film. Further, in order to obtain a magnetic steel sheet with low iron loss, a grain-oriented electrical steel sheet whose surface has been smoothed by means such as high-temperature annealing in a chemical or mechanical polishing or reducing atmosphere after removing the finish annealing film, Or a grain-oriented electrical steel sheet whose surface is smoothed by removing an oxide film at the time of primary recrystallization annealing and selecting an annealing separator other than MgO when finishing annealing, or alumina containing an alkali metal as an annealing separator, etc. A grain-oriented electrical steel sheet whose surface is smoothed by performing finish annealing using is used.
[0037]
In addition, when heat-resistant magnetic domain control treatment is performed, that is, when a tension-imparting insulation film is formed on a directional electrical steel without a finish annealing film having grooves formed in a direction substantially perpendicular to the rolling direction by a grooved metal roll or electrolytic etching, etc. Is particularly suitable. As the shape of the groove, the direction of the groove is within a range of 45 ° perpendicular to the rolling direction, the width is preferably 10 to 300 μm, the depth is 5 to 40 μm, and the interval between the grooves is preferably 1 to 20 mm. Small iron loss improvement effect. The effect is the same regardless of whether the grooves are linear or dotted. The means for introducing grooves does not change the iron loss improvement effect or the adhesion development effect according to the present invention, regardless of mechanical or chemical means. In the present invention, the step of introducing the groove is not particularly limited. Cold rolled sheet, decarburized annealed sheet, coated SiO after finish annealing2Either before or after the formation of the layer or before or after the formation of the insulating film is possible.
[0038]
The present invention is applicable even when magnetic domain control is performed by laser irradiation on a grain-oriented electrical steel sheet having no finish annealing film. Since the laser irradiation effect disappears by heat treatment at 550 ° C. or higher, the laser irradiation is preferably performed after baking the tension-imparting insulating film.
[0039]
The gist of the present invention is to set the film structure as follows in order to form a tension-imparting insulating film with good adhesion to a grain-oriented electrical steel sheet having no finish annealing film. That is, SiO generated by the interfacial oxidation reaction2SiO formed by coating and baking through an oxide film mainly composed of2There is a coating layer mainly composed of, and a tension imparting type insulating film is further present on the surface thereof. There are several means for realizing such a structure.
[0040]
First, on the grain-oriented electrical steel sheet surface without a finish annealing film, SiO2A coating solution capable of forming a coating layer mainly composed of a coating solution is applied and dried, and 0.01 to 1 g / m2SiO2After forming a coating layer mainly composed of2O / H2The partial pressure ratio is 5 × 10-Five~ 1x10-1This is a method in which a baking treatment is performed at an plate temperature of 550 ° C. or more and 1200 ° C. or less in an atmosphere corresponding to the above range, and a tension-imparting type insulating film is applied and baked (FIG. 2A). In the present invention, SiO2The baking atmosphere of the coating layer is H2O / H2The partial pressure ratio is 5 × 10-Five~ 1x10-1However, if the atmosphere can achieve the same oxygen potential, it is not necessarily H2-H2It is not necessary to use O mixed atmosphere, CO-CO2A mixed gas may be used. What is important is that during baking of the coating-type intermediate layer, SiO generated by an oxidation reaction at the interface between the coating-type intermediate layer and the base iron2The oxide film mainly composed of2SiOFourAnd the generation of FeO and the occurrence of internal oxidation. Oxides such as Mn and Al are often observed in the oxide film generated by this interfacial oxidation reaction. These are due to the fact that grain-oriented electrical steel sheets often contain Mn, Al, etc. in addition to Si as alloy elements. SiO generated by interfacial oxidation reaction2The presence of these oxides such as Mn and Al in the film means that this film is formed by coating and baking.2This is evidence that it is not caused by the interfacial oxidation reaction. However, the presence of these oxides such as Mn and Al does not adversely affect the adhesion.
[0041]
In the present invention, the baking temperature of the coating-type intermediate layer is set to 550 ° C. or more and 1200 ° C. or less. The reason why the temperature is set to 550 ° C. or higher is that at a temperature lower than this, the diffusion rate of Si in the steel is small, so SiO 22This is because film formation hardly occurs. The reason why the upper limit is set to 1200 ° C. is that a heat treatment temperature exceeding 1200 ° C. is accompanied by a significant cost increase, and the steel sheet is softened, making it difficult to apply continuous annealing.
[0042]
Patent Document 11 describes a method of baking a tensile film after applying and baking an organometallic compound such as silane coupling to a grain-oriented electrical steel sheet without a finish annealing film. The structure has completely different characteristics from that of the present invention. The baking conditions for the organometallic compound in the patent document are as follows: the steel sheet temperature is 200 ° C. or more and 800 ° C. or less, and the oxygen partial pressure is 2 × 10.-FiveIt is atm. On the other hand, the heat treatment conditions in the present invention are the steel plate temperature of 550 ° C. or higher, H2O / H2The partial pressure ratio is 5 × 10-Five~ 1x10-1Range.
[0043]
The difference in the heat treatment conditions will be described in detail below. H without oxygen2O-H2Mixed atmosphere and CO2The oxygen partial pressure in the -CO mixed atmosphere can be estimated from the following equilibrium reaction. For example, H2O-H2In the case of a mixed atmosphere, if the equilibrium constant of the following reaction is K,
2H2O = 2H2  + O2
Oxygen partial pressure P in equilibriumO2Is
PO2   = K (PH2O/ PH2)2
Given in. FIG. 3 shows the equilibrium constant of the above equilibrium reaction. Referring to FIG. 3, the oxygen partial pressure in the present invention is approximately 10%.-41-10-12atm, the range 2 × 10 in Patent Document 11-FiveVery different from atm.
[0044]
The above-mentioned difference in oxygen partial pressure gives a large difference in the generated oxide species and the oxide film structure. When silicon steel is heat-treated under the conditions of this patent document, not only Si but also Fe is oxidized. Therefore, the interfacial oxidation reaction product produced under the conditions according to the patent document is Fe2SiOFourOr FeO. In fact, in this patent document, Fe is caused by interfacial reaction.2SiOFourThere is a description that it is necessary for adhesion to be produced. On the other hand, the interfacial oxidation reaction product required in the present invention is a film-like SiO 2 as shown in FIG.2It is. Therefore, the interface structure disclosed in Patent Document 11 is completely different from that in the present invention. Furthermore, the surface of silicon steel is oxidized and Fe is formed on the outermost surface.2SiOFourIs generated immediately below it, SiO 22(See N. Morito and T. Ichida: Scripta Metallica, vol. 10, p619-622 (1976)). The formation of the internal oxide layer not only deteriorates the iron loss of the grain-oriented electrical steel sheet, but also deteriorates the adhesion of the insulating film, as pointed out by the inventors in Patent Document 8. Therefore, the present invention is remarkably superior to the invention described in Patent Document 11 in terms of the obtained effect.
[0045]
In the second method, an iron oxide or iron hydroxide layer is formed on a grain-oriented electrical steel sheet without a finish annealing film, and then SiO 2 is formed.20.01-1 g / m of a coating solution capable of forming a coating layer mainly composed of2This is a method of applying and baking a tension-applying type insulating film after coating and drying (FIG. 2B). As a means for forming iron oxide or iron hydroxide, a method of drying after annealing, water washing or light pickling can be employed.
[0046]
In the case of this method, the range of iron oxide and iron hydroxide formation varies depending on the type of insulating film to be baked thereafter. In the case of an insulating film mainly composed of colloidal silica and phosphate, the amount of iron oxide and iron hydroxide formed is 5 to 100 mg / m in terms of oxygen.2It is. On the other hand, when alumina sol is contained in the coating solution, for example, when it is mainly composed of alumina sol and boric acid, there is no lower limit to the amount of iron oxide and iron hydroxide formed, and 10 mg / m in terms of oxygen.2It is as follows. This is because the moisture released from the alumina hydrate during baking of the insulating film can be used as an oxygen source for the interfacial oxidation reaction. When the oxide and hydroxide formation amount exceeds the above range, the interfacial oxidation reaction becomes abnormal, and adhesion to the tension-imparting insulating film is not exhibited.
[0047]
When this second method is used, SiO generated by the interface oxidation reaction2In the film, an oxide such as Mn or Al may be formed as in the case of using the first method. In addition, as shown in FIG.2Metallic Fe particles may be included in the film. These SiO2The presence of other components does not adversely affect the adhesion. The presence of metallic Fe particles effectively acts as an oxygen source for the interfacial oxidation reaction while iron oxide or iron hydroxide is once generated on the steel sheet surface during the coating and baking process of the coating-type intermediate layer, and these are reduced during the baking process. It shows that it did.
[0048]
In both the first and second methods, SiO2 is applied prior to application of the insulating film.2The coating solution capable of forming a coating layer mainly composed of is applied and dried, but the coating solution and the coating amount are also limited. First, the size of the silica colloid particles in the coating solution must be 10 nm or less. If it is larger than this, dense SiO 22This is because a coating layer cannot be obtained. SiO2The formation amount of the coating layer is 0.01 to 1 g / m.2Need to be. If less than this, SiO2This is because the coating layer does not become uniform, whereas if the coating layer is large, a dense layer cannot be formed.
[0049]
SiO after coating and drying2The formation amount of the coating layer can be determined by immersing the steel sheet in a hot sodium hydroxide aqueous solution to remove the coating layer, and measuring the change in the weight of the steel sheet before and after the removal. In addition, SiO2The thickness of the coating layer is obtained and SiO2The density of the substance whose main component is about 2g / cmThreeIt is also possible to calculate using this fact.
[0050]
Coating type SiO2As a coating liquid suitable for forming the coating layer, any of colloidal silica, silica sol liquid prepared by hydrolyzing tetraethoxysilane, and alkali metal silicate may be used, but 0.01 to 1 g / m.2Dense SiO2If a dry film mainly composed of is obtained, it is not necessary to limit to the above. Naturally, alkali metal silicates are SiO2When used as a coating solution for forming a coating layer, the coating layer contains an alkali metal in an oxide state.
[0051]
Patent Document 9 discloses a technique using a sol-gel method as a method for forming an insulating film with good adhesion on a grain-oriented electrical steel sheet having no finish annealing film. However, in this specification, SiO generated by the interfacial oxidation reaction disclosed in the present invention is included.2There is no description regarding the formation of the film. Also, it is clear from the description of the specification that such a reaction film is not formed by the method described in the specification of the patent document.
[0052]
In the specification of Patent Document 9, two specific methods are listed. One is a method in which a gel film is formed at a temperature of about 100 ° C. and then a tension applying type insulating film is baked. The tension-imparting type insulating film known at the time when the specification of the patent document was disclosed is mainly composed of colloidal silica and phosphate, as shown in Examples of the specification. When the coating-type intermediate layer is kept dry and an insulating film mainly composed of colloidal silica and phosphate is applied, a thin iron oxide or iron hydroxide is formed prior to the formation of the coating-type intermediate layer, that is, the sol-gel film. However, there is no description suggesting such processing in the specification.
[0053]
Another method disclosed in the specification of this patent document is a method of baking an insulating film after baking a sol-gel film once. There are descriptions of 450 ° C. and 500 ° C. as specific temperatures in this case. As explained in the present invention, when the baking temperature of the coating-type intermediate layer, that is, the sol-gel film is lower than 550 ° C., SiO caused by the interfacial oxidation reaction2Film formation does not occur. Also, interfacial oxide SiO that effectively acts on adhesion development2In order to form a film, it is necessary to set the atmosphere strictly in addition to the temperature, but there is no such description in the specification.
[0054]
From the above, in the method disclosed in Patent Document 9, SiO generated by the interfacial oxidation reaction claimed in the present invention is used.2No film is formed, and therefore the adhesion to the tension-imparting insulating film is considered to be inferior to that disclosed in the present invention.
[0055]
【Example】
In order to form a tension-imparting type insulating film with good adhesion on a grain-oriented electrical steel sheet having no finish annealing film, the SiO 2 produced by interfacial oxidation reaction is used.2SiO through an oxide film mainly composed of2This proves that the structure in which the coating layer mainly composed of is formed is effective. Hereinafter, specific means for obtaining such an interface structure and the effects thereof will be described with reference to examples.
Example 1
By the method according to Patent Document 7, a grain-oriented electrical steel sheet having a finish annealing film having a thickness of 0.22 mm and having a mirror surface is prepared. Next, the magnetic domain refinement process was performed by forming a groove on the steel sheet surface by the method disclosed in Patent Document 4. Some samples are left and either sodium silicate, potassium silicate, lithium silicate, or silica sol prepared by hydrolyzing tetraethoxysilane is 0.3 g / m2By applying and drying at a plate temperature of 200 ° C., the surface of the grain-oriented electrical steel sheet is made of SiO.2A coating layer mainly composed of was formed. Then, including the sample in which these coating layers were not formed, it was heated to various reaching plate temperatures at a temperature rising rate of 30 ° C./s under various atmospheric conditions and immediately cooled. Subsequently, a tension-imparting insulating film mainly composed of colloidal silica and phosphate was applied at 4 g / m.2It was applied and baked at 850 ° C. About these samples, adhesiveness and film | membrane cross-section structure were evaluated. The evaluation of adhesion was judged by the presence or absence of peeling of the film when the test piece was wound around a round bar having a diameter of 20 mm. The obtained results are shown in Table 1.
[0056]
From A to C in Table 1, coating type SiO2When heat treatment is performed without forming a layer, it is understood that the adhesion of the tension-applying insulating film cannot be obtained unless it is heated to 1000 ° C. or higher. On the other hand, it can be seen from D to G that adhesion can be ensured at a final plate temperature of 550 ° C. or higher when heat treatment is performed after forming a coating-type intermediate layer such as water glass. SiO2It can be said that the heat treatment temperature can be greatly relaxed by introducing a coating-type intermediate layer mainly composed of.
[0057]
From D to M in Table 1, coating type SiO2The heat treatment atmosphere after forming the coating layer is H2O / H2The partial pressure ratio is 5 × 10-Five~ 1x10-1It can be seen that it should be in the range of. In an atmosphere with weaker oxidizability, SiO due to interfacial oxidation2When the film is not formed, while the oxidizability exceeds this range, the interface oxidation product becomes SiO 22Not Fe22iOFourOr FeO.
[0058]
Also, coating type SiO2As a coating solution for forming a layer, it is understood that silica sol obtained by hydrolyzing an organometallic Si and performing an appropriate condensation treatment in addition to the alkali metal silicate is effective.
[0059]
From Table 1, coating type SiO2SiO generated by interfacial oxidation reaction between the layer and the steel2It can be seen that there is a film, the tension-applying insulating film adhesion is good, and a grain-oriented electrical steel sheet with extremely low iron loss can be obtained. In addition, as a specific means for realizing such an interface structure, coating-type SiO2After forming the intermediate layer, H2O / H2The partial pressure ratio is 5 × 10-Five~ 1x10-1It can be seen that it is effective to perform a baking treatment at a plate temperature of 550 ° C. or higher in an atmosphere corresponding to the above range, and then apply and bake a tension applying type insulating film.
[0060]
[Table 1]
Figure 0004818574
[0075]
【The invention's effect】
According to the present invention, a tension-imparting insulating film can be formed with good adhesion to a grain-oriented electrical steel sheet without a finish annealing film, and a grain-oriented electrical steel sheet with extremely low iron loss can be obtained.
[Brief description of the drawings]
FIGS. 1 (a) and 1 (b) show a ground iron-insulating film obtained by a transmission electron microscope when a tension-imparting insulating film is formed on a grain-oriented electrical steel sheet without a finish annealed film with good adhesion. Cross-sectional photograph near the interface.
FIGS. 2 (a) and 2 (b) show SiO by interfacial oxidation reaction at the interface between the coating-type intermediate layer and the ground iron.2The schematic diagram which shows the process in which an oxide film is formed.
FIG. 3 2H2O = 2H2+ O2The figure which shows the temperature dependence of the equilibrium constant K in an equilibrium reaction.

Claims (3)

仕上げ焼鈍皮膜の無い方向性電磁鋼板表面に、SiOを主体とするコーティング層を形成しうる塗布液を塗布乾燥し、0.01〜1g/mのSiOを主体とするコーティング層を形成後、HO/H分圧比が5×10−5〜1×10−1の範囲に相当する雰囲気中で板温550℃以上1200℃以下で焼付処理を行い、さらに張力付与型の絶縁皮膜を塗布焼き付けることを特徴とする絶縁皮膜密着性に優れかつ鉄損の極めて低い方向性電磁鋼板の製造方法。A coating solution that can form a coating layer mainly composed of SiO 2 is applied to the surface of the grain-oriented electrical steel sheet having no finish annealing coating and dried to form a coating layer mainly composed of 0.01 to 1 g / m 2 of SiO 2. After that, a baking treatment is performed at a plate temperature of 550 ° C. to 1200 ° C. in an atmosphere corresponding to a H 2 O / H 2 partial pressure ratio in the range of 5 × 10 −5 to 1 × 10 −1. A method for producing a grain-oriented electrical steel sheet having excellent insulating film adhesion and extremely low iron loss, characterized by coating and baking a film. SiOを主体とするコーティング層を形成しうる塗布液が、コロイド粒子径10nm以下であるコロイダルシリカ、シリコンアルコキシドの加水分解物、珪酸ナトリウム水溶液、珪酸カリウム水溶液、珪酸リチウム水溶液のいずれかもしくは混合物であることを特徴とする請求項に記載の絶縁皮膜密着性に優れかつ鉄損の極めて低い方向性電磁鋼板の製造方法。The coating solution capable of forming a coating layer mainly composed of SiO 2 is any one or a mixture of colloidal silica having a colloidal particle diameter of 10 nm or less, hydrolyzate of silicon alkoxide, sodium silicate aqueous solution, potassium silicate aqueous solution, lithium silicate aqueous solution. The method for producing a grain-oriented electrical steel sheet having excellent adhesion to an insulating film and extremely low iron loss according to claim 1 . 仕上げ焼鈍以降の張力付与型の絶縁皮膜焼付以前もしくは張力付与型の絶縁皮膜焼付以降のいずれかの工程において、鋼板表面に、圧延方向に対し直角から45°の範囲内で幅が10〜300μm、深さが5〜40μm、間隔が1〜20mmの線状ないし点列状の溝を形成することを特徴とする請求項またはに記載の絶縁皮膜密着性に優れかつ鉄損の極めて低い方向性電磁鋼板の製造方法。In any step before or after tension-applying insulation film baking after finish annealing, or after baking tension-applying insulation film, the width of the steel sheet is 10 to 300 μm within a range of 45 ° from the direction perpendicular to the rolling direction, depth 5 to 40 m, very low direction of excellent and iron loss in the insulating film adhesion according to claim 1 or 2 intervals and forming a linear or dot rows groove 1~20mm Method for producing an electrical steel sheet.
JP2003134606A 2003-05-13 2003-05-13 Method for producing grain-oriented electrical steel sheet with excellent insulation film adhesion and extremely low iron loss Expired - Fee Related JP4818574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003134606A JP4818574B2 (en) 2003-05-13 2003-05-13 Method for producing grain-oriented electrical steel sheet with excellent insulation film adhesion and extremely low iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003134606A JP4818574B2 (en) 2003-05-13 2003-05-13 Method for producing grain-oriented electrical steel sheet with excellent insulation film adhesion and extremely low iron loss

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008180286A Division JP2009019274A (en) 2008-07-10 2008-07-10 Production method of grain-oriented electromagnetic steel sheet with excellent adhesion to insulating film and extremely low core loss

Publications (2)

Publication Number Publication Date
JP2004342679A JP2004342679A (en) 2004-12-02
JP4818574B2 true JP4818574B2 (en) 2011-11-16

Family

ID=33525122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003134606A Expired - Fee Related JP4818574B2 (en) 2003-05-13 2003-05-13 Method for producing grain-oriented electrical steel sheet with excellent insulation film adhesion and extremely low iron loss

Country Status (1)

Country Link
JP (1) JP4818574B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101234452B1 (en) 2008-02-19 2013-02-18 신닛테츠스미킨 카부시키카이샤 Low core loss unidirectional electromagnetic steel plate and method of manufacturing the same
US8698451B2 (en) 2009-12-18 2014-04-15 General Electric Company Apparatus and method for rapid charging using shared power electronics
JP6074129B2 (en) * 2010-09-07 2017-02-01 新日鐵住金株式会社 Electrical steel sheet with insulation film
JP6955617B2 (en) * 2016-03-30 2021-10-27 クリナップ株式会社 Surface-treated metal parts, heating appliances
CN110832117B (en) 2017-07-13 2022-01-07 日本制铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing same
EP3653758B1 (en) 2017-07-13 2022-04-27 Nippon Steel Corporation Grain-oriented electrical steel sheet
RU2730823C1 (en) 2017-07-13 2020-08-26 Ниппон Стил Корпорейшн Electrotechnical steel sheet with oriented grain structure
JP6962471B2 (en) 2018-07-13 2021-11-05 日本製鉄株式会社 Original plate for grain-oriented electrical steel sheet, method for manufacturing grain-oriented silicon steel sheet used as material for grain-oriented electrical steel sheet, method for manufacturing grain-oriented electrical steel sheet, and method for manufacturing grain-oriented electrical steel sheet
EP3913083A4 (en) 2019-01-16 2022-10-05 Nippon Steel Corporation Grain-oriented electrical steel sheet, intermediate steel sheet for grain-oriented electrical steel sheet, and manufacturing method thereof
CN113302316B (en) 2019-01-16 2023-11-28 日本制铁株式会社 Grain-oriented electrical steel sheet and method for producing same
WO2020149349A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and method for manufacturing same

Also Published As

Publication number Publication date
JP2004342679A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
JP2698003B2 (en) Method for forming insulating film on unidirectional silicon steel sheet
JP2664337B2 (en) Method for forming insulating film on unidirectional silicon steel sheet
JP4818574B2 (en) Method for producing grain-oriented electrical steel sheet with excellent insulation film adhesion and extremely low iron loss
JP3272211B2 (en) Method of forming insulating film on magnetic domain controlled unidirectional silicon steel sheet
JP4473489B2 (en) Unidirectional silicon steel sheet and manufacturing method thereof
JP3930696B2 (en) Unidirectional silicon steel sheet excellent in film adhesion of tension imparting insulating film and method for producing the same
JP4288022B2 (en) Unidirectional silicon steel sheet and manufacturing method thereof
JPS60131976A (en) Manufacture of grain-oriented silicon steel sheet having superior iron loss characteristic
JP2962715B2 (en) Method of forming insulation film on electrical steel sheet
JP2688147B2 (en) Manufacturing method of low iron loss grain-oriented electrical steel sheet
JP2009019274A (en) Production method of grain-oriented electromagnetic steel sheet with excellent adhesion to insulating film and extremely low core loss
JP2698501B2 (en) Method for forming insulating film on unidirectional silicon steel sheet
JP4041289B2 (en) Method for forming insulating coating on electrical steel sheet
KR102483579B1 (en) Grain-oriented electrical steel sheet, grain-oriented silicon steel sheet used as a material for grain-oriented electrical steel sheet, method for producing grain-oriented electrical steel sheet, and grain-oriented electrical steel sheet manufacturing method
JP2003171773A (en) Grain oriented silicon steel sheet having tensile film
JP4044781B2 (en) Unidirectional silicon steel sheet with excellent tension-providing insulating film adhesion and method for producing the same
JP3272210B2 (en) Method for forming insulating film on unidirectional silicon steel sheet
JP2004027345A (en) Low-iron loss grain oriented silicon steel sheet and method for manufacturing the same
JP3461712B2 (en) Unidirectional electrical steel sheet and method for forming insulating film on unidirectional electrical steel sheet
JP3280844B2 (en) Method for forming insulating film on unidirectional silicon steel sheet
JP4025514B2 (en) Insulating film forming method for unidirectional silicon steel sheet with excellent magnetic properties and film adhesion
JP2667098B2 (en) Manufacturing method of low iron loss grain-oriented electrical steel sheet
JP4635347B2 (en) Magnetic steel sheet manufacturing method with excellent magnetic properties and film adhesion after strain relief annealing
WO1999019538A1 (en) Method of forming an insulating film on a magnetic steel sheet
JP2003301271A (en) Method for forming insulative film superior in baking atmosphere resistance on grain-oriented electromagnetic steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080710

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080724

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4818574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees